Bug Summary

File:nnc/ccv_nnc_dynamic_graph.c
Warning:line 592, column 4
Branch condition evaluates to a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_nnc_dynamic_graph.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/home/liu/buildslave/linux-x64-runtests/build/lib/nnc -resource-dir /usr/local/lib/clang/14.0.0 -I ../ -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D USE_DISPATCH -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/9/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -fdebug-compilation-dir=/home/liu/buildslave/linux-x64-runtests/build/lib/nnc -ferror-limit 19 -fblocks -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/buildslave/public_html/analyze/2022-06-22-151334-490440-1 -x c ccv_nnc_dynamic_graph.c
1#include "ccv_nnc.h"
2#include "ccv_nnc_easy.h"
3#include "ccv_nnc_internal.h"
4#include "ccv_nnc_easy.h"
5#include "ccv_internal.h"
6#include "_ccv_nnc_dynamic_graph.h"
7
8// MARK - Level-4 API
9
10ccv_nnc_dynamic_graph_t* ccv_nnc_dynamic_graph_new(void)
11{
12 ccv_nnc_dynamic_graph_t* graph = ccmallocmalloc(sizeof(ccv_nnc_dynamic_graph_t));
13 graph->no_grad = 0;
14 graph->reuse_var = -1;
15 graph->vars = ccv_array_new(sizeof(ccv_nnc_tensor_variable_t), 1, 0);
16 graph->binds = ccv_array_new(sizeof(ccv_nnc_tensor_variable_graph_bind_t), 1, 0);
17 graph->tape = ccv_nnc_symbolic_graph_new();
18 graph->xpu_alloc.mp_hdr = -1;
19 graph->xpu_alloc.freed = kh_init(dy_str)kh_init_dy_str();
20 graph->xpu_alloc.allocd = kh_init(dy_alloc)kh_init_dy_alloc();
21 // These may not be used as frequent, init as needed.
22 graph->stateful_execs = 0;
23 graph->reuse_stateful_exec = -1;
24 graph->stream_map = 0;
25 graph->ws = 0;
26 return graph;
27}
28
29static void _ccv_nnc_tensor_variable_free(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable, const int zeroing)
30{
31 const int index = tensor_variable->index;
32 if (tensor_variable->tensor_view)
33 {
34 if (tensor_variable->destructor_hook.func)
35 tensor_variable->destructor_hook.func(graph, (ccv_nnc_tensor_t*)tensor_variable->tensor_view, tensor_variable->destructor_hook.context);
36 if (!CCV_NNC_IS_EXTERN_TENSOR_VIEW(tensor_variable->tensor_view)((uintptr_t)(tensor_variable->tensor_view) & 1))
37 {
38 if (CCV_IS_TENSOR_VIEW(tensor_variable->tensor_view)((*(int*)(tensor_variable->tensor_view)) & CCV_TENSOR_VIEW
)
)
39 ccv_nnc_tensor_view_free(tensor_variable->tensor_view);
40 else {
41 if (!tensor_variable->alias_index_ref && // Return this memory to the graph.
42 CCV_TENSOR_GET_MEMORY(tensor_variable->tensor_view->info.type)((tensor_variable->tensor_view->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY)
43 ccv_nnc_xpu_free(&graph->xpu_alloc, tensor_variable->tensor_view->data.ptr);
44 ccv_nnc_tensor_free((ccv_nnc_tensor_t*)tensor_variable->tensor_view);
45 }
46 }
47 }
48 ccfreefree(tensor_variable);
49 if (zeroing)
50 *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, index)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(index)))
= 0;
51 int i;
52 for (i = graph->vars->rnum - 1; i >= 0; i--)
53 if (*(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, i)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(i)))
!= 0)
54 {
55 graph->vars->rnum = i + 1;
56 break;
57 }
58 if (index < graph->vars->rnum &&
59 (index < graph->reuse_var || graph->reuse_var < 0))
60 graph->reuse_var = index;
61 else if (graph->reuse_var >= graph->vars->rnum)
62 graph->reuse_var = -1;
63}
64
65static void _ccv_nnc_tensor_variable_graph_bind_free(ccv_nnc_dynamic_graph_t* const graph, ccv_nnc_tensor_variable_graph_bind_t* const bind, const int zeroing)
66{
67 bind->index = CCV_NNC_TENSOR_NO_VARIABLE;
68 if (bind->sources)
69 ccv_array_free(bind->sources);
70 if (bind->destinations)
71 ccv_array_free(bind->destinations);
72 if (bind->tensor_view)
73 {
74 if (bind->destructor_hook.func)
75 bind->destructor_hook.func(graph, (ccv_nnc_tensor_t*)bind->tensor_view, bind->destructor_hook.context);
76 if (!CCV_NNC_IS_EXTERN_TENSOR_VIEW(bind->tensor_view)((uintptr_t)(bind->tensor_view) & 1))
77 {
78 if (CCV_IS_TENSOR_VIEW(bind->tensor_view)((*(int*)(bind->tensor_view)) & CCV_TENSOR_VIEW))
79 ccv_nnc_tensor_view_free(bind->tensor_view);
80 else {
81 if (!bind->alias_ref && // Return this memory to the graph.
82 CCV_TENSOR_GET_MEMORY(bind->tensor_view->info.type)((bind->tensor_view->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY)
83 ccv_nnc_xpu_free(&graph->xpu_alloc, bind->tensor_view->data.ptr);
84 ccv_nnc_tensor_free((ccv_nnc_tensor_t*)bind->tensor_view);
85 }
86 }
87 }
88 if (zeroing)
89 {
90 bind->sources = 0;
91 bind->destinations = 0;
92 bind->tensor_view = 0;
93 bind->destructor_hook.func = 0;
94 bind->destructor_hook.context = 0;
95 }
96}
97
98void ccv_nnc_dynamic_graph_free(ccv_nnc_dynamic_graph_t* const graph)
99{
100 int i;
101 for (i = 0; i < graph->vars->rnum; i++)
102 {
103 ccv_nnc_tensor_variable_t tensor_variable = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, i)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(i)))
;
104 if (tensor_variable)
105 _ccv_nnc_tensor_variable_free(graph, tensor_variable, 0);
106 }
107 ccv_array_free(graph->vars);
108 for (i = 0; i < graph->binds->rnum; i++)
109 _ccv_nnc_tensor_variable_graph_bind_free(graph, (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, i)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(i)))
, 0);
110 ccv_array_free(graph->binds);
111 ccv_nnc_symbolic_graph_free(graph->tape);
112 if (graph->ws)
113 ccv_array_free(graph->ws);
114 if (graph->stateful_execs)
115 {
116 for (i = 0; i < graph->stateful_execs->rnum; i++)
117 {
118 ccv_nnc_stateful_exec_t* const stateful_exec = *(ccv_nnc_stateful_exec_t**)ccv_array_get(graph->stateful_execs, i)((void*)(((char*)((graph->stateful_execs)->data)) + (size_t
)(graph->stateful_execs)->rsize * (size_t)(i)))
;
119 if (stateful_exec)
120 ccfreefree(stateful_exec);
121 }
122 ccv_array_free(graph->stateful_execs);
123 }
124 if (graph->stream_map)
125 {
126 khiter_t k;
127 for (k = kh_begin(graph->stream_map)(khint_t)(0); k != kh_end(graph->stream_map)((graph->stream_map)->n_buckets); ++k)
128 {
129 if (!kh_exist(graph->stream_map, k)(!(((graph->stream_map)->flags[(k)>>4]>>(((
k)&0xfU)<<1))&3))
)
130 continue;
131 ccv_nnc_stream_context_t* const stream = kh_val(graph->stream_map, k)((graph->stream_map)->vals[k]);
132 ccv_nnc_stream_context_free(stream);
133 }
134 kh_destroy(stream_map, graph->stream_map)kh_destroy_stream_map(graph->stream_map);
135 }
136 ccv_nnc_xpu_alloc_destroy(&graph->xpu_alloc);
137 ccfreefree(graph);
138}
139
140void ccv_nnc_tensor_variable_set(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable, ccv_nnc_tensor_t* const tensor)
141{
142 assert(!tensor_variable->alias_index_ref)((void) sizeof ((!tensor_variable->alias_index_ref) ? 1 : 0
), __extension__ ({ if (!tensor_variable->alias_index_ref)
; else __assert_fail ("!tensor_variable->alias_index_ref"
, "ccv_nnc_dynamic_graph.c", 142, __extension__ __PRETTY_FUNCTION__
); }))
;
143 if (tensor_variable->tensor_view && !CCV_NNC_IS_EXTERN_TENSOR_VIEW(tensor_variable->tensor_view)((uintptr_t)(tensor_variable->tensor_view) & 1))
144 {
145 assert(!CCV_IS_TENSOR_VIEW(tensor_variable->tensor_view))((void) sizeof ((!((*(int*)(tensor_variable->tensor_view))
& CCV_TENSOR_VIEW)) ? 1 : 0), __extension__ ({ if (!((*(
int*)(tensor_variable->tensor_view)) & CCV_TENSOR_VIEW
)) ; else __assert_fail ("!CCV_IS_TENSOR_VIEW(tensor_variable->tensor_view)"
, "ccv_nnc_dynamic_graph.c", 145, __extension__ __PRETTY_FUNCTION__
); }))
;
146 ccv_nnc_tensor_free((ccv_nnc_tensor_t*)tensor_variable->tensor_view);
147 }
148 tensor_variable->info = tensor->info;
149 tensor_variable->tensor_view = (ccv_nnc_tensor_view_t*)((uintptr_t)tensor | 1);
150}
151
152void ccv_nnc_tensor_variable_destructor_hook(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable, ccv_nnc_tensor_variable_destructor_f func, void* const context)
153{
154 tensor_variable->destructor_hook.func = func;
155 tensor_variable->destructor_hook.context = context;
156}
157
158inline static void _ccv_nnc_tensor_variable_init(ccv_nnc_dynamic_graph_t* const graph, ccv_nnc_tensor_variable_t tensor_variable, const ccv_nnc_tensor_param_t info)
159{
160 tensor_variable->alias_index_ref = 0;
161 tensor_variable->destructor_hook.func = 0;
162 tensor_variable->destructor_hook.context = 0;
163 tensor_variable->info = info;
164 tensor_variable->symbol = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
165 tensor_variable->tensor_view = 0;
166 if (graph->reuse_var >= 0)
167 {
168 const int reuse_var = graph->reuse_var;
169 assert(reuse_var < graph->vars->rnum)((void) sizeof ((reuse_var < graph->vars->rnum) ? 1 :
