Bug Summary

File:3rdparty/sqlite3/sqlite3.c
Warning:line 107527, column 11
Access to field 'nExpr' results in a dereference of a null pointer (loaded from variable 'pFarg')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name sqlite3.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/home/liu/buildslave/linux-x64-runtests/build/lib -resource-dir /usr/local/lib/clang/14.0.6 -D HAVE_USLEEP -D SQLITE_DQS=0 -D SQLITE_DEFAULT_CACHE_SIZE=128 -D SQLITE_DEFAULT_CKPTFULLFSYNC -D SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT=32768 -D SQLITE_DEFAULT_PAGE_SIZE=4096 -D SQLITE_DEFAULT_SYNCHRONOUS=2 -D SQLITE_DEFAULT_WAL_SYNCHRONOUS=1 -D SQLITE_ENABLE_API_ARMOR -D SQLITE_ENABLE_COLUMN_METADATA -D SQLITE_ENABLE_DBSTAT_VTAB -D SQLITE_ENABLE_FTS3 -D SQLITE_ENABLE_FTS3_PARENTHESIS -D SQLITE_ENABLE_FTS3_TOKENIZER -D SQLITE_ENABLE_FTS4 -D SQLITE_ENABLE_FTS5 -D SQLITE_ENABLE_JSON1 -D SQLITE_ENABLE_MATH_FUNCTIONS -D SQLITE_ENABLE_PREUPDATE_HOOK -D SQLITE_ENABLE_RTREE -D SQLITE_ENABLE_SESSION -D SQLITE_ENABLE_SNAPSHOT -D SQLITE_ENABLE_STMT_SCANSTATUS -D SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION -D SQLITE_ENABLE_UPDATE_DELETE_LIMIT -D SQLITE_HAS_CODEC_RESTRICTED -D SQLITE_HAVE_ISNAN -D SQLITE_MAX_LENGTH=2147483645 -D SQLITE_MAX_MMAP_SIZE=20971520 -D SQLITE_MAX_VARIABLE_NUMBER=500000 -D SQLITE_OMIT_AUTORESET -D SQLITE_OMIT_DEPRECATED -D SQLITE_OMIT_PROGRESS_CALLBACK -D SQLITE_OMIT_LOAD_EXTENSION -D SQLITE_STMTJRNL_SPILL=131072 -D SQLITE_SUBSTR_COMPATIBILITY -D SQLITE_THREADSAFE=2 -D SQLITE_USE_URI -internal-isystem /usr/local/lib/clang/14.0.6/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/9/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -fdebug-compilation-dir=/home/liu/buildslave/linux-x64-runtests/build/lib -ferror-limit 19 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/buildslave/public_html/analyze/2022-07-27-230511-338087-1 -x c 3rdparty/sqlite3/sqlite3.c
1/******************************************************************************
2** This file is an amalgamation of many separate C source files from SQLite
3** version 3.39.0. By combining all the individual C code files into this
4** single large file, the entire code can be compiled as a single translation
5** unit. This allows many compilers to do optimizations that would not be
6** possible if the files were compiled separately. Performance improvements
7** of 5% or more are commonly seen when SQLite is compiled as a single
8** translation unit.
9**
10** This file is all you need to compile SQLite. To use SQLite in other
11** programs, you need this file and the "sqlite3.h" header file that defines
12** the programming interface to the SQLite library. (If you do not have
13** the "sqlite3.h" header file at hand, you will find a copy embedded within
14** the text of this file. Search for "Begin file sqlite3.h" to find the start
15** of the embedded sqlite3.h header file.) Additional code files may be needed
16** if you want a wrapper to interface SQLite with your choice of programming
17** language. The code for the "sqlite3" command-line shell is also in a
18** separate file. This file contains only code for the core SQLite library.
19*/
20#define SQLITE_CORE1 1
21#define SQLITE_AMALGAMATION1 1
22#ifndef SQLITE_PRIVATEstatic
23# define SQLITE_PRIVATEstatic static
24#endif
25/************** Begin file sqliteInt.h ***************************************/
26/*
27** 2001 September 15
28**
29** The author disclaims copyright to this source code. In place of
30** a legal notice, here is a blessing:
31**
32** May you do good and not evil.
33** May you find forgiveness for yourself and forgive others.
34** May you share freely, never taking more than you give.
35**
36*************************************************************************
37** Internal interface definitions for SQLite.
38**
39*/
40#ifndef SQLITEINT_H
41#define SQLITEINT_H
42
43/* Special Comments:
44**
45** Some comments have special meaning to the tools that measure test
46** coverage:
47**
48** NO_TEST - The branches on this line are not
49** measured by branch coverage. This is
50** used on lines of code that actually
51** implement parts of coverage testing.
52**
53** OPTIMIZATION-IF-TRUE - This branch is allowed to alway be false
54** and the correct answer is still obtained,
55** though perhaps more slowly.
56**
57** OPTIMIZATION-IF-FALSE - This branch is allowed to alway be true
58** and the correct answer is still obtained,
59** though perhaps more slowly.
60**
61** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread
62** that would be harmless and undetectable
63** if it did occur.
64**
65** In all cases, the special comment must be enclosed in the usual
66** slash-asterisk...asterisk-slash comment marks, with no spaces between the
67** asterisks and the comment text.
68*/
69
70/*
71** Make sure the Tcl calling convention macro is defined. This macro is
72** only used by test code and Tcl integration code.
73*/
74#ifndef SQLITE_TCLAPI
75# define SQLITE_TCLAPI
76#endif
77
78/*
79** Include the header file used to customize the compiler options for MSVC.
80** This should be done first so that it can successfully prevent spurious
81** compiler warnings due to subsequent content in this file and other files
82** that are included by this file.
83*/
84/************** Include msvc.h in the middle of sqliteInt.h ******************/
85/************** Begin file msvc.h ********************************************/
86/*
87** 2015 January 12
88**
89** The author disclaims copyright to this source code. In place of
90** a legal notice, here is a blessing:
91**
92** May you do good and not evil.
93** May you find forgiveness for yourself and forgive others.
94** May you share freely, never taking more than you give.
95**
96******************************************************************************
97**
98** This file contains code that is specific to MSVC.
99*/
100#ifndef SQLITE_MSVC_H
101#define SQLITE_MSVC_H
102
103#if defined(_MSC_VER)
104#pragma warning(disable : 4054)
105#pragma warning(disable : 4055)
106#pragma warning(disable : 4100)
107#pragma warning(disable : 4127)
108#pragma warning(disable : 4130)
109#pragma warning(disable : 4152)
110#pragma warning(disable : 4189)
111#pragma warning(disable : 4206)
112#pragma warning(disable : 4210)
113#pragma warning(disable : 4232)
114#pragma warning(disable : 4244)
115#pragma warning(disable : 4305)
116#pragma warning(disable : 4306)
117#pragma warning(disable : 4702)
118#pragma warning(disable : 4706)
119#endif /* defined(_MSC_VER) */
120
121#if defined(_MSC_VER) && !defined(_WIN64)
122#undef SQLITE_4_BYTE_ALIGNED_MALLOC
123#define SQLITE_4_BYTE_ALIGNED_MALLOC
124#endif /* defined(_MSC_VER) && !defined(_WIN64) */
125
126#endif /* SQLITE_MSVC_H */
127
128/************** End of msvc.h ************************************************/
129/************** Continuing where we left off in sqliteInt.h ******************/
130
131/*
132** Special setup for VxWorks
133*/
134/************** Include vxworks.h in the middle of sqliteInt.h ***************/
135/************** Begin file vxworks.h *****************************************/
136/*
137** 2015-03-02
138**
139** The author disclaims copyright to this source code. In place of
140** a legal notice, here is a blessing:
141**
142** May you do good and not evil.
143** May you find forgiveness for yourself and forgive others.
144** May you share freely, never taking more than you give.
145**
146******************************************************************************
147**
148** This file contains code that is specific to Wind River's VxWorks
149*/
150#if defined(__RTP__) || defined(_WRS_KERNEL)
151/* This is VxWorks. Set up things specially for that OS
152*/
153#include <vxWorks.h>
154#include <pthread.h> /* amalgamator: dontcache */
155#define OS_VXWORKS0 1
156#define SQLITE_OS_OTHER0 0
157#define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1
158#define SQLITE_OMIT_LOAD_EXTENSION1 1
159#define SQLITE_ENABLE_LOCKING_STYLE0 0
160#define HAVE_UTIME 1
161#else
162/* This is not VxWorks. */
163#define OS_VXWORKS0 0
164#define HAVE_FCHOWN1 1
165#define HAVE_READLINK1 1
166#define HAVE_LSTAT1 1
167#endif /* defined(_WRS_KERNEL) */
168
169/************** End of vxworks.h *********************************************/
170/************** Continuing where we left off in sqliteInt.h ******************/
171
172/*
173** These #defines should enable >2GB file support on POSIX if the
174** underlying operating system supports it. If the OS lacks
175** large file support, or if the OS is windows, these should be no-ops.
176**
177** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
178** system #includes. Hence, this block of code must be the very first
179** code in all source files.
180**
181** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
182** on the compiler command line. This is necessary if you are compiling
183** on a recent machine (ex: Red Hat 7.2) but you want your code to work
184** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
185** without this option, LFS is enable. But LFS does not exist in the kernel
186** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
187** portability you should omit LFS.
188**
189** The previous paragraph was written in 2005. (This paragraph is written
190** on 2008-11-28.) These days, all Linux kernels support large files, so
191** you should probably leave LFS enabled. But some embedded platforms might
192** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
193**
194** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
195*/
196#ifndef SQLITE_DISABLE_LFS
197# define _LARGE_FILE1 1
198# ifndef _FILE_OFFSET_BITS64
199# define _FILE_OFFSET_BITS64 64
200# endif
201# define _LARGEFILE_SOURCE1 1
202#endif
203
204/* The GCC_VERSION and MSVC_VERSION macros are used to
205** conditionally include optimizations for each of these compilers. A
206** value of 0 means that compiler is not being used. The
207** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific
208** optimizations, and hence set all compiler macros to 0
209**
210** There was once also a CLANG_VERSION macro. However, we learn that the
211** version numbers in clang are for "marketing" only and are inconsistent
212** and unreliable. Fortunately, all versions of clang also recognize the
213** gcc version numbers and have reasonable settings for gcc version numbers,
214** so the GCC_VERSION macro will be set to a correct non-zero value even
215** when compiling with clang.
216*/
217#if defined(__GNUC__4) && !defined(SQLITE_DISABLE_INTRINSIC)
218# define GCC_VERSION(4*1000000+2*1000+1) (__GNUC__4*1000000+__GNUC_MINOR__2*1000+__GNUC_PATCHLEVEL__1)
219#else
220# define GCC_VERSION(4*1000000+2*1000+1) 0
221#endif
222#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
223# define MSVC_VERSION0 _MSC_VER
224#else
225# define MSVC_VERSION0 0
226#endif
227
228/*
229** Some C99 functions in "math.h" are only present for MSVC when its version
230** is associated with Visual Studio 2013 or higher.
231*/
232#ifndef SQLITE_HAVE_C99_MATH_FUNCS(1)
233# if MSVC_VERSION0==0 || MSVC_VERSION0>=1800
234# define SQLITE_HAVE_C99_MATH_FUNCS(1) (1)
235# else
236# define SQLITE_HAVE_C99_MATH_FUNCS(1) (0)
237# endif
238#endif
239
240/* Needed for various definitions... */
241#if defined(__GNUC__4) && !defined(_GNU_SOURCE)
242# define _GNU_SOURCE
243#endif
244
245#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
246# define _BSD_SOURCE
247#endif
248
249/*
250** Macro to disable warnings about missing "break" at the end of a "case".
251*/
252#if GCC_VERSION(4*1000000+2*1000+1)>=7000000
253# define deliberate_fall_through __attribute__((fallthrough));
254#else
255# define deliberate_fall_through
256#endif
257
258/*
259** For MinGW, check to see if we can include the header file containing its
260** version information, among other things. Normally, this internal MinGW
261** header file would [only] be included automatically by other MinGW header
262** files; however, the contained version information is now required by this
263** header file to work around binary compatibility issues (see below) and
264** this is the only known way to reliably obtain it. This entire #if block
265** would be completely unnecessary if there was any other way of detecting
266** MinGW via their preprocessor (e.g. if they customized their GCC to define
267** some MinGW-specific macros). When compiling for MinGW, either the
268** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
269** defined; otherwise, detection of conditions specific to MinGW will be
270** disabled.
271*/
272#if defined(_HAVE_MINGW_H)
273# include "mingw.h"
274#elif defined(_HAVE__MINGW_H)
275# include "_mingw.h"
276#endif
277
278/*
279** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
280** define is required to maintain binary compatibility with the MSVC runtime
281** library in use (e.g. for Windows XP).
282*/
283#if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
284 defined(_WIN32) && !defined(_WIN64) && \
285 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
286 defined(__MSVCRT__)
287# define _USE_32BIT_TIME_T
288#endif
289
290/* Optionally #include a user-defined header, whereby compilation options
291** may be set prior to where they take effect, but after platform setup.
292** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include
293** file.
294*/
295#ifdef SQLITE_CUSTOM_INCLUDE
296# define INC_STRINGIFY_(f) #f
297# define INC_STRINGIFY(f) INC_STRINGIFY_(f)
298# include INC_STRINGIFY(SQLITE_CUSTOM_INCLUDE)
299#endif
300
301/* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear
302** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for
303** MinGW.
304*/
305/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
306/************** Begin file sqlite3.h *****************************************/
307/*
308** 2001-09-15
309**
310** The author disclaims copyright to this source code. In place of
311** a legal notice, here is a blessing:
312**
313** May you do good and not evil.
314** May you find forgiveness for yourself and forgive others.
315** May you share freely, never taking more than you give.
316**
317*************************************************************************
318** This header file defines the interface that the SQLite library
319** presents to client programs. If a C-function, structure, datatype,
320** or constant definition does not appear in this file, then it is
321** not a published API of SQLite, is subject to change without
322** notice, and should not be referenced by programs that use SQLite.
323**
324** Some of the definitions that are in this file are marked as
325** "experimental". Experimental interfaces are normally new
326** features recently added to SQLite. We do not anticipate changes
327** to experimental interfaces but reserve the right to make minor changes
328** if experience from use "in the wild" suggest such changes are prudent.
329**
330** The official C-language API documentation for SQLite is derived
331** from comments in this file. This file is the authoritative source
332** on how SQLite interfaces are supposed to operate.
333**
334** The name of this file under configuration management is "sqlite.h.in".
335** The makefile makes some minor changes to this file (such as inserting
336** the version number) and changes its name to "sqlite3.h" as
337** part of the build process.
338*/
339#ifndef SQLITE3_H
340#define SQLITE3_H
341#include <stdarg.h> /* Needed for the definition of va_list */
342
343/*
344** Make sure we can call this stuff from C++.
345*/
346#if 0
347extern "C" {
348#endif
349
350
351/*
352** Facilitate override of interface linkage and calling conventions.
353** Be aware that these macros may not be used within this particular
354** translation of the amalgamation and its associated header file.
355**
356** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the
357** compiler that the target identifier should have external linkage.
358**
359** The SQLITE_CDECL macro is used to set the calling convention for
360** public functions that accept a variable number of arguments.
361**
362** The SQLITE_APICALL macro is used to set the calling convention for
363** public functions that accept a fixed number of arguments.
364**
365** The SQLITE_STDCALL macro is no longer used and is now deprecated.
366**
367** The SQLITE_CALLBACK macro is used to set the calling convention for
368** function pointers.
369**
370** The SQLITE_SYSAPI macro is used to set the calling convention for
371** functions provided by the operating system.
372**
373** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and
374** SQLITE_SYSAPI macros are used only when building for environments
375** that require non-default calling conventions.
376*/
377#ifndef SQLITE_EXTERNextern
378# define SQLITE_EXTERNextern extern
379#endif
380#ifndef SQLITE_API
381# define SQLITE_API
382#endif
383#ifndef SQLITE_CDECL
384# define SQLITE_CDECL
385#endif
386#ifndef SQLITE_APICALL
387# define SQLITE_APICALL
388#endif
389#ifndef SQLITE_STDCALL
390# define SQLITE_STDCALL SQLITE_APICALL
391#endif
392#ifndef SQLITE_CALLBACK
393# define SQLITE_CALLBACK
394#endif
395#ifndef SQLITE_SYSAPI
396# define SQLITE_SYSAPI
397#endif
398
399/*
400** These no-op macros are used in front of interfaces to mark those
401** interfaces as either deprecated or experimental. New applications
402** should not use deprecated interfaces - they are supported for backwards
403** compatibility only. Application writers should be aware that
404** experimental interfaces are subject to change in point releases.
405**
406** These macros used to resolve to various kinds of compiler magic that
407** would generate warning messages when they were used. But that
408** compiler magic ended up generating such a flurry of bug reports
409** that we have taken it all out and gone back to using simple
410** noop macros.
411*/
412#define SQLITE_DEPRECATED
413#define SQLITE_EXPERIMENTAL
414
415/*
416** Ensure these symbols were not defined by some previous header file.
417*/
418#ifdef SQLITE_VERSION"3.39.0"
419# undef SQLITE_VERSION"3.39.0"
420#endif
421#ifdef SQLITE_VERSION_NUMBER3039000
422# undef SQLITE_VERSION_NUMBER3039000
423#endif
424
425/*
426** CAPI3REF: Compile-Time Library Version Numbers
427**
428** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
429** evaluates to a string literal that is the SQLite version in the
430** format "X.Y.Z" where X is the major version number (always 3 for
431** SQLite3) and Y is the minor version number and Z is the release number.)^
432** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
433** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
434** numbers used in [SQLITE_VERSION].)^
435** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
436** be larger than the release from which it is derived. Either Y will
437** be held constant and Z will be incremented or else Y will be incremented
438** and Z will be reset to zero.
439**
440** Since [version 3.6.18] ([dateof:3.6.18]),
441** SQLite source code has been stored in the
442** <a href="http://www.fossil-scm.org/">Fossil configuration management
443** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
444** a string which identifies a particular check-in of SQLite
445** within its configuration management system. ^The SQLITE_SOURCE_ID
446** string contains the date and time of the check-in (UTC) and a SHA1
447** or SHA3-256 hash of the entire source tree. If the source code has
448** been edited in any way since it was last checked in, then the last
449** four hexadecimal digits of the hash may be modified.
450**
451** See also: [sqlite3_libversion()],
452** [sqlite3_libversion_number()], [sqlite3_sourceid()],
453** [sqlite_version()] and [sqlite_source_id()].
454*/
455#define SQLITE_VERSION"3.39.0" "3.39.0"
456#define SQLITE_VERSION_NUMBER3039000 3039000
457#define SQLITE_SOURCE_ID"2022-06-25 14:57:57 14e166f40dbfa6e055543f8301525f2ca2e96a02a57269818b9e69e162e98918" "2022-06-25 14:57:57 14e166f40dbfa6e055543f8301525f2ca2e96a02a57269818b9e69e162e98918"
458
459/*
460** CAPI3REF: Run-Time Library Version Numbers
461** KEYWORDS: sqlite3_version sqlite3_sourceid
462**
463** These interfaces provide the same information as the [SQLITE_VERSION],
464** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
465** but are associated with the library instead of the header file. ^(Cautious
466** programmers might include assert() statements in their application to
467** verify that values returned by these interfaces match the macros in
468** the header, and thus ensure that the application is
469** compiled with matching library and header files.
470**
471** <blockquote><pre>
472** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
473** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
474** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
475** </pre></blockquote>)^
476**
477** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
478** macro. ^The sqlite3_libversion() function returns a pointer to the
479** to the sqlite3_version[] string constant. The sqlite3_libversion()
480** function is provided for use in DLLs since DLL users usually do not have
481** direct access to string constants within the DLL. ^The
482** sqlite3_libversion_number() function returns an integer equal to
483** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns
484** a pointer to a string constant whose value is the same as the
485** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built
486** using an edited copy of [the amalgamation], then the last four characters
487** of the hash might be different from [SQLITE_SOURCE_ID].)^
488**
489** See also: [sqlite_version()] and [sqlite_source_id()].
490*/
491SQLITE_API const char sqlite3_version[] = SQLITE_VERSION"3.39.0";
492SQLITE_API const char *sqlite3_libversion(void);
493SQLITE_API const char *sqlite3_sourceid(void);
494SQLITE_API int sqlite3_libversion_number(void);
495
496/*
497** CAPI3REF: Run-Time Library Compilation Options Diagnostics
498**
499** ^The sqlite3_compileoption_used() function returns 0 or 1
500** indicating whether the specified option was defined at
501** compile time. ^The SQLITE_ prefix may be omitted from the
502** option name passed to sqlite3_compileoption_used().
503**
504** ^The sqlite3_compileoption_get() function allows iterating
505** over the list of options that were defined at compile time by
506** returning the N-th compile time option string. ^If N is out of range,
507** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
508** prefix is omitted from any strings returned by
509** sqlite3_compileoption_get().
510**
511** ^Support for the diagnostic functions sqlite3_compileoption_used()
512** and sqlite3_compileoption_get() may be omitted by specifying the
513** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
514**
515** See also: SQL functions [sqlite_compileoption_used()] and
516** [sqlite_compileoption_get()] and the [compile_options pragma].
517*/
518#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
519SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
520SQLITE_API const char *sqlite3_compileoption_get(int N);
521#else
522# define sqlite3_compileoption_used(X) 0
523# define sqlite3_compileoption_get(X) ((void*)0)
524#endif
525
526/*
527** CAPI3REF: Test To See If The Library Is Threadsafe
528**
529** ^The sqlite3_threadsafe() function returns zero if and only if
530** SQLite was compiled with mutexing code omitted due to the
531** [SQLITE_THREADSAFE] compile-time option being set to 0.
532**
533** SQLite can be compiled with or without mutexes. When
534** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
535** are enabled and SQLite is threadsafe. When the
536** [SQLITE_THREADSAFE] macro is 0,
537** the mutexes are omitted. Without the mutexes, it is not safe
538** to use SQLite concurrently from more than one thread.
539**
540** Enabling mutexes incurs a measurable performance penalty.
541** So if speed is of utmost importance, it makes sense to disable
542** the mutexes. But for maximum safety, mutexes should be enabled.
543** ^The default behavior is for mutexes to be enabled.
544**
545** This interface can be used by an application to make sure that the
546** version of SQLite that it is linking against was compiled with
547** the desired setting of the [SQLITE_THREADSAFE] macro.
548**
549** This interface only reports on the compile-time mutex setting
550** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
551** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
552** can be fully or partially disabled using a call to [sqlite3_config()]
553** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
554** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
555** sqlite3_threadsafe() function shows only the compile-time setting of
556** thread safety, not any run-time changes to that setting made by
557** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
558** is unchanged by calls to sqlite3_config().)^
559**
560** See the [threading mode] documentation for additional information.
561*/
562SQLITE_API int sqlite3_threadsafe(void);
563
564/*
565** CAPI3REF: Database Connection Handle
566** KEYWORDS: {database connection} {database connections}
567**
568** Each open SQLite database is represented by a pointer to an instance of
569** the opaque structure named "sqlite3". It is useful to think of an sqlite3
570** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
571** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
572** and [sqlite3_close_v2()] are its destructors. There are many other
573** interfaces (such as
574** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
575** [sqlite3_busy_timeout()] to name but three) that are methods on an
576** sqlite3 object.
577*/
578typedef struct sqlite3 sqlite3;
579
580/*
581** CAPI3REF: 64-Bit Integer Types
582** KEYWORDS: sqlite_int64 sqlite_uint64
583**
584** Because there is no cross-platform way to specify 64-bit integer types
585** SQLite includes typedefs for 64-bit signed and unsigned integers.
586**
587** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
588** The sqlite_int64 and sqlite_uint64 types are supported for backwards
589** compatibility only.
590**
591** ^The sqlite3_int64 and sqlite_int64 types can store integer values
592** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
593** sqlite3_uint64 and sqlite_uint64 types can store integer values
594** between 0 and +18446744073709551615 inclusive.
595*/
596#ifdef SQLITE_INT64_TYPE
597 typedef SQLITE_INT64_TYPE sqlite_int64;
598# ifdef SQLITE_UINT64_TYPE
599 typedef SQLITE_UINT64_TYPE sqlite_uint64;
600# else
601 typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
602# endif
603#elif defined(_MSC_VER) || defined(__BORLANDC__)
604 typedef __int64 sqlite_int64;
605 typedef unsigned __int64 sqlite_uint64;
606#else
607 typedef long long int sqlite_int64;
608 typedef unsigned long long int sqlite_uint64;
609#endif
610typedef sqlite_int64 sqlite3_int64;
611typedef sqlite_uint64 sqlite3_uint64;
612
613/*
614** If compiling for a processor that lacks floating point support,
615** substitute integer for floating-point.
616*/
617#ifdef SQLITE_OMIT_FLOATING_POINT
618# define double sqlite3_int64
619#endif
620
621/*
622** CAPI3REF: Closing A Database Connection
623** DESTRUCTOR: sqlite3
624**
625** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
626** for the [sqlite3] object.
627** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
628** the [sqlite3] object is successfully destroyed and all associated
629** resources are deallocated.
630**
631** Ideally, applications should [sqlite3_finalize | finalize] all
632** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and
633** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
634** with the [sqlite3] object prior to attempting to close the object.
635** ^If the database connection is associated with unfinalized prepared
636** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
637** sqlite3_close() will leave the database connection open and return
638** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
639** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
640** it returns [SQLITE_OK] regardless, but instead of deallocating the database
641** connection immediately, it marks the database connection as an unusable
642** "zombie" and makes arrangements to automatically deallocate the database
643** connection after all prepared statements are finalized, all BLOB handles
644** are closed, and all backups have finished. The sqlite3_close_v2() interface
645** is intended for use with host languages that are garbage collected, and
646** where the order in which destructors are called is arbitrary.
647**
648** ^If an [sqlite3] object is destroyed while a transaction is open,
649** the transaction is automatically rolled back.
650**
651** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
652** must be either a NULL
653** pointer or an [sqlite3] object pointer obtained
654** from [sqlite3_open()], [sqlite3_open16()], or
655** [sqlite3_open_v2()], and not previously closed.
656** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
657** argument is a harmless no-op.
658*/
659SQLITE_API int sqlite3_close(sqlite3*);
660SQLITE_API int sqlite3_close_v2(sqlite3*);
661
662/*
663** The type for a callback function.
664** This is legacy and deprecated. It is included for historical
665** compatibility and is not documented.
666*/
667typedef int (*sqlite3_callback)(void*,int,char**, char**);
668
669/*
670** CAPI3REF: One-Step Query Execution Interface
671** METHOD: sqlite3
672**
673** The sqlite3_exec() interface is a convenience wrapper around
674** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
675** that allows an application to run multiple statements of SQL
676** without having to use a lot of C code.
677**
678** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
679** semicolon-separate SQL statements passed into its 2nd argument,
680** in the context of the [database connection] passed in as its 1st
681** argument. ^If the callback function of the 3rd argument to
682** sqlite3_exec() is not NULL, then it is invoked for each result row
683** coming out of the evaluated SQL statements. ^The 4th argument to
684** sqlite3_exec() is relayed through to the 1st argument of each
685** callback invocation. ^If the callback pointer to sqlite3_exec()
686** is NULL, then no callback is ever invoked and result rows are
687** ignored.
688**
689** ^If an error occurs while evaluating the SQL statements passed into
690** sqlite3_exec(), then execution of the current statement stops and
691** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
692** is not NULL then any error message is written into memory obtained
693** from [sqlite3_malloc()] and passed back through the 5th parameter.
694** To avoid memory leaks, the application should invoke [sqlite3_free()]
695** on error message strings returned through the 5th parameter of
696** sqlite3_exec() after the error message string is no longer needed.
697** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
698** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
699** NULL before returning.
700**
701** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
702** routine returns SQLITE_ABORT without invoking the callback again and
703** without running any subsequent SQL statements.
704**
705** ^The 2nd argument to the sqlite3_exec() callback function is the
706** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
707** callback is an array of pointers to strings obtained as if from
708** [sqlite3_column_text()], one for each column. ^If an element of a
709** result row is NULL then the corresponding string pointer for the
710** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
711** sqlite3_exec() callback is an array of pointers to strings where each
712** entry represents the name of corresponding result column as obtained
713** from [sqlite3_column_name()].
714**
715** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
716** to an empty string, or a pointer that contains only whitespace and/or
717** SQL comments, then no SQL statements are evaluated and the database
718** is not changed.
719**
720** Restrictions:
721**
722** <ul>
723** <li> The application must ensure that the 1st parameter to sqlite3_exec()
724** is a valid and open [database connection].
