Bug Summary

File:nnc/cmd/loss/ccv_nnc_mse_cpu_ref.c
Warning:line 99, column 2
Assigned value is garbage or undefined

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_nnc_mse_cpu_ref.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/home/liu/buildslave/linux-x64-runtests/build/lib/nnc/cmd -resource-dir /usr/local/lib/clang/14.0.6 -I ../../ -I .. -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D USE_DISPATCH -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/14.0.6/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/9/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -fdebug-compilation-dir=/home/liu/buildslave/linux-x64-runtests/build/lib/nnc/cmd -ferror-limit 19 -fblocks -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/buildslave/public_html/analyze/2022-08-02-175445-1304081-1 -x c loss/ccv_nnc_mse_cpu_ref.c
1#include "ccv.h"
2#include "ccv_internal.h"
3#include "nnc/ccv_nnc.h"
4#include "nnc/ccv_nnc_easy.h"
5#include "nnc/ccv_nnc_internal.h"
6#ifdef USE_OPENMP
7#include <omp.h>
8#endif
9#ifdef USE_DISPATCH1
10#include <dispatch/dispatch.h>
11#endif
12
13static int _ccv_nnc_mse_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context)
14{
15 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "loss/ccv_nnc_mse_cpu_ref.c"
, 15, __extension__ __PRETTY_FUNCTION__); }))
;
16 const ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0];
17 assert(ccv_nnc_tensor_nd(a->info.dim) <= 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= 2) ?
1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info.dim
) <= 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= 2"
, "loss/ccv_nnc_mse_cpu_ref.c", 17, __extension__ __PRETTY_FUNCTION__
); }))
;
18 const ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[1];
19 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "loss/ccv_nnc_mse_cpu_ref.c", 19, __extension__ __PRETTY_FUNCTION__
); }))
;
20 ccv_nnc_tensor_view_t* c = (ccv_nnc_tensor_view_t*)outputs[0];
21 int dim[CCV_NNC_MAX_DIM_ALLOC(12)];
22 int ainc[CCV_NNC_MAX_DIM_ALLOC(12)];
23 int binc[CCV_NNC_MAX_DIM_ALLOC(12)];
24 int cinc[CCV_NNC_MAX_DIM_ALLOC(12)];
25 ccv_nnc_tensor_view_get_dim(a, dim);
26 assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 :
0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim
)) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)"
, "loss/ccv_nnc_mse_cpu_ref.c", 26, __extension__ __PRETTY_FUNCTION__
); }))
;
27 ccv_nnc_tensor_view_get_inc(a, ainc);
28 ccv_nnc_tensor_view_get_inc(b, binc);
29 ccv_nnc_tensor_view_get_inc(c, cinc);
30 assert(ccv_nnc_tensor_nd(a->info.dim) <= 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= 2) ?
1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info.dim
) <= 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= 2"
, "loss/ccv_nnc_mse_cpu_ref.c", 30, __extension__ __PRETTY_FUNCTION__
); }))
;
31 const int batch_size = dim[CCV_NNC_MAX_DIM(2)];
32 assert(ccv_nnc_tensor_count(c->info) == batch_size)((void) sizeof ((ccv_nnc_tensor_count(c->info) == batch_size
) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_count(c->info
) == batch_size) ; else __assert_fail ("ccv_nnc_tensor_count(c->info) == batch_size"
, "loss/ccv_nnc_mse_cpu_ref.c", 32, __extension__ __PRETTY_FUNCTION__
); }))
;
33 const int count = dim[CCV_NNC_MAX_DIM(2) + 1];
34 const int astep = ainc[CCV_NNC_MAX_DIM(2) + 1];
35 const int bstep = binc[CCV_NNC_MAX_DIM(2) + 1];
36 const int cstep = ccv_nnc_tensor_nd(c->info.dim) == 1 ? 1 : cinc[CCV_NNC_MAX_DIM(2) + 1];
37 if (cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_MEAN)
38 {
39 const float inv_mean = 1.0 / (float)count;
40 parallel_for(i, batch_size){ int i; for ((i) = 0; (i) < (batch_size); (i)++) { {
41 int j;
42 const float* const ap = a->data.f32 + i * astep;
43 const float* const bp = b->data.f32 + i * bstep;
44 float cp = 0;
45 for (j = 0; j < count; j++)
46 cp += (bp[j] - ap[j]) * (bp[j] - ap[j]);
47 c->data.f32[i * cstep] = cp * inv_mean;
48 } parallel_endfor} }