0), __extension__ ({ if (reuse_var < graph->vars->rnum
) ; else __assert_fail ("reuse_var < graph->vars->rnum"
, "ccv_nnc_dynamic_graph.c", 169, __extension__ __PRETTY_FUNCTION__
); }))
;
170 tensor_variable->index = reuse_var;
171 *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, reuse_var)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(reuse_var)))
= tensor_variable;
172 int i;
173 graph->reuse_var = -1;
174 for (i = reuse_var + 1; i < graph->vars->rnum && graph->reuse_var < 0; i++)
175 if (*(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, i)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(i)))
== 0)
176 graph->reuse_var = i;
177 } else {
178 tensor_variable->index = graph->vars->rnum;
179 ccv_array_push(graph->vars, &tensor_variable);
180 }
181}
182
183ccv_nnc_tensor_variable_t ccv_nnc_tensor_variable_new_impl(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_param_t info)
184{
185 ccv_nnc_tensor_variable_t tensor_variable = ccmallocmalloc(sizeof(struct ccv_nnc_tensor_variable_s));
186 tensor_variable->type = CCV_NNC_TENSOR_VARIABLE;
187 _ccv_nnc_tensor_variable_init(graph, tensor_variable, info);
188 return tensor_variable;
189}
190
191ccv_nnc_tensor_variable_t ccv_nnc_tensor_constant_new_impl(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_param_t info)
192{
193 ccv_nnc_tensor_variable_t tensor_variable = ccmallocmalloc(sizeof(struct ccv_nnc_tensor_variable_s));
194 tensor_variable->type = CCV_NNC_TENSOR_CONSTANT;
195 _ccv_nnc_tensor_variable_init(graph, tensor_variable, info);
196 return tensor_variable;
197}
198
199int ccv_nnc_tensor_variable_is_constant(const ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable)
200{
201 return tensor_variable->type == CCV_NNC_TENSOR_CONSTANT;
202}
203
204ccv_nnc_tensor_param_t ccv_nnc_tensor_variable_params(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable)
205{
206 return tensor_variable->info;
207}
208
209ccv_nnc_tensor_variable_t ccv_nnc_tensor_variable_alias_new(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable, const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int inc[CCV_NNC_MAX_DIM_ALLOC(12)], const ccv_nnc_tensor_param_t info)
210{
211 assert(!tensor_variable->alias_index_ref)((void) sizeof ((!tensor_variable->alias_index_ref) ? 1 : 0
), __extension__ ({ if (!tensor_variable->alias_index_ref)
; else __assert_fail ("!tensor_variable->alias_index_ref"
, "ccv_nnc_dynamic_graph.c", 211, __extension__ __PRETTY_FUNCTION__
); }))
;
212 ccv_nnc_tensor_variable_t variable_alias = ccmallocmalloc(sizeof(struct ccv_nnc_tensor_variable_s));
213 variable_alias->type = tensor_variable->type;
214 variable_alias->alias_index_ref = tensor_variable->index + 1;
215 variable_alias->info = info;
216 variable_alias->symbol = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
217 variable_alias->destructor_hook.func = 0;
218 variable_alias->destructor_hook.context = 0;
219 variable_alias->tensor_view = 0;
220 memcpy(variable_alias->ofs, ofs, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12));
221 memcpy(variable_alias->inc, inc, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12));
222 if (graph->reuse_var >= 0)
223 {
224 const int reuse_var = graph->reuse_var;
225 assert(reuse_var < graph->vars->rnum)((void) sizeof ((reuse_var < graph->vars->rnum) ? 1 :
0), __extension__ ({ if (reuse_var < graph->vars->rnum
) ; else __assert_fail ("reuse_var < graph->vars->rnum"
, "ccv_nnc_dynamic_graph.c", 225, __extension__ __PRETTY_FUNCTION__
); }))
;
226 variable_alias->index = reuse_var;
227 *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, reuse_var)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(reuse_var)))
= variable_alias;
228 int i;
229 graph->reuse_var = -1;
230 for (i = reuse_var + 1; i < graph->vars->rnum && graph->reuse_var < 0; i++)
231 if (*(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, i)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(i)))
== 0)
232 graph->reuse_var = i;
233 } else {
234 variable_alias->index = graph->vars->rnum;
235 ccv_array_push(graph->vars, &variable_alias);
236 }
237 return variable_alias;
238}
239
240ccv_nnc_tensor_t* ccv_nnc_tensor_from_variable_impl(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable, ccv_nnc_stream_context_t* const stream_context)
241{
242 if (tensor_variable->tensor_view)
243 {
244 if (tensor_variable->alias_index_ref)
245 {
246 const int alias_index = tensor_variable->alias_index_ref - 1;
247 assert(alias_index >= 0)((void) sizeof ((alias_index >= 0) ? 1 : 0), __extension__
({ if (alias_index >= 0) ; else __assert_fail ("alias_index >= 0"
, "ccv_nnc_dynamic_graph.c", 247, __extension__ __PRETTY_FUNCTION__
); }))
;
248 ccv_nnc_tensor_variable_t variable_to = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, alias_index)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(alias_index)))
;
249 if (CCV_IS_TENSOR_VIEW(tensor_variable->tensor_view)((*(int*)(tensor_variable->tensor_view)) & CCV_TENSOR_VIEW
)
)
250 {
251 ccv_nnc_tensor_view_t* const tv = tensor_variable->tensor_view;
252 // We cannot have an alias with custom set tensor, otherwise the pointer update is invalid.
253 assert(!CCV_NNC_IS_EXTERN_TENSOR_VIEW(tv))((void) sizeof ((!((uintptr_t)(tv) & 1)) ? 1 : 0), __extension__
({ if (!((uintptr_t)(tv) & 1)) ; else __assert_fail ("!CCV_NNC_IS_EXTERN_TENSOR_VIEW(tv)"
, "ccv_nnc_dynamic_graph.c", 253, __extension__ __PRETTY_FUNCTION__
); }))
;
254 // Update the tensor_view pointer every time access it, because the underlying variable it alias to have changed.
255 tv->data.u8 = CCV_NNC_TENSOR_VIEW(variable_to->tensor_view)((ccv_nnc_tensor_view_t*)((uintptr_t)(variable_to->tensor_view
) & ~(uintptr_t)1))
->data.u8 + tv->off;
256 } else {
257 ccv_nnc_tensor_t* const tv = (ccv_nnc_tensor_t*)tensor_variable->tensor_view;
258 // We cannot have an alias with custom set tensor, otherwise the pointer update is invalid.
259 assert(!CCV_NNC_IS_EXTERN_TENSOR_VIEW(tv))((void) sizeof ((!((uintptr_t)(tv) & 1)) ? 1 : 0), __extension__
({ if (!((uintptr_t)(tv) & 1)) ; else __assert_fail ("!CCV_NNC_IS_EXTERN_TENSOR_VIEW(tv)"
, "ccv_nnc_dynamic_graph.c", 259, __extension__ __PRETTY_FUNCTION__
); }))
;
260 // Update the tensor_view pointer every time access it, because the underlying variable it alias to have changed.
261 tv->data.u8 = CCV_NNC_TENSOR_VIEW(variable_to->tensor_view)((ccv_nnc_tensor_view_t*)((uintptr_t)(variable_to->tensor_view
) & ~(uintptr_t)1))
->data.u8;
262 }
263 }
264 return (ccv_nnc_tensor_t*)CCV_NNC_TENSOR_VIEW(tensor_variable->tensor_view)((ccv_nnc_tensor_view_t*)((uintptr_t)(tensor_variable->tensor_view
) & ~(uintptr_t)1))
;
265 }
266 if (!tensor_variable->alias_index_ref)
267 {
268 // If we haven't allocated tensor_variable, we cannot allocate them now (because no shape specified), return 0.
269 if (ccv_nnc_is_tensor_auto(tensor_variable->info))
270 return 0;
271 void* ptr = 0;
272 if (CCV_TENSOR_GET_MEMORY(tensor_variable->info.type)((tensor_variable->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY)
273 ptr = ccv_nnc_xpu_alloc(&graph->xpu_alloc, CCV_TENSOR_GET_DEVICE_ID(tensor_variable->info.type)(((tensor_variable->info.type) & 0xfff00) >> 8), stream_context, ccv_nnc_tensor_data_size(tensor_variable->info));
274 tensor_variable->tensor_view = (ccv_nnc_tensor_view_t*)ccv_nnc_tensor_new(ptr, tensor_variable->info, 0);
275 assert(tensor_variable->tensor_view->data.u8)((void) sizeof ((tensor_variable->tensor_view->data.u8)
? 1 : 0), __extension__ ({ if (tensor_variable->tensor_view
->data.u8) ; else __assert_fail ("tensor_variable->tensor_view->data.u8"
, "ccv_nnc_dynamic_graph.c", 275, __extension__ __PRETTY_FUNCTION__
); }))
;
276 return (ccv_nnc_tensor_t*)tensor_variable->tensor_view;
277 }
278 const int alias_index = tensor_variable->alias_index_ref - 1;
279 assert(alias_index >= 0)((void) sizeof ((alias_index >= 0) ? 1 : 0), __extension__
({ if (alias_index >= 0) ; else __assert_fail ("alias_index >= 0"
, "ccv_nnc_dynamic_graph.c", 279, __extension__ __PRETTY_FUNCTION__
); }))
;
280 ccv_nnc_tensor_variable_t variable_to = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, alias_index)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(alias_index)))
;
281 assert(!variable_to->alias_index_ref)((void) sizeof ((!variable_to->alias_index_ref) ? 1 : 0), __extension__
({ if (!variable_to->alias_index_ref) ; else __assert_fail
("!variable_to->alias_index_ref", "ccv_nnc_dynamic_graph.c"
, 281, __extension__ __PRETTY_FUNCTION__); }))
;
282 if (!variable_to->tensor_view)
283 {
284 // If we haven't allocated variable_to, we cannot allocate them now (because no shape specified), return 0.