725** <li> The application must not close the [database connection] specified by
726** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
727** <li> The application must not modify the SQL statement text passed into
728** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
729** </ul>
730*/
731SQLITE_API int sqlite3_exec(
732 sqlite3*, /* An open database */
733 const char *sql, /* SQL to be evaluated */
734 int (*callback)(void*,int,char**,char**), /* Callback function */
735 void *, /* 1st argument to callback */
736 char **errmsg /* Error msg written here */
737);
738
739/*
740** CAPI3REF: Result Codes
741** KEYWORDS: {result code definitions}
742**
743** Many SQLite functions return an integer result code from the set shown
744** here in order to indicate success or failure.
745**
746** New error codes may be added in future versions of SQLite.
747**
748** See also: [extended result code definitions]
749*/
750#define SQLITE_OK0 0 /* Successful result */
751/* beginning-of-error-codes */
752#define SQLITE_ERROR1 1 /* Generic error */
753#define SQLITE_INTERNAL2 2 /* Internal logic error in SQLite */
754#define SQLITE_PERM3 3 /* Access permission denied */
755#define SQLITE_ABORT4 4 /* Callback routine requested an abort */
756#define SQLITE_BUSY5 5 /* The database file is locked */
757#define SQLITE_LOCKED6 6 /* A table in the database is locked */
758#define SQLITE_NOMEM7 7 /* A malloc() failed */
759#define SQLITE_READONLY8 8 /* Attempt to write a readonly database */
760#define SQLITE_INTERRUPT9 9 /* Operation terminated by sqlite3_interrupt()*/
761#define SQLITE_IOERR10 10 /* Some kind of disk I/O error occurred */
762#define SQLITE_CORRUPT11 11 /* The database disk image is malformed */
763#define SQLITE_NOTFOUND12 12 /* Unknown opcode in sqlite3_file_control() */
764#define SQLITE_FULL13 13 /* Insertion failed because database is full */
765#define SQLITE_CANTOPEN14 14 /* Unable to open the database file */
766#define SQLITE_PROTOCOL15 15 /* Database lock protocol error */
767#define SQLITE_EMPTY16 16 /* Internal use only */
768#define SQLITE_SCHEMA17 17 /* The database schema changed */
769#define SQLITE_TOOBIG18 18 /* String or BLOB exceeds size limit */
770#define SQLITE_CONSTRAINT19 19 /* Abort due to constraint violation */
771#define SQLITE_MISMATCH20 20 /* Data type mismatch */
772#define SQLITE_MISUSE21 21 /* Library used incorrectly */
773#define SQLITE_NOLFS22 22 /* Uses OS features not supported on host */
774#define SQLITE_AUTH23 23 /* Authorization denied */
775#define SQLITE_FORMAT24 24 /* Not used */
776#define SQLITE_RANGE25 25 /* 2nd parameter to sqlite3_bind out of range */
777#define SQLITE_NOTADB26 26 /* File opened that is not a database file */
778#define SQLITE_NOTICE27 27 /* Notifications from sqlite3_log() */
779#define SQLITE_WARNING28 28 /* Warnings from sqlite3_log() */
780#define SQLITE_ROW100 100 /* sqlite3_step() has another row ready */
781#define SQLITE_DONE101 101 /* sqlite3_step() has finished executing */
782/* end-of-error-codes */
783
784/*
785** CAPI3REF: Extended Result Codes
786** KEYWORDS: {extended result code definitions}
787**
788** In its default configuration, SQLite API routines return one of 30 integer
789** [result codes]. However, experience has shown that many of
790** these result codes are too coarse-grained. They do not provide as
791** much information about problems as programmers might like. In an effort to
792** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8]
793** and later) include
794** support for additional result codes that provide more detailed information
795** about errors. These [extended result codes] are enabled or disabled
796** on a per database connection basis using the
797** [sqlite3_extended_result_codes()] API. Or, the extended code for
798** the most recent error can be obtained using
799** [sqlite3_extended_errcode()].
800*/
801#define SQLITE_ERROR_MISSING_COLLSEQ(1 | (1<<8)) (SQLITE_ERROR1 | (1<<8))
802#define SQLITE_ERROR_RETRY(1 | (2<<8)) (SQLITE_ERROR1 | (2<<8))
803#define SQLITE_ERROR_SNAPSHOT(1 | (3<<8)) (SQLITE_ERROR1 | (3<<8))
804#define SQLITE_IOERR_READ(10 | (1<<8)) (SQLITE_IOERR10 | (1<<8))
805#define SQLITE_IOERR_SHORT_READ(10 | (2<<8)) (SQLITE_IOERR10 | (2<<8))
806#define SQLITE_IOERR_WRITE(10 | (3<<8)) (SQLITE_IOERR10 | (3<<8))
807#define SQLITE_IOERR_FSYNC(10 | (4<<8)) (SQLITE_IOERR10 | (4<<8))
808#define SQLITE_IOERR_DIR_FSYNC(10 | (5<<8)) (SQLITE_IOERR10 | (5<<8))
809#define SQLITE_IOERR_TRUNCATE(10 | (6<<8)) (SQLITE_IOERR10 | (6<<8))
810#define SQLITE_IOERR_FSTAT(10 | (7<<8)) (SQLITE_IOERR10 | (7<<8))
811#define SQLITE_IOERR_UNLOCK(10 | (8<<8)) (SQLITE_IOERR10 | (8<<8))
812#define SQLITE_IOERR_RDLOCK(10 | (9<<8)) (SQLITE_IOERR10 | (9<<8))
813#define SQLITE_IOERR_DELETE(10 | (10<<8)) (SQLITE_IOERR10 | (10<<8))
814#define SQLITE_IOERR_BLOCKED(10 | (11<<8)) (SQLITE_IOERR10 | (11<<8))
815#define SQLITE_IOERR_NOMEM(10 | (12<<8)) (SQLITE_IOERR10 | (12<<8))
816#define SQLITE_IOERR_ACCESS(10 | (13<<8)) (SQLITE_IOERR10 | (13<<8))
817#define SQLITE_IOERR_CHECKRESERVEDLOCK(10 | (14<<8)) (SQLITE_IOERR10 | (14<<8))
818#define SQLITE_IOERR_LOCK(10 | (15<<8)) (SQLITE_IOERR10 | (15<<8))
819#define SQLITE_IOERR_CLOSE(10 | (16<<8)) (SQLITE_IOERR10 | (16<<8))
820#define SQLITE_IOERR_DIR_CLOSE(10 | (17<<8)) (SQLITE_IOERR10 | (17<<8))
821#define SQLITE_IOERR_SHMOPEN(10 | (18<<8)) (SQLITE_IOERR10 | (18<<8))
822#define SQLITE_IOERR_SHMSIZE(10 | (19<<8)) (SQLITE_IOERR10 | (19<<8))
823#define SQLITE_IOERR_SHMLOCK(10 | (20<<8)) (SQLITE_IOERR10 | (20<<8))
824#define SQLITE_IOERR_SHMMAP(10 | (21<<8)) (SQLITE_IOERR10 | (21<<8))
825#define SQLITE_IOERR_SEEK(10 | (22<<8)) (SQLITE_IOERR10 | (22<<8))
826#define SQLITE_IOERR_DELETE_NOENT(10 | (23<<8)) (SQLITE_IOERR10 | (23<<8))
827#define SQLITE_IOERR_MMAP(10 | (24<<8)) (SQLITE_IOERR10 | (24<<8))
828#define SQLITE_IOERR_GETTEMPPATH(10 | (25<<8)) (SQLITE_IOERR10 | (25<<8))
829#define SQLITE_IOERR_CONVPATH(10 | (26<<8)) (SQLITE_IOERR10 | (26<<8))
830#define SQLITE_IOERR_VNODE(10 | (27<<8)) (SQLITE_IOERR10 | (27<<8))
831#define SQLITE_IOERR_AUTH(10 | (28<<8)) (SQLITE_IOERR10 | (28<<8))
832#define SQLITE_IOERR_BEGIN_ATOMIC(10 | (29<<8)) (SQLITE_IOERR10 | (29<<8))
833#define SQLITE_IOERR_COMMIT_ATOMIC(10 | (30<<8)) (SQLITE_IOERR10 | (30<<8))
834#define SQLITE_IOERR_ROLLBACK_ATOMIC(10 | (31<<8)) (SQLITE_IOERR10 | (31<<8))
835#define SQLITE_IOERR_DATA(10 | (32<<8)) (SQLITE_IOERR10 | (32<<8))
836#define SQLITE_IOERR_CORRUPTFS(10 | (33<<8)) (SQLITE_IOERR10 | (33<<8))
837#define SQLITE_LOCKED_SHAREDCACHE(6 | (1<<8)) (SQLITE_LOCKED6 | (1<<8))
838#define SQLITE_LOCKED_VTAB(6 | (2<<8)) (SQLITE_LOCKED6 | (2<<8))
839#define SQLITE_BUSY_RECOVERY(5 | (1<<8)) (SQLITE_BUSY5 | (1<<8))
840#define SQLITE_BUSY_SNAPSHOT(5 | (2<<8)) (SQLITE_BUSY5 | (2<<8))
841#define SQLITE_BUSY_TIMEOUT(5 | (3<<8)) (SQLITE_BUSY5 | (3<<8))
842#define SQLITE_CANTOPEN_NOTEMPDIR(14 | (1<<8)) (SQLITE_CANTOPEN14 | (1<<8))
843#define SQLITE_CANTOPEN_ISDIR(14 | (2<<8)) (SQLITE_CANTOPEN14 | (2<<8))
844#define SQLITE_CANTOPEN_FULLPATH(14 | (3<<8)) (SQLITE_CANTOPEN14 | (3<<8))
845#define SQLITE_CANTOPEN_CONVPATH(14 | (4<<8)) (SQLITE_CANTOPEN14 | (4<<8))
846#define SQLITE_CANTOPEN_DIRTYWAL(14 | (5<<8)) (SQLITE_CANTOPEN14 | (5<<8)) /* Not Used */
847#define SQLITE_CANTOPEN_SYMLINK(14 | (6<<8)) (SQLITE_CANTOPEN14 | (6<<8))
848#define SQLITE_CORRUPT_VTAB(11 | (1<<8)) (SQLITE_CORRUPT11 | (1<<8))
849#define SQLITE_CORRUPT_SEQUENCE(11 | (2<<8)) (SQLITE_CORRUPT11 | (2<<8))
850#define SQLITE_CORRUPT_INDEX(11 | (3<<8)) (SQLITE_CORRUPT11 | (3<<8))
851#define SQLITE_READONLY_RECOVERY(8 | (1<<8)) (SQLITE_READONLY8 | (1<<8))
852#define SQLITE_READONLY_CANTLOCK(8 | (2<<8)) (SQLITE_READONLY8 | (2<<8))
853#define SQLITE_READONLY_ROLLBACK(8 | (3<<8)) (SQLITE_READONLY8 | (3<<8))
854#define SQLITE_READONLY_DBMOVED(8 | (4<<8)) (SQLITE_READONLY8 | (4<<8))
855#define SQLITE_READONLY_CANTINIT(8 | (5<<8)) (SQLITE_READONLY8 | (5<<8))
856#define SQLITE_READONLY_DIRECTORY(8 | (6<<8)) (SQLITE_READONLY8 | (6<<8))
857#define SQLITE_ABORT_ROLLBACK(4 | (2<<8)) (SQLITE_ABORT4 | (2<<8))
858#define SQLITE_CONSTRAINT_CHECK(19 | (1<<8)) (SQLITE_CONSTRAINT19 | (1<<8))
859#define SQLITE_CONSTRAINT_COMMITHOOK(19 | (2<<8)) (SQLITE_CONSTRAINT19 | (2<<8))
860#define SQLITE_CONSTRAINT_FOREIGNKEY(19 | (3<<8)) (SQLITE_CONSTRAINT19 | (3<<8))
861#define SQLITE_CONSTRAINT_FUNCTION(19 | (4<<8)) (SQLITE_CONSTRAINT19 | (4<<8))
862#define SQLITE_CONSTRAINT_NOTNULL(19 | (5<<8)) (SQLITE_CONSTRAINT19 | (5<<8))
863#define SQLITE_CONSTRAINT_PRIMARYKEY(19 | (6<<8)) (SQLITE_CONSTRAINT19 | (6<<8))
864#define SQLITE_CONSTRAINT_TRIGGER(19 | (7<<8)) (SQLITE_CONSTRAINT19 | (7<<8))
865#define SQLITE_CONSTRAINT_UNIQUE(19 | (8<<8)) (SQLITE_CONSTRAINT19 | (8<<8))
866#define SQLITE_CONSTRAINT_VTAB(19 | (9<<8)) (SQLITE_CONSTRAINT19 | (9<<8))
867#define SQLITE_CONSTRAINT_ROWID(19 |(10<<8)) (SQLITE_CONSTRAINT19 |(10<<8))
868#define SQLITE_CONSTRAINT_PINNED(19 |(11<<8)) (SQLITE_CONSTRAINT19 |(11<<8))
869#define SQLITE_CONSTRAINT_DATATYPE(19 |(12<<8)) (SQLITE_CONSTRAINT19 |(12<<8))
870#define SQLITE_NOTICE_RECOVER_WAL(27 | (1<<8)) (SQLITE_NOTICE27 | (1<<8))
871#define SQLITE_NOTICE_RECOVER_ROLLBACK(27 | (2<<8)) (SQLITE_NOTICE27 | (2<<8))
872#define SQLITE_WARNING_AUTOINDEX(28 | (1<<8)) (SQLITE_WARNING28 | (1<<8))
873#define SQLITE_AUTH_USER(23 | (1<<8)) (SQLITE_AUTH23 | (1<<8))
874#define SQLITE_OK_LOAD_PERMANENTLY(0 | (1<<8)) (SQLITE_OK0 | (1<<8))
875#define SQLITE_OK_SYMLINK(0 | (2<<8)) (SQLITE_OK0 | (2<<8)) /* internal use only */
876
877/*
878** CAPI3REF: Flags For File Open Operations
879**
880** These bit values are intended for use in the
881** 3rd parameter to the [sqlite3_open_v2()] interface and
882** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
883**
884** Only those flags marked as "Ok for sqlite3_open_v2()" may be
885** used as the third argument to the [sqlite3_open_v2()] interface.
886** The other flags have historically been ignored by sqlite3_open_v2(),
887** though future versions of SQLite might change so that an error is
888** raised if any of the disallowed bits are passed into sqlite3_open_v2().
889** Applications should not depend on the historical behavior.
890**
891** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into
892** [sqlite3_open_v2()] does *not* cause the underlying database file
893** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into
894** [sqlite3_open_v2()] has historically be a no-op and might become an
895** error in future versions of SQLite.
896*/
897#define SQLITE_OPEN_READONLY0x00000001 0x00000001 /* Ok for sqlite3_open_v2() */
898#define SQLITE_OPEN_READWRITE0x00000002 0x00000002 /* Ok for sqlite3_open_v2() */
899#define SQLITE_OPEN_CREATE0x00000004 0x00000004 /* Ok for sqlite3_open_v2() */
900#define SQLITE_OPEN_DELETEONCLOSE0x00000008 0x00000008 /* VFS only */
901#define SQLITE_OPEN_EXCLUSIVE0x00000010 0x00000010 /* VFS only */
902#define SQLITE_OPEN_AUTOPROXY0x00000020 0x00000020 /* VFS only */
903#define SQLITE_OPEN_URI0x00000040 0x00000040 /* Ok for sqlite3_open_v2() */
904#define SQLITE_OPEN_MEMORY0x00000080 0x00000080 /* Ok for sqlite3_open_v2() */
905#define SQLITE_OPEN_MAIN_DB0x00000100 0x00000100 /* VFS only */
906#define SQLITE_OPEN_TEMP_DB0x00000200 0x00000200 /* VFS only */
907#define SQLITE_OPEN_TRANSIENT_DB0x00000400 0x00000400 /* VFS only */
908#define SQLITE_OPEN_MAIN_JOURNAL0x00000800 0x00000800 /* VFS only */
909#define SQLITE_OPEN_TEMP_JOURNAL0x00001000 0x00001000 /* VFS only */
910#define SQLITE_OPEN_SUBJOURNAL0x00002000 0x00002000 /* VFS only */
911#define SQLITE_OPEN_SUPER_JOURNAL0x00004000 0x00004000 /* VFS only */
912#define SQLITE_OPEN_NOMUTEX0x00008000 0x00008000 /* Ok for sqlite3_open_v2() */
913#define SQLITE_OPEN_FULLMUTEX0x00010000 0x00010000 /* Ok for sqlite3_open_v2() */
914#define SQLITE_OPEN_SHAREDCACHE0x00020000 0x00020000 /* Ok for sqlite3_open_v2() */
915#define SQLITE_OPEN_PRIVATECACHE0x00040000 0x00040000 /* Ok for sqlite3_open_v2() */
916#define SQLITE_OPEN_WAL0x00080000 0x00080000 /* VFS only */
917#define SQLITE_OPEN_NOFOLLOW0x01000000 0x01000000 /* Ok for sqlite3_open_v2() */
918#define SQLITE_OPEN_EXRESCODE0x02000000 0x02000000 /* Extended result codes */
919
920/* Reserved: 0x00F00000 */
921/* Legacy compatibility: */
922#define SQLITE_OPEN_MASTER_JOURNAL0x00004000 0x00004000 /* VFS only */
923
924
925/*
926** CAPI3REF: Device Characteristics
927**
928** The xDeviceCharacteristics method of the [sqlite3_io_methods]
929** object returns an integer which is a vector of these
930** bit values expressing I/O characteristics of the mass storage
931** device that holds the file that the [sqlite3_io_methods]
932** refers to.
933**
934** The SQLITE_IOCAP_ATOMIC property means that all writes of
935** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
936** mean that writes of blocks that are nnn bytes in size and
937** are aligned to an address which is an integer multiple of
938** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
939** that when data is appended to a file, the data is appended
940** first then the size of the file is extended, never the other
941** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
942** information is written to disk in the same order as calls
943** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
944** after reboot following a crash or power loss, the only bytes in a
945** file that were written at the application level might have changed
946** and that adjacent bytes, even bytes within the same sector are
947** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
948** flag indicates that a file cannot be deleted when open. The
949** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
950** read-only media and cannot be changed even by processes with
951** elevated privileges.
952**
953** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying
954** filesystem supports doing multiple write operations atomically when those
955** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and
956** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].
957*/
958#define SQLITE_IOCAP_ATOMIC0x00000001 0x00000001
959#define SQLITE_IOCAP_ATOMIC5120x00000002 0x00000002
960#define SQLITE_IOCAP_ATOMIC1K0x00000004 0x00000004
961#define SQLITE_IOCAP_ATOMIC2K0x00000008 0x00000008
962#define SQLITE_IOCAP_ATOMIC4K0x00000010 0x00000010
963#define SQLITE_IOCAP_ATOMIC8K0x00000020 0x00000020
964#define SQLITE_IOCAP_ATOMIC16K0x00000040 0x00000040
965#define SQLITE_IOCAP_ATOMIC32K0x00000080 0x00000080
966#define SQLITE_IOCAP_ATOMIC64K0x00000100 0x00000100
967#define SQLITE_IOCAP_SAFE_APPEND0x00000200 0x00000200
968#define SQLITE_IOCAP_SEQUENTIAL0x00000400 0x00000400
969#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN0x00000800 0x00000800
970#define SQLITE_IOCAP_POWERSAFE_OVERWRITE0x00001000 0x00001000
971#define SQLITE_IOCAP_IMMUTABLE0x00002000 0x00002000
972#define SQLITE_IOCAP_BATCH_ATOMIC0x00004000 0x00004000
973
974/*
975** CAPI3REF: File Locking Levels
976**
977** SQLite uses one of these integer values as the second
978** argument to calls it makes to the xLock() and xUnlock() methods
979** of an [sqlite3_io_methods] object.
980*/
981#define SQLITE_LOCK_NONE0 0
982#define SQLITE_LOCK_SHARED1 1
983#define SQLITE_LOCK_RESERVED2 2
984#define SQLITE_LOCK_PENDING3 3
985#define SQLITE_LOCK_EXCLUSIVE4 4
986
987/*
988** CAPI3REF: Synchronization Type Flags
989**
990** When SQLite invokes the xSync() method of an
991** [sqlite3_io_methods] object it uses a combination of
992** these integer values as the second argument.
993**
994** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
995** sync operation only needs to flush data to mass storage. Inode
996** information need not be flushed. If the lower four bits of the flag
997** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
998** If the lower four bits equal SQLITE_SYNC_FULL, that means
999** to use Mac OS X style fullsync instead of fsync().
1000**
1001** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
1002** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
1003** settings. The [synchronous pragma] determines when calls to the
1004** xSync VFS method occur and applies uniformly across all platforms.
1005** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
1006** energetic or rigorous or forceful the sync operations are and
1007** only make a difference on Mac OSX for the default SQLite code.
1008** (Third-party VFS implementations might also make the distinction
1009** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
1010** operating systems natively supported by SQLite, only Mac OSX
1011** cares about the difference.)
1012*/
1013#define SQLITE_SYNC_NORMAL0x00002 0x00002
1014#define SQLITE_SYNC_FULL0x00003 0x00003
1015#define SQLITE_SYNC_DATAONLY0x00010 0x00010
1016
1017/*
1018** CAPI3REF: OS Interface Open File Handle
1019**
1020** An [sqlite3_file] object represents an open file in the
1021** [sqlite3_vfs | OS interface layer]. Individual OS interface
1022** implementations will
1023** want to subclass this object by appending additional fields
1024** for their own use. The pMethods entry is a pointer to an
1025** [sqlite3_io_methods] object that defines methods for performing
1026** I/O operations on the open file.
1027*/
1028typedef struct sqlite3_file sqlite3_file;
1029struct sqlite3_file {
1030 const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
1031};
1032
1033/*
1034** CAPI3REF: OS Interface File Virtual Methods Object
1035**
1036** Every file opened by the [sqlite3_vfs.xOpen] method populates an
1037** [sqlite3_file] object (or, more commonly, a subclass of the
1038** [sqlite3_file] object) with a pointer to an instance of this object.
1039** This object defines the methods used to perform various operations
1040** against the open file represented by the [sqlite3_file] object.
1041**
1042** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
1043** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
1044** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The
1045** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
1046** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
1047** to NULL.
1048**
1049** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
1050** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
1051** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
1052** flag may be ORed in to indicate that only the data of the file
1053** and not its inode needs to be synced.
1054**
1055** The integer values to xLock() and xUnlock() are one of
1056** <ul>
1057** <li> [SQLITE_LOCK_NONE],
1058** <li> [SQLITE_LOCK_SHARED],
1059** <li> [SQLITE_LOCK_RESERVED],
1060** <li> [SQLITE_LOCK_PENDING], or
1061** <li> [SQLITE_LOCK_EXCLUSIVE].
1062** </ul>
1063** xLock() increases the lock. xUnlock() decreases the lock.
1064** The xCheckReservedLock() method checks whether any database connection,
1065** either in this process or in some other process, is holding a RESERVED,
1066** PENDING, or EXCLUSIVE lock on the file. It returns true
1067** if such a lock exists and false otherwise.
1068**
1069** The xFileControl() method is a generic interface that allows custom
1070** VFS implementations to directly control an open file using the
1071** [sqlite3_file_control()] interface. The second "op" argument is an
1072** integer opcode. The third argument is a generic pointer intended to
1073** point to a structure that may contain arguments or space in which to
1074** write return values. Potential uses for xFileControl() might be
1075** functions to enable blocking locks with timeouts, to change the
1076** locking strategy (for example to use dot-file locks), to inquire
1077** about the status of a lock, or to break stale locks. The SQLite
1078** core reserves all opcodes less than 100 for its own use.
1079** A [file control opcodes | list of opcodes] less than 100 is available.
1080** Applications that define a custom xFileControl method should use opcodes
1081** greater than 100 to avoid conflicts. VFS implementations should
1082** return [SQLITE_NOTFOUND] for file control opcodes that they do not
1083** recognize.
1084**
1085** The xSectorSize() method returns the sector size of the
1086** device that underlies the file. The sector size is the
1087** minimum write that can be performed without disturbing
1088** other bytes in the file. The xDeviceCharacteristics()
1089** method returns a bit vector describing behaviors of the
1090** underlying device:
1091**
1092** <ul>
1093** <li> [SQLITE_IOCAP_ATOMIC]
1094** <li> [SQLITE_IOCAP_ATOMIC512]
1095** <li> [SQLITE_IOCAP_ATOMIC1K]
1096** <li> [SQLITE_IOCAP_ATOMIC2K]
1097** <li> [SQLITE_IOCAP_ATOMIC4K]
1098** <li> [SQLITE_IOCAP_ATOMIC8K]
1099** <li> [SQLITE_IOCAP_ATOMIC16K]
1100** <li> [SQLITE_IOCAP_ATOMIC32K]
1101** <li> [SQLITE_IOCAP_ATOMIC64K]
1102** <li> [SQLITE_IOCAP_SAFE_APPEND]
1103** <li> [SQLITE_IOCAP_SEQUENTIAL]
1104** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
1105** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
1106** <li> [SQLITE_IOCAP_IMMUTABLE]
1107** <li> [SQLITE_IOCAP_BATCH_ATOMIC]
1108** </ul>
1109**
1110** The SQLITE_IOCAP_ATOMIC property means that all writes of
1111** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
1112** mean that writes of blocks that are nnn bytes in size and
1113** are aligned to an address which is an integer multiple of
1114** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
1115** that when data is appended to a file, the data is appended
1116** first then the size of the file is extended, never the other
1117** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
1118** information is written to disk in the same order as calls
1119** to xWrite().
1120**
1121** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
1122** in the unread portions of the buffer with zeros. A VFS that
1123** fails to zero-fill short reads might seem to work. However,
1124** failure to zero-fill short reads will eventually lead to
1125** database corruption.
1126*/
1127typedef struct sqlite3_io_methods sqlite3_io_methods;
1128struct sqlite3_io_methods {
1129 int iVersion;
1130 int (*xClose)(sqlite3_file*);
1131 int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
1132 int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
1133 int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
1134 int (*xSync)(sqlite3_file*, int flags);
1135 int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
1136 int (*xLock)(sqlite3_file*, int);
1137 int (*xUnlock)(sqlite3_file*, int);
1138 int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
1139 int (*xFileControl)(sqlite3_file*, int op, void *pArg);
1140 int (*xSectorSize)(sqlite3_file*);
1141 int (*xDeviceCharacteristics)(sqlite3_file*);
1142 /* Methods above are valid for version 1 */
1143 int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
1144 int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
1145 void (*xShmBarrier)(sqlite3_file*);
1146 int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
1147 /* Methods above are valid for version 2 */
1148 int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
1149 int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
1150 /* Methods above are valid for version 3 */
1151 /* Additional methods may be added in future releases */
1152};
1153
1154/*
1155** CAPI3REF: Standard File Control Opcodes
1156** KEYWORDS: {file control opcodes} {file control opcode}
1157**
1158** These integer constants are opcodes for the xFileControl method
1159** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
1160** interface.
1161**
1162** <ul>
1163** <li>[[SQLITE_FCNTL_LOCKSTATE]]
1164** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
1165** opcode causes the xFileControl method to write the current state of
1166** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
1167** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
1168** into an integer that the pArg argument points to. This capability
1169** is used during testing and is only available when the SQLITE_TEST
1170** compile-time option is used.
1171**
1172** <li>[[SQLITE_FCNTL_SIZE_HINT]]
1173** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
1174** layer a hint of how large the database file will grow to be during the
1175** current transaction. This hint is not guaranteed to be accurate but it
1176** is often close. The underlying VFS might choose to preallocate database
1177** file space based on this hint in order to help writes to the database
1178** file run faster.
1179**
1180** <li>[[SQLITE_FCNTL_SIZE_LIMIT]]
1181** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that
1182** implements [sqlite3_deserialize()] to set an upper bound on the size
1183** of the in-memory database. The argument is a pointer to a [sqlite3_int64].
1184** If the integer pointed to is negative, then it is filled in with the
1185** current limit. Otherwise the limit is set to the larger of the value
1186** of the integer pointed to and the current database size. The integer
1187** pointed to is set to the new limit.
1188**
1189** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
1190** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
1191** extends and truncates the database file in chunks of a size specified
1192** by the user. The fourth argument to [sqlite3_file_control()] should
1193** point to an integer (type int) containing the new chunk-size to use
1194** for the nominated database. Allocating database file space in large
1195** chunks (say 1MB at a time), may reduce file-system fragmentation and
1196** improve performance on some systems.
