File: | nnc/ccv_cnnp_model.c |
Warning: | line 2379, column 1 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include "ccv_nnc.h" |
2 | #include "ccv_nnc_easy.h" |
3 | #include "ccv_nnc_internal.h" |
4 | #include "ccv_internal.h" |
5 | #include "_ccv_cnnp_model.h" |
6 | |
7 | // MARK - Level-5 API |
8 | |
9 | ccv_cnnp_model_io_t ccv_cnnp_model_apply(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t* const inputs, const int input_size) |
10 | { |
11 | if (!model->io) |
12 | model->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0); |
13 | ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s) + sizeof(ccv_nnc_tensor_symbol_t) * model->output_size); |
14 | model_io->param_ref = 0; |
15 | model_io->param_sel = 0; |
16 | model_io->visit = 0; |
17 | model_io->model = model; |
18 | model_io->dependencies = 0; |
19 | model_io->dependents = 0; |
20 | model_io->outgoings = 0; |
21 | model_io->outputs = (ccv_nnc_tensor_symbol_t*)(model_io + 1); |
22 | ccv_array_push(model->io, &model_io); |
23 | if (input_size > 0) |
24 | { |
25 | model_io->incomings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), input_size, 0); |
26 | ccv_array_resize(model_io->incomings, input_size); |
27 | int i; |
28 | memcpy(ccv_array_get(model_io->incomings, 0)((void*)(((char*)((model_io->incomings)->data)) + (size_t )(model_io->incomings)->rsize * (size_t)(0))), inputs, sizeof(ccv_cnnp_model_io_t) * input_size); |
29 | for (i = 0; i < input_size; i++) |
30 | { |
31 | if (!inputs[i]->outgoings) |
32 | inputs[i]->outgoings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0); |
33 | ccv_array_push(inputs[i]->outgoings, &model_io); |
34 | } |
35 | } else { |
36 | model_io->incomings = 0; |
37 | } |
38 | return model_io; |
39 | } |
40 | |
41 | void ccv_cnnp_model_add_dependencies(ccv_cnnp_model_io_t model_io, const ccv_cnnp_model_io_t* const dependencies, const int dependency_size) |
42 | { |
43 | assert(dependency_size > 0)((void) sizeof ((dependency_size > 0) ? 1 : 0), __extension__ ({ if (dependency_size > 0) ; else __assert_fail ("dependency_size > 0" , "ccv_cnnp_model.c", 43, __extension__ __PRETTY_FUNCTION__); })); |
44 | if (!model_io->dependencies) |
45 | model_io->dependencies = ccv_array_new(sizeof(ccv_cnnp_model_io_t), dependency_size, 0); |
46 | int i, j; |
47 | for (i = 0; i < dependency_size; i++) |
48 | { |
49 | int flag = 0; |
50 | // Check if it is already exist or not. |
51 | for (j = 0; !flag && j < model_io->dependencies->rnum; j++) |
52 | if (*(ccv_cnnp_model_io_t*)ccv_array_get(model_io->dependencies, j)((void*)(((char*)((model_io->dependencies)->data)) + (size_t )(model_io->dependencies)->rsize * (size_t)(j))) == dependencies[i]) |
53 | flag = 1; |
54 | if (flag) |
55 | continue; |
56 | ccv_array_push(model_io->dependencies, dependencies + i); |
57 | ++dependencies[i]->dependents; |
58 | } |
59 | } |
60 | |
61 | int ccv_cnnp_model_output_size(const ccv_cnnp_model_t* const model) |
62 | { |
63 | return model->output_size; |
64 | } |
65 | |
66 | int ccv_cnnp_model_is_trainable(const ccv_cnnp_model_t* const model) |
67 | { |
68 | // If the model is compiled, it is default to 1 unless it is not. |
69 | if (model->compiled_data) |
70 | return model->is_trainable >= 0 ? model->is_trainable : 1; |
71 | return model->is_trainable; |
72 | } |
73 | |
74 | ccv_cnnp_model_io_t ccv_cnnp_model_parameters(ccv_cnnp_model_t* const model, const int selector, const int index) |
75 | { |
76 | if (!model->io) |
77 | model->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0); |
78 | ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s)); |
79 | model_io->param_ref = index >= 0 ? index + 1 : ALL_PARAMETERS-1; |
80 | model_io->param_sel = selector >= 0 ? selector + 1 : ALL_PARAMETERS-1; |
81 | model_io->visit = 0; |
82 | model_io->model = model; |
83 | model_io->outputs = 0; |
84 | model_io->dependencies = 0; |
85 | model_io->dependents = 0; |
86 | model_io->incomings = 0; |
87 | model_io->outgoings = 0; |
88 | ccv_array_push(model->io, &model_io); |
89 | return model_io; |
90 | } |
91 | |
92 | void ccv_cnnp_model_notify_hook(ccv_cnnp_model_t* const model, ccv_cnnp_model_notify_f func, void* const context) |
93 | { |
94 | model->notify_hook.func = func; |
95 | model->notify_hook.context = context; |
96 | } |
97 | |
98 | void ccv_cnnp_model_notify(const ccv_cnnp_model_t* const model, const int tag, void* const payload) |
99 | { |
100 | if (model->notify_hook.func) |
101 | model->notify_hook.func(model, tag, payload, model->notify_hook.context); |
102 | if (model->isa->notify) |
103 | model->isa->notify(model, tag, payload); |
104 | } |
105 | |
106 | static int _ccv_nnc_array_dedup_graph_exec_symbols(ccv_nnc_graph_exec_symbol_t* const graph_exec_symbols, int graph_exec_symbol_size) |
107 | { |
108 | int i, j; |
109 | for (i = 0; i < graph_exec_symbol_size; i++) |
110 | { |
111 | ccv_nnc_graph_exec_symbol_t* const graph_exec_symbol = graph_exec_symbols + i; |
112 | // Check whether this tensor symbol has any duplicate. |
113 | for (j = i + 1; j < graph_exec_symbol_size;) |
114 | { |
115 | ccv_nnc_graph_exec_symbol_t* const other_symbol = graph_exec_symbols + j; |
116 | // If there is a same tensor symbol, remove it. |
117 | if (other_symbol->d == graph_exec_symbol->d && other_symbol->graph == graph_exec_symbol->graph) |
118 | { |
119 | if (j + 1 < graph_exec_symbol_size) |
120 | *other_symbol = graph_exec_symbols[graph_exec_symbol_size - 1]; |
121 | --graph_exec_symbol_size; |
122 | continue; |
123 | } |
124 | ++j; |
125 | } |
126 | } |
127 | return graph_exec_symbol_size; |
128 | } |
129 | |
130 | void ccv_cnnp_model_add_to_array(void* const context, const ccv_nnc_tensor_symbol_t symbol, const int is_trainable) |
131 | { |
132 | ccv_cnnp_model_add_to_array_context_t* const add_to_array_context = (ccv_cnnp_model_add_to_array_context_t*)context; |
133 | ccv_cnnp_model_t* const model = add_to_array_context->sequence->model; |
134 | int i; |
135 | if (!model->parameter_indices) |
136 | model->parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
137 | for (i = 0; i < add_to_array_context->symbols->rnum; i++) |
138 | { |
139 | const ccv_nnc_tensor_symbol_t other_symbol = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(add_to_array_context->symbols, i)((void*)(((char*)((add_to_array_context->symbols)->data )) + (size_t)(add_to_array_context->symbols)->rsize * ( size_t)(i))); |
140 | if (other_symbol.d == symbol.d && other_symbol.graph == symbol.graph) |
141 | { |
142 | // Only add to parameter_indices if it is trainable. |
143 | if (add_to_array_context->prefix == 't') |
144 | ccv_array_add_unique_int(model->parameter_indices, i); |
145 | // Found it, return, don't add it. |
146 | return; |
147 | } |
148 | } |
149 | // Only add to parameter_indices if it is trainable. |
150 | if (add_to_array_context->prefix == 't') |
151 | ccv_array_push(model->parameter_indices, &add_to_array_context->symbols->rnum); |
152 | // This is a new one, no need to add_unique_int, it is unique. |
153 | ccv_array_push(add_to_array_context->symbols, &symbol); |
154 | if (add_to_array_context->trainables) |
155 | ccv_array_push(add_to_array_context->trainables, &is_trainable); |
156 | char id[2048]; |
157 | id[0] = add_to_array_context->prefix; |
158 | id[1] = '-'; |
159 | int total_len = 2; |
160 | for (i = 0; i < add_to_array_context->sequence->sequences->rnum; i++) |
161 | { |
162 | const ccv_cnnp_model_name_t* const name = (ccv_cnnp_model_name_t*)ccv_array_get(add_to_array_context->sequence->sequences, i)((void*)(((char*)((add_to_array_context->sequence->sequences )->data)) + (size_t)(add_to_array_context->sequence-> sequences)->rsize * (size_t)(i))); |
163 | int len; |
164 | if (name->name && name->name[0] != '\0') |
165 | len = snprintf(id + total_len, 2048 - total_len, "%s-%d-", name->name, name->sequence); |
166 | else |
167 | len = snprintf(id + total_len, 2048 - total_len, "%d-", name->sequence); |
168 | total_len += len; |
169 | if (total_len >= 2047) |
170 | break; |
171 | } |