285 if (ccv_nnc_is_tensor_auto(variable_to->info))
286 return 0;
287 void* ptr = 0;
288 assert(variable_to->info.type == tensor_variable->info.type)((void) sizeof ((variable_to->info.type == tensor_variable
->info.type) ? 1 : 0), __extension__ ({ if (variable_to->
info.type == tensor_variable->info.type) ; else __assert_fail
("variable_to->info.type == tensor_variable->info.type"
, "ccv_nnc_dynamic_graph.c", 288, __extension__ __PRETTY_FUNCTION__
); }))
;
289 if (CCV_TENSOR_GET_MEMORY(variable_to->info.type)((variable_to->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY)
290 ptr = ccv_nnc_xpu_alloc(&graph->xpu_alloc, CCV_TENSOR_GET_DEVICE_ID(variable_to->info.type)(((variable_to->info.type) & 0xfff00) >> 8), stream_context, ccv_nnc_tensor_data_size(variable_to->info));
291 variable_to->tensor_view = (ccv_nnc_tensor_view_t*)ccv_nnc_tensor_new(ptr, variable_to->info, 0);
292 assert(variable_to->tensor_view->data.u8)((void) sizeof ((variable_to->tensor_view->data.u8) ? 1
: 0), __extension__ ({ if (variable_to->tensor_view->data
.u8) ; else __assert_fail ("variable_to->tensor_view->data.u8"
, "ccv_nnc_dynamic_graph.c", 292, __extension__ __PRETTY_FUNCTION__
); }))
;
293 }
294 int no_ofs = 1;
295 int i;
296 for (i = 0; no_ofs && i < CCV_NNC_MAX_DIM_ALLOC(12); i++)
297 no_ofs = (tensor_variable->ofs[i] == 0);
298 int no_inc = 1;
299 for (i = 0; no_inc && i < CCV_NNC_MAX_DIM_ALLOC(12); i++)
300 no_inc = (tensor_variable->inc[i] == 0);
301 if (!no_inc)
302 no_inc = (memcmp(tensor_variable->inc, tensor_variable->info.dim, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) == 0);
303 assert(ccv_nnc_tensor_count(tensor_variable->info) <= ccv_nnc_tensor_count(variable_to->info))((void) sizeof ((ccv_nnc_tensor_count(tensor_variable->info
) <= ccv_nnc_tensor_count(variable_to->info)) ? 1 : 0),
__extension__ ({ if (ccv_nnc_tensor_count(tensor_variable->
info) <= ccv_nnc_tensor_count(variable_to->info)) ; else
__assert_fail ("ccv_nnc_tensor_count(tensor_variable->info) <= ccv_nnc_tensor_count(variable_to->info)"
, "ccv_nnc_dynamic_graph.c", 303, __extension__ __PRETTY_FUNCTION__
); }))
;
304 if (no_ofs && no_inc)
305 tensor_variable->tensor_view = (ccv_nnc_tensor_view_t*)ccv_nnc_tensor_new(CCV_NNC_TENSOR_VIEW(variable_to->tensor_view)((ccv_nnc_tensor_view_t*)((uintptr_t)(variable_to->tensor_view
) & ~(uintptr_t)1))
->data.u8, tensor_variable->info, 0);
306 else
307 tensor_variable->tensor_view = ccv_nnc_tensor_view_new((ccv_nnc_tensor_t*)CCV_NNC_TENSOR_VIEW(variable_to->tensor_view)((ccv_nnc_tensor_view_t*)((uintptr_t)(variable_to->tensor_view
) & ~(uintptr_t)1))
, tensor_variable->info, tensor_variable->ofs, no_inc ? tensor_variable->info.dim : tensor_variable->inc);
308 return (ccv_nnc_tensor_t*)tensor_variable->tensor_view;
309}
310
311static void _ccv_nnc_tensor_symbol_extra_new(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable, const ccv_nnc_tensor_symbol_t symbol)
312{
313 if (symbol.d >= graph->binds->rnum)
314 {
315 const int rnum = graph->binds->rnum;
316 ccv_array_resize(graph->binds, symbol.d + 1);
317 int i;
318 for (i = rnum; i < graph->binds->rnum; i++)
319 ((ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, i)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(i)))
)->index = CCV_NNC_TENSOR_NO_VARIABLE;
320 }
321 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(symbol.d)))
;
322 bind->type = tensor_variable->type;
323 bind->index = tensor_variable->index;
324 if (tensor_variable->alias_index_ref)
325 {
326 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph->tape, (ccv_nnc_tensor_symbol_t){
327 .d = symbol.d,
328 .graph = graph->tape
329 });
330 assert(alias_to.d >= 0 && alias_to.d < graph->binds->rnum)((void) sizeof ((alias_to.d >= 0 && alias_to.d <
graph->binds->rnum) ? 1 : 0), __extension__ ({ if (alias_to
.d >= 0 && alias_to.d < graph->binds->rnum
) ; else __assert_fail ("alias_to.d >= 0 && alias_to.d < graph->binds->rnum"
, "ccv_nnc_dynamic_graph.c", 330, __extension__ __PRETTY_FUNCTION__
); }))
;
331 bind->alias_ref = alias_to.d + 1;
332 } else
333 bind->alias_ref = 0;
334 if (bind->sources)
335 ccv_array_free(bind->sources);
336 bind->sources = 0;
337 if (bind->destinations)
338 ccv_array_free(bind->destinations);
339 bind->destinations = 0;
340 bind->destructor_hook.func = 0;
341 bind->destructor_hook.context = 0;
342 bind->tensor_view = 0;
343}
344
345static ccv_nnc_tensor_symbol_t _ccv_nnc_tensor_symbol_from_variable(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable)
346{
347 if (tensor_variable->symbol.d >= 0)
348 return tensor_variable->symbol;
349 if (!tensor_variable->alias_index_ref)
350 {
351 const ccv_nnc_tensor_symbol_t symbol = tensor_variable->symbol = ccv_nnc_tensor_symbol_new(graph->tape, tensor_variable->info, 0);
352 _ccv_nnc_tensor_symbol_extra_new(graph, tensor_variable, symbol);
353 return symbol;
354 }
355 const int alias_index = tensor_variable->alias_index_ref - 1;
356 assert(alias_index >= 0)((void) sizeof ((alias_index >= 0) ? 1 : 0), __extension__
({ if (alias_index >= 0) ; else __assert_fail ("alias_index >= 0"
, "ccv_nnc_dynamic_graph.c", 356, __extension__ __PRETTY_FUNCTION__
); }))
;
357 ccv_nnc_tensor_variable_t variable_to = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, alias_index)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(alias_index)))
;
358 assert(!variable_to->alias_index_ref)((void) sizeof ((!variable_to->alias_index_ref) ? 1 : 0), __extension__
({ if (!variable_to->alias_index_ref) ; else __assert_fail
("!variable_to->alias_index_ref", "ccv_nnc_dynamic_graph.c"
, 358, __extension__ __PRETTY_FUNCTION__); }))
;
359 int no_inc = 1;
360 int i;
361 for (i = 0; no_inc && i < CCV_NNC_MAX_DIM_ALLOC(12); i++)
362 no_inc = (tensor_variable->inc[i] == 0);
363 const ccv_nnc_tensor_symbol_t symbol = tensor_variable->symbol = ccv_nnc_tensor_symbol_alias_new(graph->tape, _ccv_nnc_tensor_symbol_from_variable(graph, variable_to), tensor_variable->ofs, no_inc ? tensor_variable->info.dim : tensor_variable->inc, tensor_variable->info, 0);
364 _ccv_nnc_tensor_symbol_extra_new(graph, tensor_variable, symbol);
365 return symbol;
366}
367
368// Return the tensor variable that is old (the provided tensor variable will have a new setting).
369ccv_nnc_tensor_variable_t ccv_nnc_tensor_variable_exchange_new(ccv_nnc_dynamic_graph_t* const graph, ccv_nnc_tensor_variable_t tensor_variable)
370{
371 struct ccv_nnc_tensor_variable_s x = *tensor_variable;
372 ccv_nnc_tensor_variable_t new_variable;
373 // Need to handle alias.
374 if (x.alias_index_ref)
375 new_variable = ccv_nnc_tensor_variable_alias_new(graph, *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, x.alias_index_ref - 1)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(x.alias_index_ref - 1)))
, x.ofs, x.inc, x.info);
376 else
377 new_variable = ccv_nnc_tensor_variable_new(graph, x.info)ccv_nnc_tensor_variable_new_impl(graph, x.info);
378 *tensor_variable = *new_variable;
379 *new_variable = x;
380 // The index should be the same though.
381 const int index = new_variable->index;
382 new_variable->index = tensor_variable->index;
383 if (new_variable->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL)
384 {
385 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, new_variable->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(new_variable->symbol.d)))
;
386 bind->index = new_variable->index;
387 }
388 tensor_variable->index = index;
389 return new_variable;
390}
391
392void ccv_nnc_dynamic_graph_set_no_grad(ccv_nnc_dynamic_graph_t* const dynamic_graph, const int no_grad)
393{
394 dynamic_graph->no_grad = no_grad;
395}
396
397static ccv_nnc_stream_context_t* _ccv_nnc_dynamic_graph_get_stream(ccv_nnc_dynamic_graph_t* const graph, const int type)
398{
399 if (!graph->stream_map)
400 graph->stream_map = kh_init(stream_map)kh_init_stream_map();
401 int ret = 0;
402 khiter_t k = kh_put(stream_map, graph->stream_map, type, &ret)kh_put_stream_map(graph->stream_map, type, &ret);
403 assert(ret >= 0)((void) sizeof ((ret >= 0) ? 1 : 0), __extension__ ({ if (
ret >= 0) ; else __assert_fail ("ret >= 0", "ccv_nnc_dynamic_graph.c"
, 403, __extension__ __PRETTY_FUNCTION__); }))
;
404 ccv_nnc_stream_context_t* stream = kh_val(graph->stream_map, k)((graph->stream_map)->vals[k]);
405 // If ret == 0, the key already exist, we can return directly, otherwise, create and return.