1197**
1198** <li>[[SQLITE_FCNTL_FILE_POINTER]]
1199** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
1200** to the [sqlite3_file] object associated with a particular database
1201** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER].
1202**
1203** <li>[[SQLITE_FCNTL_JOURNAL_POINTER]]
1204** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer
1205** to the [sqlite3_file] object associated with the journal file (either
1206** the [rollback journal] or the [write-ahead log]) for a particular database
1207** connection. See also [SQLITE_FCNTL_FILE_POINTER].
1208**
1209** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
1210** No longer in use.
1211**
1212** <li>[[SQLITE_FCNTL_SYNC]]
1213** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
1214** sent to the VFS immediately before the xSync method is invoked on a
1215** database file descriptor. Or, if the xSync method is not invoked
1216** because the user has configured SQLite with
1217** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
1218** of the xSync method. In most cases, the pointer argument passed with
1219** this file-control is NULL. However, if the database file is being synced
1220** as part of a multi-database commit, the argument points to a nul-terminated
1221** string containing the transactions super-journal file name. VFSes that
1222** do not need this signal should silently ignore this opcode. Applications
1223** should not call [sqlite3_file_control()] with this opcode as doing so may
1224** disrupt the operation of the specialized VFSes that do require it.
1225**
1226** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
1227** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
1228** and sent to the VFS after a transaction has been committed immediately
1229** but before the database is unlocked. VFSes that do not need this signal
1230** should silently ignore this opcode. Applications should not call
1231** [sqlite3_file_control()] with this opcode as doing so may disrupt the
1232** operation of the specialized VFSes that do require it.
1233**
1234** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
1235** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
1236** retry counts and intervals for certain disk I/O operations for the
1237** windows [VFS] in order to provide robustness in the presence of
1238** anti-virus programs. By default, the windows VFS will retry file read,
1239** file write, and file delete operations up to 10 times, with a delay
1240** of 25 milliseconds before the first retry and with the delay increasing
1241** by an additional 25 milliseconds with each subsequent retry. This
1242** opcode allows these two values (10 retries and 25 milliseconds of delay)
1243** to be adjusted. The values are changed for all database connections
1244** within the same process. The argument is a pointer to an array of two
1245** integers where the first integer is the new retry count and the second
1246** integer is the delay. If either integer is negative, then the setting
1247** is not changed but instead the prior value of that setting is written
1248** into the array entry, allowing the current retry settings to be
1249** interrogated. The zDbName parameter is ignored.
1250**
1251** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
1252** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
1253** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary
1254** write ahead log ([WAL file]) and shared memory
1255** files used for transaction control
1256** are automatically deleted when the latest connection to the database
1257** closes. Setting persistent WAL mode causes those files to persist after
1258** close. Persisting the files is useful when other processes that do not
1259** have write permission on the directory containing the database file want
1260** to read the database file, as the WAL and shared memory files must exist
1261** in order for the database to be readable. The fourth parameter to
1262** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
1263** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
1264** WAL mode. If the integer is -1, then it is overwritten with the current
1265** WAL persistence setting.
1266**
1267** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
1268** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
1269** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting
1270** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
1271** xDeviceCharacteristics methods. The fourth parameter to
1272** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
1273** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
1274** mode. If the integer is -1, then it is overwritten with the current
1275** zero-damage mode setting.
1276**
1277** <li>[[SQLITE_FCNTL_OVERWRITE]]
1278** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
1279** a write transaction to indicate that, unless it is rolled back for some
1280** reason, the entire database file will be overwritten by the current
1281** transaction. This is used by VACUUM operations.
1282**
1283** <li>[[SQLITE_FCNTL_VFSNAME]]
1284** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
1285** all [VFSes] in the VFS stack. The names are of all VFS shims and the
1286** final bottom-level VFS are written into memory obtained from
1287** [sqlite3_malloc()] and the result is stored in the char* variable
1288** that the fourth parameter of [sqlite3_file_control()] points to.
1289** The caller is responsible for freeing the memory when done. As with
1290** all file-control actions, there is no guarantee that this will actually
1291** do anything. Callers should initialize the char* variable to a NULL
1292** pointer in case this file-control is not implemented. This file-control
1293** is intended for diagnostic use only.
1294**
1295** <li>[[SQLITE_FCNTL_VFS_POINTER]]
1296** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
1297** [VFSes] currently in use. ^(The argument X in
1298** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
1299** of type "[sqlite3_vfs] **". This opcodes will set *X
1300** to a pointer to the top-level VFS.)^
1301** ^When there are multiple VFS shims in the stack, this opcode finds the
1302** upper-most shim only.
1303**
1304** <li>[[SQLITE_FCNTL_PRAGMA]]
1305** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
1306** file control is sent to the open [sqlite3_file] object corresponding
1307** to the database file to which the pragma statement refers. ^The argument
1308** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
1309** pointers to strings (char**) in which the second element of the array
1310** is the name of the pragma and the third element is the argument to the
1311** pragma or NULL if the pragma has no argument. ^The handler for an
1312** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
1313** of the char** argument point to a string obtained from [sqlite3_mprintf()]
1314** or the equivalent and that string will become the result of the pragma or
1315** the error message if the pragma fails. ^If the
1316** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
1317** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA]
1318** file control returns [SQLITE_OK], then the parser assumes that the
1319** VFS has handled the PRAGMA itself and the parser generates a no-op
1320** prepared statement if result string is NULL, or that returns a copy
1321** of the result string if the string is non-NULL.
1322** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
1323** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
1324** that the VFS encountered an error while handling the [PRAGMA] and the
1325** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA]
1326** file control occurs at the beginning of pragma statement analysis and so
1327** it is able to override built-in [PRAGMA] statements.
1328**
1329** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
1330** ^The [SQLITE_FCNTL_BUSYHANDLER]
1331** file-control may be invoked by SQLite on the database file handle
1332** shortly after it is opened in order to provide a custom VFS with access
1333** to the connection's busy-handler callback. The argument is of type (void**)
1334** - an array of two (void *) values. The first (void *) actually points
1335** to a function of type (int (*)(void *)). In order to invoke the connection's
1336** busy-handler, this function should be invoked with the second (void *) in
1337** the array as the only argument. If it returns non-zero, then the operation
1338** should be retried. If it returns zero, the custom VFS should abandon the
1339** current operation.
1340**
1341** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
1342** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
1343** to have SQLite generate a
1344** temporary filename using the same algorithm that is followed to generate
1345** temporary filenames for TEMP tables and other internal uses. The
1346** argument should be a char** which will be filled with the filename
1347** written into memory obtained from [sqlite3_malloc()]. The caller should
1348** invoke [sqlite3_free()] on the result to avoid a memory leak.
1349**
1350** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
1351** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
1352** maximum number of bytes that will be used for memory-mapped I/O.
1353** The argument is a pointer to a value of type sqlite3_int64 that
1354** is an advisory maximum number of bytes in the file to memory map. The
1355** pointer is overwritten with the old value. The limit is not changed if
1356** the value originally pointed to is negative, and so the current limit
1357** can be queried by passing in a pointer to a negative number. This
1358** file-control is used internally to implement [PRAGMA mmap_size].
1359**
1360** <li>[[SQLITE_FCNTL_TRACE]]
1361** The [SQLITE_FCNTL_TRACE] file control provides advisory information
1362** to the VFS about what the higher layers of the SQLite stack are doing.
1363** This file control is used by some VFS activity tracing [shims].
1364** The argument is a zero-terminated string. Higher layers in the
1365** SQLite stack may generate instances of this file control if
1366** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
1367**
1368** <li>[[SQLITE_FCNTL_HAS_MOVED]]
1369** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
1370** pointer to an integer and it writes a boolean into that integer depending
1371** on whether or not the file has been renamed, moved, or deleted since it
1372** was first opened.
1373**
1374** <li>[[SQLITE_FCNTL_WIN32_GET_HANDLE]]
1375** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the
1376** underlying native file handle associated with a file handle. This file
1377** control interprets its argument as a pointer to a native file handle and
1378** writes the resulting value there.
1379**
1380** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
1381** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This
1382** opcode causes the xFileControl method to swap the file handle with the one
1383** pointed to by the pArg argument. This capability is used during testing
1384** and only needs to be supported when SQLITE_TEST is defined.
1385**
1386** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
1387** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
1388** be advantageous to block on the next WAL lock if the lock is not immediately
1389** available. The WAL subsystem issues this signal during rare
1390** circumstances in order to fix a problem with priority inversion.
1391** Applications should <em>not</em> use this file-control.
1392**
1393** <li>[[SQLITE_FCNTL_ZIPVFS]]
1394** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
1395** VFS should return SQLITE_NOTFOUND for this opcode.
1396**
1397** <li>[[SQLITE_FCNTL_RBU]]
1398** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
1399** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for
1400** this opcode.
1401**
1402** <li>[[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]]
1403** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then
1404** the file descriptor is placed in "batch write mode", which
1405** means all subsequent write operations will be deferred and done
1406** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems
1407** that do not support batch atomic writes will return SQLITE_NOTFOUND.
1408** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to
1409** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or
1410** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make
1411** no VFS interface calls on the same [sqlite3_file] file descriptor
1412** except for calls to the xWrite method and the xFileControl method
1413** with [SQLITE_FCNTL_SIZE_HINT].
1414**
1415** <li>[[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]]
1416** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write
1417** operations since the previous successful call to
1418** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically.
1419** This file control returns [SQLITE_OK] if and only if the writes were
1420** all performed successfully and have been committed to persistent storage.
1421** ^Regardless of whether or not it is successful, this file control takes
1422** the file descriptor out of batch write mode so that all subsequent
1423** write operations are independent.
1424** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without
1425** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
1426**
1427** <li>[[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]]
1428** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write
1429** operations since the previous successful call to
1430** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back.
1431** ^This file control takes the file descriptor out of batch write mode
1432** so that all subsequent write operations are independent.
1433** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without
1434** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
1435**
1436** <li>[[SQLITE_FCNTL_LOCK_TIMEOUT]]
1437** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS
1438** to block for up to M milliseconds before failing when attempting to
1439** obtain a file lock using the xLock or xShmLock methods of the VFS.
1440** The parameter is a pointer to a 32-bit signed integer that contains
1441** the value that M is to be set to. Before returning, the 32-bit signed
1442** integer is overwritten with the previous value of M.
1443**
1444** <li>[[SQLITE_FCNTL_DATA_VERSION]]
1445** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
1446** a database file. The argument is a pointer to a 32-bit unsigned integer.
1447** The "data version" for the pager is written into the pointer. The
1448** "data version" changes whenever any change occurs to the corresponding
1449** database file, either through SQL statements on the same database
1450** connection or through transactions committed by separate database
1451** connections possibly in other processes. The [sqlite3_total_changes()]
1452** interface can be used to find if any database on the connection has changed,
1453** but that interface responds to changes on TEMP as well as MAIN and does
1454** not provide a mechanism to detect changes to MAIN only. Also, the
1455** [sqlite3_total_changes()] interface responds to internal changes only and
1456** omits changes made by other database connections. The
1457** [PRAGMA data_version] command provides a mechanism to detect changes to
1458** a single attached database that occur due to other database connections,
1459** but omits changes implemented by the database connection on which it is
1460** called. This file control is the only mechanism to detect changes that
1461** happen either internally or externally and that are associated with
1462** a particular attached database.
1463**
1464** <li>[[SQLITE_FCNTL_CKPT_START]]
1465** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint
1466** in wal mode before the client starts to copy pages from the wal
1467** file to the database file.
1468**
1469** <li>[[SQLITE_FCNTL_CKPT_DONE]]
1470** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint
1471** in wal mode after the client has finished copying pages from the wal
1472** file to the database file, but before the *-shm file is updated to
1473** record the fact that the pages have been checkpointed.
1474** </ul>
1475**
1476** <li>[[SQLITE_FCNTL_EXTERNAL_READER]]
1477** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect
1478** whether or not there is a database client in another process with a wal-mode
1479** transaction open on the database or not. It is only available on unix.The
1480** (void*) argument passed with this file-control should be a pointer to a
1481** value of type (int). The integer value is set to 1 if the database is a wal
1482** mode database and there exists at least one client in another process that
1483** currently has an SQL transaction open on the database. It is set to 0 if
1484** the database is not a wal-mode db, or if there is no such connection in any
1485** other process. This opcode cannot be used to detect transactions opened
1486** by clients within the current process, only within other processes.
1487** </ul>
1488**
1489** <li>[[SQLITE_FCNTL_CKSM_FILE]]
1490** Used by the cksmvfs VFS module only.
1491** </ul>
1492*/
1493#define SQLITE_FCNTL_LOCKSTATE1 1
1494#define SQLITE_FCNTL_GET_LOCKPROXYFILE2 2
1495#define SQLITE_FCNTL_SET_LOCKPROXYFILE3 3
1496#define SQLITE_FCNTL_LAST_ERRNO4 4
1497#define SQLITE_FCNTL_SIZE_HINT5 5
1498#define SQLITE_FCNTL_CHUNK_SIZE6 6
1499#define SQLITE_FCNTL_FILE_POINTER7 7
1500#define SQLITE_FCNTL_SYNC_OMITTED8 8
1501#define SQLITE_FCNTL_WIN32_AV_RETRY9 9
1502#define SQLITE_FCNTL_PERSIST_WAL10 10
1503#define SQLITE_FCNTL_OVERWRITE11 11
1504#define SQLITE_FCNTL_VFSNAME12 12
1505#define SQLITE_FCNTL_POWERSAFE_OVERWRITE13 13
1506#define SQLITE_FCNTL_PRAGMA14 14
1507#define SQLITE_FCNTL_BUSYHANDLER15 15
1508#define SQLITE_FCNTL_TEMPFILENAME16 16
1509#define SQLITE_FCNTL_MMAP_SIZE18 18
1510#define SQLITE_FCNTL_TRACE19 19
1511#define SQLITE_FCNTL_HAS_MOVED20 20
1512#define SQLITE_FCNTL_SYNC21 21
1513#define SQLITE_FCNTL_COMMIT_PHASETWO22 22
1514#define SQLITE_FCNTL_WIN32_SET_HANDLE23 23
1515#define SQLITE_FCNTL_WAL_BLOCK24 24
1516#define SQLITE_FCNTL_ZIPVFS25 25
1517#define SQLITE_FCNTL_RBU26 26
1518#define SQLITE_FCNTL_VFS_POINTER27 27
1519#define SQLITE_FCNTL_JOURNAL_POINTER28 28
1520#define SQLITE_FCNTL_WIN32_GET_HANDLE29 29
1521#define SQLITE_FCNTL_PDB30 30
1522#define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE31 31
1523#define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE32 32
1524#define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE33 33
1525#define SQLITE_FCNTL_LOCK_TIMEOUT34 34
1526#define SQLITE_FCNTL_DATA_VERSION35 35
1527#define SQLITE_FCNTL_SIZE_LIMIT36 36
1528#define SQLITE_FCNTL_CKPT_DONE37 37
1529#define SQLITE_FCNTL_RESERVE_BYTES38 38
1530#define SQLITE_FCNTL_CKPT_START39 39
1531#define SQLITE_FCNTL_EXTERNAL_READER40 40
1532#define SQLITE_FCNTL_CKSM_FILE41 41
1533
1534/* deprecated names */
1535#define SQLITE_GET_LOCKPROXYFILE2 SQLITE_FCNTL_GET_LOCKPROXYFILE2
1536#define SQLITE_SET_LOCKPROXYFILE3 SQLITE_FCNTL_SET_LOCKPROXYFILE3
1537#define SQLITE_LAST_ERRNO4 SQLITE_FCNTL_LAST_ERRNO4
1538
1539
1540/*
1541** CAPI3REF: Mutex Handle
1542**
1543** The mutex module within SQLite defines [sqlite3_mutex] to be an
1544** abstract type for a mutex object. The SQLite core never looks
1545** at the internal representation of an [sqlite3_mutex]. It only
1546** deals with pointers to the [sqlite3_mutex] object.
1547**
1548** Mutexes are created using [sqlite3_mutex_alloc()].
1549*/
1550typedef struct sqlite3_mutex sqlite3_mutex;
1551
1552/*
1553** CAPI3REF: Loadable Extension Thunk
1554**
1555** A pointer to the opaque sqlite3_api_routines structure is passed as
1556** the third parameter to entry points of [loadable extensions]. This
1557** structure must be typedefed in order to work around compiler warnings
1558** on some platforms.
1559*/
1560typedef struct sqlite3_api_routines sqlite3_api_routines;
1561
1562/*
1563** CAPI3REF: OS Interface Object
1564**
1565** An instance of the sqlite3_vfs object defines the interface between
1566** the SQLite core and the underlying operating system. The "vfs"
1567** in the name of the object stands for "virtual file system". See
1568** the [VFS | VFS documentation] for further information.
1569**
1570** The VFS interface is sometimes extended by adding new methods onto
1571** the end. Each time such an extension occurs, the iVersion field
1572** is incremented. The iVersion value started out as 1 in
1573** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2
1574** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased
1575** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields
1576** may be appended to the sqlite3_vfs object and the iVersion value
1577** may increase again in future versions of SQLite.
1578** Note that due to an oversight, the structure
1579** of the sqlite3_vfs object changed in the transition from
1580** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0]
1581** and yet the iVersion field was not increased.
1582**
1583** The szOsFile field is the size of the subclassed [sqlite3_file]
1584** structure used by this VFS. mxPathname is the maximum length of
1585** a pathname in this VFS.
1586**
1587** Registered sqlite3_vfs objects are kept on a linked list formed by
1588** the pNext pointer. The [sqlite3_vfs_register()]
1589** and [sqlite3_vfs_unregister()] interfaces manage this list
1590** in a thread-safe way. The [sqlite3_vfs_find()] interface
1591** searches the list. Neither the application code nor the VFS
1592** implementation should use the pNext pointer.
1593**
1594** The pNext field is the only field in the sqlite3_vfs
1595** structure that SQLite will ever modify. SQLite will only access
1596** or modify this field while holding a particular static mutex.
1597** The application should never modify anything within the sqlite3_vfs
1598** object once the object has been registered.
1599**
1600** The zName field holds the name of the VFS module. The name must
1601** be unique across all VFS modules.
1602**
1603** [[sqlite3_vfs.xOpen]]
1604** ^SQLite guarantees that the zFilename parameter to xOpen
1605** is either a NULL pointer or string obtained
1606** from xFullPathname() with an optional suffix added.
1607** ^If a suffix is added to the zFilename parameter, it will
1608** consist of a single "-" character followed by no more than
1609** 11 alphanumeric and/or "-" characters.
1610** ^SQLite further guarantees that
1611** the string will be valid and unchanged until xClose() is
1612** called. Because of the previous sentence,
1613** the [sqlite3_file] can safely store a pointer to the
1614** filename if it needs to remember the filename for some reason.
1615** If the zFilename parameter to xOpen is a NULL pointer then xOpen
1616** must invent its own temporary name for the file. ^Whenever the
1617** xFilename parameter is NULL it will also be the case that the
1618** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
1619**
1620** The flags argument to xOpen() includes all bits set in
1621** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
1622** or [sqlite3_open16()] is used, then flags includes at least
1623** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
1624** If xOpen() opens a file read-only then it sets *pOutFlags to
1625** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
1626**
1627** ^(SQLite will also add one of the following flags to the xOpen()
1628** call, depending on the object being opened:
1629**
1630** <ul>
1631** <li> [SQLITE_OPEN_MAIN_DB]
1632** <li> [SQLITE_OPEN_MAIN_JOURNAL]
1633** <li> [SQLITE_OPEN_TEMP_DB]
1634** <li> [SQLITE_OPEN_TEMP_JOURNAL]
1635** <li> [SQLITE_OPEN_TRANSIENT_DB]
1636** <li> [SQLITE_OPEN_SUBJOURNAL]
1637** <li> [SQLITE_OPEN_SUPER_JOURNAL]
1638** <li> [SQLITE_OPEN_WAL]
1639** </ul>)^
1640**
1641** The file I/O implementation can use the object type flags to
1642** change the way it deals with files. For example, an application
1643** that does not care about crash recovery or rollback might make
1644** the open of a journal file a no-op. Writes to this journal would
1645** also be no-ops, and any attempt to read the journal would return
1646** SQLITE_IOERR. Or the implementation might recognize that a database
1647** file will be doing page-aligned sector reads and writes in a random
1648** order and set up its I/O subsystem accordingly.
1649**
1650** SQLite might also add one of the following flags to the xOpen method:
1651**
1652** <ul>
1653** <li> [SQLITE_OPEN_DELETEONCLOSE]
1654** <li> [SQLITE_OPEN_EXCLUSIVE]
1655** </ul>
1656**
1657** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
1658** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
1659** will be set for TEMP databases and their journals, transient
1660** databases, and subjournals.
1661**
1662** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
1663** with the [SQLITE_OPEN_CREATE] flag, which are both directly
1664** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
1665** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
1666** SQLITE_OPEN_CREATE, is used to indicate that file should always
1667** be created, and that it is an error if it already exists.
1668** It is <i>not</i> used to indicate the file should be opened
1669** for exclusive access.
1670**
1671** ^At least szOsFile bytes of memory are allocated by SQLite
1672** to hold the [sqlite3_file] structure passed as the third
1673** argument to xOpen. The xOpen method does not have to
1674** allocate the structure; it should just fill it in. Note that
1675** the xOpen method must set the sqlite3_file.pMethods to either
1676** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
1677** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
1678** element will be valid after xOpen returns regardless of the success
1679** or failure of the xOpen call.
1680**
1681** [[sqlite3_vfs.xAccess]]
1682** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
1683** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
1684** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
1685** to test whether a file is at least readable. The SQLITE_ACCESS_READ
1686** flag is never actually used and is not implemented in the built-in
1687** VFSes of SQLite. The file is named by the second argument and can be a
1688** directory. The xAccess method returns [SQLITE_OK] on success or some
1689** non-zero error code if there is an I/O error or if the name of
1690** the file given in the second argument is illegal. If SQLITE_OK
1691** is returned, then non-zero or zero is written into *pResOut to indicate
1692** whether or not the file is accessible.
1693**
1694** ^SQLite will always allocate at least mxPathname+1 bytes for the
1695** output buffer xFullPathname. The exact size of the output buffer
1696** is also passed as a parameter to both methods. If the output buffer
1697** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
1698** handled as a fatal error by SQLite, vfs implementations should endeavor
1699** to prevent this by setting mxPathname to a sufficiently large value.
1700**
1701** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
1702** interfaces are not strictly a part of the filesystem, but they are
1703** included in the VFS structure for completeness.
1704** The xRandomness() function attempts to return nBytes bytes
1705** of good-quality randomness into zOut. The return value is
1706** the actual number of bytes of randomness obtained.
1707** The xSleep() method causes the calling thread to sleep for at
1708** least the number of microseconds given. ^The xCurrentTime()
1709** method returns a Julian Day Number for the current date and time as
1710** a floating point value.
1711** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
1712** Day Number multiplied by 86400000 (the number of milliseconds in
1713** a 24-hour day).
1714** ^SQLite will use the xCurrentTimeInt64() method to get the current
1715** date and time if that method is available (if iVersion is 2 or
1716** greater and the function pointer is not NULL) and will fall back
1717** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
1718**
1719** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
1720** are not used by the SQLite core. These optional interfaces are provided
1721** by some VFSes to facilitate testing of the VFS code. By overriding
1722** system calls with functions under its control, a test program can
1723** simulate faults and error conditions that would otherwise be difficult
1724** or impossible to induce. The set of system calls that can be overridden
1725** varies from one VFS to another, and from one version of the same VFS to the
1726** next. Applications that use these interfaces must be prepared for any
1727** or all of these interfaces to be NULL or for their behavior to change
1728** from one release to the next. Applications must not attempt to access
1729** any of these methods if the iVersion of the VFS is less than 3.
1730*/
1731typedef struct sqlite3_vfs sqlite3_vfs;
1732typedef void (*sqlite3_syscall_ptr)(void);
1733struct sqlite3_vfs {
1734 int iVersion; /* Structure version number (currently 3) */
1735 int szOsFile; /* Size of subclassed sqlite3_file */
1736 int mxPathname; /* Maximum file pathname length */
1737 sqlite3_vfs *pNext; /* Next registered VFS */
1738 const char *zName; /* Name of this virtual file system */
1739 void *pAppData; /* Pointer to application-specific data */
1740 int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
1741 int flags, int *pOutFlags);
1742 int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
1743 int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
1744 int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
1745 void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
1746 void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
1747 void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
1748 void (*xDlClose)(sqlite3_vfs*, void*);
1749 int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
1750 int (*xSleep)(sqlite3_vfs*, int microseconds);
1751 int (*xCurrentTime)(sqlite3_vfs*, double*);
1752 int (*xGetLastError)(sqlite3_vfs*, int, char *);
1753 /*
1754 ** The methods above are in version 1 of the sqlite_vfs object
1755 ** definition. Those that follow are added in version 2 or later
1756 */
1757 int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
1758 /*
1759 ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
1760 ** Those below are for version 3 and greater.
1761 */
1762 int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
1763 sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
1764 const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
1765 /*
1766 ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
1767 ** New fields may be appended in future versions. The iVersion
1768 ** value will increment whenever this happens.
1769 */
1770};
1771
1772/*
1773** CAPI3REF: Flags for the xAccess VFS method
1774**
1775** These integer constants can be used as the third parameter to
1776** the xAccess method of an [sqlite3_vfs] object. They determine
1777** what kind of permissions the xAccess method is looking for.
1778** With SQLITE_ACCESS_EXISTS, the xAccess method
1779** simply checks whether the file exists.
1780** With SQLITE_ACCESS_READWRITE, the xAccess method
1781** checks whether the named directory is both readable and writable
1782** (in other words, if files can be added, removed, and renamed within
1783** the directory).
1784** The SQLITE_ACCESS_READWRITE constant is currently used only by the
1785** [temp_store_directory pragma], though this could change in a future
1786** release of SQLite.
1787** With SQLITE_ACCESS_READ, the xAccess method
1788** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
1789** currently unused, though it might be used in a future release of
1790** SQLite.
1791*/
1792#define SQLITE_ACCESS_EXISTS0 0
1793#define SQLITE_ACCESS_READWRITE1 1 /* Used by PRAGMA temp_store_directory */
1794#define SQLITE_ACCESS_READ2 2 /* Unused */
1795
1796/*
1797** CAPI3REF: Flags for the xShmLock VFS method
1798**
1799** These integer constants define the various locking operations
1800** allowed by the xShmLock method of [sqlite3_io_methods]. The
1801** following are the only legal combinations of flags to the
1802** xShmLock method:
1803**
1804** <ul>
1805** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
1806** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
1807** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
1808** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
1809** </ul>
1810**
1811** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
1812** was given on the corresponding lock.
1813**
1814** The xShmLock method can transition between unlocked and SHARED or
1815** between unlocked and EXCLUSIVE. It cannot transition between SHARED
1816** and EXCLUSIVE.
1817*/
1818#define SQLITE_SHM_UNLOCK1 1
1819#define SQLITE_SHM_LOCK2 2
1820#define SQLITE_SHM_SHARED4 4
1821#define SQLITE_SHM_EXCLUSIVE8 8
1822
1823/*
1824** CAPI3REF: Maximum xShmLock index
1825**
1826** The xShmLock method on [sqlite3_io_methods] may use values
1827** between 0 and this upper bound as its "offset" argument.
1828** The SQLite core will never attempt to acquire or release a
1829** lock outside of this range
1830*/
1831#define SQLITE_SHM_NLOCK8 8
1832
1833
1834/*
1835** CAPI3REF: Initialize The SQLite Library
1836**
1837** ^The sqlite3_initialize() routine initializes the
1838** SQLite library. ^The sqlite3_shutdown() routine
1839** deallocates any resources that were allocated by sqlite3_initialize().
1840** These routines are designed to aid in process initialization and
1841** shutdown on embedded systems. Workstation applications using
1842** SQLite normally do not need to invoke either of these routines.
1843**
1844** A call to sqlite3_initialize() is an "effective" call if it is
1845** the first time sqlite3_initialize() is invoked during the lifetime of
1846** the process, or if it is the first time sqlite3_initialize() is invoked
1847** following a call to sqlite3_shutdown(). ^(Only an effective call
1848** of sqlite3_initialize() does any initialization. All other calls
1849** are harmless no-ops.)^
1850**
1851** A call to sqlite3_shutdown() is an "effective" call if it is the first
1852** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
1853** an effective call to sqlite3_shutdown() does any deinitialization.