172 | if (total_len < 2047) |
173 | total_len += snprintf(id + total_len, 2048 - total_len, "%d", add_to_array_context->sequence->it); |
174 | assert(total_len < 2048)((void) sizeof ((total_len < 2048) ? 1 : 0), __extension__ ({ if (total_len < 2048) ; else __assert_fail ("total_len < 2048" , "ccv_cnnp_model.c", 174, __extension__ __PRETTY_FUNCTION__) ; })); |
175 | char *heap_id = (char*)ccmallocmalloc(total_len + 1); |
176 | memcpy(heap_id, id, total_len + 1); |
177 | ccv_array_push(add_to_array_context->ids, &heap_id); |
178 | ++add_to_array_context->sequence->it; |
179 | } |
180 | |
181 | static void _ccv_cnnp_compiled_data_init(ccv_cnnp_compiled_data_t* const compiled_data, const int output_size, ccv_array_t* const gradient_checkpoints) |
182 | { |
183 | compiled_data->f = compiled_data->fits + output_size; |
184 | compiled_data->xpu_alloc.mp_hdr = -1; |
185 | compiled_data->xpu_alloc.freed = kh_init(dy_str)kh_init_dy_str(); |
186 | compiled_data->xpu_alloc.allocd = kh_init(dy_alloc)kh_init_dy_alloc(); |
187 | compiled_data->gradient_checkpoints = gradient_checkpoints; |
188 | } |
189 | |
190 | static void _ccv_cnnp_model_compile(ccv_cnnp_model_t* const model, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_cmd_t loss) |
191 | { |
192 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 192, __extension__ __PRETTY_FUNCTION__); })); |
193 | model->inputs = ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * input_size); |
194 | int i; |
195 | for (i = 0; i < input_size; i++) |
196 | model->inputs[i] = ccv_nnc_tensor_symbol_new(model->graph, inputs[i], 0); |
197 | ccv_array_t* const parameters = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0); |
198 | ccv_array_t* const parameter_ids = ccv_array_new(sizeof(char*), 0, 0); |
199 | ccv_array_t* const parameter_trainables = ccv_array_new(sizeof(int), 0, 0); |
200 | ccv_cnnp_model_sequence_t model_sequence = { |
201 | .bank = kh_init(ccv_cnnp_model_name_bank)kh_init_ccv_cnnp_model_name_bank() |
202 | }; |
203 | ccv_cnnp_model_add_to_array_context_t add_to_parameter_context = { |
204 | .sequence = &model_sequence, |
205 | .prefix = 't', |
206 | .symbols = parameters, |
207 | .ids = parameter_ids, |
208 | .trainables = parameter_trainables, |
209 | }; |
210 | ccv_array_t* const internals = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0); |
211 | ccv_array_t* const internal_ids = ccv_array_new(sizeof(char*), 0, 0); |
212 | ccv_cnnp_model_add_to_array_context_t add_to_output_context = { |
213 | .sequence = &model_sequence, |
214 | .prefix = 'r', |
215 | .symbols = internals, |
216 | .ids = internal_ids, |
217 | .trainables = 0, |
218 | }; |
219 | ccv_cnnp_model_build_data_t build_data = { |
220 | .is_trainable = model->is_trainable >= 0 ? model->is_trainable : 1, |
221 | .model_sequence = &model_sequence, |
222 | .add_to_array = ccv_cnnp_model_add_to_array, |
223 | .parameters = parameters, |
224 | .context = { |
225 | .add_to_parameter = &add_to_parameter_context, |
226 | .add_to_output = &add_to_output_context, |
227 | }, |
228 | .gradient_checkpoints = 0, |
229 | }; |
230 | model->data = &build_data; |
231 | ccv_cnnp_model_build(model, model->graph, model->inputs, input_size, 0, 0); |
232 | for (i = 0; i < model->output_size; i++) |
233 | { |
234 | const ccv_nnc_tensor_symbol_t output = model->outputs[i]; |
235 | const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(model->graph, output); |
236 | if (alias_to.d == CCV_NNC_NO_TENSOR_SYMBOL) |
237 | continue; |
238 | // If output is an alias, insert data transform regardless for result correctness (we cannot bind an alias). You can check ccv_nnc_tensor_bind_symbol method |
239 | // to see that we can correctly bind a tensor which from it, has aliases, but we cannot bind an alias tensor correctly (this is expected, sort of, to be |
240 | // honest, because we cannot handle cases of alias is part of the original tensor but bind differently). |
241 | const ccv_nnc_tensor_param_t output_params = ccv_nnc_tensor_symbol_params(model->graph, output); |
242 | model->outputs[i] = ccv_nnc_tensor_symbol_new(model->graph, output_params, 0); |
243 | ccv_nnc_graph_exec_symbol_t make_contiguous = ccv_nnc_graph_exec_symbol_new(model->graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto , 0), &output, 1, model->outputs + i, 1, "contiguous"); |
244 | ccv_nnc_graph_exec_symbol_set_flags(model->graph, make_contiguous, CCV_NNC_GRAPH_EXEC_DISABLE_OPT); |
245 | } |
246 | model->data = 0; |
247 | kh_destroy(ccv_cnnp_model_name_bank, model_sequence.bank)kh_destroy_ccv_cnnp_model_name_bank(model_sequence.bank); |
248 | if (model_sequence.sequences) |
249 | ccv_array_free(model_sequence.sequences); |
250 | // Check if there are parameters that are not trainables. If there are, we will allocate uint64 bitmap to record that. |
251 | int not_trainables = 0; |
252 | // Assert no parameter is alias. |
253 | for (i = 0; i < parameters->rnum; i++) |
254 | { |
255 | const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(parameters, i)((void*)(((char*)((parameters)->data)) + (size_t)(parameters )->rsize * (size_t)(i))); |
256 | const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(parameter.graph, parameter); |
257 | assert(alias_to.graph == 0)((void) sizeof ((alias_to.graph == 0) ? 1 : 0), __extension__ ({ if (alias_to.graph == 0) ; else __assert_fail ("alias_to.graph == 0" , "ccv_cnnp_model.c", 257, __extension__ __PRETTY_FUNCTION__) ; })); // Cannot find the one alias to. |
258 | if (*(int*)ccv_array_get(parameter_trainables, i)((void*)(((char*)((parameter_trainables)->data)) + (size_t )(parameter_trainables)->rsize * (size_t)(i))) == 0) |
259 | not_trainables = 1; |
260 | } |
261 | assert(parameters->rnum == parameter_trainables->rnum)((void) sizeof ((parameters->rnum == parameter_trainables-> rnum) ? 1 : 0), __extension__ ({ if (parameters->rnum == parameter_trainables ->rnum) ; else __assert_fail ("parameters->rnum == parameter_trainables->rnum" , "ccv_cnnp_model.c", 261, __extension__ __PRETTY_FUNCTION__) ; })); |
262 | uint64_t* parameter_flags = 0; |
263 | if (not_trainables) |
264 | { |
265 | parameter_flags = (uint64_t*)cccalloccalloc(((parameters->rnum + 63) >> 6), sizeof(uint64_t)); |
266 | for (i = 0; i < parameter_trainables->rnum; i++) |
267 | if (*(int*)ccv_array_get(parameter_trainables, i)((void*)(((char*)((parameter_trainables)->data)) + (size_t )(parameter_trainables)->rsize * (size_t)(i)))) |
268 | parameter_flags[i >> 6] |= ((uint64_t)1 << (i & 63)); |
269 | } |
270 | ccv_array_free(parameter_trainables); |
271 | // Assert no internal is alias. |
272 | for (i = 0; i < internals->rnum; i++) |
273 | { |
274 | const ccv_nnc_tensor_symbol_t internal = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(internals, i)((void*)(((char*)((internals)->data)) + (size_t)(internals )->rsize * (size_t)(i))); |
275 | const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(internal.graph, internal); |
276 | assert(alias_to.graph == 0)((void) sizeof ((alias_to.graph == 0) ? 1 : 0), __extension__ ({ if (alias_to.graph == 0) ; else __assert_fail ("alias_to.graph == 0" , "ccv_cnnp_model.c", 276, __extension__ __PRETTY_FUNCTION__) ; })); // Cannot find the one alias to. |
277 | } |
278 | const int output_size = model->output_size; |
279 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
280 | const int parameters_rnum = parameters->rnum; |
281 | if (input_size > 0) |
282 | { |
283 | ccv_array_resize(parameters, parameters_rnum + input_size); |
284 | memcpy(ccv_array_get(parameters, parameters_rnum)((void*)(((char*)((parameters)->data)) + (size_t)(parameters )->rsize * (size_t)(parameters_rnum))), model->inputs, input_size * sizeof(ccv_nnc_tensor_symbol_t)); |
285 | } |
286 | ccv_nnc_symbolic_graph_simplify(model->graph, |
287 | SYMBOLIC_GRAPH_PASSES(CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION , CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION , CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1) |