406 if (ret != 0)
407 {
408 stream = ccv_nnc_stream_context_new(type);
409 kh_val(graph->stream_map, k)((graph->stream_map)->vals[k]) = stream;
410 }
411 return stream;
412}
413
414typedef struct {
415 ccv_nnc_dynamic_graph_t* graph;
416 int stream_type;
417} ccv_nnc_dynamic_graph_neighbor_context_discovery_t;
418
419static ccv_nnc_stream_context_t* _ccv_nnc_dynamic_graph_neighbor_context_discovery(const int device_id, void* const context)
420{
421 ccv_nnc_dynamic_graph_neighbor_context_discovery_t* const discovery = (ccv_nnc_dynamic_graph_neighbor_context_discovery_t*)context;
422 int type = discovery->stream_type;
423 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
424 return _ccv_nnc_dynamic_graph_get_stream(discovery->graph, type);
425}
426
427void ccv_nnc_dynamic_graph_exec_ret(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, const ccv_nnc_tensor_variable_t* const inputs, const int input_size, ccv_nnc_tensor_variable_t* const outputs, const int output_size, const int parallel, ccv_nnc_stream_context_t* const stream_context, ccv_nnc_graph_exec_symbol_t* const graph_execs)
428{
429 int i, j;
430 for (i = 0; i < input_size; i++)
1
Assuming 'i' is >= 'input_size'
2
Loop condition is false. Execution continues on line 433
431 if (inputs[i] && !inputs[i]->alias_index_ref)
432 { assert(inputs[i]->tensor_view)((void) sizeof ((inputs[i]->tensor_view) ? 1 : 0), __extension__
({ if (inputs[i]->tensor_view) ; else __assert_fail ("inputs[i]->tensor_view"
, "ccv_nnc_dynamic_graph.c", 432, __extension__ __PRETTY_FUNCTION__
); }))
; }
433 ccv_nnc_tensor_t* input_tensors[ccv_max(1, input_size)({ typeof (1) _a = (1); typeof (input_size) _b = (input_size)
; (_a > _b) ? _a : _b; })
];
3
'?' condition is true
434 for (i = 0; i
3.1
'i' is >= 'input_size'
< input_size; i++)
4
Loop condition is false. Execution continues on line 436
435 input_tensors[i] = inputs[i] ? ccv_nnc_tensor_from_variable(graph, inputs[i], stream_context)ccv_nnc_tensor_from_variable_impl(graph, inputs[i], stream_context
)
: 0;
436 ccv_nnc_tensor_symbol_t input_symbols[ccv_max(1, input_size)({ typeof (1) _a = (1); typeof (input_size) _b = (input_size)
; (_a > _b) ? _a : _b; })
];
5
'?' condition is true
437 for (i = 0; i
5.1
'i' is >= 'input_size'
< input_size; i++)
6
Loop condition is false. Execution continues on line 439
438 input_symbols[i] = inputs[i] ? _ccv_nnc_tensor_symbol_from_variable(graph, inputs[i]) : NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
439 ccv_array_t* input_sources[ccv_max(1, input_size)({ typeof (1) _a = (1); typeof (input_size) _b = (input_size)
; (_a > _b) ? _a : _b; })
];
7
'?' condition is true
440 ccv_array_t* input_alias_sources[ccv_max(1, input_size)({ typeof (1) _a = (1); typeof (input_size) _b = (input_size)
; (_a > _b) ? _a : _b; })
];
8
'?' condition is true
441 for (i = 0; i
8.1
'i' is >= 'input_size'
< input_size; i++)
9
Loop condition is false. Execution continues on line 453
442 {
443 input_sources[i] = input_symbols[i].d != CCV_NNC_NO_TENSOR_SYMBOL ? ((ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, input_symbols[i].d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(input_symbols[i].d)))
)->sources : 0;
444 if (inputs[i] && inputs[i]->alias_index_ref)
445 {
446 const int alias_index_ref = inputs[i]->alias_index_ref - 1;
447 assert(alias_index_ref >= 0)((void) sizeof ((alias_index_ref >= 0) ? 1 : 0), __extension__
({ if (alias_index_ref >= 0) ; else __assert_fail ("alias_index_ref >= 0"
, "ccv_nnc_dynamic_graph.c", 447, __extension__ __PRETTY_FUNCTION__
); }))
;
448 ccv_nnc_tensor_variable_t variable_to = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, alias_index_ref)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(alias_index_ref)))
;
449 input_alias_sources[i] = ((ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, variable_to->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(variable_to->symbol.d)))
)->sources;
450 } else
451 input_alias_sources[i] = 0;
452 }
453 const int parallel_count = ccv_max(1, parallel)({ typeof (1) _a = (1); typeof (parallel) _b = (parallel); (_a
> _b) ? _a : _b; })
;
10
Assuming '_a' is <= '_b'
11
'?' condition is false
454 assert(input_size % parallel_count == 0)((void) sizeof ((input_size % parallel_count == 0) ? 1 : 0), __extension__
({ if (input_size % parallel_count == 0) ; else __assert_fail
("input_size % parallel_count == 0", "ccv_nnc_dynamic_graph.c"
, 454, __extension__ __PRETTY_FUNCTION__); }))
;
12
Assuming the condition is true
13
Taking true branch
455 const int per_input_size = input_size / parallel_count;
456 assert(output_size % parallel_count == 0)((void) sizeof ((output_size % parallel_count == 0) ? 1 : 0),
__extension__ ({ if (output_size % parallel_count == 0) ; else
__assert_fail ("output_size % parallel_count == 0", "ccv_nnc_dynamic_graph.c"
, 456, __extension__ __PRETTY_FUNCTION__); }))
;
14
Assuming the condition is true
15
Taking true branch
457 const int per_output_size = output_size / parallel_count;
458 int output_auto = 0;
459 for (i = 0; !output_auto
15.1
'output_auto' is 0
&& i < output_size; i++)
16
Assuming 'i' is < 'output_size'
20
Assuming 'output_auto' is not equal to 0
460 output_auto = outputs[i] ? ccv_nnc_is_tensor_auto(outputs[i]->info) : 0;
17
Loop condition is true. Entering loop body
18
Assuming the condition is true
19
'?' condition is true
461 // One extra step, infer the parameters for outputs.
462 if (output_auto
20.1
'output_auto' is not equal to 0
)
21
Taking true branch
463 {
464 ccv_nnc_tensor_param_t input_params[ccv_max(1, per_input_size)({ typeof (1) _a = (1); typeof (per_input_size) _b = (per_input_size
); (_a > _b) ? _a : _b; })
];
22
Assuming '_a' is <= '_b'
23
'?' condition is false
465 ccv_nnc_tensor_param_t output_params[ccv_max(1, per_output_size)({ typeof (1) _a = (1); typeof (per_output_size) _b = (per_output_size
); (_a > _b) ? _a : _b; })
];
24
Assuming '_a' is <= '_b'
25
'?' condition is false
466 for (i = 0; i
25.1
'i' is < 'parallel_count'
< parallel_count
; i++)
26
Loop condition is true. Entering loop body
39
Assuming 'i' is >= 'parallel_count'
40
Loop condition is false. Execution continues on line 478
467 {
468 for (j = 0; j
26.1
'j' is < 'per_input_size'
< per_input_size
; j++)
30
Assuming 'j' is >= 'per_input_size'
31
Loop condition is false. Execution continues on line 470
469 input_params[j] = inputs[j + i * per_input_size] ? inputs[j + i * per_input_size]->info : ccv_nnc_tensor_auto;
27
Loop condition is true. Entering loop body
28
Assuming the condition is false
29
'?' condition is false
470 for (j = 0; j
31.1
'j' is < 'per_output_size'
< per_output_size
; j++)
34
Assuming 'j' is >= 'per_output_size'
35
Loop condition is false. Execution continues on line 472
471 output_params[j] = outputs[j + i * per_output_size] ? outputs[j + i * per_output_size]->info : ccv_nnc_tensor_auto;
32
Loop condition is true. Entering loop body
33
'?' condition is true
472 ccv_nnc_hint_tensor_auto(cmd, input_params, per_input_size, hint, output_params, per_output_size);
473 for (j = 0; j < per_output_size; j++)
36
Loop condition is true. Entering loop body
38
Loop condition is false. Execution continues on line 466
474 if (outputs[j + i * per_output_size])
37
Taking true branch
475 outputs[j + i * per_output_size]->info = output_params[j];
476 }
477 }
478 int freeable_size = 0;
479 ccv_nnc_tensor_variable_t freeables[ccv_max(1, output_size)({ typeof (1) _a = (1); typeof (output_size) _b = (output_size
); (_a > _b) ? _a : _b; })
];
41
'?' condition is false
480 // Refresh the symbol if it is binded to an existing exec. Otherwise we cannot keep the SSA guarantee.
481 for (i = 0; i
41.1
'i' is < 'output_size'
< output_size
; i++)
42
Loop condition is true. Entering loop body
46
Assuming 'i' is >= 'output_size'
47
Loop condition is false. Execution continues on line 508
482 {
483 // First, go over to see whether there is enforce inplace.
484 int enforce_idx = -1;
485 for (j = 0; enforce_idx
42.1
'enforce_idx' is < 0
< 0 && j
42.2
'j' is >= 'input_size'
< input_size; j++)
43
Loop condition is false. Execution continues on line 488
486 if (inputs[j] && ccv_nnc_cmd_enforce_inplace(cmd, j, input_size, i, output_size))
487 enforce_idx = j;
488 if (enforce_idx
43.1
'enforce_idx' is < 0
>= 0)
489 { assert(outputs[i] == inputs[enforce_idx] && outputs[i]->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL)((void) sizeof ((outputs[i] == inputs[enforce_idx] &&
outputs[i]->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL) ? 1 : 0
), __extension__ ({ if (outputs[i] == inputs[enforce_idx] &&
outputs[i]->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL) ; else __assert_fail
("outputs[i] == inputs[enforce_idx] && outputs[i]->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL"
, "ccv_nnc_dynamic_graph.c", 489, __extension__ __PRETTY_FUNCTION__
); }))
; }
490 // We don't allow or check "allow inplace" yet. That logic will be at odds with backward logic.
491 if (outputs[i] && outputs[i]->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL)
44
Assuming field 'd' is equal to CCV_NNC_NO_TENSOR_SYMBOL
45
Taking false branch
492 {
493 const ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, outputs[i]->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(outputs[i]->symbol.d)))
;
494 if (enforce_idx >= 0)
495 { assert(!bind->destinations || bind->destinations->rnum == 0)((void) sizeof ((!bind->destinations || bind->destinations
->rnum == 0) ? 1 : 0), __extension__ ({ if (!bind->destinations
|| bind->destinations->rnum == 0) ; else __assert_fail
("!bind->destinations || bind->destinations->rnum == 0"
, "ccv_nnc_dynamic_graph.c", 495, __extension__ __PRETTY_FUNCTION__
); }))
; }
496 if (bind->sources && bind->sources->rnum > 0)
497 {
498 const ccv_nnc_tensor_variable_t old_var = freeables[freeable_size++] = ccv_nnc_tensor_variable_exchange_new(graph, outputs[i]);
499 // If this is enforce output, make sure the tensor view is taken by the output.
500 if (enforce_idx >= 0)
501 {
502 outputs[i]->tensor_view = old_var->tensor_view; // Make sure the tensor view is taken over by the output.
503 old_var->tensor_view = 0;
504 }
505 }
506 }
507 }
508 ccv_nnc_tensor_t* output_tensors[ccv_max(1, per_output_size)({ typeof (1) _a = (1); typeof (per_output_size) _b = (per_output_size
); (_a > _b) ? _a : _b; })
];
48
'?' condition is false
509 if (parallel_count
48.1
'parallel_count' is <= 1
> 1)
49
Taking false branch
510 {
511 const int max_device_id_size = per_input_size + per_output_size;
512 assert(max_device_id_size > 0)((void) sizeof ((max_device_id_size > 0) ? 1 : 0), __extension__
({ if (max_device_id_size > 0) ; else __assert_fail ("max_device_id_size > 0"
, "ccv_nnc_dynamic_graph.c", 512, __extension__ __PRETTY_FUNCTION__
); }))
;
513 int device_ids[max_device_id_size];
514 ccv_nnc_stream_context_t* streams[parallel_count];
515 ccv_nnc_stream_signal_t* signal;
516 if (stream_context)
517 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
518 for (i = 0; i < parallel_count; i++)
519 {
520 int flag = 0;
521 for (j = 0; !flag && j < per_input_size; j++)
522 if (input_tensors[i * per_input_size + j])
523 flag = (CCV_TENSOR_GET_MEMORY(input_tensors[i * per_input_size + j]->info.type)((input_tensors[i * per_input_size + j]->info.type) & 0x3
)
== CCV_TENSOR_GPU_MEMORY);
524 for (j = 0; j < per_output_size; j++)
525 {
526 output_tensors[j] = outputs[j + i * per_output_size] ? ccv_nnc_tensor_from_variable(graph, outputs[j + i * per_output_size], stream_context)ccv_nnc_tensor_from_variable_impl(graph, outputs[j + i * per_output_size
], stream_context)
: 0;
527 if (output_tensors[j] && !flag)
528 flag = (CCV_TENSOR_GET_MEMORY(output_tensors[j]->info.type)((output_tensors[j]->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY);
529 }
530 const int stream_type = flag ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
531 const int tensor_type = flag ? CCV_TENSOR_GPU_MEMORY : CCV_TENSOR_CPU_MEMORY;
532 const int device_id_size = ccv_nnc_device_ids_for_io(input_tensors + i * per_input_size, per_input_size, output_tensors, per_output_size, tensor_type, device_ids, max_device_id_size);
533 ccv_nnc_stream_context_t* stream_0 = 0;
534 for (j = 0; j < device_id_size; j++)
535 {
536 int type = stream_type;
537 CCV_STREAM_SET_DEVICE_ID(type, device_ids[j])(type) = (((type) & ~0xfff00) | (((device_ids[j]) & 0xfff
) << 8))
;
538 ccv_nnc_stream_context_t* const stream = _ccv_nnc_dynamic_graph_get_stream(graph, type);
539 if (!stream_0)
540 stream_0 = stream;
541 }
542 // Wait signal to finish.