1854** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
1855**
1856** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
1857** is not. The sqlite3_shutdown() interface must only be called from a
1858** single thread. All open [database connections] must be closed and all
1859** other SQLite resources must be deallocated prior to invoking
1860** sqlite3_shutdown().
1861**
1862** Among other things, ^sqlite3_initialize() will invoke
1863** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
1864** will invoke sqlite3_os_end().
1865**
1866** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
1867** ^If for some reason, sqlite3_initialize() is unable to initialize
1868** the library (perhaps it is unable to allocate a needed resource such
1869** as a mutex) it returns an [error code] other than [SQLITE_OK].
1870**
1871** ^The sqlite3_initialize() routine is called internally by many other
1872** SQLite interfaces so that an application usually does not need to
1873** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
1874** calls sqlite3_initialize() so the SQLite library will be automatically
1875** initialized when [sqlite3_open()] is called if it has not be initialized
1876** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
1877** compile-time option, then the automatic calls to sqlite3_initialize()
1878** are omitted and the application must call sqlite3_initialize() directly
1879** prior to using any other SQLite interface. For maximum portability,
1880** it is recommended that applications always invoke sqlite3_initialize()
1881** directly prior to using any other SQLite interface. Future releases
1882** of SQLite may require this. In other words, the behavior exhibited
1883** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
1884** default behavior in some future release of SQLite.
1885**
1886** The sqlite3_os_init() routine does operating-system specific
1887** initialization of the SQLite library. The sqlite3_os_end()
1888** routine undoes the effect of sqlite3_os_init(). Typical tasks
1889** performed by these routines include allocation or deallocation
1890** of static resources, initialization of global variables,
1891** setting up a default [sqlite3_vfs] module, or setting up
1892** a default configuration using [sqlite3_config()].
1893**
1894** The application should never invoke either sqlite3_os_init()
1895** or sqlite3_os_end() directly. The application should only invoke
1896** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
1897** interface is called automatically by sqlite3_initialize() and
1898** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
1899** implementations for sqlite3_os_init() and sqlite3_os_end()
1900** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
1901** When [custom builds | built for other platforms]
1902** (using the [SQLITE_OS_OTHER=1] compile-time
1903** option) the application must supply a suitable implementation for
1904** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
1905** implementation of sqlite3_os_init() or sqlite3_os_end()
1906** must return [SQLITE_OK] on success and some other [error code] upon
1907** failure.
1908*/
1909SQLITE_API int sqlite3_initialize(void);
1910SQLITE_API int sqlite3_shutdown(void);
1911SQLITE_API int sqlite3_os_init(void);
1912SQLITE_API int sqlite3_os_end(void);
1913
1914/*
1915** CAPI3REF: Configuring The SQLite Library
1916**
1917** The sqlite3_config() interface is used to make global configuration
1918** changes to SQLite in order to tune SQLite to the specific needs of
1919** the application. The default configuration is recommended for most
1920** applications and so this routine is usually not necessary. It is
1921** provided to support rare applications with unusual needs.
1922**
1923** <b>The sqlite3_config() interface is not threadsafe. The application
1924** must ensure that no other SQLite interfaces are invoked by other
1925** threads while sqlite3_config() is running.</b>
1926**
1927** The sqlite3_config() interface
1928** may only be invoked prior to library initialization using
1929** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
1930** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
1931** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
1932** Note, however, that ^sqlite3_config() can be called as part of the
1933** implementation of an application-defined [sqlite3_os_init()].
1934**
1935** The first argument to sqlite3_config() is an integer
1936** [configuration option] that determines
1937** what property of SQLite is to be configured. Subsequent arguments
1938** vary depending on the [configuration option]
1939** in the first argument.
1940**
1941** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
1942** ^If the option is unknown or SQLite is unable to set the option
1943** then this routine returns a non-zero [error code].
1944*/
1945SQLITE_API int sqlite3_config(int, ...);
1946
1947/*
1948** CAPI3REF: Configure database connections
1949** METHOD: sqlite3
1950**
1951** The sqlite3_db_config() interface is used to make configuration
1952** changes to a [database connection]. The interface is similar to
1953** [sqlite3_config()] except that the changes apply to a single
1954** [database connection] (specified in the first argument).
1955**
1956** The second argument to sqlite3_db_config(D,V,...) is the
1957** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
1958** that indicates what aspect of the [database connection] is being configured.
1959** Subsequent arguments vary depending on the configuration verb.
1960**
1961** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
1962** the call is considered successful.
1963*/
1964SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
1965
1966/*
1967** CAPI3REF: Memory Allocation Routines
1968**
1969** An instance of this object defines the interface between SQLite
1970** and low-level memory allocation routines.
1971**
1972** This object is used in only one place in the SQLite interface.
1973** A pointer to an instance of this object is the argument to
1974** [sqlite3_config()] when the configuration option is
1975** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
1976** By creating an instance of this object
1977** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
1978** during configuration, an application can specify an alternative
1979** memory allocation subsystem for SQLite to use for all of its
1980** dynamic memory needs.
1981**
1982** Note that SQLite comes with several [built-in memory allocators]
1983** that are perfectly adequate for the overwhelming majority of applications
1984** and that this object is only useful to a tiny minority of applications
1985** with specialized memory allocation requirements. This object is
1986** also used during testing of SQLite in order to specify an alternative
1987** memory allocator that simulates memory out-of-memory conditions in
1988** order to verify that SQLite recovers gracefully from such
1989** conditions.
1990**
1991** The xMalloc, xRealloc, and xFree methods must work like the
1992** malloc(), realloc() and free() functions from the standard C library.
1993** ^SQLite guarantees that the second argument to
1994** xRealloc is always a value returned by a prior call to xRoundup.
1995**
1996** xSize should return the allocated size of a memory allocation
1997** previously obtained from xMalloc or xRealloc. The allocated size
1998** is always at least as big as the requested size but may be larger.
1999**
2000** The xRoundup method returns what would be the allocated size of
2001** a memory allocation given a particular requested size. Most memory
2002** allocators round up memory allocations at least to the next multiple
2003** of 8. Some allocators round up to a larger multiple or to a power of 2.
2004** Every memory allocation request coming in through [sqlite3_malloc()]
2005** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
2006** that causes the corresponding memory allocation to fail.
2007**
2008** The xInit method initializes the memory allocator. For example,
2009** it might allocate any required mutexes or initialize internal data
2010** structures. The xShutdown method is invoked (indirectly) by
2011** [sqlite3_shutdown()] and should deallocate any resources acquired
2012** by xInit. The pAppData pointer is used as the only parameter to
2013** xInit and xShutdown.
2014**
2015** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes
2016** the xInit method, so the xInit method need not be threadsafe. The
2017** xShutdown method is only called from [sqlite3_shutdown()] so it does
2018** not need to be threadsafe either. For all other methods, SQLite
2019** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
2020** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
2021** it is by default) and so the methods are automatically serialized.
2022** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
2023** methods must be threadsafe or else make their own arrangements for
2024** serialization.
2025**
2026** SQLite will never invoke xInit() more than once without an intervening
2027** call to xShutdown().
2028*/
2029typedef struct sqlite3_mem_methods sqlite3_mem_methods;
2030struct sqlite3_mem_methods {
2031 void *(*xMalloc)(int); /* Memory allocation function */
2032 void (*xFree)(void*); /* Free a prior allocation */
2033 void *(*xRealloc)(void*,int); /* Resize an allocation */
2034 int (*xSize)(void*); /* Return the size of an allocation */
2035 int (*xRoundup)(int); /* Round up request size to allocation size */
2036 int (*xInit)(void*); /* Initialize the memory allocator */
2037 void (*xShutdown)(void*); /* Deinitialize the memory allocator */
2038 void *pAppData; /* Argument to xInit() and xShutdown() */
2039};
2040
2041/*
2042** CAPI3REF: Configuration Options
2043** KEYWORDS: {configuration option}
2044**
2045** These constants are the available integer configuration options that
2046** can be passed as the first argument to the [sqlite3_config()] interface.
2047**
2048** New configuration options may be added in future releases of SQLite.
2049** Existing configuration options might be discontinued. Applications
2050** should check the return code from [sqlite3_config()] to make sure that
2051** the call worked. The [sqlite3_config()] interface will return a
2052** non-zero [error code] if a discontinued or unsupported configuration option
2053** is invoked.
2054**
2055** <dl>
2056** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
2057** <dd>There are no arguments to this option. ^This option sets the
2058** [threading mode] to Single-thread. In other words, it disables
2059** all mutexing and puts SQLite into a mode where it can only be used
2060** by a single thread. ^If SQLite is compiled with
2061** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
2062** it is not possible to change the [threading mode] from its default
2063** value of Single-thread and so [sqlite3_config()] will return
2064** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
2065** configuration option.</dd>
2066**
2067** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
2068** <dd>There are no arguments to this option. ^This option sets the
2069** [threading mode] to Multi-thread. In other words, it disables
2070** mutexing on [database connection] and [prepared statement] objects.
2071** The application is responsible for serializing access to
2072** [database connections] and [prepared statements]. But other mutexes
2073** are enabled so that SQLite will be safe to use in a multi-threaded
2074** environment as long as no two threads attempt to use the same
2075** [database connection] at the same time. ^If SQLite is compiled with
2076** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
2077** it is not possible to set the Multi-thread [threading mode] and
2078** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
2079** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
2080**
2081** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
2082** <dd>There are no arguments to this option. ^This option sets the
2083** [threading mode] to Serialized. In other words, this option enables
2084** all mutexes including the recursive
2085** mutexes on [database connection] and [prepared statement] objects.
2086** In this mode (which is the default when SQLite is compiled with
2087** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
2088** to [database connections] and [prepared statements] so that the
2089** application is free to use the same [database connection] or the
2090** same [prepared statement] in different threads at the same time.
2091** ^If SQLite is compiled with
2092** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
2093** it is not possible to set the Serialized [threading mode] and
2094** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
2095** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
2096**
2097** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
2098** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is
2099** a pointer to an instance of the [sqlite3_mem_methods] structure.
2100** The argument specifies
2101** alternative low-level memory allocation routines to be used in place of
2102** the memory allocation routines built into SQLite.)^ ^SQLite makes
2103** its own private copy of the content of the [sqlite3_mem_methods] structure
2104** before the [sqlite3_config()] call returns.</dd>
2105**
2106** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
2107** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
2108** is a pointer to an instance of the [sqlite3_mem_methods] structure.
2109** The [sqlite3_mem_methods]
2110** structure is filled with the currently defined memory allocation routines.)^
2111** This option can be used to overload the default memory allocation
2112** routines with a wrapper that simulations memory allocation failure or
2113** tracks memory usage, for example. </dd>
2114**
2115** [[SQLITE_CONFIG_SMALL_MALLOC]] <dt>SQLITE_CONFIG_SMALL_MALLOC</dt>
2116** <dd> ^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of
2117** type int, interpreted as a boolean, which if true provides a hint to
2118** SQLite that it should avoid large memory allocations if possible.
2119** SQLite will run faster if it is free to make large memory allocations,
2120** but some application might prefer to run slower in exchange for
2121** guarantees about memory fragmentation that are possible if large
2122** allocations are avoided. This hint is normally off.
2123** </dd>
2124**
2125** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
2126** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
2127** interpreted as a boolean, which enables or disables the collection of
2128** memory allocation statistics. ^(When memory allocation statistics are
2129** disabled, the following SQLite interfaces become non-operational:
2130** <ul>
2131** <li> [sqlite3_hard_heap_limit64()]
2132** <li> [sqlite3_memory_used()]
2133** <li> [sqlite3_memory_highwater()]
2134** <li> [sqlite3_soft_heap_limit64()]
2135** <li> [sqlite3_status64()]
2136** </ul>)^
2137** ^Memory allocation statistics are enabled by default unless SQLite is
2138** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
2139** allocation statistics are disabled by default.
2140** </dd>
2141**
2142** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
2143** <dd> The SQLITE_CONFIG_SCRATCH option is no longer used.
2144** </dd>
2145**
2146** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
2147** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
2148** that SQLite can use for the database page cache with the default page
2149** cache implementation.
2150** This configuration option is a no-op if an application-defined page
2151** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].
2152** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
2153** 8-byte aligned memory (pMem), the size of each page cache line (sz),
2154** and the number of cache lines (N).
2155** The sz argument should be the size of the largest database page
2156** (a power of two between 512 and 65536) plus some extra bytes for each
2157** page header. ^The number of extra bytes needed by the page header
2158** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].
2159** ^It is harmless, apart from the wasted memory,
2160** for the sz parameter to be larger than necessary. The pMem
2161** argument must be either a NULL pointer or a pointer to an 8-byte
2162** aligned block of memory of at least sz*N bytes, otherwise
2163** subsequent behavior is undefined.
2164** ^When pMem is not NULL, SQLite will strive to use the memory provided
2165** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
2166** a page cache line is larger than sz bytes or if all of the pMem buffer
2167** is exhausted.
2168** ^If pMem is NULL and N is non-zero, then each database connection
2169** does an initial bulk allocation for page cache memory
2170** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
2171** of -1024*N bytes if N is negative, . ^If additional
2172** page cache memory is needed beyond what is provided by the initial
2173** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
2174** additional cache line. </dd>
2175**
2176** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
2177** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer
2178** that SQLite will use for all of its dynamic memory allocation needs
2179** beyond those provided for by [SQLITE_CONFIG_PAGECACHE].
2180** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
2181** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
2182** [SQLITE_ERROR] if invoked otherwise.
2183** ^There are three arguments to SQLITE_CONFIG_HEAP:
2184** An 8-byte aligned pointer to the memory,
2185** the number of bytes in the memory buffer, and the minimum allocation size.
2186** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
2187** to using its default memory allocator (the system malloc() implementation),
2188** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
2189** memory pointer is not NULL then the alternative memory
2190** allocator is engaged to handle all of SQLites memory allocation needs.
2191** The first pointer (the memory pointer) must be aligned to an 8-byte
2192** boundary or subsequent behavior of SQLite will be undefined.
2193** The minimum allocation size is capped at 2**12. Reasonable values
2194** for the minimum allocation size are 2**5 through 2**8.</dd>
2195**
2196** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
2197** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
2198** pointer to an instance of the [sqlite3_mutex_methods] structure.
2199** The argument specifies alternative low-level mutex routines to be used
2200** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of
2201** the content of the [sqlite3_mutex_methods] structure before the call to
2202** [sqlite3_config()] returns. ^If SQLite is compiled with
2203** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
2204** the entire mutexing subsystem is omitted from the build and hence calls to
2205** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
2206** return [SQLITE_ERROR].</dd>
2207**
2208** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
2209** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
2210** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The
2211** [sqlite3_mutex_methods]
2212** structure is filled with the currently defined mutex routines.)^
2213** This option can be used to overload the default mutex allocation
2214** routines with a wrapper used to track mutex usage for performance
2215** profiling or testing, for example. ^If SQLite is compiled with
2216** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
2217** the entire mutexing subsystem is omitted from the build and hence calls to
2218** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
2219** return [SQLITE_ERROR].</dd>
2220**
2221** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
2222** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
2223** the default size of lookaside memory on each [database connection].
2224** The first argument is the
2225** size of each lookaside buffer slot and the second is the number of
2226** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE
2227** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
2228** option to [sqlite3_db_config()] can be used to change the lookaside
2229** configuration on individual connections.)^ </dd>
2230**
2231** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
2232** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is
2233** a pointer to an [sqlite3_pcache_methods2] object. This object specifies
2234** the interface to a custom page cache implementation.)^
2235** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
2236**
2237** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
2238** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
2239** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of
2240** the current page cache implementation into that object.)^ </dd>
2241**
2242** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
2243** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
2244** global [error log].
2245** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
2246** function with a call signature of void(*)(void*,int,const char*),
2247** and a pointer to void. ^If the function pointer is not NULL, it is
2248** invoked by [sqlite3_log()] to process each logging event. ^If the
2249** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
2250** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
2251** passed through as the first parameter to the application-defined logger
2252** function whenever that function is invoked. ^The second parameter to
2253** the logger function is a copy of the first parameter to the corresponding
2254** [sqlite3_log()] call and is intended to be a [result code] or an
2255** [extended result code]. ^The third parameter passed to the logger is
2256** log message after formatting via [sqlite3_snprintf()].
2257** The SQLite logging interface is not reentrant; the logger function
2258** supplied by the application must not invoke any SQLite interface.
2259** In a multi-threaded application, the application-defined logger
2260** function must be threadsafe. </dd>
2261**
2262** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
2263** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
2264** If non-zero, then URI handling is globally enabled. If the parameter is zero,
2265** then URI handling is globally disabled.)^ ^If URI handling is globally
2266** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
2267** [sqlite3_open16()] or
2268** specified as part of [ATTACH] commands are interpreted as URIs, regardless
2269** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
2270** connection is opened. ^If it is globally disabled, filenames are
2271** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
2272** database connection is opened. ^(By default, URI handling is globally
2273** disabled. The default value may be changed by compiling with the
2274** [SQLITE_USE_URI] symbol defined.)^
2275**
2276** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
2277** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
2278** argument which is interpreted as a boolean in order to enable or disable
2279** the use of covering indices for full table scans in the query optimizer.
2280** ^The default setting is determined
2281** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
2282** if that compile-time option is omitted.
2283** The ability to disable the use of covering indices for full table scans
2284** is because some incorrectly coded legacy applications might malfunction
2285** when the optimization is enabled. Providing the ability to
2286** disable the optimization allows the older, buggy application code to work
2287** without change even with newer versions of SQLite.
2288**
2289** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
2290** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
2291** <dd> These options are obsolete and should not be used by new code.
2292** They are retained for backwards compatibility but are now no-ops.
2293** </dd>
2294**
2295** [[SQLITE_CONFIG_SQLLOG]]
2296** <dt>SQLITE_CONFIG_SQLLOG
2297** <dd>This option is only available if sqlite is compiled with the
2298** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
2299** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
2300** The second should be of type (void*). The callback is invoked by the library
2301** in three separate circumstances, identified by the value passed as the
2302** fourth parameter. If the fourth parameter is 0, then the database connection
2303** passed as the second argument has just been opened. The third argument
2304** points to a buffer containing the name of the main database file. If the
2305** fourth parameter is 1, then the SQL statement that the third parameter
2306** points to has just been executed. Or, if the fourth parameter is 2, then
2307** the connection being passed as the second parameter is being closed. The
2308** third parameter is passed NULL In this case. An example of using this
2309** configuration option can be seen in the "test_sqllog.c" source file in
2310** the canonical SQLite source tree.</dd>
2311**
2312** [[SQLITE_CONFIG_MMAP_SIZE]]
2313** <dt>SQLITE_CONFIG_MMAP_SIZE
2314** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
2315** that are the default mmap size limit (the default setting for
2316** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
2317** ^The default setting can be overridden by each database connection using
2318** either the [PRAGMA mmap_size] command, or by using the
2319** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size
2320** will be silently truncated if necessary so that it does not exceed the
2321** compile-time maximum mmap size set by the
2322** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
2323** ^If either argument to this option is negative, then that argument is
2324** changed to its compile-time default.
2325**
2326** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
2327** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
2328** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
2329** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
2330** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
2331** that specifies the maximum size of the created heap.
2332**
2333** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
2334** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
2335** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
2336** is a pointer to an integer and writes into that integer the number of extra
2337** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
2338** The amount of extra space required can change depending on the compiler,
2339** target platform, and SQLite version.
2340**
2341** [[SQLITE_CONFIG_PMASZ]]
2342** <dt>SQLITE_CONFIG_PMASZ
2343** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
2344** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
2345** sorter to that integer. The default minimum PMA Size is set by the
2346** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched
2347** to help with sort operations when multithreaded sorting
2348** is enabled (using the [PRAGMA threads] command) and the amount of content
2349** to be sorted exceeds the page size times the minimum of the
2350** [PRAGMA cache_size] setting and this value.
2351**
2352** [[SQLITE_CONFIG_STMTJRNL_SPILL]]
2353** <dt>SQLITE_CONFIG_STMTJRNL_SPILL
2354** <dd>^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which
2355** becomes the [statement journal] spill-to-disk threshold.
2356** [Statement journals] are held in memory until their size (in bytes)
2357** exceeds this threshold, at which point they are written to disk.
2358** Or if the threshold is -1, statement journals are always held
2359** exclusively in memory.
2360** Since many statement journals never become large, setting the spill
2361** threshold to a value such as 64KiB can greatly reduce the amount of
2362** I/O required to support statement rollback.
2363** The default value for this setting is controlled by the
2364** [SQLITE_STMTJRNL_SPILL] compile-time option.
2365**
2366** [[SQLITE_CONFIG_SORTERREF_SIZE]]
2367** <dt>SQLITE_CONFIG_SORTERREF_SIZE
2368** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
2369** of type (int) - the new value of the sorter-reference size threshold.
2370** Usually, when SQLite uses an external sort to order records according
2371** to an ORDER BY clause, all fields required by the caller are present in the
2372** sorted records. However, if SQLite determines based on the declared type
2373** of a table column that its values are likely to be very large - larger
2374** than the configured sorter-reference size threshold - then a reference
2375** is stored in each sorted record and the required column values loaded
2376** from the database as records are returned in sorted order. The default
2377** value for this option is to never use this optimization. Specifying a
2378** negative value for this option restores the default behaviour.
2379** This option is only available if SQLite is compiled with the
2380** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
2381**
2382** [[SQLITE_CONFIG_MEMDB_MAXSIZE]]
2383** <dt>SQLITE_CONFIG_MEMDB_MAXSIZE
2384** <dd>The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter
2385** [sqlite3_int64] parameter which is the default maximum size for an in-memory
2386** database created using [sqlite3_deserialize()]. This default maximum
2387** size can be adjusted up or down for individual databases using the
2388** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this
2389** configuration setting is never used, then the default maximum is determined
2390** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that
2391** compile-time option is not set, then the default maximum is 1073741824.
2392** </dl>
2393*/
2394#define SQLITE_CONFIG_SINGLETHREAD1 1 /* nil */
2395#define SQLITE_CONFIG_MULTITHREAD2 2 /* nil */
2396#define SQLITE_CONFIG_SERIALIZED3 3 /* nil */
2397#define SQLITE_CONFIG_MALLOC4 4 /* sqlite3_mem_methods* */
2398#define SQLITE_CONFIG_GETMALLOC5 5 /* sqlite3_mem_methods* */
2399#define SQLITE_CONFIG_SCRATCH6 6 /* No longer used */
2400#define SQLITE_CONFIG_PAGECACHE7 7 /* void*, int sz, int N */
2401#define SQLITE_CONFIG_HEAP8 8 /* void*, int nByte, int min */
2402#define SQLITE_CONFIG_MEMSTATUS9 9 /* boolean */
2403#define SQLITE_CONFIG_MUTEX10 10 /* sqlite3_mutex_methods* */
2404#define SQLITE_CONFIG_GETMUTEX11 11 /* sqlite3_mutex_methods* */
2405/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
2406#define SQLITE_CONFIG_LOOKASIDE13 13 /* int int */
2407#define SQLITE_CONFIG_PCACHE14 14 /* no-op */
2408#define SQLITE_CONFIG_GETPCACHE15 15 /* no-op */
2409#define SQLITE_CONFIG_LOG16 16 /* xFunc, void* */
2410#define SQLITE_CONFIG_URI17 17 /* int */
2411#define SQLITE_CONFIG_PCACHE218 18 /* sqlite3_pcache_methods2* */
2412#define SQLITE_CONFIG_GETPCACHE219 19 /* sqlite3_pcache_methods2* */
2413#define SQLITE_CONFIG_COVERING_INDEX_SCAN20 20 /* int */
2414#define SQLITE_CONFIG_SQLLOG21 21 /* xSqllog, void* */
2415#define SQLITE_CONFIG_MMAP_SIZE22 22 /* sqlite3_int64, sqlite3_int64 */
2416#define SQLITE_CONFIG_WIN32_HEAPSIZE23 23 /* int nByte */
2417#define SQLITE_CONFIG_PCACHE_HDRSZ24 24 /* int *psz */
2418#define SQLITE_CONFIG_PMASZ25 25 /* unsigned int szPma */
2419#define SQLITE_CONFIG_STMTJRNL_SPILL26 26 /* int nByte */
2420#define SQLITE_CONFIG_SMALL_MALLOC27 27 /* boolean */
2421#define SQLITE_CONFIG_SORTERREF_SIZE28 28 /* int nByte */
2422#define SQLITE_CONFIG_MEMDB_MAXSIZE29 29 /* sqlite3_int64 */
2423
2424/*
2425** CAPI3REF: Database Connection Configuration Options
2426**
2427** These constants are the available integer configuration options that
2428** can be passed as the second argument to the [sqlite3_db_config()] interface.
2429**
2430** New configuration options may be added in future releases of SQLite.
2431** Existing configuration options might be discontinued. Applications
2432** should check the return code from [sqlite3_db_config()] to make sure that
2433** the call worked. ^The [sqlite3_db_config()] interface will return a
2434** non-zero [error code] if a discontinued or unsupported configuration option
2435** is invoked.
2436**
2437** <dl>
2438** [[SQLITE_DBCONFIG_LOOKASIDE]]
2439** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
2440** <dd> ^This option takes three additional arguments that determine the
2441** [lookaside memory allocator] configuration for the [database connection].
2442** ^The first argument (the third parameter to [sqlite3_db_config()] is a
2443** pointer to a memory buffer to use for lookaside memory.
2444** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
2445** may be NULL in which case SQLite will allocate the
2446** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
2447** size of each lookaside buffer slot. ^The third argument is the number of
2448** slots. The size of the buffer in the first argument must be greater than
2449** or equal to the product of the second and third arguments. The buffer
2450** must be aligned to an 8-byte boundary. ^If the second argument to
2451** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
2452** rounded down to the next smaller multiple of 8. ^(The lookaside memory
2453** configuration for a database connection can only be changed when that
2454** connection is not currently using lookaside memory, or in other words
2455** when the "current value" returned by
2456** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
2457** Any attempt to change the lookaside memory configuration when lookaside
2458** memory is in use leaves the configuration unchanged and returns
2459** [SQLITE_BUSY].)^</dd>
2460**
2461** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
2462** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
2463** <dd> ^This option is used to enable or disable the enforcement of
2464** [foreign key constraints]. There should be two additional arguments.
2465** The first argument is an integer which is 0 to disable FK enforcement,
2466** positive to enable FK enforcement or negative to leave FK enforcement
2467** unchanged. The second parameter is a pointer to an integer into which
2468** is written 0 or 1 to indicate whether FK enforcement is off or on
2469** following this call. The second parameter may be a NULL pointer, in
2470** which case the FK enforcement setting is not reported back. </dd>
2471**
2472** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
2473** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
2474** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
2475** There should be two additional arguments.
2476** The first argument is an integer which is 0 to disable triggers,
2477** positive to enable triggers or negative to leave the setting unchanged.
2478** The second parameter is a pointer to an integer into which
2479** is written 0 or 1 to indicate whether triggers are disabled or enabled
2480** following this call. The second parameter may be a NULL pointer, in
2481** which case the trigger setting is not reported back.
2482**
2483** <p>Originally this option disabled all triggers. ^(However, since
2484** SQLite version 3.35.0, TEMP triggers are still allowed even if
2485** this option is off. So, in other words, this option now only disables
2486** triggers in the main database schema or in the schemas of ATTACH-ed
2487** databases.)^ </dd>
2488**
2489** [[SQLITE_DBCONFIG_ENABLE_VIEW]]
2490** <dt>SQLITE_DBCONFIG_ENABLE_VIEW</dt>
2491** <dd> ^This option is used to enable or disable [CREATE VIEW | views].
2492** There should be two additional arguments.
2493** The first argument is an integer which is 0 to disable views,
2494** positive to enable views or negative to leave the setting unchanged.
2495** The second parameter is a pointer to an integer into which
2496** is written 0 or 1 to indicate whether views are disabled or enabled
2497** following this call. The second parameter may be a NULL pointer, in
2498** which case the view setting is not reported back.
2499**
2500** <p>Originally this option disabled all views. ^(However, since
2501** SQLite version 3.35.0, TEMP views are still allowed even if
2502** this option is off. So, in other words, this option now only disables
2503** views in the main database schema or in the schemas of ATTACH-ed
2504** databases.)^ </dd>
2505**
2506** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
2507** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
2508** <dd> ^This option is used to enable or disable the
2509** [fts3_tokenizer()] function which is part of the
2510** [FTS3] full-text search engine extension.
2511** There should be two additional arguments.
2512** The first argument is an integer which is 0 to disable fts3_tokenizer() or
2513** positive to enable fts3_tokenizer() or negative to leave the setting
2514** unchanged.