288 | CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION , CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION , CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1) |
289 | CCV_NNC_SIMPLIFY_OPS_FUSION,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION , CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION , CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1) |
290 | CCV_NNC_SIMPLIFY_GRAPH_PRUNING)(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION , CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION , CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), |
291 | ccv_array_get(parameters, 0)((void*)(((char*)((parameters)->data)) + (size_t)(parameters )->rsize * (size_t)(0))), parameters_rnum + input_size, |
292 | model->outputs, output_size, |
293 | SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph)); |
294 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
295 | // Size it down. |
296 | parameters->rnum = parameters_rnum; |
297 | ccv_cnnp_compiled_data_t* compiled_data = model->compiled_data = cccalloccalloc(1, sizeof(ccv_cnnp_compiled_data_t) + sizeof(ccv_nnc_tensor_symbol_t) * (output_size * 2 - 1)); |
298 | _ccv_cnnp_compiled_data_init(compiled_data, output_size, build_data.gradient_checkpoints); |
299 | const int evaluate_to_size = compiled_data->evaluate.to_size = ccv_nnc_symbolic_graph_destination_size(model->graph); |
300 | assert(evaluate_to_size > 0)((void) sizeof ((evaluate_to_size > 0) ? 1 : 0), __extension__ ({ if (evaluate_to_size > 0) ; else __assert_fail ("evaluate_to_size > 0" , "ccv_cnnp_model.c", 300, __extension__ __PRETTY_FUNCTION__) ; })); |
301 | compiled_data->evaluate.tos = ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size); |
302 | memcpy(compiled_data->evaluate.tos, ccv_nnc_symbolic_graph_destinations(model->graph), sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size); |
303 | compiled_data->loss = loss; |
304 | if (loss.cmd == CCV_NNC_NOOP) |
305 | { |
306 | // If no loss function provided, there is no fits. |
307 | for (i = 0; i < output_size; i++) |
308 | { |
309 | compiled_data->fits[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
310 | const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(model->graph, model->outputs[i]); |
311 | if (alias_to.d < 0) |
312 | compiled_data->f[i] = model->outputs[i]; |
313 | else { // We cannot differentiate against an alias, therefore, we have to verify this output is full, and we can diff against the original. |
314 | int ofs[CCV_NNC_MAX_DIM_ALLOC(12)]; |
315 | int inc[CCV_NNC_MAX_DIM_ALLOC(12)]; |
316 | ccv_nnc_tensor_symbol_alias_params(model->graph, model->outputs[i], ofs, inc); |
317 | int j; |
318 | for (j = 0; j < CCV_NNC_MAX_DIM_ALLOC(12); j++) |
319 | { assert(ofs[j] == 0)((void) sizeof ((ofs[j] == 0) ? 1 : 0), __extension__ ({ if ( ofs[j] == 0) ; else __assert_fail ("ofs[j] == 0", "ccv_cnnp_model.c" , 319, __extension__ __PRETTY_FUNCTION__); })); } // There is no ofs. |
320 | compiled_data->f[i] = alias_to; // Unfortunately, I cannot assert the size yet. |
321 | } |
322 | } |
323 | } else { |
324 | for (i = 0; i < output_size; i++) |
325 | { |
326 | const ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(model->graph, model->outputs[i]); |
327 | const ccv_nnc_tensor_symbol_t fit = compiled_data->fits[i] = ccv_nnc_tensor_symbol_new(model->graph, info, 0); |
328 | compiled_data->f[i] = ccv_nnc_tensor_symbol_new(model->graph, ccv_nnc_tensor_auto, 0); |
329 | ccv_nnc_graph_exec_symbol_new(model->graph, loss, TENSOR_SYMBOL_LIST(model->outputs[i], fit)(const ccv_nnc_tensor_symbol_t []){model->outputs[i], fit} , (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), TENSOR_SYMBOL_LIST(compiled_data->f[i])(const ccv_nnc_tensor_symbol_t []){compiled_data->f[i]}, ( 1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), 0); |
330 | } |
331 | } |
332 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
333 | ccv_nnc_symbolic_graph_simplify(model->graph, |
334 | SYMBOLIC_GRAPH_PASSES(CCV_NNC_SIMPLIFY_OPS_FUSION)(const int []){CCV_NNC_SIMPLIFY_OPS_FUSION}, (1 +1 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), // Only do Ops fusion, in this way, we can fuse the loss function. |
335 | 0, 0, // No need to provide binds at this point. |
336 | compiled_data->f, model->output_size, |
337 | SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph)); |
338 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
339 | // If inputs are from GPU, stream type is GPU. |
340 | compiled_data->parameters = parameters; |
341 | compiled_data->parameter_flags = parameter_flags; |
342 | compiled_data->internals = internals; |
343 | compiled_data->ids.parameters = parameter_ids; |
344 | compiled_data->ids.internals = internal_ids; |
345 | } |
346 | |
347 | static void _ccv_cnnp_graph_push_graph_exec_symbol(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name) |
348 | { |
349 | ccv_array_t* const stack = (ccv_array_t*)context; |
350 | ccv_array_push(stack, &symbol.d); |
351 | } |
352 | |
353 | static void _ccv_nnc_tensor_symbol_reinit(const ccv_nnc_symbolic_graph_t* const src_graph, ccv_nnc_symbolic_graph_t* const dest_graph, const int src_index, const int dest_index) |
354 | { |
355 | const ccv_nnc_tensor_symbol_t src_symbol = { |
356 | .d = src_index, |
357 | .graph = src_graph |
358 | }; |
359 | const ccv_nnc_tensor_symbol_t dest_symbol = { |
360 | .d = dest_index, |
361 | .graph = dest_graph |
362 | }; |
363 | const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(src_graph, src_symbol); |
364 | ccv_nnc_tensor_symbol_set(dest_graph, dest_symbol, params); |
365 | int ofs[CCV_NNC_MAX_DIM_ALLOC(12)]; |
366 | int inc[CCV_NNC_MAX_DIM_ALLOC(12)]; |
367 | if (0 == ccv_nnc_tensor_symbol_alias_params(src_graph, src_symbol, ofs, inc)) |
368 | ccv_nnc_tensor_symbol_alias_set(dest_graph, dest_symbol, ofs, inc); |
369 | } |
370 | |
371 | static int _ccv_nnc_tensor_symbol_check_dim(const ccv_nnc_symbolic_graph_t* const src_graph, ccv_nnc_symbolic_graph_t* const dest_graph, const int src_index, const int dest_index) |
372 | { |
373 | const ccv_nnc_tensor_symbol_t src_symbol = { |
374 | .d = src_index, |
375 | .graph = src_graph |
376 | }; |
377 | const ccv_nnc_tensor_param_t src_params = ccv_nnc_tensor_symbol_params(src_graph, src_symbol); |
378 | const ccv_nnc_tensor_symbol_t dest_symbol = { |
379 | .d = dest_index, |
380 | .graph = dest_graph |
381 | }; |
382 | const ccv_nnc_tensor_param_t dest_params = ccv_nnc_tensor_symbol_params(dest_graph, dest_symbol); |
383 | return memcmp(src_params.dim, dest_params.dim, sizeof(src_params.dim)) == 0; |
384 | } |
385 | |
386 | static void _ccv_cnnp_model_gradient_init(ccv_cnnp_model_t* const model, const int gradient_mode, const uint64_t disable_outgrad, ccv_nnc_tensor_t* const* const fits, const int fit_size); |
387 | static void _ccv_cnnp_compiled_data_graph_free(ccv_cnnp_compiled_data_t* const compiled_data); |
388 | |
389 | typedef struct { |
390 | int parallel_count; |
391 | ccv_nnc_symbolic_graph_t* graph; |
392 | ccv_nnc_graph_exec_arena_t* graph_exec_arena; |
393 | } ccv_nnc_graph_exec_update_t; |
394 | |
395 | static void _ccv_cnnp_cmd_update_for_execs(void* const context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint) |
396 | { |
397 | ccv_nnc_graph_exec_update_t* const graph_exec_update = (ccv_nnc_graph_exec_update_t*)context; |
398 | ccv_nnc_graph_exec_arena_t* const graph_exec_arena = graph_exec_update->graph_exec_arena; |
399 | ccv_nnc_graph_exec_t graph_exec = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, symbol); |
400 | ccv_nnc_graph_exec_set(graph_exec.graph, graph_exec, cmd); |
401 | ccv_nnc_graph_exec_set_hint(graph_exec.graph, graph_exec, hint); |
402 | const ccv_nnc_symbolic_graph_t* const graph = graph_exec_update->graph; |
403 | const int parallel_count = graph_exec_update->parallel_count; |
404 | int i; |
405 | for (i = 1; i < parallel_count; i++) |
406 | { |
407 | const ccv_nnc_graph_exec_t copy = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, ccv_nnc_graph_exec_symbol_copy(graph, symbol, i)); |