543 if (stream_context)
544 {
545 if (stream_0)
546 ccv_nnc_stream_context_wait_signal(stream_0, signal);
547 else
548 ccv_nnc_stream_context_wait(stream_context);
549 }
550 if (stream_0)
551 {
552 ccv_nnc_dynamic_graph_neighbor_context_discovery_t discovery = {
553 .graph = graph,
554 .stream_type = stream_type
555 };
556 ccv_nnc_stream_context_set_neighbor_discovery(stream_0, _ccv_nnc_dynamic_graph_neighbor_context_discovery, &discovery);
557 }
558 PRINT(CCV_CLI_INFO, "%s: [%d] -> [%d]\n", ccv_nnc_cmd_name(cmd.cmd), per_input_size, per_output_size)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("%s: [%d] -> [%d]\n", ccv_nnc_cmd_name(cmd.cmd), per_input_size
, per_output_size); fflush(stdout); } } while (0)
;
559 int k;
560 for (k = 0; k < per_input_size; k++)
561 {
562 PRINT(CCV_CLI_INFO, "|-> %d. %p (%p:%d)", k + 1, input_tensors[k + i * per_input_size], (input_tensors[k + i * per_input_size] ? input_tensors[k + i * per_input_size]->data.u8 : 0), (input_tensors[k + i * per_input_size] ? CCV_TENSOR_GET_DEVICE_ID(input_tensors[k + i * per_input_size]->info.type) : -1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("|-> %d. %p (%p:%d)", k + 1, input_tensors[k + i * per_input_size
], (input_tensors[k + i * per_input_size] ? input_tensors[k +
i * per_input_size]->data.u8 : 0), (input_tensors[k + i *
per_input_size] ? (((input_tensors[k + i * per_input_size]->
info.type) & 0xfff00) >> 8) : -1)); fflush(stdout);
} } while (0)
;
563 if (input_tensors[k + i * per_input_size] && CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_INFO)(CCV_CLI_INFO & ccv_cli_get_output_levels()))
564 ccv_nnc_print_tensor_info(input_tensors[k + i * per_input_size]);
565 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
566 }
567 ccv_nnc_cmd_exec(cmd, hint, flags, input_tensors + i * per_input_size, per_input_size, output_tensors, per_output_size, stream_0);
568 for (k = 0; k < per_output_size; k++)
569 {
570 PRINT(CCV_CLI_INFO, "|<- %d. %p (%p:%d)", k + 1, output_tensors[k], (output_tensors[k] ? output_tensors[k]->data.u8 : 0), (output_tensors[k] ? CCV_TENSOR_GET_DEVICE_ID(output_tensors[k]->info.type) : -1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("|<- %d. %p (%p:%d)", k + 1, output_tensors[k], (output_tensors
[k] ? output_tensors[k]->data.u8 : 0), (output_tensors[k] ?
(((output_tensors[k]->info.type) & 0xfff00) >> 8
) : -1)); fflush(stdout); } } while (0)
;
571 if (output_tensors[k] && CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_INFO)(CCV_CLI_INFO & ccv_cli_get_output_levels()))
572 ccv_nnc_print_tensor_info(output_tensors[k]);
573 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
574 }
575 if (stream_context && stream_0)
576 {
577 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
578 ccv_nnc_stream_context_wait_signal(stream_context, signal);
579 }
580 streams[i] = stream_0;
581 }
582 if (!stream_context)
583 for (i = 0; i < parallel_count; i++)
584 if (streams[i])
585 ccv_nnc_stream_context_wait(streams[i]);
586 } else {
587 for (i = 0; i < per_output_size; i++)
52
Loop condition is false. Execution continues on line 589
588 output_tensors[i] = outputs[i] ? ccv_nnc_tensor_from_variable(graph, outputs[i], stream_context)ccv_nnc_tensor_from_variable_impl(graph, outputs[i], stream_context
)
: 0;
50
Loop condition is true. Entering loop body
51
'?' condition is true
589 PRINT(CCV_CLI_INFO, "%s: [%d] -> [%d]\n", ccv_nnc_cmd_name(cmd.cmd), per_input_size, per_output_size)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("%s: [%d] -> [%d]\n", ccv_nnc_cmd_name(cmd.cmd), per_input_size
, per_output_size); fflush(stdout); } } while (0)
;
53
Assuming the condition is false
54
Taking false branch
55
Loop condition is false. Exiting loop
590 for (i = 0; i < per_input_size; i++)
56
The value 0 is assigned to 'i'
57
Loop condition is true. Entering loop body
591 {
592 PRINT(CCV_CLI_INFO, "|-> %d. %p (%p:%d)", i + 1, input_tensors[i], (input_tensors[i] ? input_tensors[i]->data.u8 : 0), (input_tensors[i] ? CCV_TENSOR_GET_DEVICE_ID(input_tensors[i]->info.type) : -1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("|-> %d. %p (%p:%d)", i + 1, input_tensors[i], (input_tensors
[i] ? input_tensors[i]->data.u8 : 0), (input_tensors[i] ? (
((input_tensors[i]->info.type) & 0xfff00) >> 8) :
-1)); fflush(stdout); } } while (0)
;
58
Assuming the condition is true
59
Taking true branch
60
Branch condition evaluates to a garbage value
593 if (input_tensors[i] && CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_INFO)(CCV_CLI_INFO & ccv_cli_get_output_levels()))
594 ccv_nnc_print_tensor_info(input_tensors[i]);
595 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
596 }
597 ccv_nnc_cmd_exec(cmd, hint, flags, input_tensors, per_input_size, output_tensors, per_output_size, stream_context);
598 for (i = 0; i < per_output_size; i++)
599 {
600 PRINT(CCV_CLI_INFO, "|<- %d. %p (%p:%d)", i + 1, output_tensors[i], (output_tensors[i] ? output_tensors[i]->data.u8 : 0), (output_tensors[i] ? CCV_TENSOR_GET_DEVICE_ID(output_tensors[i]->info.type) : -1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("|<- %d. %p (%p:%d)", i + 1, output_tensors[i], (output_tensors
[i] ? output_tensors[i]->data.u8 : 0), (output_tensors[i] ?
(((output_tensors[i]->info.type) & 0xfff00) >> 8
) : -1)); fflush(stdout); } } while (0)
;
601 if (output_tensors[i] && CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_INFO)(CCV_CLI_INFO & ccv_cli_get_output_levels()))
602 ccv_nnc_print_tensor_info(output_tensors[i]);
603 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
604 }
605 }
606 int inputs_are_constants = 1;
607 for (i = 0; inputs_are_constants && i < input_size; i++)
608 if (inputs[i] && inputs[i]->type != CCV_NNC_TENSOR_CONSTANT)
609 inputs_are_constants = 0;
610 if (input_size > 0 && !inputs_are_constants && !graph->no_grad) // No need to record the execution if there is no input or we disabled gradient computation.
611 {
612 ccv_nnc_tensor_symbol_t output_symbols[ccv_max(1, output_size)({ typeof (1) _a = (1); typeof (output_size) _b = (output_size
); (_a > _b) ? _a : _b; })
];
613 for (i = 0; i < output_size; i++)
614 if (outputs[i])
615 {
616 assert(outputs[i]->type != CCV_NNC_TENSOR_CONSTANT)((void) sizeof ((outputs[i]->type != CCV_NNC_TENSOR_CONSTANT
) ? 1 : 0), __extension__ ({ if (outputs[i]->type != CCV_NNC_TENSOR_CONSTANT
) ; else __assert_fail ("outputs[i]->type != CCV_NNC_TENSOR_CONSTANT"
, "ccv_nnc_dynamic_graph.c", 616, __extension__ __PRETTY_FUNCTION__
); }))
;
617 output_symbols[i] = _ccv_nnc_tensor_symbol_from_variable(graph, outputs[i]);
618 } else
619 output_symbols[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
620 int t;
621 for (t = 0; t < parallel_count; t++)
622 {
623 ccv_nnc_graph_exec_symbol_t graph_exec = ccv_nnc_graph_exec_symbol_new(graph->tape, cmd, input_symbols + t * per_input_size, per_input_size, output_symbols + t * per_output_size, per_output_size, 0);
624 if (graph_execs)
625 graph_execs[t] = graph_exec;
626 // This needs to be done before we set the new sources on the outputs.
627 for (i = 0; i < per_input_size; i++)
628 {
629 ccv_array_t* const input_source = input_sources[i + t * per_input_size];
630 if (input_source)
631 for (j = 0; j < input_source->rnum; j++)
632 ccv_nnc_graph_exec_symbol_concat(graph->tape, (ccv_nnc_graph_exec_symbol_t){
633 .d = *(int*)ccv_array_get(input_source, j)((void*)(((char*)((input_source)->data)) + (size_t)(input_source
)->rsize * (size_t)(j)))
,
634 .graph = graph->tape
635 }, graph_exec);
636 ccv_array_t* const input_alias_source = input_alias_sources[i + t * per_input_size];
637 if (input_alias_source)
638 for (j = 0; j < input_alias_source->rnum; j++)
639 ccv_nnc_graph_exec_symbol_concat(graph->tape, (ccv_nnc_graph_exec_symbol_t){
640 .d = *(int*)ccv_array_get(input_alias_source, j)((void*)(((char*)((input_alias_source)->data)) + (size_t)(
input_alias_source)->rsize * (size_t)(j)))
,
641 .graph = graph->tape
642 }, graph_exec);
643 }
644 for (i = 0; i < per_input_size; i++)
645 {
646 ccv_nnc_tensor_variable_t const input = inputs[i + t * per_input_size];
647 if (!input || input->type == CCV_NNC_TENSOR_CONSTANT)
648 continue;
649 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, input_symbols[i + t * per_input_size].d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(input_symbols[i + t * per_input_size
].d)))
;
650 if (!bind->destinations)
651 bind->destinations = ccv_array_new(sizeof(int), 1, 0);
652 ccv_array_add_unique_int(bind->destinations, graph_exec.d);
653 if (input->alias_index_ref)
654 {
655 const int alias_index = input->alias_index_ref - 1;
656 assert(alias_index >= 0)((void) sizeof ((alias_index >= 0) ? 1 : 0), __extension__
({ if (alias_index >= 0) ; else __assert_fail ("alias_index >= 0"
, "ccv_nnc_dynamic_graph.c", 656, __extension__ __PRETTY_FUNCTION__
); }))
;
657 ccv_nnc_tensor_variable_t variable_to = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, alias_index)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(alias_index)))
;
658 ccv_nnc_tensor_variable_graph_bind_t* const root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, variable_to->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(variable_to->symbol.d)))
;
659 if (!root_bind->destinations)
660 root_bind->destinations = ccv_array_new(sizeof(int), 1, 0);
661 ccv_array_add_unique_int(root_bind->destinations, graph_exec.d);
662 }
663 }
664 for (i = 0; i < per_output_size; i++)
665 {
666 ccv_nnc_tensor_variable_t const output = outputs[i + t * per_output_size];
667 if (!output)
668 continue;
669 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, output_symbols[i + t * per_output_size].d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(output_symbols[i + t * per_output_size
].d)))
;
670 assert(!bind->sources)((void) sizeof ((!bind->sources) ? 1 : 0), __extension__ (
{ if (!bind->sources) ; else __assert_fail ("!bind->sources"
, "ccv_nnc_dynamic_graph.c", 670, __extension__ __PRETTY_FUNCTION__
); }))
; // This is a new symbol, therefore, no binded sources associated yet.