2515** The second parameter is a pointer to an integer into which
2516** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
2517** following this call. The second parameter may be a NULL pointer, in
2518** which case the new setting is not reported back. </dd>
2519**
2520** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
2521** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
2522** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
2523** interface independently of the [load_extension()] SQL function.
2524** The [sqlite3_enable_load_extension()] API enables or disables both the
2525** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
2526** There should be two additional arguments.
2527** When the first argument to this interface is 1, then only the C-API is
2528** enabled and the SQL function remains disabled. If the first argument to
2529** this interface is 0, then both the C-API and the SQL function are disabled.
2530** If the first argument is -1, then no changes are made to state of either the
2531** C-API or the SQL function.
2532** The second parameter is a pointer to an integer into which
2533** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
2534** is disabled or enabled following this call. The second parameter may
2535** be a NULL pointer, in which case the new setting is not reported back.
2536** </dd>
2537**
2538** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
2539** <dd> ^This option is used to change the name of the "main" database
2540** schema. ^The sole argument is a pointer to a constant UTF8 string
2541** which will become the new schema name in place of "main". ^SQLite
2542** does not make a copy of the new main schema name string, so the application
2543** must ensure that the argument passed into this DBCONFIG option is unchanged
2544** until after the database connection closes.
2545** </dd>
2546**
2547** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]]
2548** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
2549** <dd> Usually, when a database in wal mode is closed or detached from a
2550** database handle, SQLite checks if this will mean that there are now no
2551** connections at all to the database. If so, it performs a checkpoint
2552** operation before closing the connection. This option may be used to
2553** override this behaviour. The first parameter passed to this operation
2554** is an integer - positive to disable checkpoints-on-close, or zero (the
2555** default) to enable them, and negative to leave the setting unchanged.
2556** The second parameter is a pointer to an integer
2557** into which is written 0 or 1 to indicate whether checkpoints-on-close
2558** have been disabled - 0 if they are not disabled, 1 if they are.
2559** </dd>
2560**
2561** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
2562** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
2563** the [query planner stability guarantee] (QPSG). When the QPSG is active,
2564** a single SQL query statement will always use the same algorithm regardless
2565** of values of [bound parameters].)^ The QPSG disables some query optimizations
2566** that look at the values of bound parameters, which can make some queries
2567** slower. But the QPSG has the advantage of more predictable behavior. With
2568** the QPSG active, SQLite will always use the same query plan in the field as
2569** was used during testing in the lab.
2570** The first argument to this setting is an integer which is 0 to disable
2571** the QPSG, positive to enable QPSG, or negative to leave the setting
2572** unchanged. The second parameter is a pointer to an integer into which
2573** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
2574** following this call.
2575** </dd>
2576**
2577** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
2578** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not
2579** include output for any operations performed by trigger programs. This
2580** option is used to set or clear (the default) a flag that governs this
2581** behavior. The first parameter passed to this operation is an integer -
2582** positive to enable output for trigger programs, or zero to disable it,
2583** or negative to leave the setting unchanged.
2584** The second parameter is a pointer to an integer into which is written
2585** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if
2586** it is not disabled, 1 if it is.
2587** </dd>
2588**
2589** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
2590** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
2591** [VACUUM] in order to reset a database back to an empty database
2592** with no schema and no content. The following process works even for
2593** a badly corrupted database file:
2594** <ol>
2595** <li> If the database connection is newly opened, make sure it has read the
2596** database schema by preparing then discarding some query against the
2597** database, or calling sqlite3_table_column_metadata(), ignoring any
2598** errors. This step is only necessary if the application desires to keep
2599** the database in WAL mode after the reset if it was in WAL mode before
2600** the reset.
2601** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
2602** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
2603** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
2604** </ol>
2605** Because resetting a database is destructive and irreversible, the
2606** process requires the use of this obscure API and multiple steps to help
2607** ensure that it does not happen by accident.
2608**
2609** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
2610** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
2611** "defensive" flag for a database connection. When the defensive
2612** flag is enabled, language features that allow ordinary SQL to
2613** deliberately corrupt the database file are disabled. The disabled
2614** features include but are not limited to the following:
2615** <ul>
2616** <li> The [PRAGMA writable_schema=ON] statement.
2617** <li> The [PRAGMA journal_mode=OFF] statement.
2618** <li> Writes to the [sqlite_dbpage] virtual table.
2619** <li> Direct writes to [shadow tables].
2620** </ul>
2621** </dd>
2622**
2623** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]] <dt>SQLITE_DBCONFIG_WRITABLE_SCHEMA</dt>
2624** <dd>The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the
2625** "writable_schema" flag. This has the same effect and is logically equivalent
2626** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF].
2627** The first argument to this setting is an integer which is 0 to disable
2628** the writable_schema, positive to enable writable_schema, or negative to
2629** leave the setting unchanged. The second parameter is a pointer to an
2630** integer into which is written 0 or 1 to indicate whether the writable_schema
2631** is enabled or disabled following this call.
2632** </dd>
2633**
2634** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]]
2635** <dt>SQLITE_DBCONFIG_LEGACY_ALTER_TABLE</dt>
2636** <dd>The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates
2637** the legacy behavior of the [ALTER TABLE RENAME] command such it
2638** behaves as it did prior to [version 3.24.0] (2018-06-04). See the
2639** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for
2640** additional information. This feature can also be turned on and off
2641** using the [PRAGMA legacy_alter_table] statement.
2642** </dd>
2643**
2644** [[SQLITE_DBCONFIG_DQS_DML]]
2645** <dt>SQLITE_DBCONFIG_DQS_DML</td>
2646** <dd>The SQLITE_DBCONFIG_DQS_DML option activates or deactivates
2647** the legacy [double-quoted string literal] misfeature for DML statements
2648** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The
2649** default value of this setting is determined by the [-DSQLITE_DQS]
2650** compile-time option.
2651** </dd>
2652**
2653** [[SQLITE_DBCONFIG_DQS_DDL]]
2654** <dt>SQLITE_DBCONFIG_DQS_DDL</td>
2655** <dd>The SQLITE_DBCONFIG_DQS option activates or deactivates
2656** the legacy [double-quoted string literal] misfeature for DDL statements,
2657** such as CREATE TABLE and CREATE INDEX. The
2658** default value of this setting is determined by the [-DSQLITE_DQS]
2659** compile-time option.
2660** </dd>
2661**
2662** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]]
2663** <dt>SQLITE_DBCONFIG_TRUSTED_SCHEMA</td>
2664** <dd>The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to
2665** assume that database schemas are untainted by malicious content.
2666** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite
2667** takes additional defensive steps to protect the application from harm
2668** including:
2669** <ul>
2670** <li> Prohibit the use of SQL functions inside triggers, views,
2671** CHECK constraints, DEFAULT clauses, expression indexes,
2672** partial indexes, or generated columns
2673** unless those functions are tagged with [SQLITE_INNOCUOUS].
2674** <li> Prohibit the use of virtual tables inside of triggers or views
2675** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS].
2676** </ul>
2677** This setting defaults to "on" for legacy compatibility, however
2678** all applications are advised to turn it off if possible. This setting
2679** can also be controlled using the [PRAGMA trusted_schema] statement.
2680** </dd>
2681**
2682** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]]
2683** <dt>SQLITE_DBCONFIG_LEGACY_FILE_FORMAT</td>
2684** <dd>The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates
2685** the legacy file format flag. When activated, this flag causes all newly
2686** created database file to have a schema format version number (the 4-byte
2687** integer found at offset 44 into the database header) of 1. This in turn
2688** means that the resulting database file will be readable and writable by
2689** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting,
2690** newly created databases are generally not understandable by SQLite versions
2691** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there
2692** is now scarcely any need to generated database files that are compatible
2693** all the way back to version 3.0.0, and so this setting is of little
2694** practical use, but is provided so that SQLite can continue to claim the
2695** ability to generate new database files that are compatible with version
2696** 3.0.0.
2697** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on,
2698** the [VACUUM] command will fail with an obscure error when attempting to
2699** process a table with generated columns and a descending index. This is
2700** not considered a bug since SQLite versions 3.3.0 and earlier do not support
2701** either generated columns or decending indexes.
2702** </dd>
2703** </dl>
2704*/
2705#define SQLITE_DBCONFIG_MAINDBNAME1000 1000 /* const char* */
2706#define SQLITE_DBCONFIG_LOOKASIDE1001 1001 /* void* int int */
2707#define SQLITE_DBCONFIG_ENABLE_FKEY1002 1002 /* int int* */
2708#define SQLITE_DBCONFIG_ENABLE_TRIGGER1003 1003 /* int int* */
2709#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER1004 1004 /* int int* */
2710#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION1005 1005 /* int int* */
2711#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE1006 1006 /* int int* */
2712#define SQLITE_DBCONFIG_ENABLE_QPSG1007 1007 /* int int* */
2713#define SQLITE_DBCONFIG_TRIGGER_EQP1008 1008 /* int int* */
2714#define SQLITE_DBCONFIG_RESET_DATABASE1009 1009 /* int int* */
2715#define SQLITE_DBCONFIG_DEFENSIVE1010 1010 /* int int* */
2716#define SQLITE_DBCONFIG_WRITABLE_SCHEMA1011 1011 /* int int* */
2717#define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE1012 1012 /* int int* */
2718#define SQLITE_DBCONFIG_DQS_DML1013 1013 /* int int* */
2719#define SQLITE_DBCONFIG_DQS_DDL1014 1014 /* int int* */
2720#define SQLITE_DBCONFIG_ENABLE_VIEW1015 1015 /* int int* */
2721#define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT1016 1016 /* int int* */
2722#define SQLITE_DBCONFIG_TRUSTED_SCHEMA1017 1017 /* int int* */
2723#define SQLITE_DBCONFIG_MAX1017 1017 /* Largest DBCONFIG */
2724
2725/*
2726** CAPI3REF: Enable Or Disable Extended Result Codes
2727** METHOD: sqlite3
2728**
2729** ^The sqlite3_extended_result_codes() routine enables or disables the
2730** [extended result codes] feature of SQLite. ^The extended result
2731** codes are disabled by default for historical compatibility.
2732*/
2733SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
2734
2735/*
2736** CAPI3REF: Last Insert Rowid
2737** METHOD: sqlite3
2738**
2739** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
2740** has a unique 64-bit signed
2741** integer key called the [ROWID | "rowid"]. ^The rowid is always available
2742** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
2743** names are not also used by explicitly declared columns. ^If
2744** the table has a column of type [INTEGER PRIMARY KEY] then that column
2745** is another alias for the rowid.
2746**
2747** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
2748** the most recent successful [INSERT] into a rowid table or [virtual table]
2749** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
2750** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred
2751** on the database connection D, then sqlite3_last_insert_rowid(D) returns
2752** zero.
2753**
2754** As well as being set automatically as rows are inserted into database
2755** tables, the value returned by this function may be set explicitly by
2756** [sqlite3_set_last_insert_rowid()]
2757**
2758** Some virtual table implementations may INSERT rows into rowid tables as
2759** part of committing a transaction (e.g. to flush data accumulated in memory
2760** to disk). In this case subsequent calls to this function return the rowid
2761** associated with these internal INSERT operations, which leads to
2762** unintuitive results. Virtual table implementations that do write to rowid
2763** tables in this way can avoid this problem by restoring the original
2764** rowid value using [sqlite3_set_last_insert_rowid()] before returning
2765** control to the user.
2766**
2767** ^(If an [INSERT] occurs within a trigger then this routine will
2768** return the [rowid] of the inserted row as long as the trigger is
2769** running. Once the trigger program ends, the value returned
2770** by this routine reverts to what it was before the trigger was fired.)^
2771**
2772** ^An [INSERT] that fails due to a constraint violation is not a
2773** successful [INSERT] and does not change the value returned by this
2774** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
2775** and INSERT OR ABORT make no changes to the return value of this
2776** routine when their insertion fails. ^(When INSERT OR REPLACE
2777** encounters a constraint violation, it does not fail. The
2778** INSERT continues to completion after deleting rows that caused
2779** the constraint problem so INSERT OR REPLACE will always change
2780** the return value of this interface.)^
2781**
2782** ^For the purposes of this routine, an [INSERT] is considered to
2783** be successful even if it is subsequently rolled back.
2784**
2785** This function is accessible to SQL statements via the
2786** [last_insert_rowid() SQL function].
2787**
2788** If a separate thread performs a new [INSERT] on the same
2789** database connection while the [sqlite3_last_insert_rowid()]
2790** function is running and thus changes the last insert [rowid],
2791** then the value returned by [sqlite3_last_insert_rowid()] is
2792** unpredictable and might not equal either the old or the new
2793** last insert [rowid].
2794*/
2795SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
2796
2797/*
2798** CAPI3REF: Set the Last Insert Rowid value.
2799** METHOD: sqlite3
2800**
2801** The sqlite3_set_last_insert_rowid(D, R) method allows the application to
2802** set the value returned by calling sqlite3_last_insert_rowid(D) to R
2803** without inserting a row into the database.
2804*/
2805SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64);
2806
2807/*
2808** CAPI3REF: Count The Number Of Rows Modified
2809** METHOD: sqlite3
2810**
2811** ^These functions return the number of rows modified, inserted or
2812** deleted by the most recently completed INSERT, UPDATE or DELETE
2813** statement on the database connection specified by the only parameter.
2814** The two functions are identical except for the type of the return value
2815** and that if the number of rows modified by the most recent INSERT, UPDATE
2816** or DELETE is greater than the maximum value supported by type "int", then
2817** the return value of sqlite3_changes() is undefined. ^Executing any other
2818** type of SQL statement does not modify the value returned by these functions.
2819**
2820** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
2821** considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
2822** [foreign key actions] or [REPLACE] constraint resolution are not counted.
2823**
2824** Changes to a view that are intercepted by
2825** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
2826** returned by sqlite3_changes() immediately after an INSERT, UPDATE or
2827** DELETE statement run on a view is always zero. Only changes made to real
2828** tables are counted.
2829**
2830** Things are more complicated if the sqlite3_changes() function is
2831** executed while a trigger program is running. This may happen if the
2832** program uses the [changes() SQL function], or if some other callback
2833** function invokes sqlite3_changes() directly. Essentially:
2834**
2835** <ul>
2836** <li> ^(Before entering a trigger program the value returned by
2837** sqlite3_changes() function is saved. After the trigger program
2838** has finished, the original value is restored.)^
2839**
2840** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
2841** statement sets the value returned by sqlite3_changes()
2842** upon completion as normal. Of course, this value will not include
2843** any changes performed by sub-triggers, as the sqlite3_changes()
2844** value will be saved and restored after each sub-trigger has run.)^
2845** </ul>
2846**
2847** ^This means that if the changes() SQL function (or similar) is used
2848** by the first INSERT, UPDATE or DELETE statement within a trigger, it
2849** returns the value as set when the calling statement began executing.
2850** ^If it is used by the second or subsequent such statement within a trigger
2851** program, the value returned reflects the number of rows modified by the
2852** previous INSERT, UPDATE or DELETE statement within the same trigger.
2853**
2854** If a separate thread makes changes on the same database connection
2855** while [sqlite3_changes()] is running then the value returned
2856** is unpredictable and not meaningful.
2857**
2858** See also:
2859** <ul>
2860** <li> the [sqlite3_total_changes()] interface
2861** <li> the [count_changes pragma]
2862** <li> the [changes() SQL function]
2863** <li> the [data_version pragma]
2864** </ul>
2865*/
2866SQLITE_API int sqlite3_changes(sqlite3*);
2867SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*);
2868
2869/*
2870** CAPI3REF: Total Number Of Rows Modified
2871** METHOD: sqlite3
2872**
2873** ^These functions return the total number of rows inserted, modified or
2874** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
2875** since the database connection was opened, including those executed as
2876** part of trigger programs. The two functions are identical except for the
2877** type of the return value and that if the number of rows modified by the
2878** connection exceeds the maximum value supported by type "int", then
2879** the return value of sqlite3_total_changes() is undefined. ^Executing
2880** any other type of SQL statement does not affect the value returned by
2881** sqlite3_total_changes().
2882**
2883** ^Changes made as part of [foreign key actions] are included in the
2884** count, but those made as part of REPLACE constraint resolution are
2885** not. ^Changes to a view that are intercepted by INSTEAD OF triggers
2886** are not counted.
2887**
2888** The [sqlite3_total_changes(D)] interface only reports the number
2889** of rows that changed due to SQL statement run against database
2890** connection D. Any changes by other database connections are ignored.
2891** To detect changes against a database file from other database
2892** connections use the [PRAGMA data_version] command or the
2893** [SQLITE_FCNTL_DATA_VERSION] [file control].
2894**
2895** If a separate thread makes changes on the same database connection
2896** while [sqlite3_total_changes()] is running then the value
2897** returned is unpredictable and not meaningful.
2898**
2899** See also:
2900** <ul>
2901** <li> the [sqlite3_changes()] interface
2902** <li> the [count_changes pragma]
2903** <li> the [changes() SQL function]
2904** <li> the [data_version pragma]
2905** <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
2906** </ul>
2907*/
2908SQLITE_API int sqlite3_total_changes(sqlite3*);
2909SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*);
2910
2911/*
2912** CAPI3REF: Interrupt A Long-Running Query
2913** METHOD: sqlite3
2914**
2915** ^This function causes any pending database operation to abort and
2916** return at its earliest opportunity. This routine is typically
2917** called in response to a user action such as pressing "Cancel"
2918** or Ctrl-C where the user wants a long query operation to halt
2919** immediately.
2920**
2921** ^It is safe to call this routine from a thread different from the
2922** thread that is currently running the database operation. But it
2923** is not safe to call this routine with a [database connection] that
2924** is closed or might close before sqlite3_interrupt() returns.
2925**
2926** ^If an SQL operation is very nearly finished at the time when
2927** sqlite3_interrupt() is called, then it might not have an opportunity
2928** to be interrupted and might continue to completion.
2929**
2930** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
2931** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
2932** that is inside an explicit transaction, then the entire transaction
2933** will be rolled back automatically.
2934**
2935** ^The sqlite3_interrupt(D) call is in effect until all currently running
2936** SQL statements on [database connection] D complete. ^Any new SQL statements
2937** that are started after the sqlite3_interrupt() call and before the
2938** running statement count reaches zero are interrupted as if they had been
2939** running prior to the sqlite3_interrupt() call. ^New SQL statements
2940** that are started after the running statement count reaches zero are
2941** not effected by the sqlite3_interrupt().
2942** ^A call to sqlite3_interrupt(D) that occurs when there are no running
2943** SQL statements is a no-op and has no effect on SQL statements
2944** that are started after the sqlite3_interrupt() call returns.
2945*/
2946SQLITE_API void sqlite3_interrupt(sqlite3*);
2947
2948/*
2949** CAPI3REF: Determine If An SQL Statement Is Complete
2950**
2951** These routines are useful during command-line input to determine if the
2952** currently entered text seems to form a complete SQL statement or
2953** if additional input is needed before sending the text into
2954** SQLite for parsing. ^These routines return 1 if the input string
2955** appears to be a complete SQL statement. ^A statement is judged to be
2956** complete if it ends with a semicolon token and is not a prefix of a
2957** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
2958** string literals or quoted identifier names or comments are not
2959** independent tokens (they are part of the token in which they are
2960** embedded) and thus do not count as a statement terminator. ^Whitespace
2961** and comments that follow the final semicolon are ignored.
2962**
2963** ^These routines return 0 if the statement is incomplete. ^If a
2964** memory allocation fails, then SQLITE_NOMEM is returned.
2965**
2966** ^These routines do not parse the SQL statements thus
2967** will not detect syntactically incorrect SQL.
2968**
2969** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
2970** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
2971** automatically by sqlite3_complete16(). If that initialization fails,
2972** then the return value from sqlite3_complete16() will be non-zero
2973** regardless of whether or not the input SQL is complete.)^
2974**
2975** The input to [sqlite3_complete()] must be a zero-terminated
2976** UTF-8 string.
2977**
2978** The input to [sqlite3_complete16()] must be a zero-terminated
2979** UTF-16 string in native byte order.
2980*/
2981SQLITE_API int sqlite3_complete(const char *sql);
2982SQLITE_API int sqlite3_complete16(const void *sql);
2983
2984/*
2985** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
2986** KEYWORDS: {busy-handler callback} {busy handler}
2987** METHOD: sqlite3
2988**
2989** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
2990** that might be invoked with argument P whenever
2991** an attempt is made to access a database table associated with
2992** [database connection] D when another thread
2993** or process has the table locked.
2994** The sqlite3_busy_handler() interface is used to implement
2995** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
2996**
2997** ^If the busy callback is NULL, then [SQLITE_BUSY]
2998** is returned immediately upon encountering the lock. ^If the busy callback
2999** is not NULL, then the callback might be invoked with two arguments.
3000**
3001** ^The first argument to the busy handler is a copy of the void* pointer which
3002** is the third argument to sqlite3_busy_handler(). ^The second argument to
3003** the busy handler callback is the number of times that the busy handler has
3004** been invoked previously for the same locking event. ^If the
3005** busy callback returns 0, then no additional attempts are made to
3006** access the database and [SQLITE_BUSY] is returned
3007** to the application.
3008** ^If the callback returns non-zero, then another attempt
3009** is made to access the database and the cycle repeats.
3010**
3011** The presence of a busy handler does not guarantee that it will be invoked
3012** when there is lock contention. ^If SQLite determines that invoking the busy
3013** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
3014** to the application instead of invoking the
3015** busy handler.
3016** Consider a scenario where one process is holding a read lock that
3017** it is trying to promote to a reserved lock and
3018** a second process is holding a reserved lock that it is trying
3019** to promote to an exclusive lock. The first process cannot proceed
3020** because it is blocked by the second and the second process cannot
3021** proceed because it is blocked by the first. If both processes
3022** invoke the busy handlers, neither will make any progress. Therefore,
3023** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
3024** will induce the first process to release its read lock and allow
3025** the second process to proceed.
3026**
3027** ^The default busy callback is NULL.
3028**
3029** ^(There can only be a single busy handler defined for each
3030** [database connection]. Setting a new busy handler clears any
3031** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
3032** or evaluating [PRAGMA busy_timeout=N] will change the
3033** busy handler and thus clear any previously set busy handler.
3034**
3035** The busy callback should not take any actions which modify the
3036** database connection that invoked the busy handler. In other words,
3037** the busy handler is not reentrant. Any such actions
3038** result in undefined behavior.
3039**
3040** A busy handler must not close the database connection
3041** or [prepared statement] that invoked the busy handler.
3042*/
3043SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*);
3044
3045/*
3046** CAPI3REF: Set A Busy Timeout
3047** METHOD: sqlite3
3048**
3049** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
3050** for a specified amount of time when a table is locked. ^The handler
3051** will sleep multiple times until at least "ms" milliseconds of sleeping
3052** have accumulated. ^After at least "ms" milliseconds of sleeping,
3053** the handler returns 0 which causes [sqlite3_step()] to return
3054** [SQLITE_BUSY].
3055**
3056** ^Calling this routine with an argument less than or equal to zero
3057** turns off all busy handlers.
3058**
3059** ^(There can only be a single busy handler for a particular
3060** [database connection] at any given moment. If another busy handler
3061** was defined (using [sqlite3_busy_handler()]) prior to calling
3062** this routine, that other busy handler is cleared.)^
3063**
3064** See also: [PRAGMA busy_timeout]
3065*/
3066SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
3067
3068/*
3069** CAPI3REF: Convenience Routines For Running Queries
3070** METHOD: sqlite3
3071**
3072** This is a legacy interface that is preserved for backwards compatibility.
3073** Use of this interface is not recommended.
3074**
3075** Definition: A <b>result table</b> is memory data structure created by the
3076** [sqlite3_get_table()] interface. A result table records the
3077** complete query results from one or more queries.
3078**
3079** The table conceptually has a number of rows and columns. But
3080** these numbers are not part of the result table itself. These
3081** numbers are obtained separately. Let N be the number of rows
3082** and M be the number of columns.
3083**
3084** A result table is an array of pointers to zero-terminated UTF-8 strings.
3085** There are (N+1)*M elements in the array. The first M pointers point
3086** to zero-terminated strings that contain the names of the columns.
3087** The remaining entries all point to query results. NULL values result
3088** in NULL pointers. All other values are in their UTF-8 zero-terminated
3089** string representation as returned by [sqlite3_column_text()].
3090**
3091** A result table might consist of one or more memory allocations.
3092** It is not safe to pass a result table directly to [sqlite3_free()].
3093** A result table should be deallocated using [sqlite3_free_table()].
3094**
3095** ^(As an example of the result table format, suppose a query result
3096** is as follows:
3097**
3098** <blockquote><pre>
3099** Name | Age
3100** -----------------------
3101** Alice | 43
3102** Bob | 28
3103** Cindy | 21
3104** </pre></blockquote>
3105**
3106** There are two columns (M==2) and three rows (N==3). Thus the
3107** result table has 8 entries. Suppose the result table is stored
3108** in an array named azResult. Then azResult holds this content:
3109**
3110** <blockquote><pre>
3111** azResult&#91;0] = "Name";
3112** azResult&#91;1] = "Age";
3113** azResult&#91;2] = "Alice";
3114** azResult&#91;3] = "43";
3115** azResult&#91;4] = "Bob";
3116** azResult&#91;5] = "28";
3117** azResult&#91;6] = "Cindy";
3118** azResult&#91;7] = "21";
3119** </pre></blockquote>)^
3120**
3121** ^The sqlite3_get_table() function evaluates one or more
3122** semicolon-separated SQL statements in the zero-terminated UTF-8
3123** string of its 2nd parameter and returns a result table to the
3124** pointer given in its 3rd parameter.
3125**
3126** After the application has finished with the result from sqlite3_get_table(),
3127** it must pass the result table pointer to sqlite3_free_table() in order to
3128** release the memory that was malloced. Because of the way the
3129** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
3130** function must not try to call [sqlite3_free()] directly. Only
3131** [sqlite3_free_table()] is able to release the memory properly and safely.
3132**
3133** The sqlite3_get_table() interface is implemented as a wrapper around
3134** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
3135** to any internal data structures of SQLite. It uses only the public
3136** interface defined here. As a consequence, errors that occur in the
3137** wrapper layer outside of the internal [sqlite3_exec()] call are not
3138** reflected in subsequent calls to [sqlite3_errcode()] or
3139** [sqlite3_errmsg()].
3140*/
3141SQLITE_API int sqlite3_get_table(
3142 sqlite3 *db, /* An open database */
3143 const char *zSql, /* SQL to be evaluated */
3144 char ***pazResult, /* Results of the query */
3145 int *pnRow, /* Number of result rows written here */
3146 int *pnColumn, /* Number of result columns written here */
3147 char **pzErrmsg /* Error msg written here */
3148);
3149SQLITE_API void sqlite3_free_table(char **result);
3150
3151/*
3152** CAPI3REF: Formatted String Printing Functions
3153**
3154** These routines are work-alikes of the "printf()" family of functions
3155** from the standard C library.
3156** These routines understand most of the common formatting options from
3157** the standard library printf()
3158** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
3159** See the [built-in printf()] documentation for details.
3160**
3161** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
3162** results into memory obtained from [sqlite3_malloc64()].
3163** The strings returned by these two routines should be
3164** released by [sqlite3_free()]. ^Both routines return a
3165** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
3166** memory to hold the resulting string.
3167**
3168** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
3169** the standard C library. The result is written into the
3170** buffer supplied as the second parameter whose size is given by
3171** the first parameter. Note that the order of the
3172** first two parameters is reversed from snprintf().)^ This is an
3173** historical accident that cannot be fixed without breaking
3174** backwards compatibility. ^(Note also that sqlite3_snprintf()
3175** returns a pointer to its buffer instead of the number of
3176** characters actually written into the buffer.)^ We admit that
3177** the number of characters written would be a more useful return
3178** value but we cannot change the implementation of sqlite3_snprintf()
3179** now without breaking compatibility.
3180**
3181** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
3182** guarantees that the buffer is always zero-terminated. ^The first
3183** parameter "n" is the total size of the buffer, including space for
3184** the zero terminator. So the longest string that can be completely
3185** written will be n-1 characters.
3186**
3187** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
3188**
3189** See also: [built-in printf()], [printf() SQL function]
3190*/
3191SQLITE_API char *sqlite3_mprintf(const char*,...);
3192SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
3193SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
3194SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
3195
3196/*
3197** CAPI3REF: Memory Allocation Subsystem
3198**
3199** The SQLite core uses these three routines for all of its own
3200** internal memory allocation needs. "Core" in the previous sentence
3201** does not include operating-system specific [VFS] implementation. The
3202** Windows VFS uses native malloc() and free() for some operations.