49 } else {
50 assert(cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM)((void) sizeof ((cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM
) ? 1 : 0), __extension__ ({ if (cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM
) ; else __assert_fail ("cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM"
, "loss/ccv_nnc_mse_cpu_ref.c", 50, __extension__ __PRETTY_FUNCTION__
); }))
;
51 parallel_for(i, batch_size){ int i; for ((i) = 0; (i) < (batch_size); (i)++) { {
52 int j;
53 const float* const ap = a->data.f32 + i * astep;
54 const float* const bp = b->data.f32 + i * bstep;
55 float cp = 0;
56 for (j = 0; j < count; j++)
57 cp += (bp[j] - ap[j]) * (bp[j] - ap[j]);
58 c->data.f32[i * cstep] = cp;
59 } parallel_endfor} }
60 }
61 return CCV_NNC_EXEC_SUCCESS;
62}
63
64static int _ccv_nnc_mse_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context)
65{
66 assert(input_size >= 3)((void) sizeof ((input_size >= 3) ? 1 : 0), __extension__ (
{ if (input_size >= 3) ; else __assert_fail ("input_size >= 3"
, "loss/ccv_nnc_mse_cpu_ref.c", 66, __extension__ __PRETTY_FUNCTION__
); }))
;
1
Assuming 'input_size' is >= 3
2
Taking true branch
67 assert(output_size >= 1)((void) sizeof ((output_size >= 1) ? 1 : 0), __extension__
({ if (output_size >= 1) ; else __assert_fail ("output_size >= 1"
, "loss/ccv_nnc_mse_cpu_ref.c", 67, __extension__ __PRETTY_FUNCTION__
); }))
;
3
Assuming 'output_size' is >= 1
4
Taking true branch
68 const ccv_nnc_tensor_view_t* const g = (ccv_nnc_tensor_view_t*)inputs[0];
69 assert(!g || !CCV_IS_TENSOR_VIEW(g))((void) sizeof ((!g || !((*(int*)(g)) & CCV_TENSOR_VIEW))
? 1 : 0), __extension__ ({ if (!g || !((*(int*)(g)) & CCV_TENSOR_VIEW
)) ; else __assert_fail ("!g || !CCV_IS_TENSOR_VIEW(g)", "loss/ccv_nnc_mse_cpu_ref.c"
, 69, __extension__ __PRETTY_FUNCTION__); }))
;
5
Assuming 'g' is null
70 const ccv_nnc_tensor_view_t* const a = (ccv_nnc_tensor_view_t*)inputs[1];
71 const ccv_nnc_tensor_view_t* const b = (ccv_nnc_tensor_view_t*)inputs[2];
72 ccv_nnc_tensor_view_t* const ha = (ccv_nnc_tensor_view_t*)outputs[0];
73 ccv_nnc_tensor_view_t* const hb = output_size >= 2 ? (ccv_nnc_tensor_view_t*)outputs[1] : 0;
6
Assuming 'output_size' is < 2
7
'?' condition is false
74 int dim[CCV_NNC_MAX_DIM_ALLOC(12)];
75 int ainc[CCV_NNC_MAX_DIM_ALLOC(12)];
76 int binc[CCV_NNC_MAX_DIM_ALLOC(12)];
77 int hainc[CCV_NNC_MAX_DIM_ALLOC(12)];
78 int hbinc[CCV_NNC_MAX_DIM_ALLOC(12)];
79 ccv_nnc_tensor_view_get_dim(a, dim);
80 assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 :
0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim
)) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)"
, "loss/ccv_nnc_mse_cpu_ref.c", 80, __extension__ __PRETTY_FUNCTION__
); }))
;
8
Assuming the condition is true
9
Taking true branch
81 if (ha)
10
Assuming 'ha' is non-null
11
Taking true branch
82 { assert(ccv_nnc_tensor_view_check_dim(ha, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(ha, dim)) ? 1 :
0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(ha, dim
)) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(ha, dim)"
, "loss/ccv_nnc_mse_cpu_ref.c", 82, __extension__ __PRETTY_FUNCTION__
); }))
; }
12
Assuming the condition is true
13
Taking true branch
83 if (hb
13.1
'hb' is null
)
14
Taking false branch
84 { assert(ccv_nnc_tensor_view_check_dim(hb, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(hb, dim)) ? 1 :
0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(hb, dim
)) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(hb, dim)"
, "loss/ccv_nnc_mse_cpu_ref.c", 84, __extension__ __PRETTY_FUNCTION__
); }))
; }
85 ccv_nnc_tensor_view_get_inc(a, ainc);
86 ccv_nnc_tensor_view_get_inc(b, binc);
87 if (ha
14.1
'ha' is non-null
)
15
Taking true branch
88 ccv_nnc_tensor_view_get_inc(ha, hainc);
89 if (hb
15.1
'hb' is null
)
16
Taking false branch
90 ccv_nnc_tensor_view_get_inc(hb, hbinc);
91 assert(ccv_nnc_tensor_nd(a->info.dim) <= 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= 2) ?