408 | if (!CCV_NO_GRAPH_EXEC(copy)((copy).graph == 0)) |
409 | { |
410 | ccv_nnc_graph_exec_set(copy.graph, copy, cmd); |
411 | ccv_nnc_graph_exec_set_hint(copy.graph, copy, hint); |
412 | } |
413 | } |
414 | } |
415 | |
416 | void ccv_cnnp_model_absorb(ccv_cnnp_model_t* const model, ccv_cnnp_model_t* const init, const ccv_nnc_tensor_param_t* const inputs, const int input_size) |
417 | { |
418 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 418, __extension__ __PRETTY_FUNCTION__); })); |
419 | assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__ ({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data" , "ccv_cnnp_model.c", 419, __extension__ __PRETTY_FUNCTION__) ; })); |
420 | assert(!init->graph)((void) sizeof ((!init->graph) ? 1 : 0), __extension__ ({ if (!init->graph) ; else __assert_fail ("!init->graph", "ccv_cnnp_model.c" , 420, __extension__ __PRETTY_FUNCTION__); })); |
421 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
422 | init->graph = ccv_nnc_symbolic_graph_new(); |
423 | ccv_array_t* const stack = ccv_array_new(sizeof(int), 0, 0); |
424 | ccv_nnc_graph_exec_symbol_new_hook(init->graph, _ccv_cnnp_graph_push_graph_exec_symbol, stack, 0); |
425 | _ccv_cnnp_model_compile(init, inputs, input_size, compiled_data->loss); |
426 | init->parallel_count = model->parallel_count; |
427 | init->memory_compression = model->memory_compression; |
428 | init->memory_reduction = model->memory_reduction; |
429 | init->gradient_checkpointing = model->gradient_checkpointing; |
430 | init->compiled_data->stream_type = model->compiled_data->stream_type; |
431 | init->compiled_data->minimize.minimizer = model->compiled_data->minimize.minimizer; |
432 | init->compiled_data->minimize.max_saved_aux_size = model->compiled_data->minimize.max_saved_aux_size; |
433 | if (model->compiled_data->gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) |
434 | _ccv_cnnp_model_gradient_init(init, model->compiled_data->gradient_mode, model->compiled_data->disable_outgrad, 0, 0); |
435 | ccv_nnc_graph_exec_symbol_new_hook(init->graph, 0, 0, 0); |
436 | ccv_nnc_symbolic_graph_tensor_auto(init->graph, TRAVERSE_FULL0,0,0,0); |
437 | int i, j; |
438 | // Verify parameters, internals and saved_aux in both graph has the same dimensionality. |
439 | for (i = 0; i < compiled_data->parameters->rnum; i++) |
440 | { |
441 | const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( i))))->d; |
442 | assert(_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d))((void) sizeof ((_ccv_nnc_tensor_symbol_check_dim(model->graph , init->graph, d, d)) ? 1 : 0), __extension__ ({ if (_ccv_nnc_tensor_symbol_check_dim (model->graph, init->graph, d, d)) ; else __assert_fail ("_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d)" , "ccv_cnnp_model.c", 442, __extension__ __PRETTY_FUNCTION__) ; })); |
443 | } |
444 | for (i = 0; i < compiled_data->internals->rnum; i++) |
445 | { |
446 | const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(i)) ))->d; |
447 | assert(_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d))((void) sizeof ((_ccv_nnc_tensor_symbol_check_dim(model->graph , init->graph, d, d)) ? 1 : 0), __extension__ ({ if (_ccv_nnc_tensor_symbol_check_dim (model->graph, init->graph, d, d)) ; else __assert_fail ("_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d)" , "ccv_cnnp_model.c", 447, __extension__ __PRETTY_FUNCTION__) ; })); |
448 | } |
449 | // Update inputs. |
450 | assert(model->input_size == init->input_size)((void) sizeof ((model->input_size == init->input_size) ? 1 : 0), __extension__ ({ if (model->input_size == init-> input_size) ; else __assert_fail ("model->input_size == init->input_size" , "ccv_cnnp_model.c", 450, __extension__ __PRETTY_FUNCTION__) ; })); |
451 | for (i = 0; i < model->input_size; i++) |
452 | if (model->inputs[i].d >= 0) |
453 | { |
454 | assert(init->inputs[i].d >= 0)((void) sizeof ((init->inputs[i].d >= 0) ? 1 : 0), __extension__ ({ if (init->inputs[i].d >= 0) ; else __assert_fail ("init->inputs[i].d >= 0" , "ccv_cnnp_model.c", 454, __extension__ __PRETTY_FUNCTION__) ; })); |
455 | _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->inputs[i].d, model->inputs[i].d); |
456 | } |
457 | // Update outputs. |
458 | assert(model->output_size == init->output_size)((void) sizeof ((model->output_size == init->output_size ) ? 1 : 0), __extension__ ({ if (model->output_size == init ->output_size) ; else __assert_fail ("model->output_size == init->output_size" , "ccv_cnnp_model.c", 458, __extension__ __PRETTY_FUNCTION__) ; })); |
459 | for (i = 0; i < model->output_size; i++) |
460 | { |
461 | if (model->outputs[i].d >= 0) |
462 | { |
463 | assert(init->outputs[i].d >= 0)((void) sizeof ((init->outputs[i].d >= 0) ? 1 : 0), __extension__ ({ if (init->outputs[i].d >= 0) ; else __assert_fail ( "init->outputs[i].d >= 0", "ccv_cnnp_model.c", 463, __extension__ __PRETTY_FUNCTION__); })); |
464 | _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->outputs[i].d, model->outputs[i].d); |
465 | } |
466 | if (model->outputs[i].d != model->compiled_data->f[i].d) |
467 | { |
468 | assert(init->outputs[i].d != init->compiled_data->f[i].d)((void) sizeof ((init->outputs[i].d != init->compiled_data ->f[i].d) ? 1 : 0), __extension__ ({ if (init->outputs[ i].d != init->compiled_data->f[i].d) ; else __assert_fail ("init->outputs[i].d != init->compiled_data->f[i].d" , "ccv_cnnp_model.c", 468, __extension__ __PRETTY_FUNCTION__) ; })); |
469 | if (model->compiled_data->f[i].d >= 0) |
470 | { |
471 | assert(init->compiled_data->f[i].d >= 0)((void) sizeof ((init->compiled_data->f[i].d >= 0) ? 1 : 0), __extension__ ({ if (init->compiled_data->f[i] .d >= 0) ; else __assert_fail ("init->compiled_data->f[i].d >= 0" , "ccv_cnnp_model.c", 471, __extension__ __PRETTY_FUNCTION__) ; })); |
472 | _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->compiled_data->f[i].d, model->compiled_data->f[i].d); |
473 | } |
474 | } |
475 | } |
476 | // Go through the graph to set tensor on matching symbols |
477 | for (i = 0; i < stack->rnum; i++) |
478 | { |
479 | const int d = *(int*)ccv_array_get(stack, i)((void*)(((char*)((stack)->data)) + (size_t)(stack)->rsize * (size_t)(i))); |
480 | // If exceed range, skip. |
481 | if (d >= ccv_nnc_graph_exec_symbol_count(init->graph) || |
482 | d >= ccv_nnc_graph_exec_symbol_count(model->graph)) |
483 | continue; |
484 | const ccv_nnc_graph_exec_symbol_t src_symbol = { |
485 | .d = d, |
486 | .graph = init->graph |
487 | }; |
488 | const ccv_nnc_graph_exec_symbol_t dest_symbol = { |
489 | .d = d, |
490 | .graph = model->graph |
491 | }; |
492 | const ccv_nnc_cmd_t src_cmd = ccv_nnc_graph_exec_symbol_cmd(init->graph, src_symbol); |
493 | const ccv_nnc_cmd_t dest_cmd = ccv_nnc_graph_exec_symbol_cmd(model->graph, dest_symbol); |
494 | // If the name doesn't match, skip. |
495 | if (dest_cmd.cmd != src_cmd.cmd && src_cmd.cmd != CCV_NNC_NOOP) |
496 | continue; |
497 | // Now get all the inputs and outputs, if matches, set them. |
498 | const int* src_inputs; |
499 | int src_input_size; |
500 | const int* src_outputs; |
501 | int src_output_size; |
502 | ccv_nnc_graph_exec_symbol_io(init->graph, src_symbol, &src_inputs, &src_input_size, &src_outputs, &src_output_size); |
503 | const int* dest_inputs; |
504 | int dest_input_size; |
505 | const int* dest_outputs; |
506 | int dest_output_size; |
507 | ccv_nnc_graph_exec_symbol_io(model->graph, dest_symbol, &dest_inputs, &dest_input_size, &dest_outputs, &dest_output_size); |
508 | // We may have unmatched input / output size because this is the minimizer and it has |
509 | // different saved_aux (for example, when we shrunk with CMD_NOOP). |
510 | if (src_input_size != dest_input_size) |
511 | continue; |
512 | if (src_output_size != dest_output_size) |
513 | continue; |
514 | ccv_nnc_graph_exec_symbol_set(model->graph, dest_symbol, src_cmd); |
515 | // There may be mismatches of the source tensor symbols and destination tensor symbols. The reason is because |