3203**
3204** ^The sqlite3_malloc() routine returns a pointer to a block
3205** of memory at least N bytes in length, where N is the parameter.
3206** ^If sqlite3_malloc() is unable to obtain sufficient free
3207** memory, it returns a NULL pointer. ^If the parameter N to
3208** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
3209** a NULL pointer.
3210**
3211** ^The sqlite3_malloc64(N) routine works just like
3212** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
3213** of a signed 32-bit integer.
3214**
3215** ^Calling sqlite3_free() with a pointer previously returned
3216** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
3217** that it might be reused. ^The sqlite3_free() routine is
3218** a no-op if is called with a NULL pointer. Passing a NULL pointer
3219** to sqlite3_free() is harmless. After being freed, memory
3220** should neither be read nor written. Even reading previously freed
3221** memory might result in a segmentation fault or other severe error.
3222** Memory corruption, a segmentation fault, or other severe error
3223** might result if sqlite3_free() is called with a non-NULL pointer that
3224** was not obtained from sqlite3_malloc() or sqlite3_realloc().
3225**
3226** ^The sqlite3_realloc(X,N) interface attempts to resize a
3227** prior memory allocation X to be at least N bytes.
3228** ^If the X parameter to sqlite3_realloc(X,N)
3229** is a NULL pointer then its behavior is identical to calling
3230** sqlite3_malloc(N).
3231** ^If the N parameter to sqlite3_realloc(X,N) is zero or
3232** negative then the behavior is exactly the same as calling
3233** sqlite3_free(X).
3234** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
3235** of at least N bytes in size or NULL if insufficient memory is available.
3236** ^If M is the size of the prior allocation, then min(N,M) bytes
3237** of the prior allocation are copied into the beginning of buffer returned
3238** by sqlite3_realloc(X,N) and the prior allocation is freed.
3239** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
3240** prior allocation is not freed.
3241**
3242** ^The sqlite3_realloc64(X,N) interfaces works the same as
3243** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
3244** of a 32-bit signed integer.
3245**
3246** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
3247** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
3248** sqlite3_msize(X) returns the size of that memory allocation in bytes.
3249** ^The value returned by sqlite3_msize(X) might be larger than the number
3250** of bytes requested when X was allocated. ^If X is a NULL pointer then
3251** sqlite3_msize(X) returns zero. If X points to something that is not
3252** the beginning of memory allocation, or if it points to a formerly
3253** valid memory allocation that has now been freed, then the behavior
3254** of sqlite3_msize(X) is undefined and possibly harmful.
3255**
3256** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
3257** sqlite3_malloc64(), and sqlite3_realloc64()
3258** is always aligned to at least an 8 byte boundary, or to a
3259** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
3260** option is used.
3261**
3262** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
3263** must be either NULL or else pointers obtained from a prior
3264** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
3265** not yet been released.
3266**
3267** The application must not read or write any part of
3268** a block of memory after it has been released using
3269** [sqlite3_free()] or [sqlite3_realloc()].
3270*/
3271SQLITE_API void *sqlite3_malloc(int);
3272SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
3273SQLITE_API void *sqlite3_realloc(void*, int);
3274SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
3275SQLITE_API void sqlite3_free(void*);
3276SQLITE_API sqlite3_uint64 sqlite3_msize(void*);
3277
3278/*
3279** CAPI3REF: Memory Allocator Statistics
3280**
3281** SQLite provides these two interfaces for reporting on the status
3282** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
3283** routines, which form the built-in memory allocation subsystem.
3284**
3285** ^The [sqlite3_memory_used()] routine returns the number of bytes
3286** of memory currently outstanding (malloced but not freed).
3287** ^The [sqlite3_memory_highwater()] routine returns the maximum
3288** value of [sqlite3_memory_used()] since the high-water mark
3289** was last reset. ^The values returned by [sqlite3_memory_used()] and
3290** [sqlite3_memory_highwater()] include any overhead
3291** added by SQLite in its implementation of [sqlite3_malloc()],
3292** but not overhead added by the any underlying system library
3293** routines that [sqlite3_malloc()] may call.
3294**
3295** ^The memory high-water mark is reset to the current value of
3296** [sqlite3_memory_used()] if and only if the parameter to
3297** [sqlite3_memory_highwater()] is true. ^The value returned
3298** by [sqlite3_memory_highwater(1)] is the high-water mark
3299** prior to the reset.
3300*/
3301SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
3302SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
3303
3304/*
3305** CAPI3REF: Pseudo-Random Number Generator
3306**
3307** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
3308** select random [ROWID | ROWIDs] when inserting new records into a table that
3309** already uses the largest possible [ROWID]. The PRNG is also used for
3310** the built-in random() and randomblob() SQL functions. This interface allows
3311** applications to access the same PRNG for other purposes.
3312**
3313** ^A call to this routine stores N bytes of randomness into buffer P.
3314** ^The P parameter can be a NULL pointer.
3315**
3316** ^If this routine has not been previously called or if the previous
3317** call had N less than one or a NULL pointer for P, then the PRNG is
3318** seeded using randomness obtained from the xRandomness method of
3319** the default [sqlite3_vfs] object.
3320** ^If the previous call to this routine had an N of 1 or more and a
3321** non-NULL P then the pseudo-randomness is generated
3322** internally and without recourse to the [sqlite3_vfs] xRandomness
3323** method.
3324*/
3325SQLITE_API void sqlite3_randomness(int N, void *P);
3326
3327/*
3328** CAPI3REF: Compile-Time Authorization Callbacks
3329** METHOD: sqlite3
3330** KEYWORDS: {authorizer callback}
3331**
3332** ^This routine registers an authorizer callback with a particular
3333** [database connection], supplied in the first argument.
3334** ^The authorizer callback is invoked as SQL statements are being compiled
3335** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
3336** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
3337** and [sqlite3_prepare16_v3()]. ^At various
3338** points during the compilation process, as logic is being created
3339** to perform various actions, the authorizer callback is invoked to
3340** see if those actions are allowed. ^The authorizer callback should
3341** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
3342** specific action but allow the SQL statement to continue to be
3343** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
3344** rejected with an error. ^If the authorizer callback returns
3345** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
3346** then the [sqlite3_prepare_v2()] or equivalent call that triggered
3347** the authorizer will fail with an error message.
3348**
3349** When the callback returns [SQLITE_OK], that means the operation
3350** requested is ok. ^When the callback returns [SQLITE_DENY], the
3351** [sqlite3_prepare_v2()] or equivalent call that triggered the
3352** authorizer will fail with an error message explaining that
3353** access is denied.
3354**
3355** ^The first parameter to the authorizer callback is a copy of the third
3356** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
3357** to the callback is an integer [SQLITE_COPY | action code] that specifies
3358** the particular action to be authorized. ^The third through sixth parameters
3359** to the callback are either NULL pointers or zero-terminated strings
3360** that contain additional details about the action to be authorized.
3361** Applications must always be prepared to encounter a NULL pointer in any
3362** of the third through the sixth parameters of the authorization callback.
3363**
3364** ^If the action code is [SQLITE_READ]
3365** and the callback returns [SQLITE_IGNORE] then the
3366** [prepared statement] statement is constructed to substitute
3367** a NULL value in place of the table column that would have
3368** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
3369** return can be used to deny an untrusted user access to individual
3370** columns of a table.
3371** ^When a table is referenced by a [SELECT] but no column values are
3372** extracted from that table (for example in a query like
3373** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
3374** is invoked once for that table with a column name that is an empty string.
3375** ^If the action code is [SQLITE_DELETE] and the callback returns
3376** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
3377** [truncate optimization] is disabled and all rows are deleted individually.
3378**
3379** An authorizer is used when [sqlite3_prepare | preparing]
3380** SQL statements from an untrusted source, to ensure that the SQL statements
3381** do not try to access data they are not allowed to see, or that they do not
3382** try to execute malicious statements that damage the database. For
3383** example, an application may allow a user to enter arbitrary
3384** SQL queries for evaluation by a database. But the application does
3385** not want the user to be able to make arbitrary changes to the
3386** database. An authorizer could then be put in place while the
3387** user-entered SQL is being [sqlite3_prepare | prepared] that
3388** disallows everything except [SELECT] statements.
3389**
3390** Applications that need to process SQL from untrusted sources
3391** might also consider lowering resource limits using [sqlite3_limit()]
3392** and limiting database size using the [max_page_count] [PRAGMA]
3393** in addition to using an authorizer.
3394**
3395** ^(Only a single authorizer can be in place on a database connection
3396** at a time. Each call to sqlite3_set_authorizer overrides the
3397** previous call.)^ ^Disable the authorizer by installing a NULL callback.
3398** The authorizer is disabled by default.
3399**
3400** The authorizer callback must not do anything that will modify
3401** the database connection that invoked the authorizer callback.
3402** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
3403** database connections for the meaning of "modify" in this paragraph.
3404**
3405** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
3406** statement might be re-prepared during [sqlite3_step()] due to a
3407** schema change. Hence, the application should ensure that the
3408** correct authorizer callback remains in place during the [sqlite3_step()].
3409**
3410** ^Note that the authorizer callback is invoked only during
3411** [sqlite3_prepare()] or its variants. Authorization is not
3412** performed during statement evaluation in [sqlite3_step()], unless
3413** as stated in the previous paragraph, sqlite3_step() invokes
3414** sqlite3_prepare_v2() to reprepare a statement after a schema change.
3415*/
3416SQLITE_API int sqlite3_set_authorizer(
3417 sqlite3*,
3418 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
3419 void *pUserData
3420);
3421
3422/*
3423** CAPI3REF: Authorizer Return Codes
3424**
3425** The [sqlite3_set_authorizer | authorizer callback function] must
3426** return either [SQLITE_OK] or one of these two constants in order
3427** to signal SQLite whether or not the action is permitted. See the
3428** [sqlite3_set_authorizer | authorizer documentation] for additional
3429** information.
3430**
3431** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
3432** returned from the [sqlite3_vtab_on_conflict()] interface.
3433*/
3434#define SQLITE_DENY1 1 /* Abort the SQL statement with an error */
3435#define SQLITE_IGNORE2 2 /* Don't allow access, but don't generate an error */
3436
3437/*
3438** CAPI3REF: Authorizer Action Codes
3439**
3440** The [sqlite3_set_authorizer()] interface registers a callback function
3441** that is invoked to authorize certain SQL statement actions. The
3442** second parameter to the callback is an integer code that specifies
3443** what action is being authorized. These are the integer action codes that
3444** the authorizer callback may be passed.
3445**
3446** These action code values signify what kind of operation is to be
3447** authorized. The 3rd and 4th parameters to the authorization
3448** callback function will be parameters or NULL depending on which of these
3449** codes is used as the second parameter. ^(The 5th parameter to the
3450** authorizer callback is the name of the database ("main", "temp",
3451** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
3452** is the name of the inner-most trigger or view that is responsible for
3453** the access attempt or NULL if this access attempt is directly from
3454** top-level SQL code.
3455*/
3456/******************************************* 3rd ************ 4th ***********/
3457#define SQLITE_CREATE_INDEX1 1 /* Index Name Table Name */
3458#define SQLITE_CREATE_TABLE2 2 /* Table Name NULL */
3459#define SQLITE_CREATE_TEMP_INDEX3 3 /* Index Name Table Name */
3460#define SQLITE_CREATE_TEMP_TABLE4 4 /* Table Name NULL */
3461#define SQLITE_CREATE_TEMP_TRIGGER5 5 /* Trigger Name Table Name */
3462#define SQLITE_CREATE_TEMP_VIEW6 6 /* View Name NULL */
3463#define SQLITE_CREATE_TRIGGER7 7 /* Trigger Name Table Name */
3464#define SQLITE_CREATE_VIEW8 8 /* View Name NULL */
3465#define SQLITE_DELETE9 9 /* Table Name NULL */
3466#define SQLITE_DROP_INDEX10 10 /* Index Name Table Name */
3467#define SQLITE_DROP_TABLE11 11 /* Table Name NULL */
3468#define SQLITE_DROP_TEMP_INDEX12 12 /* Index Name Table Name */
3469#define SQLITE_DROP_TEMP_TABLE13 13 /* Table Name NULL */
3470#define SQLITE_DROP_TEMP_TRIGGER14 14 /* Trigger Name Table Name */
3471#define SQLITE_DROP_TEMP_VIEW15 15 /* View Name NULL */
3472#define SQLITE_DROP_TRIGGER16 16 /* Trigger Name Table Name */
3473#define SQLITE_DROP_VIEW17 17 /* View Name NULL */
3474#define SQLITE_INSERT18 18 /* Table Name NULL */
3475#define SQLITE_PRAGMA19 19 /* Pragma Name 1st arg or NULL */
3476#define SQLITE_READ20 20 /* Table Name Column Name */
3477#define SQLITE_SELECT21 21 /* NULL NULL */
3478#define SQLITE_TRANSACTION22 22 /* Operation NULL */
3479#define SQLITE_UPDATE23 23 /* Table Name Column Name */
3480#define SQLITE_ATTACH24 24 /* Filename NULL */
3481#define SQLITE_DETACH25 25 /* Database Name NULL */
3482#define SQLITE_ALTER_TABLE26 26 /* Database Name Table Name */
3483#define SQLITE_REINDEX27 27 /* Index Name NULL */
3484#define SQLITE_ANALYZE28 28 /* Table Name NULL */
3485#define SQLITE_CREATE_VTABLE29 29 /* Table Name Module Name */
3486#define SQLITE_DROP_VTABLE30 30 /* Table Name Module Name */
3487#define SQLITE_FUNCTION31 31 /* NULL Function Name */
3488#define SQLITE_SAVEPOINT32 32 /* Operation Savepoint Name */
3489#define SQLITE_COPY0 0 /* No longer used */
3490#define SQLITE_RECURSIVE33 33 /* NULL NULL */
3491
3492/*
3493** CAPI3REF: Tracing And Profiling Functions
3494** METHOD: sqlite3
3495**
3496** These routines are deprecated. Use the [sqlite3_trace_v2()] interface
3497** instead of the routines described here.
3498**
3499** These routines register callback functions that can be used for
3500** tracing and profiling the execution of SQL statements.
3501**
3502** ^The callback function registered by sqlite3_trace() is invoked at
3503** various times when an SQL statement is being run by [sqlite3_step()].
3504** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
3505** SQL statement text as the statement first begins executing.
3506** ^(Additional sqlite3_trace() callbacks might occur
3507** as each triggered subprogram is entered. The callbacks for triggers
3508** contain a UTF-8 SQL comment that identifies the trigger.)^
3509**
3510** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
3511** the length of [bound parameter] expansion in the output of sqlite3_trace().
3512**
3513** ^The callback function registered by sqlite3_profile() is invoked
3514** as each SQL statement finishes. ^The profile callback contains
3515** the original statement text and an estimate of wall-clock time
3516** of how long that statement took to run. ^The profile callback
3517** time is in units of nanoseconds, however the current implementation
3518** is only capable of millisecond resolution so the six least significant
3519** digits in the time are meaningless. Future versions of SQLite
3520** might provide greater resolution on the profiler callback. Invoking
3521** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
3522** profile callback.
3523*/
3524SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*,
3525 void(*xTrace)(void*,const char*), void*);
3526SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*,
3527 void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
3528
3529/*
3530** CAPI3REF: SQL Trace Event Codes
3531** KEYWORDS: SQLITE_TRACE
3532**
3533** These constants identify classes of events that can be monitored
3534** using the [sqlite3_trace_v2()] tracing logic. The M argument
3535** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of
3536** the following constants. ^The first argument to the trace callback
3537** is one of the following constants.
3538**
3539** New tracing constants may be added in future releases.
3540**
3541** ^A trace callback has four arguments: xCallback(T,C,P,X).
3542** ^The T argument is one of the integer type codes above.
3543** ^The C argument is a copy of the context pointer passed in as the
3544** fourth argument to [sqlite3_trace_v2()].
3545** The P and X arguments are pointers whose meanings depend on T.
3546**
3547** <dl>
3548** [[SQLITE_TRACE_STMT]] <dt>SQLITE_TRACE_STMT</dt>
3549** <dd>^An SQLITE_TRACE_STMT callback is invoked when a prepared statement
3550** first begins running and possibly at other times during the
3551** execution of the prepared statement, such as at the start of each
3552** trigger subprogram. ^The P argument is a pointer to the
3553** [prepared statement]. ^The X argument is a pointer to a string which
3554** is the unexpanded SQL text of the prepared statement or an SQL comment
3555** that indicates the invocation of a trigger. ^The callback can compute
3556** the same text that would have been returned by the legacy [sqlite3_trace()]
3557** interface by using the X argument when X begins with "--" and invoking
3558** [sqlite3_expanded_sql(P)] otherwise.
3559**
3560** [[SQLITE_TRACE_PROFILE]] <dt>SQLITE_TRACE_PROFILE</dt>
3561** <dd>^An SQLITE_TRACE_PROFILE callback provides approximately the same
3562** information as is provided by the [sqlite3_profile()] callback.
3563** ^The P argument is a pointer to the [prepared statement] and the
3564** X argument points to a 64-bit integer which is the estimated of
3565** the number of nanosecond that the prepared statement took to run.
3566** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes.
3567**
3568** [[SQLITE_TRACE_ROW]] <dt>SQLITE_TRACE_ROW</dt>
3569** <dd>^An SQLITE_TRACE_ROW callback is invoked whenever a prepared
3570** statement generates a single row of result.
3571** ^The P argument is a pointer to the [prepared statement] and the
3572** X argument is unused.
3573**
3574** [[SQLITE_TRACE_CLOSE]] <dt>SQLITE_TRACE_CLOSE</dt>
3575** <dd>^An SQLITE_TRACE_CLOSE callback is invoked when a database
3576** connection closes.
3577** ^The P argument is a pointer to the [database connection] object
3578** and the X argument is unused.
3579** </dl>
3580*/
3581#define SQLITE_TRACE_STMT0x01 0x01
3582#define SQLITE_TRACE_PROFILE0x02 0x02
3583#define SQLITE_TRACE_ROW0x04 0x04
3584#define SQLITE_TRACE_CLOSE0x08 0x08
3585
3586/*
3587** CAPI3REF: SQL Trace Hook
3588** METHOD: sqlite3
3589**
3590** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
3591** function X against [database connection] D, using property mask M
3592** and context pointer P. ^If the X callback is
3593** NULL or if the M mask is zero, then tracing is disabled. The
3594** M argument should be the bitwise OR-ed combination of
3595** zero or more [SQLITE_TRACE] constants.
3596**
3597** ^Each call to either sqlite3_trace() or sqlite3_trace_v2() overrides
3598** (cancels) any prior calls to sqlite3_trace() or sqlite3_trace_v2().
3599**
3600** ^The X callback is invoked whenever any of the events identified by
3601** mask M occur. ^The integer return value from the callback is currently
3602** ignored, though this may change in future releases. Callback
3603** implementations should return zero to ensure future compatibility.
3604**
3605** ^A trace callback is invoked with four arguments: callback(T,C,P,X).
3606** ^The T argument is one of the [SQLITE_TRACE]
3607** constants to indicate why the callback was invoked.
3608** ^The C argument is a copy of the context pointer.
3609** The P and X arguments are pointers whose meanings depend on T.
3610**
3611** The sqlite3_trace_v2() interface is intended to replace the legacy
3612** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
3613** are deprecated.
3614*/
3615SQLITE_API int sqlite3_trace_v2(
3616 sqlite3*,
3617 unsigned uMask,
3618 int(*xCallback)(unsigned,void*,void*,void*),
3619 void *pCtx
3620);
3621
3622/*
3623** CAPI3REF: Query Progress Callbacks
3624** METHOD: sqlite3
3625**
3626** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
3627** function X to be invoked periodically during long running calls to
3628** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
3629** database connection D. An example use for this
3630** interface is to keep a GUI updated during a large query.
3631**
3632** ^The parameter P is passed through as the only parameter to the
3633** callback function X. ^The parameter N is the approximate number of
3634** [virtual machine instructions] that are evaluated between successive
3635** invocations of the callback X. ^If N is less than one then the progress
3636** handler is disabled.
3637**
3638** ^Only a single progress handler may be defined at one time per
3639** [database connection]; setting a new progress handler cancels the
3640** old one. ^Setting parameter X to NULL disables the progress handler.
3641** ^The progress handler is also disabled by setting N to a value less
3642** than 1.
3643**
3644** ^If the progress callback returns non-zero, the operation is
3645** interrupted. This feature can be used to implement a
3646** "Cancel" button on a GUI progress dialog box.
3647**
3648** The progress handler callback must not do anything that will modify
3649** the database connection that invoked the progress handler.
3650** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
3651** database connections for the meaning of "modify" in this paragraph.
3652**
3653*/
3654SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
3655
3656/*
3657** CAPI3REF: Opening A New Database Connection
3658** CONSTRUCTOR: sqlite3
3659**
3660** ^These routines open an SQLite database file as specified by the
3661** filename argument. ^The filename argument is interpreted as UTF-8 for
3662** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
3663** order for sqlite3_open16(). ^(A [database connection] handle is usually
3664** returned in *ppDb, even if an error occurs. The only exception is that
3665** if SQLite is unable to allocate memory to hold the [sqlite3] object,
3666** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
3667** object.)^ ^(If the database is opened (and/or created) successfully, then
3668** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
3669** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
3670** an English language description of the error following a failure of any
3671** of the sqlite3_open() routines.
3672**
3673** ^The default encoding will be UTF-8 for databases created using
3674** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
3675** created using sqlite3_open16() will be UTF-16 in the native byte order.
3676**
3677** Whether or not an error occurs when it is opened, resources
3678** associated with the [database connection] handle should be released by
3679** passing it to [sqlite3_close()] when it is no longer required.
3680**
3681** The sqlite3_open_v2() interface works like sqlite3_open()
3682** except that it accepts two additional parameters for additional control
3683** over the new database connection. ^(The flags parameter to
3684** sqlite3_open_v2() must include, at a minimum, one of the following
3685** three flag combinations:)^
3686**
3687** <dl>
3688** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
3689** <dd>The database is opened in read-only mode. If the database does not
3690** already exist, an error is returned.</dd>)^
3691**
3692** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
3693** <dd>The database is opened for reading and writing if possible, or reading
3694** only if the file is write protected by the operating system. In either
3695** case the database must already exist, otherwise an error is returned.</dd>)^
3696**
3697** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
3698** <dd>The database is opened for reading and writing, and is created if
3699** it does not already exist. This is the behavior that is always used for
3700** sqlite3_open() and sqlite3_open16().</dd>)^
3701** </dl>
3702**
3703** In addition to the required flags, the following optional flags are
3704** also supported:
3705**
3706** <dl>
3707** ^(<dt>[SQLITE_OPEN_URI]</dt>
3708** <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
3709**
3710** ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
3711** <dd>The database will be opened as an in-memory database. The database
3712** is named by the "filename" argument for the purposes of cache-sharing,
3713** if shared cache mode is enabled, but the "filename" is otherwise ignored.
3714** </dd>)^
3715**
3716** ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
3717** <dd>The new database connection will use the "multi-thread"
3718** [threading mode].)^ This means that separate threads are allowed
3719** to use SQLite at the same time, as long as each thread is using
3720** a different [database connection].
3721**
3722** ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
3723** <dd>The new database connection will use the "serialized"
3724** [threading mode].)^ This means the multiple threads can safely
3725** attempt to use the same database connection at the same time.
3726** (Mutexes will block any actual concurrency, but in this mode
3727** there is no harm in trying.)
3728**
3729** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
3730** <dd>The database is opened [shared cache] enabled, overriding
3731** the default shared cache setting provided by
3732** [sqlite3_enable_shared_cache()].)^
3733**
3734** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
3735** <dd>The database is opened [shared cache] disabled, overriding
3736** the default shared cache setting provided by
3737** [sqlite3_enable_shared_cache()].)^
3738**
3739** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt>
3740** <dd>The database connection comes up in "extended result code mode".
3741** In other words, the database behaves has if
3742** [sqlite3_extended_result_codes(db,1)] where called on the database
3743** connection as soon as the connection is created. In addition to setting
3744** the extended result code mode, this flag also causes [sqlite3_open_v2()]
3745** to return an extended result code.</dd>
3746**
3747** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
3748** <dd>The database filename is not allowed to be a symbolic link</dd>
3749** </dl>)^
3750**
3751** If the 3rd parameter to sqlite3_open_v2() is not one of the
3752** required combinations shown above optionally combined with other
3753** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
3754** then the behavior is undefined. Historic versions of SQLite
3755** have silently ignored surplus bits in the flags parameter to
3756** sqlite3_open_v2(), however that behavior might not be carried through
3757** into future versions of SQLite and so applications should not rely
3758** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op
3759** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause
3760** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE
3761** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not
3762** by sqlite3_open_v2().
3763**
3764** ^The fourth parameter to sqlite3_open_v2() is the name of the
3765** [sqlite3_vfs] object that defines the operating system interface that
3766** the new database connection should use. ^If the fourth parameter is
3767** a NULL pointer then the default [sqlite3_vfs] object is used.
3768**
3769** ^If the filename is ":memory:", then a private, temporary in-memory database
3770** is created for the connection. ^This in-memory database will vanish when
3771** the database connection is closed. Future versions of SQLite might
3772** make use of additional special filenames that begin with the ":" character.
3773** It is recommended that when a database filename actually does begin with
3774** a ":" character you should prefix the filename with a pathname such as
3775** "./" to avoid ambiguity.
3776**
3777** ^If the filename is an empty string, then a private, temporary
3778** on-disk database will be created. ^This private database will be
3779** automatically deleted as soon as the database connection is closed.
3780**
3781** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
3782**
3783** ^If [URI filename] interpretation is enabled, and the filename argument
3784** begins with "file:", then the filename is interpreted as a URI. ^URI
3785** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
3786** set in the third argument to sqlite3_open_v2(), or if it has
3787** been enabled globally using the [SQLITE_CONFIG_URI] option with the
3788** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
3789** URI filename interpretation is turned off
3790** by default, but future releases of SQLite might enable URI filename
3791** interpretation by default. See "[URI filenames]" for additional
3792** information.
3793**
3794** URI filenames are parsed according to RFC 3986. ^If the URI contains an
3795** authority, then it must be either an empty string or the string
3796** "localhost". ^If the authority is not an empty string or "localhost", an
3797** error is returned to the caller. ^The fragment component of a URI, if
3798** present, is ignored.
3799**
3800** ^SQLite uses the path component of the URI as the name of the disk file
3801** which contains the database. ^If the path begins with a '/' character,
3802** then it is interpreted as an absolute path. ^If the path does not begin
3803** with a '/' (meaning that the authority section is omitted from the URI)
3804** then the path is interpreted as a relative path.
3805** ^(On windows, the first component of an absolute path
3806** is a drive specification (e.g. "C:").)^
3807**
3808** [[core URI query parameters]]
3809** The query component of a URI may contain parameters that are interpreted
3810** either by SQLite itself, or by a [VFS | custom VFS implementation].
3811** SQLite and its built-in [VFSes] interpret the
3812** following query parameters:
3813**
3814** <ul>
3815** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
3816** a VFS object that provides the operating system interface that should
3817** be used to access the database file on disk. ^If this option is set to
3818** an empty string the default VFS object is used. ^Specifying an unknown
3819** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
3820** present, then the VFS specified by the option takes precedence over
3821** the value passed as the fourth parameter to sqlite3_open_v2().
3822**
3823** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
3824** "rwc", or "memory". Attempting to set it to any other value is
3825** an error)^.
3826** ^If "ro" is specified, then the database is opened for read-only
3827** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
3828** third argument to sqlite3_open_v2(). ^If the mode option is set to
3829** "rw", then the database is opened for read-write (but not create)
3830** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
3831** been set. ^Value "rwc" is equivalent to setting both
3832** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
3833** set to "memory" then a pure [in-memory database] that never reads
3834** or writes from disk is used. ^It is an error to specify a value for
3835** the mode parameter that is less restrictive than that specified by
3836** the flags passed in the third parameter to sqlite3_open_v2().
3837**
3838** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
3839** "private". ^Setting it to "shared" is equivalent to setting the
3840** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
3841** sqlite3_open_v2(). ^Setting the cache parameter to "private" is
3842** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
3843** ^If sqlite3_open_v2() is used and the "cache" parameter is present in
3844** a URI filename, its value overrides any behavior requested by setting
3845** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
3846**
3847** <li> <b>psow</b>: ^The psow parameter indicates whether or not the
3848** [powersafe overwrite] property does or does not apply to the
3849** storage media on which the database file resides.