671 bind->sources = ccv_array_new(sizeof(int), 1, 0);
672 ccv_array_add_unique_int(bind->sources, graph_exec.d);
673 if (output->alias_index_ref)
674 {
675 const int alias_index = output->alias_index_ref - 1;
676 assert(alias_index >= 0)((void) sizeof ((alias_index >= 0) ? 1 : 0), __extension__
({ if (alias_index >= 0) ; else __assert_fail ("alias_index >= 0"
, "ccv_nnc_dynamic_graph.c", 676, __extension__ __PRETTY_FUNCTION__
); }))
;
677 ccv_nnc_tensor_variable_t variable_to = *(ccv_nnc_tensor_variable_t*)ccv_array_get(graph->vars, alias_index)((void*)(((char*)((graph->vars)->data)) + (size_t)(graph
->vars)->rsize * (size_t)(alias_index)))
;
678 ccv_nnc_tensor_variable_graph_bind_t* const root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, variable_to->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(variable_to->symbol.d)))
;
679 if (!root_bind->sources)
680 root_bind->sources = ccv_array_new(sizeof(int), 1, 0);
681 ccv_array_add_unique_int(root_bind->sources, graph_exec.d);
682 }
683 }
684 }
685 }
686 // Now, able to free some of the reused outputs.
687 for (i = 0; i < freeable_size; i++)
688 ccv_nnc_tensor_variable_free(graph, freeables[i]);
689}
690
691int ccv_nnc_dynamic_graph_exec(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, const ccv_nnc_tensor_variable_t* const inputs, const int input_size, ccv_nnc_tensor_variable_t* const outputs, const int output_size, const int parallel, ccv_nnc_stream_context_t* const stream_context)
692{
693 ccv_nnc_dynamic_graph_exec_ret(graph, cmd, hint, flags, inputs, input_size, outputs, output_size, parallel, stream_context, 0);
694 return CCV_NNC_EXEC_SUCCESS;
695}
696
697static int _ccv_nnc_tensor_variable_is_only_output(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_graph_bind_t* bind, const int symbol_d)
698{
699 if (bind->alias_ref)
700 bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, bind->alias_ref - 1)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(bind->alias_ref - 1)))
;
701 if (!bind->sources || bind->sources->rnum == 0)
702 return 1;
703 int i;
704 for (i = 0; i < bind->sources->rnum; i++)
705 {
706 const int exec_symbol_d = *(int*)ccv_array_get(bind->sources, i)((void*)(((char*)((bind->sources)->data)) + (size_t)(bind
->sources)->rsize * (size_t)(i)))
;
707 const ccv_nnc_graph_exec_symbol_t exec_symbol = {
708 .d = exec_symbol_d,
709 .graph = graph->tape
710 };
711 const int* outputs; int output_size;
712 ccv_nnc_graph_exec_symbol_io(graph->tape, exec_symbol, 0, 0, &outputs, &output_size);
713 int j;
714 for (j = 0; j < output_size; j++)
715 if (outputs[j] >= 0 && outputs[j] != symbol_d) // If output is me, it is the only output.
716 {
717 assert(outputs[j] < graph->binds->rnum)((void) sizeof ((outputs[j] < graph->binds->rnum) ? 1
: 0), __extension__ ({ if (outputs[j] < graph->binds->
rnum) ; else __assert_fail ("outputs[j] < graph->binds->rnum"
, "ccv_nnc_dynamic_graph.c", 717, __extension__ __PRETTY_FUNCTION__
); }))
;
718 const ccv_nnc_tensor_variable_graph_bind_t* other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, outputs[j])((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(outputs[j])))
;
719 // This is in use and is it not a constant symbol.
720 if (other_bind->index >= 0 && other_bind->type != CCV_NNC_TENSOR_CONSTANT)
721 return 0;
722 if (other_bind->alias_ref) // If this is alias, use its original's destinations.
723 other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, other_bind->alias_ref - 1)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(other_bind->alias_ref - 1
)))
;
724 if (other_bind->destinations && other_bind->destinations->rnum > 0)
725 return 0;
726 }
727 }
728 return 1;
729}
730
731static void _ccv_nnc_update_bind_destinations_when_free(ccv_nnc_dynamic_graph_t* const graph, const int freed_exec_symbol_d, ccv_array_t* const binds, ccv_nnc_tensor_variable_graph_bind_t* const bind, const int tensor_index, ccv_array_t* const ws)
732{
733 int i;
734 if (bind->destinations)
735 {
736 int flag = 0;
737 for (i = 0; !flag && i < bind->destinations->rnum; i++)
738 {
739 const int exec_symbol_d = *(int*)ccv_array_get(bind->destinations, i)((void*)(((char*)((bind->destinations)->data)) + (size_t
)(bind->destinations)->rsize * (size_t)(i)))
;
740 if (exec_symbol_d == freed_exec_symbol_d)
741 {
742 if (i < bind->destinations->rnum - 1)
743 *(int*)ccv_array_get(bind->destinations, i)((void*)(((char*)((bind->destinations)->data)) + (size_t
)(bind->destinations)->rsize * (size_t)(i)))
= *(int*)ccv_array_get(bind->destinations, bind->destinations->rnum - 1)((void*)(((char*)((bind->destinations)->data)) + (size_t
)(bind->destinations)->rsize * (size_t)(bind->destinations
->rnum - 1)))
;
744 --bind->destinations->rnum;
745 flag = 1;
746 }
747 }
748 // This symbol can be freed.
749 if (flag && bind->index == CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED)
750 {
751 ccv_nnc_tensor_variable_graph_bind_t* root_bind = bind;
752 if (bind->alias_ref)
753 {
754 root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(binds, bind->alias_ref - 1)((void*)(((char*)((binds)->data)) + (size_t)(binds)->rsize
* (size_t)(bind->alias_ref - 1)))
;
755 if (root_bind->index == CCV_NNC_TENSOR_NO_VARIABLE)
756 root_bind = bind;
757 }
758 // If the alias_ref is not freed, we cannot free this, unless it is very clear there is no reference to this any more.
759 // It is possible because exec will be freed already, thus, it is safe to remove this alias out.
760 if (root_bind->index == CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED &&
761 ((!root_bind->sources || root_bind->sources->rnum == 0) || _ccv_nnc_tensor_variable_is_only_output(graph, bind, tensor_index)) &&
762 root_bind->destinations->rnum == 0)
763 {
764 if (root_bind->sources)
765 for (i = 0; i < root_bind->sources->rnum; i++)
766 ccv_array_add_unique_int(ws, *(int*)ccv_array_get(root_bind->sources, i)((void*)(((char*)((root_bind->sources)->data)) + (size_t
)(root_bind->sources)->rsize * (size_t)(i)))
);
767 _ccv_nnc_tensor_variable_graph_bind_free(graph, bind, 1);
768 ccv_nnc_tensor_symbol_free(graph->tape, (ccv_nnc_tensor_symbol_t){
769 .d = tensor_index,
770 .graph = graph->tape
771 });
772 } else if (bind->index == CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED && // Handle the case the bind is already freed, and it doesn't have any sources or destinations.
773 bind->alias_ref && (!bind->sources || bind->sources->rnum == 0) && (!bind->destinations || bind->destinations->rnum == 0)) {
774 _ccv_nnc_tensor_variable_graph_bind_free(graph, bind, 1);
775 ccv_nnc_tensor_symbol_free(graph->tape, (ccv_nnc_tensor_symbol_t){
776 .d = tensor_index,
777 .graph = graph->tape
778 });
779 }
780 }
781 }
782}
783
784static void _ccv_nnc_update_bind_sources_when_free(ccv_nnc_dynamic_graph_t* const graph, const int freed_exec_symbol_d, ccv_array_t* const binds, ccv_nnc_tensor_variable_graph_bind_t* const bind, const int tensor_index, ccv_array_t* const ws)
785{
786 int i;
787 if (bind->sources)
788 {
789 int flag = 0;
790 for (i = 0; !flag && i < bind->sources->rnum; i++)
791 {
792 const int exec_symbol_d = *(int*)ccv_array_get(bind->sources, i)((void*)(((char*)((bind->sources)->data)) + (size_t)(bind
->sources)->rsize * (size_t)(i)))
;
793 if (exec_symbol_d == freed_exec_symbol_d)
794 {
795 if (i < bind->sources->rnum - 1)
796 *(int*)ccv_array_get(bind->sources, i)((void*)(((char*)((bind->sources)->data)) + (size_t)(bind
->sources)->rsize * (size_t)(i)))
= *(int*)ccv_array_get(bind->sources, bind->sources->rnum - 1)((void*)(((char*)((bind->sources)->data)) + (size_t)(bind
->sources)->rsize * (size_t)(bind->sources->rnum -
1)))
;
797 --bind->sources->rnum;
798 flag = 1;
799 }
800 }
801 // This symbol can be freed.
802 if (flag && bind->index == CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED)
803 {
804 ccv_nnc_tensor_variable_graph_bind_t* root_bind = bind;
805 if (bind->alias_ref)
806 {
807 root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(binds, bind->alias_ref - 1)((void*)(((char*)((binds)->data)) + (size_t)(binds)->rsize
* (size_t)(bind->alias_ref - 1)))
;
808 if (root_bind->index == CCV_NNC_TENSOR_NO_VARIABLE)
809 root_bind = bind;
810 }
811 // If the alias_ref is not freed, we cannot free this, unless it is very clear there is no reference to this any more.
812 // It is possible because exec will be freed already, thus, it is safe to remove this alias out.