516 | // we may later passed-in the minimizer, therefore, we may allocate tensors for minimizer later in the original |
517 | // graph whereas in the newly created graph, it is streamlined (the minimizer exists from the beginning). That |
518 | // will make the order of tensor symbols creation different, therefore, exact which tensor is which wrong as |
519 | // well. However, set a new minimizer won't change the exec symbol ordering, because we never create new exec |
520 | // symbols after gradient init step. Changing a new minimizer just updated that exec symbols setting, it is not |
521 | // a new exec symbol. |
522 | for (j = 0; j < src_input_size; j++) |
523 | if (src_inputs[j] >= 0) |
524 | _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, src_inputs[j], dest_inputs[j]); |
525 | for (j = 0; j < src_output_size; j++) |
526 | if (src_outputs[j] >= 0) |
527 | _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, src_outputs[j], dest_outputs[j]); |
528 | } |
529 | ccv_array_free(stack); |
530 | // After this, we get all tensors in the model graph resolved through tensor_auto. |
531 | ccv_nnc_symbolic_graph_tensor_auto(model->graph, TRAVERSE_FULL0,0,0,0); |
532 | // Verify symbols we get matches. |
533 | const int parameter_size = compiled_data->parameters->rnum; |
534 | for (i = 0; i < parameter_size; i++) |
535 | { assert(((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->parameters, i))->d)((void) sizeof ((((ccv_nnc_tensor_symbol_t*)((void*)(((char*) ((compiled_data->parameters)->data)) + (size_t)(compiled_data ->parameters)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t *)((void*)(((char*)((init->compiled_data->parameters)-> data)) + (size_t)(init->compiled_data->parameters)-> rsize * (size_t)(i))))->d) ? 1 : 0), __extension__ ({ if ( ((ccv_nnc_tensor_symbol_t*)((void*)(((char*)((compiled_data-> parameters)->data)) + (size_t)(compiled_data->parameters )->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t *)((void*)(((char*)((init->compiled_data->parameters)-> data)) + (size_t)(init->compiled_data->parameters)-> rsize * (size_t)(i))))->d) ; else __assert_fail ("((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->parameters, i))->d" , "ccv_cnnp_model.c", 535, __extension__ __PRETTY_FUNCTION__) ; })); } |
536 | const int internal_size = compiled_data->internals->rnum; |
537 | for (i = 0; i < internal_size; i++) |
538 | { assert(((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->internals, i))->d)((void) sizeof ((((ccv_nnc_tensor_symbol_t*)((void*)(((char*) ((compiled_data->internals)->data)) + (size_t)(compiled_data ->internals)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t *)((void*)(((char*)((init->compiled_data->internals)-> data)) + (size_t)(init->compiled_data->internals)->rsize * (size_t)(i))))->d) ? 1 : 0), __extension__ ({ if (((ccv_nnc_tensor_symbol_t *)((void*)(((char*)((compiled_data->internals)->data)) + (size_t)(compiled_data->internals)->rsize * (size_t)(i ))))->d == ((ccv_nnc_tensor_symbol_t*)((void*)(((char*)((init ->compiled_data->internals)->data)) + (size_t)(init-> compiled_data->internals)->rsize * (size_t)(i))))->d ) ; else __assert_fail ("((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->internals, i))->d" , "ccv_cnnp_model.c", 538, __extension__ __PRETTY_FUNCTION__) ; })); } |
539 | // Go through compiled data. |
540 | if (compiled_data->tensor_arena) |
541 | { |
542 | const int flag = ccv_nnc_tensor_arena_reinit(compiled_data->tensor_arena, model->graph); |
543 | if (flag == 0 && compiled_data->graph_exec_arena) |
544 | { |
545 | ccv_nnc_graph_exec_reinit(compiled_data->graph_exec_arena, compiled_data->graph, model->graph); |
546 | // Since we will reinit, if we previously set is_test, we need to set it again. |
547 | if (compiled_data->is_test) |
548 | { |
549 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
550 | ccv_nnc_graph_exec_update_t update = { |
551 | .parallel_count = parallel_count, |
552 | .graph = model->graph, |
553 | .graph_exec_arena = compiled_data->graph_exec_arena, |
554 | }; |
555 | ccv_cnnp_model_set_is_test(model, 1, _ccv_cnnp_cmd_update_for_execs, &update); |
556 | } |
557 | } else |
558 | // Free-up tensor arena & graph exec arena. |
559 | _ccv_cnnp_compiled_data_graph_free(compiled_data); |
560 | } |
561 | // There are other compiled graphs, for accum and apply gradients. |
562 | // However, the main conclusion is, these absorb operations shouldn't impact parameters. |
563 | // Thus, it won't impact the shape of gradients (only outgrad). Since for outgrad, we |
564 | // don't allocate ourselves, it is not a concern. For normal gradients, the shape cannot |
565 | // be changed otherwise parameters' shape will be meaningless. The same goes to internals. |
566 | // That is why we don't update these compiled graphs at all this point. |
567 | // Free the model, we've already "absorbed" it. |
568 | ccv_cnnp_model_free(init); |
569 | } |
570 | |
571 | void ccv_cnnp_model_compile(ccv_cnnp_model_t* const model, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_cmd_t minimizer, const ccv_nnc_cmd_t loss) |
572 | { |
573 | assert(input_size == model->input_size || model->input_size == 0)((void) sizeof ((input_size == model->input_size || model-> input_size == 0) ? 1 : 0), __extension__ ({ if (input_size == model->input_size || model->input_size == 0) ; else __assert_fail ("input_size == model->input_size || model->input_size == 0" , "ccv_cnnp_model.c", 573, __extension__ __PRETTY_FUNCTION__) ; })); |
574 | if (model->input_size == 0) |
575 | model->input_size = input_size; |
576 | if (!model->graph) // The graph is not compiled yet. |
577 | { |
578 | model->graph = ccv_nnc_symbolic_graph_new(); |
579 | _ccv_cnnp_model_compile(model, inputs, input_size, loss); |
580 | assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__ ({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data" , "ccv_cnnp_model.c", 580, __extension__ __PRETTY_FUNCTION__) ; })); |
581 | int i, flag = 0; |
582 | for (i = 0; !flag && i < input_size; i++) |
583 | flag = (CCV_TENSOR_GET_MEMORY(inputs[i].type)((inputs[i].type) & 0x3) == CCV_TENSOR_GPU_MEMORY); |
584 | // If inputs are from GPU, stream type is GPU. |
585 | model->compiled_data->stream_type = flag ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU; |
586 | model->compiled_data->minimize.minimizer = minimizer; |
587 | model->compiled_data->minimize.max_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(minimizer); |
588 | } else { |
589 | // Now, finally fill in this part. If the graph is already compiled, we make a copy of the model. |
590 | // And then absorb the "new model" to the old one. |
591 | ccv_cnnp_model_t* const init = ccv_cnnp_model_copy(model, model->is_trainable); |
592 | ccv_cnnp_model_absorb(model, init, inputs, input_size); |
593 | // Reset minimizer. |
594 | ccv_cnnp_model_set_minimizer(model, minimizer, 1, 0, 0); |
595 | } |
596 | } |
597 | |
598 | ccv_cnnp_model_t* ccv_cnnp_model_copy(const ccv_cnnp_model_t* const model, const int is_trainable) |
599 | { |
600 | ccv_cnnp_model_t* const new_model = _ccv_cnnp_model_copy(model, 0); |
601 | new_model->is_trainable = is_trainable; |
602 | return new_model; |
603 | } |
604 | |
605 | void ccv_cnnp_model_tensor_auto(ccv_cnnp_model_t* const model, ccv_nnc_tensor_param_t* const outputs, const int output_size) |
606 | { |
607 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 607, __extension__ __PRETTY_FUNCTION__); })); |
608 | assert(output_size == model->output_size)((void) sizeof ((output_size == model->output_size) ? 1 : 0 ), __extension__ ({ if (output_size == model->output_size) ; else __assert_fail ("output_size == model->output_size" , "ccv_cnnp_model.c", 608, __extension__ __PRETTY_FUNCTION__) ; })); |
609 | ccv_nnc_symbolic_graph_t* const graph = model->graph; |
610 | ccv_nnc_symbolic_graph_tensor_auto(graph, TRAVERSE_FULL0,0,0,0); |
611 | int i; |
612 | for (i = 0; i < output_size; i++) |
613 | { |