3850**
3851** <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
3852** which if set disables file locking in rollback journal modes. This
3853** is useful for accessing a database on a filesystem that does not
3854** support locking. Caution: Database corruption might result if two
3855** or more processes write to the same database and any one of those
3856** processes uses nolock=1.
3857**
3858** <li> <b>immutable</b>: ^The immutable parameter is a boolean query
3859** parameter that indicates that the database file is stored on
3860** read-only media. ^When immutable is set, SQLite assumes that the
3861** database file cannot be changed, even by a process with higher
3862** privilege, and so the database is opened read-only and all locking
3863** and change detection is disabled. Caution: Setting the immutable
3864** property on a database file that does in fact change can result
3865** in incorrect query results and/or [SQLITE_CORRUPT] errors.
3866** See also: [SQLITE_IOCAP_IMMUTABLE].
3867**
3868** </ul>
3869**
3870** ^Specifying an unknown parameter in the query component of a URI is not an
3871** error. Future versions of SQLite might understand additional query
3872** parameters. See "[query parameters with special meaning to SQLite]" for
3873** additional information.
3874**
3875** [[URI filename examples]] <h3>URI filename examples</h3>
3876**
3877** <table border="1" align=center cellpadding=5>
3878** <tr><th> URI filenames <th> Results
3879** <tr><td> file:data.db <td>
3880** Open the file "data.db" in the current directory.
3881** <tr><td> file:/home/fred/data.db<br>
3882** file:///home/fred/data.db <br>
3883** file://localhost/home/fred/data.db <br> <td>
3884** Open the database file "/home/fred/data.db".
3885** <tr><td> file://darkstar/home/fred/data.db <td>
3886** An error. "darkstar" is not a recognized authority.
3887** <tr><td style="white-space:nowrap">
3888** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
3889** <td> Windows only: Open the file "data.db" on fred's desktop on drive
3890** C:. Note that the %20 escaping in this example is not strictly
3891** necessary - space characters can be used literally
3892** in URI filenames.
3893** <tr><td> file:data.db?mode=ro&cache=private <td>
3894** Open file "data.db" in the current directory for read-only access.
3895** Regardless of whether or not shared-cache mode is enabled by
3896** default, use a private cache.
3897** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
3898** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
3899** that uses dot-files in place of posix advisory locking.
3900** <tr><td> file:data.db?mode=readonly <td>
3901** An error. "readonly" is not a valid option for the "mode" parameter.
3902** Use "ro" instead: "file:data.db?mode=ro".
3903** </table>
3904**
3905** ^URI hexadecimal escape sequences (%HH) are supported within the path and
3906** query components of a URI. A hexadecimal escape sequence consists of a
3907** percent sign - "%" - followed by exactly two hexadecimal digits
3908** specifying an octet value. ^Before the path or query components of a
3909** URI filename are interpreted, they are encoded using UTF-8 and all
3910** hexadecimal escape sequences replaced by a single byte containing the
3911** corresponding octet. If this process generates an invalid UTF-8 encoding,
3912** the results are undefined.
3913**
3914** <b>Note to Windows users:</b> The encoding used for the filename argument
3915** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
3916** codepage is currently defined. Filenames containing international
3917** characters must be converted to UTF-8 prior to passing them into
3918** sqlite3_open() or sqlite3_open_v2().
3919**
3920** <b>Note to Windows Runtime users:</b> The temporary directory must be set
3921** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
3922** features that require the use of temporary files may fail.
3923**
3924** See also: [sqlite3_temp_directory]
3925*/
3926SQLITE_API int sqlite3_open(
3927 const char *filename, /* Database filename (UTF-8) */
3928 sqlite3 **ppDb /* OUT: SQLite db handle */
3929);
3930SQLITE_API int sqlite3_open16(
3931 const void *filename, /* Database filename (UTF-16) */
3932 sqlite3 **ppDb /* OUT: SQLite db handle */
3933);
3934SQLITE_API int sqlite3_open_v2(
3935 const char *filename, /* Database filename (UTF-8) */
3936 sqlite3 **ppDb, /* OUT: SQLite db handle */
3937 int flags, /* Flags */
3938 const char *zVfs /* Name of VFS module to use */
3939);
3940
3941/*
3942** CAPI3REF: Obtain Values For URI Parameters
3943**
3944** These are utility routines, useful to [VFS|custom VFS implementations],
3945** that check if a database file was a URI that contained a specific query
3946** parameter, and if so obtains the value of that query parameter.
3947**
3948** The first parameter to these interfaces (hereafter referred to
3949** as F) must be one of:
3950** <ul>
3951** <li> A database filename pointer created by the SQLite core and
3952** passed into the xOpen() method of a VFS implemention, or
3953** <li> A filename obtained from [sqlite3_db_filename()], or
3954** <li> A new filename constructed using [sqlite3_create_filename()].
3955** </ul>
3956** If the F parameter is not one of the above, then the behavior is
3957** undefined and probably undesirable. Older versions of SQLite were
3958** more tolerant of invalid F parameters than newer versions.
3959**
3960** If F is a suitable filename (as described in the previous paragraph)
3961** and if P is the name of the query parameter, then
3962** sqlite3_uri_parameter(F,P) returns the value of the P
3963** parameter if it exists or a NULL pointer if P does not appear as a
3964** query parameter on F. If P is a query parameter of F and it
3965** has no explicit value, then sqlite3_uri_parameter(F,P) returns
3966** a pointer to an empty string.
3967**
3968** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
3969** parameter and returns true (1) or false (0) according to the value
3970** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
3971** value of query parameter P is one of "yes", "true", or "on" in any
3972** case or if the value begins with a non-zero number. The
3973** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
3974** query parameter P is one of "no", "false", or "off" in any case or
3975** if the value begins with a numeric zero. If P is not a query
3976** parameter on F or if the value of P does not match any of the
3977** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
3978**
3979** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
3980** 64-bit signed integer and returns that integer, or D if P does not
3981** exist. If the value of P is something other than an integer, then
3982** zero is returned.
3983**
3984** The sqlite3_uri_key(F,N) returns a pointer to the name (not
3985** the value) of the N-th query parameter for filename F, or a NULL
3986** pointer if N is less than zero or greater than the number of query
3987** parameters minus 1. The N value is zero-based so N should be 0 to obtain
3988** the name of the first query parameter, 1 for the second parameter, and
3989** so forth.
3990**
3991** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
3992** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
3993** is not a database file pathname pointer that the SQLite core passed
3994** into the xOpen VFS method, then the behavior of this routine is undefined
3995** and probably undesirable.
3996**
3997** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
3998** parameter can also be the name of a rollback journal file or WAL file
3999** in addition to the main database file. Prior to version 3.31.0, these
4000** routines would only work if F was the name of the main database file.
4001** When the F parameter is the name of the rollback journal or WAL file,
4002** it has access to all the same query parameters as were found on the
4003** main database file.
4004**
4005** See the [URI filename] documentation for additional information.
4006*/
4007SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
4008SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
4009SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);
4010SQLITE_API const char *sqlite3_uri_key(const char *zFilename, int N);
4011
4012/*
4013** CAPI3REF: Translate filenames
4014**
4015** These routines are available to [VFS|custom VFS implementations] for
4016** translating filenames between the main database file, the journal file,
4017** and the WAL file.
4018**
4019** If F is the name of an sqlite database file, journal file, or WAL file
4020** passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
4021** returns the name of the corresponding database file.
4022**
4023** If F is the name of an sqlite database file, journal file, or WAL file
4024** passed by the SQLite core into the VFS, or if F is a database filename
4025** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
4026** returns the name of the corresponding rollback journal file.
4027**
4028** If F is the name of an sqlite database file, journal file, or WAL file
4029** that was passed by the SQLite core into the VFS, or if F is a database
4030** filename obtained from [sqlite3_db_filename()], then
4031** sqlite3_filename_wal(F) returns the name of the corresponding
4032** WAL file.
4033**
4034** In all of the above, if F is not the name of a database, journal or WAL
4035** filename passed into the VFS from the SQLite core and F is not the
4036** return value from [sqlite3_db_filename()], then the result is
4037** undefined and is likely a memory access violation.
4038*/
4039SQLITE_API const char *sqlite3_filename_database(const char*);
4040SQLITE_API const char *sqlite3_filename_journal(const char*);
4041SQLITE_API const char *sqlite3_filename_wal(const char*);
4042
4043/*
4044** CAPI3REF: Database File Corresponding To A Journal
4045**
4046** ^If X is the name of a rollback or WAL-mode journal file that is
4047** passed into the xOpen method of [sqlite3_vfs], then
4048** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
4049** object that represents the main database file.
4050**
4051** This routine is intended for use in custom [VFS] implementations
4052** only. It is not a general-purpose interface.
4053** The argument sqlite3_file_object(X) must be a filename pointer that
4054** has been passed into [sqlite3_vfs].xOpen method where the
4055** flags parameter to xOpen contains one of the bits
4056** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use
4057** of this routine results in undefined and probably undesirable
4058** behavior.
4059*/
4060SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*);
4061
4062/*
4063** CAPI3REF: Create and Destroy VFS Filenames
4064**
4065** These interfces are provided for use by [VFS shim] implementations and
4066** are not useful outside of that context.
4067**
4068** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
4069** database filename D with corresponding journal file J and WAL file W and
4070** with N URI parameters key/values pairs in the array P. The result from
4071** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
4072** is safe to pass to routines like:
4073** <ul>
4074** <li> [sqlite3_uri_parameter()],
4075** <li> [sqlite3_uri_boolean()],
4076** <li> [sqlite3_uri_int64()],
4077** <li> [sqlite3_uri_key()],
4078** <li> [sqlite3_filename_database()],
4079** <li> [sqlite3_filename_journal()], or
4080** <li> [sqlite3_filename_wal()].
4081** </ul>
4082** If a memory allocation error occurs, sqlite3_create_filename() might
4083** return a NULL pointer. The memory obtained from sqlite3_create_filename(X)
4084** must be released by a corresponding call to sqlite3_free_filename(Y).
4085**
4086** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
4087** of 2*N pointers to strings. Each pair of pointers in this array corresponds
4088** to a key and value for a query parameter. The P parameter may be a NULL
4089** pointer if N is zero. None of the 2*N pointers in the P array may be
4090** NULL pointers and key pointers should not be empty strings.
4091** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
4092** be NULL pointers, though they can be empty strings.
4093**
4094** The sqlite3_free_filename(Y) routine releases a memory allocation
4095** previously obtained from sqlite3_create_filename(). Invoking
4096** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
4097**
4098** If the Y parameter to sqlite3_free_filename(Y) is anything other
4099** than a NULL pointer or a pointer previously acquired from
4100** sqlite3_create_filename(), then bad things such as heap
4101** corruption or segfaults may occur. The value Y should not be
4102** used again after sqlite3_free_filename(Y) has been called. This means
4103** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
4104** then the corresponding [sqlite3_module.xClose() method should also be
4105** invoked prior to calling sqlite3_free_filename(Y).
4106*/
4107SQLITE_API char *sqlite3_create_filename(
4108 const char *zDatabase,
4109 const char *zJournal,
4110 const char *zWal,
4111 int nParam,
4112 const char **azParam
4113);
4114SQLITE_API void sqlite3_free_filename(char*);
4115
4116/*
4117** CAPI3REF: Error Codes And Messages
4118** METHOD: sqlite3
4119**
4120** ^If the most recent sqlite3_* API call associated with
4121** [database connection] D failed, then the sqlite3_errcode(D) interface
4122** returns the numeric [result code] or [extended result code] for that
4123** API call.
4124** ^The sqlite3_extended_errcode()
4125** interface is the same except that it always returns the
4126** [extended result code] even when extended result codes are
4127** disabled.
4128**
4129** The values returned by sqlite3_errcode() and/or
4130** sqlite3_extended_errcode() might change with each API call.
4131** Except, there are some interfaces that are guaranteed to never
4132** change the value of the error code. The error-code preserving
4133** interfaces include the following:
4134**
4135** <ul>
4136** <li> sqlite3_errcode()
4137** <li> sqlite3_extended_errcode()
4138** <li> sqlite3_errmsg()
4139** <li> sqlite3_errmsg16()
4140** <li> sqlite3_error_offset()
4141** </ul>
4142**
4143** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
4144** text that describes the error, as either UTF-8 or UTF-16 respectively.
4145** ^(Memory to hold the error message string is managed internally.
4146** The application does not need to worry about freeing the result.
4147** However, the error string might be overwritten or deallocated by
4148** subsequent calls to other SQLite interface functions.)^
4149**
4150** ^The sqlite3_errstr() interface returns the English-language text
4151** that describes the [result code], as UTF-8.
4152** ^(Memory to hold the error message string is managed internally
4153** and must not be freed by the application)^.
4154**
4155** ^If the most recent error references a specific token in the input
4156** SQL, the sqlite3_error_offset() interface returns the byte offset
4157** of the start of that token. ^The byte offset returned by
4158** sqlite3_error_offset() assumes that the input SQL is UTF8.
4159** ^If the most recent error does not reference a specific token in the input
4160** SQL, then the sqlite3_error_offset() function returns -1.
4161**
4162** When the serialized [threading mode] is in use, it might be the
4163** case that a second error occurs on a separate thread in between
4164** the time of the first error and the call to these interfaces.
4165** When that happens, the second error will be reported since these
4166** interfaces always report the most recent result. To avoid
4167** this, each thread can obtain exclusive use of the [database connection] D
4168** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
4169** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
4170** all calls to the interfaces listed here are completed.
4171**
4172** If an interface fails with SQLITE_MISUSE, that means the interface
4173** was invoked incorrectly by the application. In that case, the
4174** error code and message may or may not be set.
4175*/
4176SQLITE_API int sqlite3_errcode(sqlite3 *db);
4177SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
4178SQLITE_API const char *sqlite3_errmsg(sqlite3*);
4179SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
4180SQLITE_API const char *sqlite3_errstr(int);
4181SQLITE_API int sqlite3_error_offset(sqlite3 *db);
4182
4183/*
4184** CAPI3REF: Prepared Statement Object
4185** KEYWORDS: {prepared statement} {prepared statements}
4186**
4187** An instance of this object represents a single SQL statement that
4188** has been compiled into binary form and is ready to be evaluated.
4189**
4190** Think of each SQL statement as a separate computer program. The
4191** original SQL text is source code. A prepared statement object
4192** is the compiled object code. All SQL must be converted into a
4193** prepared statement before it can be run.
4194**
4195** The life-cycle of a prepared statement object usually goes like this:
4196**
4197** <ol>
4198** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
4199** <li> Bind values to [parameters] using the sqlite3_bind_*()
4200** interfaces.
4201** <li> Run the SQL by calling [sqlite3_step()] one or more times.
4202** <li> Reset the prepared statement using [sqlite3_reset()] then go back
4203** to step 2. Do this zero or more times.
4204** <li> Destroy the object using [sqlite3_finalize()].
4205** </ol>
4206*/
4207typedef struct sqlite3_stmt sqlite3_stmt;
4208
4209/*
4210** CAPI3REF: Run-time Limits
4211** METHOD: sqlite3
4212**
4213** ^(This interface allows the size of various constructs to be limited
4214** on a connection by connection basis. The first parameter is the
4215** [database connection] whose limit is to be set or queried. The
4216** second parameter is one of the [limit categories] that define a
4217** class of constructs to be size limited. The third parameter is the
4218** new limit for that construct.)^
4219**
4220** ^If the new limit is a negative number, the limit is unchanged.
4221** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
4222** [limits | hard upper bound]
4223** set at compile-time by a C preprocessor macro called
4224** [limits | SQLITE_MAX_<i>NAME</i>].
4225** (The "_LIMIT_" in the name is changed to "_MAX_".))^
4226** ^Attempts to increase a limit above its hard upper bound are
4227** silently truncated to the hard upper bound.
4228**
4229** ^Regardless of whether or not the limit was changed, the
4230** [sqlite3_limit()] interface returns the prior value of the limit.
4231** ^Hence, to find the current value of a limit without changing it,
4232** simply invoke this interface with the third parameter set to -1.
4233**
4234** Run-time limits are intended for use in applications that manage
4235** both their own internal database and also databases that are controlled
4236** by untrusted external sources. An example application might be a
4237** web browser that has its own databases for storing history and
4238** separate databases controlled by JavaScript applications downloaded
4239** off the Internet. The internal databases can be given the
4240** large, default limits. Databases managed by external sources can
4241** be given much smaller limits designed to prevent a denial of service
4242** attack. Developers might also want to use the [sqlite3_set_authorizer()]
4243** interface to further control untrusted SQL. The size of the database
4244** created by an untrusted script can be contained using the
4245** [max_page_count] [PRAGMA].
4246**
4247** New run-time limit categories may be added in future releases.
4248*/
4249SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
4250
4251/*
4252** CAPI3REF: Run-Time Limit Categories
4253** KEYWORDS: {limit category} {*limit categories}
4254**
4255** These constants define various performance limits
4256** that can be lowered at run-time using [sqlite3_limit()].
4257** The synopsis of the meanings of the various limits is shown below.
4258** Additional information is available at [limits | Limits in SQLite].
4259**
4260** <dl>
4261** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
4262** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
4263**
4264** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
4265** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
4266**
4267** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
4268** <dd>The maximum number of columns in a table definition or in the
4269** result set of a [SELECT] or the maximum number of columns in an index
4270** or in an ORDER BY or GROUP BY clause.</dd>)^
4271**
4272** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
4273** <dd>The maximum depth of the parse tree on any expression.</dd>)^
4274**
4275** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
4276** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
4277**
4278** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
4279** <dd>The maximum number of instructions in a virtual machine program
4280** used to implement an SQL statement. If [sqlite3_prepare_v2()] or
4281** the equivalent tries to allocate space for more than this many opcodes
4282** in a single prepared statement, an SQLITE_NOMEM error is returned.</dd>)^
4283**
4284** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
4285** <dd>The maximum number of arguments on a function.</dd>)^
4286**
4287** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
4288** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
4289**
4290** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
4291** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
4292** <dd>The maximum length of the pattern argument to the [LIKE] or
4293** [GLOB] operators.</dd>)^
4294**
4295** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
4296** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
4297** <dd>The maximum index number of any [parameter] in an SQL statement.)^
4298**
4299** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
4300** <dd>The maximum depth of recursion for triggers.</dd>)^
4301**
4302** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
4303** <dd>The maximum number of auxiliary worker threads that a single
4304** [prepared statement] may start.</dd>)^
4305** </dl>
4306*/
4307#define SQLITE_LIMIT_LENGTH0 0
4308#define SQLITE_LIMIT_SQL_LENGTH1 1
4309#define SQLITE_LIMIT_COLUMN2 2
4310#define SQLITE_LIMIT_EXPR_DEPTH3 3
4311#define SQLITE_LIMIT_COMPOUND_SELECT4 4
4312#define SQLITE_LIMIT_VDBE_OP5 5
4313#define SQLITE_LIMIT_FUNCTION_ARG6 6
4314#define SQLITE_LIMIT_ATTACHED7 7
4315#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH8 8
4316#define SQLITE_LIMIT_VARIABLE_NUMBER9 9
4317#define SQLITE_LIMIT_TRIGGER_DEPTH10 10
4318#define SQLITE_LIMIT_WORKER_THREADS11 11
4319
4320/*
4321** CAPI3REF: Prepare Flags
4322**
4323** These constants define various flags that can be passed into
4324** "prepFlags" parameter of the [sqlite3_prepare_v3()] and
4325** [sqlite3_prepare16_v3()] interfaces.
4326**
4327** New flags may be added in future releases of SQLite.
4328**
4329** <dl>
4330** [[SQLITE_PREPARE_PERSISTENT]] ^(<dt>SQLITE_PREPARE_PERSISTENT</dt>
4331** <dd>The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner
4332** that the prepared statement will be retained for a long time and
4333** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
4334** and [sqlite3_prepare16_v3()] assume that the prepared statement will
4335** be used just once or at most a few times and then destroyed using
4336** [sqlite3_finalize()] relatively soon. The current implementation acts
4337** on this hint by avoiding the use of [lookaside memory] so as not to
4338** deplete the limited store of lookaside memory. Future versions of
4339** SQLite may act on this hint differently.
4340**
4341** [[SQLITE_PREPARE_NORMALIZE]] <dt>SQLITE_PREPARE_NORMALIZE</dt>
4342** <dd>The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used
4343** to be required for any prepared statement that wanted to use the
4344** [sqlite3_normalized_sql()] interface. However, the
4345** [sqlite3_normalized_sql()] interface is now available to all
4346** prepared statements, regardless of whether or not they use this
4347** flag.
4348**
4349** [[SQLITE_PREPARE_NO_VTAB]] <dt>SQLITE_PREPARE_NO_VTAB</dt>
4350** <dd>The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler
4351** to return an error (error code SQLITE_ERROR) if the statement uses
4352** any virtual tables.
4353** </dl>
4354*/
4355#define SQLITE_PREPARE_PERSISTENT0x01 0x01
4356#define SQLITE_PREPARE_NORMALIZE0x02 0x02
4357#define SQLITE_PREPARE_NO_VTAB0x04 0x04
4358
4359/*
4360** CAPI3REF: Compiling An SQL Statement
4361** KEYWORDS: {SQL statement compiler}
4362** METHOD: sqlite3
4363** CONSTRUCTOR: sqlite3_stmt
4364**
4365** To execute an SQL statement, it must first be compiled into a byte-code
4366** program using one of these routines. Or, in other words, these routines
4367** are constructors for the [prepared statement] object.
4368**
4369** The preferred routine to use is [sqlite3_prepare_v2()]. The
4370** [sqlite3_prepare()] interface is legacy and should be avoided.
4371** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
4372** for special purposes.
4373**
4374** The use of the UTF-8 interfaces is preferred, as SQLite currently
4375** does all parsing using UTF-8. The UTF-16 interfaces are provided
4376** as a convenience. The UTF-16 interfaces work by converting the
4377** input text into UTF-8, then invoking the corresponding UTF-8 interface.
4378**
4379** The first argument, "db", is a [database connection] obtained from a
4380** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
4381** [sqlite3_open16()]. The database connection must not have been closed.
4382**
4383** The second argument, "zSql", is the statement to be compiled, encoded
4384** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(),
4385** and sqlite3_prepare_v3()
4386** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
4387** and sqlite3_prepare16_v3() use UTF-16.
4388**
4389** ^If the nByte argument is negative, then zSql is read up to the
4390** first zero terminator. ^If nByte is positive, then it is the
4391** number of bytes read from zSql. ^If nByte is zero, then no prepared
4392** statement is generated.
4393** If the caller knows that the supplied string is nul-terminated, then
4394** there is a small performance advantage to passing an nByte parameter that
4395** is the number of bytes in the input string <i>including</i>
4396** the nul-terminator.
4397**
4398** ^If pzTail is not NULL then *pzTail is made to point to the first byte
4399** past the end of the first SQL statement in zSql. These routines only
4400** compile the first statement in zSql, so *pzTail is left pointing to
4401** what remains uncompiled.
4402**
4403** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
4404** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
4405** to NULL. ^If the input text contains no SQL (if the input is an empty
4406** string or a comment) then *ppStmt is set to NULL.
4407** The calling procedure is responsible for deleting the compiled
4408** SQL statement using [sqlite3_finalize()] after it has finished with it.
4409** ppStmt may not be NULL.
4410**
4411** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
4412** otherwise an [error code] is returned.
4413**
4414** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
4415** and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
4416** The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
4417** are retained for backwards compatibility, but their use is discouraged.
4418** ^In the "vX" interfaces, the prepared statement
4419** that is returned (the [sqlite3_stmt] object) contains a copy of the
4420** original SQL text. This causes the [sqlite3_step()] interface to
4421** behave differently in three ways:
4422**
4423** <ol>
4424** <li>
4425** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
4426** always used to do, [sqlite3_step()] will automatically recompile the SQL
4427** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
4428** retries will occur before sqlite3_step() gives up and returns an error.
4429** </li>
4430**
4431** <li>
4432** ^When an error occurs, [sqlite3_step()] will return one of the detailed
4433** [error codes] or [extended error codes]. ^The legacy behavior was that
4434** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
4435** and the application would have to make a second call to [sqlite3_reset()]
4436** in order to find the underlying cause of the problem. With the "v2" prepare
4437** interfaces, the underlying reason for the error is returned immediately.
4438** </li>
4439**
4440** <li>
4441** ^If the specific value bound to a [parameter | host parameter] in the
4442** WHERE clause might influence the choice of query plan for a statement,
4443** then the statement will be automatically recompiled, as if there had been
4444** a schema change, on the first [sqlite3_step()] call following any change
4445** to the [sqlite3_bind_text | bindings] of that [parameter].
4446** ^The specific value of a WHERE-clause [parameter] might influence the
4447** choice of query plan if the parameter is the left-hand side of a [LIKE]
4448** or [GLOB] operator or if the parameter is compared to an indexed column
4449** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
4450** </li>
4451** </ol>
4452**
4453** <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
4454** the extra prepFlags parameter, which is a bit array consisting of zero or
4455** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The
4456** sqlite3_prepare_v2() interface works exactly the same as
4457** sqlite3_prepare_v3() with a zero prepFlags parameter.
4458*/
4459SQLITE_API int sqlite3_prepare(
4460 sqlite3 *db, /* Database handle */
4461 const char *zSql, /* SQL statement, UTF-8 encoded */
4462 int nByte, /* Maximum length of zSql in bytes. */
4463 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
4464 const char **pzTail /* OUT: Pointer to unused portion of zSql */
4465);
4466SQLITE_API int sqlite3_prepare_v2(
4467 sqlite3 *db, /* Database handle */
4468 const char *zSql, /* SQL statement, UTF-8 encoded */
4469 int nByte, /* Maximum length of zSql in bytes. */
4470 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
4471 const char **pzTail /* OUT: Pointer to unused portion of zSql */
4472);
4473SQLITE_API int sqlite3_prepare_v3(
4474 sqlite3 *db, /* Database handle */
4475 const char *zSql, /* SQL statement, UTF-8 encoded */
4476 int nByte, /* Maximum length of zSql in bytes. */
4477 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
4478 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
4479 const char **pzTail /* OUT: Pointer to unused portion of zSql */
4480);
4481SQLITE_API int sqlite3_prepare16(
4482 sqlite3 *db, /* Database handle */
4483 const void *zSql, /* SQL statement, UTF-16 encoded */
4484 int nByte, /* Maximum length of zSql in bytes. */
4485 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
4486 const void **pzTail /* OUT: Pointer to unused portion of zSql */
4487);
4488SQLITE_API int sqlite3_prepare16_v2(
4489 sqlite3 *db, /* Database handle */
4490 const void *zSql, /* SQL statement, UTF-16 encoded */
4491 int nByte, /* Maximum length of zSql in bytes. */
4492 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
4493 const void **pzTail /* OUT: Pointer to unused portion of zSql */
4494);
4495SQLITE_API int sqlite3_prepare16_v3(
4496 sqlite3 *db, /* Database handle */
4497 const void *zSql, /* SQL statement, UTF-16 encoded */
4498 int nByte, /* Maximum length of zSql in bytes. */
4499 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
4500 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
4501 const void **pzTail /* OUT: Pointer to unused portion of zSql */
4502);
4503
4504/*
4505** CAPI3REF: Retrieving Statement SQL
4506** METHOD: sqlite3_stmt
4507**
4508** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
4509** SQL text used to create [prepared statement] P if P was
4510** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
4511** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
4512** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
4513** string containing the SQL text of prepared statement P with
4514** [bound parameters] expanded.
4515** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
4516** string containing the normalized SQL text of prepared statement P. The
4517** semantics used to normalize a SQL statement are unspecified and subject
4518** to change. At a minimum, literal values will be replaced with suitable
4519** placeholders.
4520**
4521** ^(For example, if a prepared statement is created using the SQL
4522** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
4523** and parameter :xyz is unbound, then sqlite3_sql() will return
4524** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
4525** will return "SELECT 2345,NULL".)^
4526**
4527** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
4528** is available to hold the result, or if the result would exceed the
4529** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
4530**
4531** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
4532** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time
4533** option causes sqlite3_expanded_sql() to always return NULL.
4534**
4535** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
4536** are managed by SQLite and are automatically freed when the prepared
4537** statement is finalized.
4538** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
4539** is obtained from [sqlite3_malloc()] and must be freed by the application
4540** by passing it to [sqlite3_free()].
4541**
4542** ^The sqlite3_normalized_sql() interface is only available if
4543** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined.
4544*/
4545SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
4546SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
4547#ifdef SQLITE_ENABLE_NORMALIZE
4548SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);
4549#endif
4550
4551/*
4552** CAPI3REF: Determine If An SQL Statement Writes The Database
4553** METHOD: sqlite3_stmt
4554**
4555** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
4556** and only if the [prepared statement] X makes no direct changes to
4557** the content of the database file.