1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info.dim
) <= 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= 2"
, "loss/ccv_nnc_mse_cpu_ref.c", 91, __extension__ __PRETTY_FUNCTION__
); }))
;
17
Assuming the condition is true
18
Taking true branch
92 const int batch_size = dim[CCV_NNC_MAX_DIM(2)];
93 const int count = dim[CCV_NNC_MAX_DIM(2) + 1];
94 const float inv_mean_2 = cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_MEAN ? 2.0 / (float)count : 2.0;
19
Assuming field 'reduce_op' is equal to CCV_NNC_MSE_REDUCE_MEAN
20
'?' condition is true
95 assert(cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_MEAN || cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM)((void) sizeof ((cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_MEAN
|| cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM) ? 1 : 0
), __extension__ ({ if (cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_MEAN
|| cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM) ; else __assert_fail
("cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_MEAN || cmd.info.mse.reduce_op == CCV_NNC_MSE_REDUCE_SUM"
, "loss/ccv_nnc_mse_cpu_ref.c", 95, __extension__ __PRETTY_FUNCTION__
); }))
;
96 const int astep = ainc[CCV_NNC_MAX_DIM(2) + 1];
97 const int bstep = binc[CCV_NNC_MAX_DIM(2) + 1];
98 const int hastep = hainc[CCV_NNC_MAX_DIM(2) + 1];
99 const int hbstep = hbinc[CCV_NNC_MAX_DIM(2) + 1];
21
Assigned value is garbage or undefined
100 if (g)
101 {
102 int ginc[CCV_NNC_MAX_DIM_ALLOC(12)];
103 ccv_nnc_tensor_view_get_inc(g, ginc);
104 assert(ccv_nnc_tensor_count(g->info) == batch_size)((void) sizeof ((ccv_nnc_tensor_count(g->info) == batch_size
) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_count(g->info
) == batch_size) ; else __assert_fail ("ccv_nnc_tensor_count(g->info) == batch_size"
, "loss/ccv_nnc_mse_cpu_ref.c", 104, __extension__ __PRETTY_FUNCTION__
); }))
;
105 const int gstep = ccv_nnc_tensor_nd(g->info.dim) == 1 ? 1 : ginc[CCV_NNC_MAX_DIM(2) + 1];
106 if (ha)
107 {
108 parallel_for(i, batch_size){ int i; for ((i) = 0; (i) < (batch_size); (i)++) { {
109 int j;
110 const float* const ap = a->data.f32 + i * astep;
111 const float* const bp = b->data.f32 + i * bstep;
112 float* const hp = ha->data.f32 + i * hastep;
113 const float gp = inv_mean_2 * g->data.f32[i * gstep];
114 for (j = 0; j < count; j++)
115 hp[j] = gp * (ap[j] - bp[j]);
116 } parallel_endfor} }
117 }
118 if (hb)
119 {
120 parallel_for(i, batch_size){ int i; for ((i) = 0; (i) < (batch_size); (i)++) { {
121 int j;
122 const float* const ap = a->data.f32 + i * astep;
123 const float* const bp = b->data.f32 + i * bstep;
124 float* const hp = hb->data.f32 + i * hbstep;
125 const float gp = inv_mean_2 * g->data.f32[i * gstep];
126 for (j = 0; j < count; j++)
127 hp[j] = gp * (bp[j] - ap[j]);
128 } parallel_endfor} }
129 }
130 } else {
131 if (ha)
132 {
133 parallel_for(i, batch_size){ int i; for ((i) = 0; (i) < (batch_size); (i)++) { {
134 int j;
135 const float* const ap = a->data.f32 + i * astep;
136 const float* const bp = b->data.f32 + i * bstep;
137 float* const hp = ha->data.f32 + i * hastep;
138 for (j = 0; j < count; j++)
139 hp[j] = inv_mean_2 * (ap[j] - bp[j]);
140 } parallel_endfor} }
141 }
142 if (hb)
143 {
144 parallel_for(i, batch_size){ int i; for ((i) = 0; (i) < (batch_size); (i)++) { {
145 int j;
146 const float* const ap = a->data.f32 + i * astep;
147 const float* const bp = b->data.f32 + i * bstep;
148 float* const hp = hb->data.f32 + i * hbstep;
149 for (j = 0; j < count; j++)
150 hp[j] = inv_mean_2 * (bp[j] - ap[j]);
151 } parallel_endfor} }
152 }
153 }
154 return CCV_NNC_EXEC_SUCCESS;
155}
156
157REGISTER_COMMAND_BACKEND(CCV_NNC_MSE_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_MSE_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry)
158{
159 registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW;
160 registry->tensor_datatypes = CCV_32F;
161 registry->tensor_memory = CCV_TENSOR_CPU_MEMORY;
162 registry->algorithms = 1;
163 registry->exec = _ccv_nnc_mse_forw;
164}
165
166REGISTER_COMMAND_BACKEND(CCV_NNC_MSE_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_MSE_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry)
167{
168 registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW;
169 registry->tensor_datatypes = CCV_32F;
170 registry->tensor_memory = CCV_TENSOR_CPU_MEMORY;
171 registry->algorithms = 1;
172 registry->exec = _ccv_nnc_mse_back;
173}