614 | assert(model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL)((void) sizeof ((model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL ) ? 1 : 0), __extension__ ({ if (model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL ) ; else __assert_fail ("model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL" , "ccv_cnnp_model.c", 614, __extension__ __PRETTY_FUNCTION__) ; })); |
615 | outputs[i] = ccv_nnc_tensor_symbol_params(graph, model->outputs[i]); |
616 | } |
617 | } |
618 | |
619 | void ccv_cnnp_model_set_workspace_size(ccv_cnnp_model_t* const model, size_t workspace_size) |
620 | { |
621 | if (workspace_size == model->workspace_size) |
622 | return; |
623 | model->workspace_size = workspace_size; |
624 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
625 | if (compiled_data && compiled_data->graph) |
626 | ccv_nnc_graph_autotune(compiled_data->graph, workspace_size, 0, TRAVERSE_FULL0,0,0,0); |
627 | } |
628 | |
629 | size_t ccv_cnnp_model_workspace_size(ccv_cnnp_model_t* const model) |
630 | { |
631 | return model->workspace_size; |
632 | } |
633 | |
634 | void ccv_cnnp_model_set_data_parallel(ccv_cnnp_model_t* const model, const int parallel) |
635 | { |
636 | if (parallel == 0) |
637 | model->parallel_count = ccv_nnc_device_count(CCV_STREAM_CONTEXT_GPU); |
638 | else |
639 | model->parallel_count = parallel; |
640 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
641 | if (compiled_data) |
642 | { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__ ({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph" , "ccv_cnnp_model.c", 642, __extension__ __PRETTY_FUNCTION__) ; })); } |
643 | } |
644 | |
645 | void ccv_cnnp_model_set_max_concurrency(ccv_cnnp_model_t* const model, const int max_stream_count) |
646 | { |
647 | model->max_stream_count = max_stream_count; |
648 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
649 | if (compiled_data) |
650 | { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__ ({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph" , "ccv_cnnp_model.c", 650, __extension__ __PRETTY_FUNCTION__) ; })); } |
651 | } |
652 | |
653 | void ccv_cnnp_model_set_memory_compression(ccv_cnnp_model_t* const model, const int memory_compression) |
654 | { |
655 | model->memory_compression = memory_compression; |
656 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
657 | if (compiled_data) |
658 | { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__ ({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph" , "ccv_cnnp_model.c", 658, __extension__ __PRETTY_FUNCTION__) ; })); } |
659 | } |
660 | |
661 | void ccv_cnnp_model_set_memory_reduction(ccv_cnnp_model_t* const model, const int memory_reduction) |
662 | { |
663 | model->memory_reduction = memory_reduction; |
664 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
665 | if (compiled_data) |
666 | { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__ ({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph" , "ccv_cnnp_model.c", 666, __extension__ __PRETTY_FUNCTION__) ; })); } |
667 | } |
668 | |
669 | void ccv_cnnp_model_set_gradient_checkpointing(ccv_cnnp_model_t* const model, const int gradient_checkpointing) |
670 | { |
671 | model->gradient_checkpointing = gradient_checkpointing; |
672 | } |
673 | |
674 | int ccv_cnnp_model_gradient_checkpointing(ccv_cnnp_model_t* const model) |
675 | { |
676 | return model->gradient_checkpointing; |
677 | } |
678 | |
679 | typedef struct { |
680 | int parallel_count; |
681 | ccv_nnc_symbolic_graph_t* graph; |
682 | ccv_cnnp_compiled_data_t* compiled_data; |
683 | ccv_nnc_tensor_arena_t* tensor_arena; |
684 | } ccv_nnc_tensor_init_states_t; |
685 | |
686 | static int _ccv_cnnp_any_to_init(const ccv_cnnp_compiled_data_t* const compiled_data) |
687 | { |
688 | int i; |
689 | const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
690 | for (i = 0; i < compiled_data->parameters->rnum; i++) |
691 | { |
692 | const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( i))))->d; |
693 | if (!(init_v[d >> 5] & (1u << (d & 0x1f)))) |
694 | return 1; |
695 | } |
696 | for (i = 0; i < compiled_data->internals->rnum; i++) |
697 | { |
698 | const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(i)) ))->d; |
699 | if (!(init_v[d >> 5] & (1u << (d & 0x1f)))) |
700 | return 1; |
701 | } |
702 | return 0; |
703 | } |
704 | |
705 | static void _ccv_cnnp_init_states_for_tensors(void* const context, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const input, const ccv_nnc_tensor_symbol_t output_symbol) |
706 | { |
707 | ccv_nnc_tensor_init_states_t* const tensor_init_states = (ccv_nnc_tensor_init_states_t*)context; |
708 | ccv_nnc_tensor_arena_t* const tensor_arena = tensor_init_states->tensor_arena; |
709 | ccv_nnc_tensor_t* const output_tensor = ccv_nnc_tensor_from_symbol(tensor_arena, output_symbol); |
710 | if (!output_tensor) |
711 | return; |
712 | const int d = output_symbol.d; |
713 | assert(d < tensor_init_states->compiled_data->tensors_init.size)((void) sizeof ((d < tensor_init_states->compiled_data-> tensors_init.size) ? 1 : 0), __extension__ ({ if (d < tensor_init_states ->compiled_data->tensors_init.size) ; else __assert_fail ("d < tensor_init_states->compiled_data->tensors_init.size" , "ccv_cnnp_model.c", 713, __extension__ __PRETTY_FUNCTION__) ; })); |
714 | uint32_t* const init_v = CCV_NNC_INIT_V(tensor_init_states->compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(tensor_init_states->compiled_data ->tensors_init.v) & ~(uintptr_t)1)); |
715 | if (init_v[d >> 5] & (1u << (d & 0x1f))) |
716 | return; |
717 | init_v[d >> 5] |= (1u << (d & 0x1f)); |
718 | ccv_nnc_cmd_exec(cmd, hint, flags, &input, input ? 1 : 0, &output_tensor, 1, 0); |
719 | const ccv_nnc_symbolic_graph_t* const graph = tensor_init_states->graph; |
720 | const int parallel_count = tensor_init_states->parallel_count; |
721 | int i; |
722 | for (i = 1; i < parallel_count; i++) |
723 | { |
724 | ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(tensor_arena, ccv_nnc_tensor_symbol_copy(graph, output_symbol, i)); |
725 | if (copy) |
726 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, &output_tensor, 1, ©, 1, 0); |
727 | } |
728 | } |
729 | |
730 | // This method can only handle cases we added new tensors and exec, never delete. This invariant is true because |
731 | // we setup everything (including calling simplify method) in ccv_cnnp_model_compile method, before this rewind setup. |
732 | static void _ccv_cnnp_model_rewind_graph(ccv_cnnp_model_t* const model) |
733 | { |
734 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 734, __extension__ __PRETTY_FUNCTION__); })); |
735 | assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__ ({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data" , "ccv_cnnp_model.c", 735, __extension__ __PRETTY_FUNCTION__) ; })); |
736 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
737 | assert(compiled_data->rewindables)((void) sizeof ((compiled_data->rewindables) ? 1 : 0), __extension__ ({ if (compiled_data->rewindables) ; else __assert_fail ( "compiled_data->rewindables", "ccv_cnnp_model.c", 737, __extension__ __PRETTY_FUNCTION__); })); |
738 | int i; |
739 | for (i = 0; i < compiled_data->rewindables->rnum; i++) |
740 | { |
741 | const ccv_cnnp_rewind_symbol_t* const rewind_symbol = (ccv_cnnp_rewind_symbol_t*)ccv_array_get(compiled_data->rewindables, i)((void*)(((char*)((compiled_data->rewindables)->data)) + (size_t)(compiled_data->rewindables)->rsize * (size_t) (i))); |
742 | if (rewind_symbol->type == CCV_CNNP_REWIND_GRAPH_EXEC) |
743 | ccv_nnc_graph_exec_symbol_free(model->graph, rewind_symbol->graph_exec); |
744 | else if (rewind_symbol->type == CCV_CNNP_REWIND_TENSOR) |
745 | ccv_nnc_tensor_symbol_free(model->graph, rewind_symbol->tensor); |
746 | } |
747 | ccv_array_clear(compiled_data->rewindables); |
748 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
749 | } |
750 | |
751 | static void _ccv_cnnp_model_tensor_symbol_new_hook(void* context, const ccv_nnc_tensor_symbol_t symbol, const ccv_nnc_tensor_param_t info, const char* const name) |