4558**
4559** Note that [application-defined SQL functions] or
4560** [virtual tables] might change the database indirectly as a side effect.
4561** ^(For example, if an application defines a function "eval()" that
4562** calls [sqlite3_exec()], then the following SQL statement would
4563** change the database file through side-effects:
4564**
4565** <blockquote><pre>
4566** SELECT eval('DELETE FROM t1') FROM t2;
4567** </pre></blockquote>
4568**
4569** But because the [SELECT] statement does not change the database file
4570** directly, sqlite3_stmt_readonly() would still return true.)^
4571**
4572** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
4573** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
4574** since the statements themselves do not actually modify the database but
4575** rather they control the timing of when other statements modify the
4576** database. ^The [ATTACH] and [DETACH] statements also cause
4577** sqlite3_stmt_readonly() to return true since, while those statements
4578** change the configuration of a database connection, they do not make
4579** changes to the content of the database files on disk.
4580** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
4581** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
4582** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
4583** sqlite3_stmt_readonly() returns false for those commands.
4584**
4585** ^This routine returns false if there is any possibility that the
4586** statement might change the database file. ^A false return does
4587** not guarantee that the statement will change the database file.
4588** ^For example, an UPDATE statement might have a WHERE clause that
4589** makes it a no-op, but the sqlite3_stmt_readonly() result would still
4590** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a
4591** read-only no-op if the table already exists, but
4592** sqlite3_stmt_readonly() still returns false for such a statement.
4593**
4594** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN]
4595** statement, then sqlite3_stmt_readonly(X) returns the same value as
4596** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted.
4597*/
4598SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
4599
4600/*
4601** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
4602** METHOD: sqlite3_stmt
4603**
4604** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
4605** prepared statement S is an EXPLAIN statement, or 2 if the
4606** statement S is an EXPLAIN QUERY PLAN.
4607** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
4608** an ordinary statement or a NULL pointer.
4609*/
4610SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);
4611
4612/*
4613** CAPI3REF: Determine If A Prepared Statement Has Been Reset
4614** METHOD: sqlite3_stmt
4615**
4616** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
4617** [prepared statement] S has been stepped at least once using
4618** [sqlite3_step(S)] but has neither run to completion (returned
4619** [SQLITE_DONE] from [sqlite3_step(S)]) nor
4620** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
4621** interface returns false if S is a NULL pointer. If S is not a
4622** NULL pointer and is not a pointer to a valid [prepared statement]
4623** object, then the behavior is undefined and probably undesirable.
4624**
4625** This interface can be used in combination [sqlite3_next_stmt()]
4626** to locate all prepared statements associated with a database
4627** connection that are in need of being reset. This can be used,
4628** for example, in diagnostic routines to search for prepared
4629** statements that are holding a transaction open.
4630*/
4631SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
4632
4633/*
4634** CAPI3REF: Dynamically Typed Value Object
4635** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
4636**
4637** SQLite uses the sqlite3_value object to represent all values
4638** that can be stored in a database table. SQLite uses dynamic typing
4639** for the values it stores. ^Values stored in sqlite3_value objects
4640** can be integers, floating point values, strings, BLOBs, or NULL.
4641**
4642** An sqlite3_value object may be either "protected" or "unprotected".
4643** Some interfaces require a protected sqlite3_value. Other interfaces
4644** will accept either a protected or an unprotected sqlite3_value.
4645** Every interface that accepts sqlite3_value arguments specifies
4646** whether or not it requires a protected sqlite3_value. The
4647** [sqlite3_value_dup()] interface can be used to construct a new
4648** protected sqlite3_value from an unprotected sqlite3_value.
4649**
4650** The terms "protected" and "unprotected" refer to whether or not
4651** a mutex is held. An internal mutex is held for a protected
4652** sqlite3_value object but no mutex is held for an unprotected
4653** sqlite3_value object. If SQLite is compiled to be single-threaded
4654** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
4655** or if SQLite is run in one of reduced mutex modes
4656** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
4657** then there is no distinction between protected and unprotected
4658** sqlite3_value objects and they can be used interchangeably. However,
4659** for maximum code portability it is recommended that applications
4660** still make the distinction between protected and unprotected
4661** sqlite3_value objects even when not strictly required.
4662**
4663** ^The sqlite3_value objects that are passed as parameters into the
4664** implementation of [application-defined SQL functions] are protected.
4665** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()]
4666** are protected.
4667** ^The sqlite3_value object returned by
4668** [sqlite3_column_value()] is unprotected.
4669** Unprotected sqlite3_value objects may only be used as arguments
4670** to [sqlite3_result_value()], [sqlite3_bind_value()], and
4671** [sqlite3_value_dup()].
4672** The [sqlite3_value_blob | sqlite3_value_type()] family of
4673** interfaces require protected sqlite3_value objects.
4674*/
4675typedef struct sqlite3_value sqlite3_value;
4676
4677/*
4678** CAPI3REF: SQL Function Context Object
4679**
4680** The context in which an SQL function executes is stored in an
4681** sqlite3_context object. ^A pointer to an sqlite3_context object
4682** is always first parameter to [application-defined SQL functions].
4683** The application-defined SQL function implementation will pass this
4684** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
4685** [sqlite3_aggregate_context()], [sqlite3_user_data()],
4686** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
4687** and/or [sqlite3_set_auxdata()].
4688*/
4689typedef struct sqlite3_context sqlite3_context;
4690
4691/*
4692** CAPI3REF: Binding Values To Prepared Statements
4693** KEYWORDS: {host parameter} {host parameters} {host parameter name}
4694** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
4695** METHOD: sqlite3_stmt
4696**
4697** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
4698** literals may be replaced by a [parameter] that matches one of following
4699** templates:
4700**
4701** <ul>
4702** <li> ?
4703** <li> ?NNN
4704** <li> :VVV
4705** <li> @VVV
4706** <li> $VVV
4707** </ul>
4708**
4709** In the templates above, NNN represents an integer literal,
4710** and VVV represents an alphanumeric identifier.)^ ^The values of these
4711** parameters (also called "host parameter names" or "SQL parameters")
4712** can be set using the sqlite3_bind_*() routines defined here.
4713**
4714** ^The first argument to the sqlite3_bind_*() routines is always
4715** a pointer to the [sqlite3_stmt] object returned from
4716** [sqlite3_prepare_v2()] or its variants.
4717**
4718** ^The second argument is the index of the SQL parameter to be set.
4719** ^The leftmost SQL parameter has an index of 1. ^When the same named
4720** SQL parameter is used more than once, second and subsequent
4721** occurrences have the same index as the first occurrence.
4722** ^The index for named parameters can be looked up using the
4723** [sqlite3_bind_parameter_index()] API if desired. ^The index
4724** for "?NNN" parameters is the value of NNN.
4725** ^The NNN value must be between 1 and the [sqlite3_limit()]
4726** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
4727**
4728** ^The third argument is the value to bind to the parameter.
4729** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
4730** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
4731** is ignored and the end result is the same as sqlite3_bind_null().
4732** ^If the third parameter to sqlite3_bind_text() is not NULL, then
4733** it should be a pointer to well-formed UTF8 text.
4734** ^If the third parameter to sqlite3_bind_text16() is not NULL, then
4735** it should be a pointer to well-formed UTF16 text.
4736** ^If the third parameter to sqlite3_bind_text64() is not NULL, then
4737** it should be a pointer to a well-formed unicode string that is
4738** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
4739** otherwise.
4740**
4741** [[byte-order determination rules]] ^The byte-order of
4742** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
4743** found in first character, which is removed, or in the absence of a BOM
4744** the byte order is the native byte order of the host
4745** machine for sqlite3_bind_text16() or the byte order specified in
4746** the 6th parameter for sqlite3_bind_text64().)^
4747** ^If UTF16 input text contains invalid unicode
4748** characters, then SQLite might change those invalid characters
4749** into the unicode replacement character: U+FFFD.
4750**
4751** ^(In those routines that have a fourth argument, its value is the
4752** number of bytes in the parameter. To be clear: the value is the
4753** number of <u>bytes</u> in the value, not the number of characters.)^
4754** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
4755** is negative, then the length of the string is
4756** the number of bytes up to the first zero terminator.
4757** If the fourth parameter to sqlite3_bind_blob() is negative, then
4758** the behavior is undefined.
4759** If a non-negative fourth parameter is provided to sqlite3_bind_text()
4760** or sqlite3_bind_text16() or sqlite3_bind_text64() then
4761** that parameter must be the byte offset
4762** where the NUL terminator would occur assuming the string were NUL
4763** terminated. If any NUL characters occurs at byte offsets less than
4764** the value of the fourth parameter then the resulting string value will
4765** contain embedded NULs. The result of expressions involving strings
4766** with embedded NULs is undefined.
4767**
4768** ^The fifth argument to the BLOB and string binding interfaces controls
4769** or indicates the lifetime of the object referenced by the third parameter.
4770** These three options exist:
4771** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished
4772** with it may be passed. ^It is called to dispose of the BLOB or string even
4773** if the call to the bind API fails, except the destructor is not called if
4774** the third parameter is a NULL pointer or the fourth parameter is negative.
4775** ^ (2) The special constant, [SQLITE_STATIC], may be passsed to indicate that
4776** the application remains responsible for disposing of the object. ^In this
4777** case, the object and the provided pointer to it must remain valid until
4778** either the prepared statement is finalized or the same SQL parameter is
4779** bound to something else, whichever occurs sooner.
4780** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the
4781** object is to be copied prior to the return from sqlite3_bind_*(). ^The
4782** object and pointer to it must remain valid until then. ^SQLite will then
4783** manage the lifetime of its private copy.
4784**
4785** ^The sixth argument to sqlite3_bind_text64() must be one of
4786** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
4787** to specify the encoding of the text in the third parameter. If
4788** the sixth argument to sqlite3_bind_text64() is not one of the
4789** allowed values shown above, or if the text encoding is different
4790** from the encoding specified by the sixth parameter, then the behavior
4791** is undefined.
4792**
4793** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
4794** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
4795** (just an integer to hold its size) while it is being processed.
4796** Zeroblobs are intended to serve as placeholders for BLOBs whose
4797** content is later written using
4798** [sqlite3_blob_open | incremental BLOB I/O] routines.
4799** ^A negative value for the zeroblob results in a zero-length BLOB.
4800**
4801** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
4802** [prepared statement] S to have an SQL value of NULL, but to also be
4803** associated with the pointer P of type T. ^D is either a NULL pointer or
4804** a pointer to a destructor function for P. ^SQLite will invoke the
4805** destructor D with a single argument of P when it is finished using
4806** P. The T parameter should be a static string, preferably a string
4807** literal. The sqlite3_bind_pointer() routine is part of the
4808** [pointer passing interface] added for SQLite 3.20.0.
4809**
4810** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
4811** for the [prepared statement] or with a prepared statement for which
4812** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
4813** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
4814** routine is passed a [prepared statement] that has been finalized, the
4815** result is undefined and probably harmful.
4816**
4817** ^Bindings are not cleared by the [sqlite3_reset()] routine.
4818** ^Unbound parameters are interpreted as NULL.
4819**
4820** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
4821** [error code] if anything goes wrong.
4822** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
4823** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
4824** [SQLITE_MAX_LENGTH].
4825** ^[SQLITE_RANGE] is returned if the parameter
4826** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
4827**
4828** See also: [sqlite3_bind_parameter_count()],
4829** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
4830*/
4831SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
4832SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
4833 void(*)(void*));
4834SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
4835SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
4836SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
4837SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
4838SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
4839SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
4840SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
4841 void(*)(void*), unsigned char encoding);
4842SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
4843SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*));
4844SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
4845SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
4846
4847/*
4848** CAPI3REF: Number Of SQL Parameters
4849** METHOD: sqlite3_stmt
4850**
4851** ^This routine can be used to find the number of [SQL parameters]
4852** in a [prepared statement]. SQL parameters are tokens of the
4853** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
4854** placeholders for values that are [sqlite3_bind_blob | bound]
4855** to the parameters at a later time.
4856**
4857** ^(This routine actually returns the index of the largest (rightmost)
4858** parameter. For all forms except ?NNN, this will correspond to the
4859** number of unique parameters. If parameters of the ?NNN form are used,
4860** there may be gaps in the list.)^
4861**
4862** See also: [sqlite3_bind_blob|sqlite3_bind()],
4863** [sqlite3_bind_parameter_name()], and
4864** [sqlite3_bind_parameter_index()].
4865*/
4866SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
4867
4868/*
4869** CAPI3REF: Name Of A Host Parameter
4870** METHOD: sqlite3_stmt
4871**
4872** ^The sqlite3_bind_parameter_name(P,N) interface returns
4873** the name of the N-th [SQL parameter] in the [prepared statement] P.
4874** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
4875** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
4876** respectively.
4877** In other words, the initial ":" or "$" or "@" or "?"
4878** is included as part of the name.)^
4879** ^Parameters of the form "?" without a following integer have no name
4880** and are referred to as "nameless" or "anonymous parameters".
4881**
4882** ^The first host parameter has an index of 1, not 0.
4883**
4884** ^If the value N is out of range or if the N-th parameter is
4885** nameless, then NULL is returned. ^The returned string is
4886** always in UTF-8 encoding even if the named parameter was
4887** originally specified as UTF-16 in [sqlite3_prepare16()],
4888** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
4889**
4890** See also: [sqlite3_bind_blob|sqlite3_bind()],
4891** [sqlite3_bind_parameter_count()], and
4892** [sqlite3_bind_parameter_index()].
4893*/
4894SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
4895
4896/*
4897** CAPI3REF: Index Of A Parameter With A Given Name
4898** METHOD: sqlite3_stmt
4899**
4900** ^Return the index of an SQL parameter given its name. ^The
4901** index value returned is suitable for use as the second
4902** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
4903** is returned if no matching parameter is found. ^The parameter
4904** name must be given in UTF-8 even if the original statement
4905** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
4906** [sqlite3_prepare16_v3()].
4907**
4908** See also: [sqlite3_bind_blob|sqlite3_bind()],
4909** [sqlite3_bind_parameter_count()], and
4910** [sqlite3_bind_parameter_name()].
4911*/
4912SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
4913
4914/*
4915** CAPI3REF: Reset All Bindings On A Prepared Statement
4916** METHOD: sqlite3_stmt
4917**
4918** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
4919** the [sqlite3_bind_blob | bindings] on a [prepared statement].
4920** ^Use this routine to reset all host parameters to NULL.
4921*/
4922SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
4923
4924/*
4925** CAPI3REF: Number Of Columns In A Result Set
4926** METHOD: sqlite3_stmt
4927**
4928** ^Return the number of columns in the result set returned by the
4929** [prepared statement]. ^If this routine returns 0, that means the
4930** [prepared statement] returns no data (for example an [UPDATE]).
4931** ^However, just because this routine returns a positive number does not
4932** mean that one or more rows of data will be returned. ^A SELECT statement
4933** will always have a positive sqlite3_column_count() but depending on the
4934** WHERE clause constraints and the table content, it might return no rows.
4935**
4936** See also: [sqlite3_data_count()]
4937*/
4938SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
4939
4940/*
4941** CAPI3REF: Column Names In A Result Set
4942** METHOD: sqlite3_stmt
4943**
4944** ^These routines return the name assigned to a particular column
4945** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
4946** interface returns a pointer to a zero-terminated UTF-8 string
4947** and sqlite3_column_name16() returns a pointer to a zero-terminated
4948** UTF-16 string. ^The first parameter is the [prepared statement]
4949** that implements the [SELECT] statement. ^The second parameter is the
4950** column number. ^The leftmost column is number 0.
4951**
4952** ^The returned string pointer is valid until either the [prepared statement]
4953** is destroyed by [sqlite3_finalize()] or until the statement is automatically
4954** reprepared by the first call to [sqlite3_step()] for a particular run
4955** or until the next call to
4956** sqlite3_column_name() or sqlite3_column_name16() on the same column.
4957**
4958** ^If sqlite3_malloc() fails during the processing of either routine
4959** (for example during a conversion from UTF-8 to UTF-16) then a
4960** NULL pointer is returned.
4961**
4962** ^The name of a result column is the value of the "AS" clause for
4963** that column, if there is an AS clause. If there is no AS clause
4964** then the name of the column is unspecified and may change from
4965** one release of SQLite to the next.
4966*/
4967SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
4968SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
4969
4970/*
4971** CAPI3REF: Source Of Data In A Query Result
4972** METHOD: sqlite3_stmt
4973**
4974** ^These routines provide a means to determine the database, table, and
4975** table column that is the origin of a particular result column in
4976** [SELECT] statement.
4977** ^The name of the database or table or column can be returned as
4978** either a UTF-8 or UTF-16 string. ^The _database_ routines return
4979** the database name, the _table_ routines return the table name, and
4980** the origin_ routines return the column name.
4981** ^The returned string is valid until the [prepared statement] is destroyed
4982** using [sqlite3_finalize()] or until the statement is automatically
4983** reprepared by the first call to [sqlite3_step()] for a particular run
4984** or until the same information is requested
4985** again in a different encoding.
4986**
4987** ^The names returned are the original un-aliased names of the
4988** database, table, and column.
4989**
4990** ^The first argument to these interfaces is a [prepared statement].
4991** ^These functions return information about the Nth result column returned by
4992** the statement, where N is the second function argument.
4993** ^The left-most column is column 0 for these routines.
4994**
4995** ^If the Nth column returned by the statement is an expression or
4996** subquery and is not a column value, then all of these functions return
4997** NULL. ^These routines might also return NULL if a memory allocation error
4998** occurs. ^Otherwise, they return the name of the attached database, table,
4999** or column that query result column was extracted from.
5000**
5001** ^As with all other SQLite APIs, those whose names end with "16" return
5002** UTF-16 encoded strings and the other functions return UTF-8.
5003**
5004** ^These APIs are only available if the library was compiled with the
5005** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
5006**
5007** If two or more threads call one or more
5008** [sqlite3_column_database_name | column metadata interfaces]
5009** for the same [prepared statement] and result column
5010** at the same time then the results are undefined.
5011*/
5012SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
5013SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
5014SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
5015SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
5016SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
5017SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
5018
5019/*
5020** CAPI3REF: Declared Datatype Of A Query Result
5021** METHOD: sqlite3_stmt
5022**
5023** ^(The first parameter is a [prepared statement].
5024** If this statement is a [SELECT] statement and the Nth column of the
5025** returned result set of that [SELECT] is a table column (not an
5026** expression or subquery) then the declared type of the table
5027** column is returned.)^ ^If the Nth column of the result set is an
5028** expression or subquery, then a NULL pointer is returned.
5029** ^The returned string is always UTF-8 encoded.
5030**
5031** ^(For example, given the database schema:
5032**
5033** CREATE TABLE t1(c1 VARIANT);
5034**
5035** and the following statement to be compiled:
5036**
5037** SELECT c1 + 1, c1 FROM t1;
5038**
5039** this routine would return the string "VARIANT" for the second result
5040** column (i==1), and a NULL pointer for the first result column (i==0).)^
5041**
5042** ^SQLite uses dynamic run-time typing. ^So just because a column
5043** is declared to contain a particular type does not mean that the
5044** data stored in that column is of the declared type. SQLite is
5045** strongly typed, but the typing is dynamic not static. ^Type
5046** is associated with individual values, not with the containers
5047** used to hold those values.
5048*/
5049SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
5050SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
5051
5052/*
5053** CAPI3REF: Evaluate An SQL Statement
5054** METHOD: sqlite3_stmt
5055**
5056** After a [prepared statement] has been prepared using any of
5057** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
5058** or [sqlite3_prepare16_v3()] or one of the legacy
5059** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
5060** must be called one or more times to evaluate the statement.
5061**
5062** The details of the behavior of the sqlite3_step() interface depend
5063** on whether the statement was prepared using the newer "vX" interfaces
5064** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
5065** [sqlite3_prepare16_v2()] or the older legacy
5066** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
5067** new "vX" interface is recommended for new applications but the legacy
5068** interface will continue to be supported.
5069**
5070** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
5071** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
5072** ^With the "v2" interface, any of the other [result codes] or
5073** [extended result codes] might be returned as well.
5074**
5075** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
5076** database locks it needs to do its job. ^If the statement is a [COMMIT]
5077** or occurs outside of an explicit transaction, then you can retry the
5078** statement. If the statement is not a [COMMIT] and occurs within an
5079** explicit transaction then you should rollback the transaction before
5080** continuing.
5081**
5082** ^[SQLITE_DONE] means that the statement has finished executing
5083** successfully. sqlite3_step() should not be called again on this virtual
5084** machine without first calling [sqlite3_reset()] to reset the virtual
5085** machine back to its initial state.
5086**
5087** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
5088** is returned each time a new row of data is ready for processing by the
5089** caller. The values may be accessed using the [column access functions].
5090** sqlite3_step() is called again to retrieve the next row of data.
5091**
5092** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
5093** violation) has occurred. sqlite3_step() should not be called again on
5094** the VM. More information may be found by calling [sqlite3_errmsg()].
5095** ^With the legacy interface, a more specific error code (for example,
5096** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
5097** can be obtained by calling [sqlite3_reset()] on the
5098** [prepared statement]. ^In the "v2" interface,
5099** the more specific error code is returned directly by sqlite3_step().
5100**
5101** [SQLITE_MISUSE] means that the this routine was called inappropriately.
5102** Perhaps it was called on a [prepared statement] that has
5103** already been [sqlite3_finalize | finalized] or on one that had
5104** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
5105** be the case that the same database connection is being used by two or
5106** more threads at the same moment in time.
5107**
5108** For all versions of SQLite up to and including 3.6.23.1, a call to
5109** [sqlite3_reset()] was required after sqlite3_step() returned anything
5110** other than [SQLITE_ROW] before any subsequent invocation of
5111** sqlite3_step(). Failure to reset the prepared statement using
5112** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
5113** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1],
5114** sqlite3_step() began
5115** calling [sqlite3_reset()] automatically in this circumstance rather
5116** than returning [SQLITE_MISUSE]. This is not considered a compatibility
5117** break because any application that ever receives an SQLITE_MISUSE error
5118** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
5119** can be used to restore the legacy behavior.
5120**
5121** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
5122** API always returns a generic error code, [SQLITE_ERROR], following any
5123** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
5124** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
5125** specific [error codes] that better describes the error.
5126** We admit that this is a goofy design. The problem has been fixed
5127** with the "v2" interface. If you prepare all of your SQL statements
5128** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
5129** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
5130** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
5131** then the more specific [error codes] are returned directly
5132** by sqlite3_step(). The use of the "vX" interfaces is recommended.
5133*/
5134SQLITE_API int sqlite3_step(sqlite3_stmt*);
5135
5136/*
5137** CAPI3REF: Number of columns in a result set
5138** METHOD: sqlite3_stmt
5139**
5140** ^The sqlite3_data_count(P) interface returns the number of columns in the
5141** current row of the result set of [prepared statement] P.
5142** ^If prepared statement P does not have results ready to return
5143** (via calls to the [sqlite3_column_int | sqlite3_column()] family of
5144** interfaces) then sqlite3_data_count(P) returns 0.
5145** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
5146** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
5147** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
5148** will return non-zero if previous call to [sqlite3_step](P) returned
5149** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
5150** where it always returns zero since each step of that multi-step
5151** pragma returns 0 columns of data.
5152**
5153** See also: [sqlite3_column_count()]
5154*/
5155SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
5156
5157/*
5158** CAPI3REF: Fundamental Datatypes
5159** KEYWORDS: SQLITE_TEXT
5160**
5161** ^(Every value in SQLite has one of five fundamental datatypes:
5162**
5163** <ul>
5164** <li> 64-bit signed integer
5165** <li> 64-bit IEEE floating point number
5166** <li> string
5167** <li> BLOB
5168** <li> NULL
5169** </ul>)^
5170**
5171** These constants are codes for each of those types.
5172**
5173** Note that the SQLITE_TEXT constant was also used in SQLite version 2
5174** for a completely different meaning. Software that links against both
5175** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
5176** SQLITE_TEXT.
5177*/
5178#define SQLITE_INTEGER1 1
5179#define SQLITE_FLOAT2 2
5180#define SQLITE_BLOB4 4
5181#define SQLITE_NULL5 5
5182#ifdef SQLITE_TEXT3
5183# undef SQLITE_TEXT3
5184#else
5185# define SQLITE_TEXT3 3
5186#endif
5187#define SQLITE3_TEXT3 3
5188
5189/*
5190** CAPI3REF: Result Values From A Query
5191** KEYWORDS: {column access functions}
5192** METHOD: sqlite3_stmt
5193**
5194** <b>Summary:</b>
5195** <blockquote><table border=0 cellpadding=0 cellspacing=0>
5196** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
5197** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
5198** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
5199** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
5200** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
5201** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
5202** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an
5203** [sqlite3_value|unprotected sqlite3_value] object.
5204** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
5205** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
5206** or a UTF-8 TEXT result in bytes
5207** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
5208** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
5209** TEXT in bytes
5210** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
5211** datatype of the result
5212** </table></blockquote>
5213**
5214** <b>Details:</b>
5215**
5216** ^These routines return information about a single column of the current
5217** result row of a query. ^In every case the first argument is a pointer
5218** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
5219** that was returned from [sqlite3_prepare_v2()] or one of its variants)
5220** and the second argument is the index of the column for which information
5221** should be returned. ^The leftmost column of the result set has the index 0.
5222** ^The number of columns in the result can be determined using
5223** [sqlite3_column_count()].
5224**
5225** If the SQL statement does not currently point to a valid row, or if the
5226** column index is out of range, the result is undefined.
5227** These routines may only be called when the most recent call to
5228** [sqlite3_step()] has returned [SQLITE_ROW] and neither
5229** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
5230** If any of these routines are called after [sqlite3_reset()] or
5231** [sqlite3_finalize()] or after [sqlite3_step()] has returned
5232** something other than [SQLITE_ROW], the results are undefined.
5233** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
5234** are called from a different thread while any of these routines
5235** are pending, then the results are undefined.
5236**
5237** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
5238** each return the value of a result column in a specific data format. If
5239** the result column is not initially in the requested format (for example,
5240** if the query returns an integer but the sqlite3_column_text() interface
5241** is used to extract the value) then an automatic type conversion is performed.
5242**
5243** ^The sqlite3_column_type() routine returns the
5244** [SQLITE_INTEGER | datatype code] for the initial data type
5245** of the result column. ^The returned value is one of [SQLITE_INTEGER],
5246** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
5247** The return value of sqlite3_column_type() can be used to decide which
5248** of the first six interface should be used to extract the column value.
5249** The value returned by sqlite3_column_type() is only meaningful if no
5250** automatic type conversions have occurred for the value in question.
5251** After a type conversion, the result of calling sqlite3_column_type()
5252** is undefined, though harmless. Future
5253** versions of SQLite may change the behavior of sqlite3_column_type()
5254** following a type conversion.
5255**
5256** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
5257** or sqlite3_column_bytes16() interfaces can be used to determine the size
5258** of that BLOB or string.
5259**
5260** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
5261** routine returns the number of bytes in that BLOB or string.
5262** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
5263** the string to UTF-8 and then returns the number of bytes.
5264** ^If the result is a numeric value then sqlite3_column_bytes() uses
5265** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
5266** the number of bytes in that string.
5267** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
5268**
5269** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
5270** routine returns the number of bytes in that BLOB or string.
5271** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
5272** the string to UTF-16 and then returns the number of bytes.
5273** ^If the result is a numeric value then sqlite3_column_bytes16() uses
5274** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
5275** the number of bytes in that string.
5276** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
5277**
5278** ^The values returned by [sqlite3_column_bytes()] and
5279** [sqlite3_column_bytes16()] do not include the zero terminators at the end
5280** of the string. ^For clarity: the values returned by
5281** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
5282** bytes in the string, not the number of characters.
5283**
5284** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
5285** even empty strings, are always zero-terminated. ^The return
5286** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
5287**
5288** ^Strings returned by sqlite3_column_text16() always have the endianness
5289** which is native to the platform, regardless of the text encoding set
5290** for the database.
5291**
5292** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
5293** [unprotected sqlite3_value] object. In a multithreaded environment,
5294** an unprotected sqlite3_value object may only be used safely with
5295** [sqlite3_bind_value()] and [sqlite3_result_value()].
5296** If the [unprotected sqlite3_value] object returned by
5297** [sqlite3_column_value()] is used in any other way, including calls
5298** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
5299** or [sqlite3_value_bytes()], the behavior is not threadsafe.
5300** Hence, the sqlite3_column_value() interface
5301** is normally only useful within the implementation of
5302