813 if (root_bind->index == CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED &&
814 (root_bind->sources->rnum == 0 || _ccv_nnc_tensor_variable_is_only_output(graph, bind, tensor_index)) &&
815 (!root_bind->destinations || root_bind->destinations->rnum == 0))
816 {
817 for (i = 0; i < root_bind->sources->rnum; i++)
818 ccv_array_add_unique_int(ws, *(int*)ccv_array_get(root_bind->sources, i)((void*)(((char*)((root_bind->sources)->data)) + (size_t
)(root_bind->sources)->rsize * (size_t)(i)))
);
819 _ccv_nnc_tensor_variable_graph_bind_free(graph, bind, 1);
820 ccv_nnc_tensor_symbol_free(graph->tape, (ccv_nnc_tensor_symbol_t){
821 .d = tensor_index,
822 .graph = graph->tape
823 });
824 } else if (bind->index == CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED && // Handle the case the bind is already freed, and it doesn't have any sources or destinations.
825 bind->alias_ref && (!bind->sources || bind->sources->rnum == 0) && (!bind->destinations || bind->destinations->rnum == 0)) {
826 _ccv_nnc_tensor_variable_graph_bind_free(graph, bind, 1);
827 ccv_nnc_tensor_symbol_free(graph->tape, (ccv_nnc_tensor_symbol_t){
828 .d = tensor_index,
829 .graph = graph->tape
830 });
831 }
832 }
833 }
834}
835
836static void _ccv_nnc_update_bind_sources_destinations_when_free(ccv_nnc_dynamic_graph_t* const graph, const int freed_exec_symbol_d, ccv_array_t* const binds, const int* const inputs, const int input_size, const int* const outputs, const int output_size, ccv_array_t* const ws)
837{
838 int i;
839 for (i = 0; i < input_size; i++)
840 if (inputs[i] >= 0 && inputs[i] < binds->rnum)
841 {
842 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(binds, inputs[i])((void*)(((char*)((binds)->data)) + (size_t)(binds)->rsize
* (size_t)(inputs[i])))
;
843 if (bind->index == CCV_NNC_TENSOR_NO_VARIABLE)
844 continue;
845 if (bind->alias_ref)
846 {
847 const int alias_to = bind->alias_ref - 1;
848 ccv_nnc_tensor_variable_graph_bind_t* const root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(binds, alias_to)((void*)(((char*)((binds)->data)) + (size_t)(binds)->rsize
* (size_t)(alias_to)))
;
849 if (root_bind && root_bind->index != CCV_NNC_TENSOR_NO_VARIABLE)
850 _ccv_nnc_update_bind_destinations_when_free(graph, freed_exec_symbol_d, binds, root_bind, alias_to, ws);
851 }
852 _ccv_nnc_update_bind_destinations_when_free(graph, freed_exec_symbol_d, binds, bind, inputs[i], ws);
853 }
854 // Note that this works because there is no overlap of inputs / outputs. (What about alias?).
855 for (i = 0; i < output_size; i++)
856 if (outputs[i] >= 0 && outputs[i] < binds->rnum)
857 {
858 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(binds, outputs[i])((void*)(((char*)((binds)->data)) + (size_t)(binds)->rsize
* (size_t)(outputs[i])))
;
859 if (bind->index == CCV_NNC_TENSOR_NO_VARIABLE)
860 continue;
861 if (bind->alias_ref)
862 {
863 const int alias_to = bind->alias_ref - 1;
864 ccv_nnc_tensor_variable_graph_bind_t* const root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(binds, alias_to)((void*)(((char*)((binds)->data)) + (size_t)(binds)->rsize
* (size_t)(alias_to)))
;
865 if (root_bind && root_bind->index != CCV_NNC_TENSOR_NO_VARIABLE)
866 _ccv_nnc_update_bind_sources_when_free(graph, freed_exec_symbol_d, binds, root_bind, alias_to, ws);
867 }
868 _ccv_nnc_update_bind_sources_when_free(graph, freed_exec_symbol_d, binds, bind, outputs[i], ws);
869 }
870}
871
872static void _ccv_nnc_stateful_exec_free_if_possible(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_graph_exec_symbol_t symbol)
873{
874 if (!graph->stateful_execs)
875 return;
876 assert(symbol.d >= 0)((void) sizeof ((symbol.d >= 0) ? 1 : 0), __extension__ ({
if (symbol.d >= 0) ; else __assert_fail ("symbol.d >= 0"
, "ccv_nnc_dynamic_graph.c", 876, __extension__ __PRETTY_FUNCTION__
); }))
;
877 ccv_array_t* const stateful_execs = graph->stateful_execs;
878 ccv_nnc_cmd_t cmd = ccv_nnc_graph_exec_symbol_cmd(graph->tape, symbol);
879 ccv_nnc_stateful_exec_t* const stateful_exec = (ccv_nnc_stateful_exec_t*)cmd.data;
880 if (!stateful_exec)
881 return;
882 // If there is no backward, no need to apply gradients.
883 // Otherwise, if we applied gradients, we can free it as well.
884 // We don't free this stateful exec because apply gradients doesn't require any variables alive.
885 if (!stateful_exec->did_backward_but_not_apply_gradients)
886 {
887 const int index = stateful_exec->index;
888 ccfreefree(stateful_exec);
889 if (index < graph->reuse_stateful_exec || graph->reuse_stateful_exec < 0)
890 graph->reuse_stateful_exec = index;
891 *(ccv_nnc_stateful_exec_t**)ccv_array_get(stateful_execs, index)((void*)(((char*)((stateful_execs)->data)) + (size_t)(stateful_execs
)->rsize * (size_t)(index)))
= 0;
892 } else
893 stateful_exec->should_free = 1;
894}
895
896void ccv_nnc_tensor_variable_free(ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t tensor_variable)
897{
898 // If it contains a symbol, this tensor variable is not a free variable. It is either used as input or output.
899 if (tensor_variable->symbol.d != CCV_NNC_NO_TENSOR_SYMBOL)
900 {
901 // If it is not a free variable, when can we free the symbol and the underlying variable?
902 // 1. There should be no sources (the command generate this tensor should be freed) or the output of these sources is only the current one;
903 // 2. The destinations (the commands that uses this tensor) should have no other inputs, or the other inputs has no binded sources as well.
904 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, tensor_variable->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(tensor_variable->symbol.d
)))
;
905 // There should be no source associated with it no more.
906 int free_symbol = 0;
907 // I am free if no exec symbol is producing me or the symbol producing me can only producing me (thus, it is not required to
908 // compute gradient because I am the only variable it can compute gradient for).
909 ccv_nnc_tensor_variable_graph_bind_t* root_bind = bind;
910 if (bind->alias_ref)
911 {
912 const int alias_to = bind->alias_ref - 1;
913 root_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, alias_to)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(alias_to)))
;
914 }
915 const int sources_and_is_only_output = (root_bind->sources && root_bind->sources->rnum > 0) && _ccv_nnc_tensor_variable_is_only_output(graph, bind, tensor_variable->symbol.d);
916 if (!root_bind->sources || root_bind->sources->rnum == 0 || sources_and_is_only_output)
917 {
918 int i, j;
919 free_symbol = 1; // Assume we can free this symbol.
920 if (!graph->ws)
921 graph->ws = ccv_array_new(sizeof(int), root_bind->destinations ? root_bind->destinations->rnum : 0, 0);
922 ccv_array_t* const ws = graph->ws;
923 ccv_array_clear(ws);
924 if (root_bind->destinations)
925 for (i = 0; i < root_bind->destinations->rnum; i++)
926 ccv_array_add_unique_int(ws, *(int*)ccv_array_get(root_bind->destinations, i)((void*)(((char*)((root_bind->destinations)->data)) + (
size_t)(root_bind->destinations)->rsize * (size_t)(i)))
);
927 const int ws_init_size = ws->rnum;
928 // Add all sources from root_bind, in case it has been freed (during update bind sources / destinations when free.
929 if (root_bind->sources)
930 for (i = 0; i < root_bind->sources->rnum; i++)
931 ccv_array_add_unique_int(ws, *(int*)ccv_array_get(root_bind->sources, i)((void*)(((char*)((root_bind->sources)->data)) + (size_t
)(root_bind->sources)->rsize * (size_t)(i)))
);
932 // If we cannot loop over any exec symbols (this is not in use). It is simple to determine whether we want
933 // to free it or not: if this is an alias and the origin is not freed, we cannot free this symbol.
934 if (ws_init_size == 0)
935 free_symbol = (!bind->alias_ref || root_bind->index < 0);
936 // Go through all the exec symbols use this tensor, to see whether they have inputs that has other sources.
937 for (i = 0; i < ws_init_size; i++)
938 {
939 const int exec_symbol_d = *(int*)ccv_array_get(ws, i)((void*)(((char*)((ws)->data)) + (size_t)(ws)->rsize * (
size_t)(i)))
;
940 const ccv_nnc_graph_exec_symbol_t symbol = {
941 .d = exec_symbol_d,
942 .graph = graph->tape
943 };
944 const int* inputs; int input_size;
945 const int* outputs; int output_size;
946 ccv_nnc_graph_exec_symbol_io(graph->tape, symbol, &inputs, &input_size, &outputs, &output_size);
947 int flag = 0; // flag denotes whether there are cases to keep this exec symbol.
948 if (sources_and_is_only_output)
949 {
950 // If there are sources, check whether we have outputs or not. If we do, we cannot free this.
951 for (j = 0; !flag && j < output_size; j++)
952 if (outputs[j] >= 0 && outputs[j] < graph->binds->rnum)
953 {
954 ccv_nnc_tensor_variable_graph_bind_t* other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, outputs[j])((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(outputs[j])))
;
955 if (other_bind->index >= 0 && other_bind->type != CCV_NNC_TENSOR_CONSTANT)
956 flag = 1;
957 else {
958 if (other_bind->alias_ref) // If this is alias, use its original's destinations.
959 other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, other_bind->alias_ref - 1)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(other_bind->alias_ref - 1
)))
;
960 flag = (other_bind->destinations && other_bind->destinations->rnum > 0);
961 }
962 }
963 } else {
964 // If there is no sources, check if other sources can depend on this exec, if they do, we cannot free this.
965 for (j = 0; !flag && j < input_size; j++)
966 if (inputs[j] >= 0 && inputs[j] < graph->binds->rnum && inputs[j] != tensor_variable->symbol.d)
967 {
968 ccv_nnc_tensor_variable_graph_bind_t* other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, inputs[j])((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(inputs[j])))
;
969 if (other_bind->index >= 0 && other_bind->type != CCV_NNC_TENSOR_CONSTANT)
970 flag = 1;
971 else {
972 if (other_bind->alias_ref) // If this is alias, use its original's destinations.
973 other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, other_bind->alias_ref - 1)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(other_bind->alias_ref - 1
)))
;
974 flag = (other_bind->sources && other_bind->sources->rnum > 0);
975 }
976 }
977 }
978 // This exec can be freed if there is no input required or there is no output required.
979 free_symbol = (free_symbol && !flag);
980 if (!flag)
981 {
982 // Go over inputs and remove all references from binded destinations.
983 // and go over outputs remove all references from binded sources.