752 | { |
753 | const ccv_cnnp_rewind_symbol_t rewind_symbol = { |
754 | .type = CCV_CNNP_REWIND_TENSOR, |
755 | .tensor = symbol |
756 | }; |
757 | ccv_array_t* const rewind_symbols = (ccv_array_t*)context; |
758 | ccv_array_push(rewind_symbols, &rewind_symbol); |
759 | } |
760 | |
761 | static void _ccv_cnnp_model_tensor_symbol_alias_new_hook(void* context, const ccv_nnc_tensor_symbol_t symbol, const ccv_nnc_tensor_symbol_t from_symbol, const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int inc[CCV_NNC_MAX_DIM_ALLOC(12)], const ccv_nnc_tensor_param_t info, const char* const name) |
762 | { |
763 | const ccv_cnnp_rewind_symbol_t rewind_symbol = { |
764 | .type = CCV_CNNP_REWIND_TENSOR, |
765 | .tensor = symbol |
766 | }; |
767 | ccv_array_t* const rewind_symbols = (ccv_array_t*)context; |
768 | ccv_array_push(rewind_symbols, &rewind_symbol); |
769 | } |
770 | |
771 | static void _ccv_cnnp_model_graph_exec_symbol_new_hook(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name) |
772 | { |
773 | const ccv_cnnp_rewind_symbol_t rewind_symbol = { |
774 | .type = CCV_CNNP_REWIND_GRAPH_EXEC, |
775 | .graph_exec = symbol |
776 | }; |
777 | ccv_array_t* const rewind_symbols = (ccv_array_t*)context; |
778 | ccv_array_push(rewind_symbols, &rewind_symbol); |
779 | } |
780 | |
781 | static void _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(const ccv_nnc_graph_exec_arena_t* const graph_exec_arena, const int parallel_count, const ccv_nnc_graph_exec_symbol_t exec_symbol, const ccv_nnc_cmd_t cmd, ccv_nnc_symbolic_graph_t* const symbolic_graph) |
782 | { |
783 | ccv_nnc_graph_exec_t const update_exec = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, exec_symbol); |
784 | if (!CCV_NO_GRAPH_EXEC(update_exec)((update_exec).graph == 0)) |
785 | ccv_nnc_graph_exec_set(update_exec.graph, update_exec, cmd); |
786 | int i; |
787 | for (i = 1; i < parallel_count; i++) |
788 | { |
789 | ccv_nnc_graph_exec_symbol_t copy_symbol = ccv_nnc_graph_exec_symbol_copy(symbolic_graph, exec_symbol, i); |
790 | const ccv_nnc_graph_exec_t copy = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, copy_symbol); |
791 | if (!CCV_NO_GRAPH_EXEC(copy)((copy).graph == 0)) |
792 | ccv_nnc_graph_exec_set(copy.graph, copy, cmd); |
793 | } |
794 | } |
795 | |
796 | static void _ccv_cnnp_model_graph_exec_symbol_set(ccv_nnc_symbolic_graph_t* const symbolic_graph, ccv_cnnp_compiled_data_t* const compiled_data, const int parallel_count, const ccv_nnc_graph_exec_symbol_t exec_symbol, const ccv_nnc_cmd_t cmd) |
797 | { |
798 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 798, __extension__ __PRETTY_FUNCTION__); })); |
799 | assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if (symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c" , 799, __extension__ __PRETTY_FUNCTION__); })); |
800 | ccv_nnc_graph_exec_symbol_set(symbolic_graph, exec_symbol, cmd); |
801 | int i; |
802 | for (i = 1; i < parallel_count; i++) |
803 | { |
804 | ccv_nnc_graph_exec_symbol_t copy_symbol = ccv_nnc_graph_exec_symbol_copy(symbolic_graph, exec_symbol, i); |
805 | if (copy_symbol.graph) |
806 | ccv_nnc_graph_exec_symbol_set(symbolic_graph, copy_symbol, cmd); |
807 | } |
808 | ccv_nnc_graph_exec_arena_t* const graph_exec_arena = compiled_data->graph_exec_arena; |
809 | if (graph_exec_arena) |
810 | _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(graph_exec_arena, parallel_count, exec_symbol, cmd, symbolic_graph); |
811 | // Skip backward graph exec arena because it is for a specific accum symbolic graph, not the main graph (model->graph) |
812 | ccv_nnc_graph_exec_arena_t* const gradient_graph_exec_arena = compiled_data->apply_gradients.graph_exec_arena; |
813 | if (gradient_graph_exec_arena) |
814 | _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(gradient_graph_exec_arena, parallel_count, exec_symbol, cmd, symbolic_graph); |
815 | } |
816 | |
817 | static int _ccv_cnnp_set_minimizer_for_parameter(ccv_nnc_symbolic_graph_t* const graph, ccv_cnnp_compiled_data_t* const compiled_data, ccv_nnc_graph_exec_symbol_t* const update_nodes, ccv_nnc_tensor_symbol_t* const updated_parameters, ccv_nnc_tensor_symbol_map_t* const saved_aux, const int parallel_count, const ccv_nnc_cmd_t minimizer, const int saved_aux_size, const int max_saved_aux_size, const int parameter_indice) |
818 | { |
819 | int this_parameter_flag = 0; |
820 | if (update_nodes[parameter_indice].d == CCV_NNC_NO_TENSOR_SYMBOL) |
821 | return this_parameter_flag; |
822 | const ccv_nnc_cmd_t old_minimizer = ccv_nnc_graph_exec_symbol_cmd(graph, update_nodes[parameter_indice]); |
823 | int j, k; |
824 | // For no-op, we can preserve previous saved_aux_size. |
825 | if (old_minimizer.cmd != minimizer.cmd && minimizer.cmd != CCV_NNC_NOOP) |
826 | { |
827 | // If the old minimizer is a noop, then the old_saved_aux_size should be whatever its previous |
828 | // saved_aux_size is, otherwise we will reinit the saved_aux repeatedly if you switch between |
829 | // noop and a minimizer. We don't want that because we do that in high-level frameworks to |
830 | // make sure some model parameters don't update if we don't want them to. |
831 | int old_saved_aux_size; |
832 | if (old_minimizer.cmd == CCV_NNC_NOOP) |
833 | { |
834 | int input_size; |
835 | ccv_nnc_graph_exec_symbol_io(graph, update_nodes[parameter_indice], 0, &input_size, 0, 0); |
836 | if (input_size < 2) // This is not legit. |
837 | old_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(old_minimizer); |
838 | else // See ccv_nnc_minimizer_saved_aux_size, the saved_aux is inputs excluding gradients and parameters. |
839 | old_saved_aux_size = input_size - 2; |
840 | } else |
841 | old_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(old_minimizer); |
842 | if (old_saved_aux_size != saved_aux_size) |
843 | { |
844 | this_parameter_flag = 1; |
845 | if (saved_aux_size > old_saved_aux_size) |
846 | { |
847 | // Allocate new tensor symbols. |
848 | const ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(graph, updated_parameters[parameter_indice]); |
849 | for (j = old_saved_aux_size; j < saved_aux_size; j++) |
850 | { |
851 | saved_aux[parameter_indice * max_saved_aux_size + j].source = ccv_nnc_tensor_symbol_new(graph, info, 0); |
852 | saved_aux[parameter_indice * max_saved_aux_size + j].destination = ccv_nnc_tensor_symbol_new(graph, info, 0); |
853 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8); |
854 | for (k = 1; k < parallel_count; k++) |
855 | { |
856 | ccv_nnc_tensor_param_t dev_info = info; |
857 | if (k != device_id) |
858 | CCV_TENSOR_SET_DEVICE_ID(dev_info.type, k)(dev_info.type) = (((dev_info.type) & ~0xfff00) | (((k) & 0xfff) << 8)); |
859 | else |
860 | CCV_TENSOR_SET_DEVICE_ID(dev_info.type, 0)(dev_info.type) = (((dev_info.type) & ~0xfff00) | (((0) & 0xfff) << 8)); |
861 | const ccv_nnc_tensor_symbol_t src_copy = ccv_nnc_tensor_symbol_new(graph, dev_info, 0); |
862 | const ccv_nnc_tensor_symbol_t dest_copy = ccv_nnc_tensor_symbol_new(graph, dev_info, 0); |
863 | ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k, src_copy); |
864 | ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k, dest_copy); |
865 | } |
866 | } |
867 | } else { |
868 | for (j = saved_aux_size; j < old_saved_aux_size; j++) |
869 | { |
870 | for (k = 1; k < parallel_count; k++) |
871 | { |
872 | const ccv_nnc_tensor_symbol_t src_copy = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k); |
873 | if (src_copy.d >= 0) |
874 | { |
875 | ccv_nnc_tensor_symbol_free(graph, src_copy); |
876 | ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k, NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }); |
877 | } |
878 | const ccv_nnc_tensor_symbol_t dest_copy = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k); |
879 | if (dest_copy.d >= 0) |
880 | { |
881 | ccv_nnc_tensor_symbol_free(graph, dest_copy); |
882 | ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k, NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }); |