984 _ccv_nnc_update_bind_sources_destinations_when_free(graph, exec_symbol_d, graph->binds, inputs, input_size, outputs, output_size, ws);
985 const int* outgoings; int outgoing_size;
986 ccv_nnc_graph_exec_symbol_to(graph->tape, symbol, &outgoings, &outgoing_size);
987 for (j = 0; j < outgoing_size; j++)
988 ccv_array_add_unique_int(ws, outgoings[j]);
989 _ccv_nnc_stateful_exec_free_if_possible(graph, symbol);
990 ccv_nnc_graph_exec_symbol_free(graph->tape, symbol);
991 }
992 }
993 if (free_symbol)
994 {
995 _ccv_nnc_tensor_variable_graph_bind_free(graph, bind, 1);
996 ccv_nnc_tensor_symbol_free(graph->tape, tensor_variable->symbol);
997 // Now, go over the outgoings, if it is removed, add more to it. Note that the ws array can grow while iterating over.
998 for (i = ws_init_size; i < ws->rnum; i++)
999 {
1000 const int exec_symbol_d = *(int*)ccv_array_get(ws, i)((void*)(((char*)((ws)->data)) + (size_t)(ws)->rsize * (
size_t)(i)))
;
1001 const ccv_nnc_graph_exec_symbol_t symbol = {
1002 .d = exec_symbol_d,
1003 .graph = graph->tape
1004 };
1005 const int* inputs; int input_size;
1006 const int* outputs; int output_size;
1007 ccv_nnc_graph_exec_symbol_io(graph->tape, symbol, &inputs, &input_size, &outputs, &output_size);
1008 int flag = 0;
1009 for (j = 0; !flag && j < input_size; j++)
1010 if (inputs[j] >= 0 && inputs[j] < graph->binds->rnum)
1011 {
1012 ccv_nnc_tensor_variable_graph_bind_t* other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, inputs[j])((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(inputs[j])))
;
1013 if (other_bind->index >= 0 && other_bind->type != CCV_NNC_TENSOR_CONSTANT)
1014 flag = 1;
1015 else {
1016 if (other_bind->alias_ref) // If this is alias, use its original's destinations.
1017 other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, other_bind->alias_ref - 1)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(other_bind->alias_ref - 1
)))
;
1018 flag = (other_bind->sources && other_bind->sources->rnum > 0);
1019 }
1020 }
1021 if (flag) // If any inputs make free this destination impossible. Check whether all its outputs are done.
1022 {
1023 int output_flag = 0;
1024 for (j = 0; !output_flag && j < output_size; j++)
1025 if (outputs[j] >= 0 && outputs[j] < graph->binds->rnum)
1026 {
1027 ccv_nnc_tensor_variable_graph_bind_t* other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, outputs[j])((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(outputs[j])))
;
1028 if (other_bind->index >= 0 && other_bind->type != CCV_NNC_TENSOR_CONSTANT)
1029 output_flag = 1;
1030 else {
1031 if (other_bind->alias_ref) // If this is alias, use its original's destinations.
1032 other_bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, other_bind->alias_ref - 1)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(other_bind->alias_ref - 1
)))
;
1033 output_flag = (other_bind->destinations && other_bind->destinations->rnum > 0);
1034 }
1035 }
1036 if (!output_flag) // If no output is used (used means it has a tensor variable, or it has a destination).
1037 flag = 0;
1038 }
1039 // Went over all the inputs, it turns out no more inputs has other references, safe to remove.
1040 if (!flag)
1041 {
1042 _ccv_nnc_update_bind_sources_destinations_when_free(graph, exec_symbol_d, graph->binds, inputs, input_size, outputs, output_size, ws);
1043 const int* outgoings; int outgoing_size;
1044 ccv_nnc_graph_exec_symbol_to(graph->tape, symbol, &outgoings, &outgoing_size);
1045 // It it has outgoings, add that for further inspection.
1046 for (j = 0; j < outgoing_size; j++)
1047 ccv_array_add_unique_int(ws, outgoings[j]);
1048 _ccv_nnc_stateful_exec_free_if_possible(graph, symbol);
1049 ccv_nnc_graph_exec_symbol_free(graph->tape, symbol);
1050 }
1051 }
1052 }
1053 }
1054 // If this symbol is not freed, move the tensor view to the bind.
1055 if (!free_symbol)
1056 {
1057 // If current bind is an alias, and it doesn't have any sources or destinations. We cannot find this alias
1058 // through any exec. This is not only safe to delete, but has to be deleted. We don't need to handle this
1059 // if free_symbol is true, because when that happens, root_bind will be deleted, and we will clean up the
1060 // alias in that process.
1061 if (bind->alias_ref && (!bind->sources || bind->sources->rnum == 0) && (!bind->destinations || bind->destinations->rnum == 0))
1062 {
1063 _ccv_nnc_tensor_variable_graph_bind_free(graph, bind, 1);
1064 ccv_nnc_tensor_symbol_free(graph->tape, tensor_variable->symbol);
1065 } else {
1066 bind->index = CCV_NNC_TENSOR_NO_VARIABLE_BUT_USED; // This tensor variable will be freed, but this symbol extra will continue exists.
1067 bind->destructor_hook.func = tensor_variable->destructor_hook.func; // Transfer the destructor callback.
1068 bind->destructor_hook.context = tensor_variable->destructor_hook.context; // Transfer the destructor callback context.
1069 bind->tensor_view = tensor_variable->tensor_view; // Transfer the ownership to the bind.
1070 tensor_variable->tensor_view = 0;
1071 }
1072 }
1073 }
1074 _ccv_nnc_tensor_variable_free(graph, tensor_variable, 1);
1075}
1076
1077void ccv_nnc_dynamic_graph_has_effect_to_tensor_variables(const ccv_nnc_dynamic_graph_t* const graph, const ccv_nnc_tensor_variable_t* const source_variables, const int source_variable_size, const ccv_nnc_tensor_variable_t* const destination_variables, const int destination_variable_size, uint64_t* const bitmask)
1078{
1079 int i, j;
1080 ccv_array_t* const sources_destinations = ccv_array_new(sizeof(ccv_nnc_graph_exec_symbol_t), source_variable_size + destination_variable_size, 0);
1081 for (i = 0; i < source_variable_size; i++)
1082 {
1083 if (source_variables[i]->symbol.d < 0)
1084 continue;
1085 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, source_variables[i]->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(source_variables[i]->symbol
.d)))
;
1086 if (bind->destinations && bind->destinations->rnum > 0)
1087 for (j = 0; j < bind->destinations->rnum; j++)
1088 {
1089 // It is ok to have duplicate symbols.
1090 const int d = *(int*)ccv_array_get(bind->destinations, j)((void*)(((char*)((bind->destinations)->data)) + (size_t
)(bind->destinations)->rsize * (size_t)(j)))
;
1091 ccv_nnc_graph_exec_symbol_t symbol = {
1092 .d = d,
1093 .graph = graph->tape
1094 };
1095 ccv_array_push(sources_destinations, &symbol);
1096 }
1097 }
1098 const int source_size = sources_destinations->rnum;
1099 for (i = 0; i < destination_variable_size; i++)
1100 {
1101 if (destination_variables[i]->symbol.d < 0)
1102 continue;
1103 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, destination_variables[i]->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(destination_variables[i]->
symbol.d)))
;
1104 if (bind->sources && bind->sources->rnum > 0)
1105 for (j = 0; j < bind->sources->rnum; j++)
1106 {
1107 // It is ok to have duplicate symbols.
1108 const int d = *(int*)ccv_array_get(bind->sources, j)((void*)(((char*)((bind->sources)->data)) + (size_t)(bind
->sources)->rsize * (size_t)(j)))
;
1109 ccv_nnc_graph_exec_symbol_t symbol = {
1110 .d = d,
1111 .graph = graph->tape
1112 };
1113 ccv_array_push(sources_destinations, &symbol);
1114 }
1115 }
1116 const int destination_size = sources_destinations->rnum - source_size;
1117 if (source_size == 0 || destination_size == 0)
1118 {
1119 ccv_array_free(sources_destinations);
1120 return;
1121 }
1122 const int bitmask_size = ((source_size + 63) >> 6);
1123 assert(bitmask_size < 256)((void) sizeof ((bitmask_size < 256) ? 1 : 0), __extension__
({ if (bitmask_size < 256) ; else __assert_fail ("bitmask_size < 256"
, "ccv_nnc_dynamic_graph.c", 1123, __extension__ __PRETTY_FUNCTION__
); }))
;
1124 uint64_t exec_bitmask[bitmask_size];
1125 ccv_nnc_symbolic_graph_sources_to_destinations(graph->tape, (ccv_nnc_graph_exec_symbol_t*)ccv_array_get(sources_destinations, 0)((void*)(((char*)((sources_destinations)->data)) + (size_t
)(sources_destinations)->rsize * (size_t)(0)))
, source_size, (ccv_nnc_graph_exec_symbol_t*)ccv_array_get(sources_destinations, source_size)((void*)(((char*)((sources_destinations)->data)) + (size_t
)(sources_destinations)->rsize * (size_t)(source_size)))
, destination_size, exec_bitmask);
1126 int k = 0;
1127 for (i = 0; i < source_variable_size; i++)
1128 {
1129 if (source_variables[i]->symbol.d < 0)
1130 {
1131 bitmask[i >> 6] &= ~((uint64_t)1 << (i & 63));
1132 continue;
1133 }
1134 ccv_nnc_tensor_variable_graph_bind_t* const bind = (ccv_nnc_tensor_variable_graph_bind_t*)ccv_array_get(graph->binds, source_variables[i]->symbol.d)((void*)(((char*)((graph->binds)->data)) + (size_t)(graph
->binds)->rsize * (size_t)(source_variables[i]->symbol
.d)))
;
1135 int flag = 0;
1136 if (bind->destinations && bind->destinations->rnum > 0)
1137 {
1138 assert(k <= source_size - bind->destinations->rnum)((void) sizeof ((k <= source_size - bind->destinations->
rnum) ? 1 : 0), __extension__ ({ if (k <= source_size - bind
->destinations->rnum) ; else __assert_fail ("k <= source_size - bind->destinations->rnum"
, "ccv_nnc_dynamic_graph.c", 1138, __extension__ __PRETTY_FUNCTION__
); }))
;
1139 for (j = 0; !flag && j < bind->destinations->rnum; j++)
1140 flag = (((uint64_t)1 << ((k + j) & 63)) & exec_bitmask[(k + j) >> 6]);
1141 k += bind->destinations->rnum;
1142 }
1143 if (flag)
1144 bitmask[i >> 6] |= ((uint64_t)1 << (i & 63));
1145 else
1146 bitmask[i >> 6] &= ~((uint64_t)1 << (i & 63));
1147 }
1148 ccv_array_free(sources_destinations);
1149}
1150
1151int ccv_nnc_dynamic_graph_bookkeeping_count(const ccv_nnc_dynamic_graph_t* const graph, const int type)
1152{
1153 return ccv_nnc_symbolic_graph_active_symbol_count(graph->tape, type);
1154}
1155
1156void ccv_nnc_dynamic_graph_dot(const ccv_nnc_dynamic_graph_t* const graph, const int flags, FILE* out)
1157{
1158 ccv_nnc_symbolic_graph_dot(graph->tape, flags, out);
1159}