883 | } |
884 | } |
885 | ccv_nnc_tensor_symbol_free(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source); |
886 | ccv_nnc_tensor_symbol_free(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination); |
887 | saved_aux[parameter_indice * max_saved_aux_size + j].source = saved_aux[parameter_indice * max_saved_aux_size + j].destination = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
888 | } |
889 | } |
890 | } |
891 | } |
892 | _ccv_cnnp_model_graph_exec_symbol_set(graph, compiled_data, parallel_count, update_nodes[parameter_indice], minimizer); |
893 | if (this_parameter_flag) |
894 | { |
895 | ccv_nnc_tensor_symbol_t update_inputs[saved_aux_size + 2]; |
896 | ccv_nnc_tensor_symbol_t update_outputs[saved_aux_size + 1]; |
897 | const int* inputs = 0; |
898 | int input_size = 0; |
899 | ccv_nnc_graph_exec_symbol_io(graph, update_nodes[parameter_indice], &inputs, &input_size, 0, 0); |
900 | assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ ( { if (input_size >= 1) ; else __assert_fail ("input_size >= 1" , "ccv_cnnp_model.c", 900, __extension__ __PRETTY_FUNCTION__) ; })); |
901 | update_inputs[0].d = inputs[0]; |
902 | update_inputs[0].graph = graph; |
903 | update_inputs[1].d = inputs[1]; |
904 | update_inputs[1].graph = graph; |
905 | update_outputs[0] = updated_parameters[parameter_indice]; |
906 | for (j = 0; j < saved_aux_size; j++) |
907 | { |
908 | update_inputs[j + 2] = saved_aux[parameter_indice * max_saved_aux_size + j].source; |
909 | update_outputs[j + 1] = saved_aux[parameter_indice * max_saved_aux_size + j].destination; |
910 | } |
911 | ccv_nnc_graph_exec_symbol_set_io(graph, update_nodes[parameter_indice], update_inputs, saved_aux_size + 2, update_outputs, saved_aux_size + 1); |
912 | for (k = 1; k < parallel_count; k++) |
913 | { |
914 | const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(graph, update_nodes[parameter_indice], k); |
915 | assert(copy.d >= 0)((void) sizeof ((copy.d >= 0) ? 1 : 0), __extension__ ({ if (copy.d >= 0) ; else __assert_fail ("copy.d >= 0", "ccv_cnnp_model.c" , 915, __extension__ __PRETTY_FUNCTION__); })); |
916 | ccv_nnc_graph_exec_symbol_io(graph, copy, &inputs, &input_size, 0, 0); |
917 | assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ ( { if (input_size >= 1) ; else __assert_fail ("input_size >= 1" , "ccv_cnnp_model.c", 917, __extension__ __PRETTY_FUNCTION__) ; })); |
918 | update_inputs[0].d = inputs[0]; |
919 | update_inputs[0].graph = graph; |
920 | update_inputs[1].d = inputs[1]; |
921 | update_inputs[1].graph = graph; |
922 | update_outputs[0] = ccv_nnc_tensor_symbol_copy(graph, updated_parameters[parameter_indice], k); |
923 | for (j = 0; j < saved_aux_size; j++) |
924 | { |
925 | update_inputs[j + 2] = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k); |
926 | update_outputs[j + 1] = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k); |
927 | } |
928 | ccv_nnc_graph_exec_symbol_set_io(graph, copy, update_inputs, saved_aux_size + 2, update_outputs, saved_aux_size + 1); |
929 | } |
930 | } |
931 | return this_parameter_flag; |
932 | } |
933 | |
934 | typedef struct { |
935 | int parameter_size; |
936 | ccv_nnc_cmd_t minimizer; |
937 | ccv_cnnp_model_io_t parameters[1]; |
938 | } ccv_cnnp_set_minimizer_for_parameter_t; |
939 | |
940 | static int _ccv_cnnp_apply_parameters_with_minimizer(ccv_cnnp_model_t* const model) |
941 | { |
942 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
943 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 943, __extension__ __PRETTY_FUNCTION__); })); |
944 | const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size; |
945 | // We update all parameters, at this point, we have one minimizer. |
946 | const int parameter_size = compiled_data->parameters->rnum; |
947 | ccv_nnc_graph_exec_symbol_t* const update_nodes = compiled_data->update_nodes; |
948 | ccv_nnc_symbolic_graph_t* const symbolic_graph = model->graph; |
949 | assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if (symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c" , 949, __extension__ __PRETTY_FUNCTION__); })); |
950 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
951 | ccv_array_t* const parameters = compiled_data->minimize.parameters; |
952 | ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
953 | int i, j, flag = 0; |
954 | for (i = 0; i < parameters->rnum; i++) |
955 | { |
956 | ccv_cnnp_set_minimizer_for_parameter_t* const set_minimizer_for_parameter = *(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(parameters, i)((void*)(((char*)((parameters)->data)) + (size_t)(parameters )->rsize * (size_t)(i))); |
957 | for (j = 0; j < set_minimizer_for_parameter->parameter_size; j++) |
958 | { |
959 | const int param_sel = set_minimizer_for_parameter->parameters[j]->param_sel > 0 ? set_minimizer_for_parameter->parameters[j]->param_sel - 1 : set_minimizer_for_parameter->parameters[j]->param_sel; |
960 | assert(set_minimizer_for_parameter->parameters[j]->param_sel != 0)((void) sizeof ((set_minimizer_for_parameter->parameters[j ]->param_sel != 0) ? 1 : 0), __extension__ ({ if (set_minimizer_for_parameter ->parameters[j]->param_sel != 0) ; else __assert_fail ( "set_minimizer_for_parameter->parameters[j]->param_sel != 0" , "ccv_cnnp_model.c", 960, __extension__ __PRETTY_FUNCTION__) ; })); |
961 | const int old_rnum = parameter_indices->rnum; |
962 | ccv_cnnp_model_add_to_parameter_indices(set_minimizer_for_parameter->parameters[j]->model, param_sel, parameter_indices); |
963 | const int param_ref = set_minimizer_for_parameter->parameters[j]->param_ref > 0 ? set_minimizer_for_parameter->parameters[j]->param_ref - 1 : set_minimizer_for_parameter->parameters[j]->param_ref; |
964 | assert(set_minimizer_for_parameter->parameters[j]->param_ref != 0)((void) sizeof ((set_minimizer_for_parameter->parameters[j ]->param_ref != 0) ? 1 : 0), __extension__ ({ if (set_minimizer_for_parameter ->parameters[j]->param_ref != 0) ; else __assert_fail ( "set_minimizer_for_parameter->parameters[j]->param_ref != 0" , "ccv_cnnp_model.c", 964, __extension__ __PRETTY_FUNCTION__) ; })); |
965 | if (param_ref >= 0) |
966 | { |
967 | assert(param_ref + old_rnum < parameter_indices->rnum)((void) sizeof ((param_ref + old_rnum < parameter_indices-> rnum) ? 1 : 0), __extension__ ({ if (param_ref + old_rnum < parameter_indices->rnum) ; else __assert_fail ("param_ref + old_rnum < parameter_indices->rnum" , "ccv_cnnp_model.c", 967, __extension__ __PRETTY_FUNCTION__) ; })); |
968 | *(int*)ccv_array_get(parameter_indices, old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(old_rnum))) = *(int*)ccv_array_get(parameter_indices, param_ref + old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(param_ref + old_rnum))); |
969 | parameter_indices->rnum = old_rnum + 1; |
970 | } |
971 | } |
972 | const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(set_minimizer_for_parameter->minimizer); |
973 | // We may have duplicated indices, but that is OK, we will set it twice. |
974 | for (j = 0; j < parameter_indices->rnum; j++) |
975 | { |
976 | const int d = *(int*)ccv_array_get(parameter_indices, j)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(j))); |
977 | assert(d <= parameter_size)((void) sizeof ((d <= parameter_size) ? 1 : 0), __extension__ ({ if (d <= parameter_size) ; else __assert_fail ("d <= parameter_size" , "ccv_cnnp_model.c", 977, __extension__ __PRETTY_FUNCTION__) ; })); |
978 | if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, set_minimizer_for_parameter->minimizer, saved_aux_size, max_saved_aux_size, d)) |
979 | flag = 1; |
980 | } |
981 | ccv_array_clear(parameter_indices); |
982 | } |
983 | ccv_array_free(parameter_indices); |
984 | return flag; |
985 | } |
986 | |
987 | static void _ccv_cnnp_scatter_saved_aux(ccv_nnc_tensor_symbol_map_t* const saved_aux, const int parameter_size, const int old_saved_aux_size, const int new_saved_aux_size) |
988 | { |
989 | if (new_saved_aux_size == old_saved_aux_size) |
990 | return; |
991 | assert(new_saved_aux_size > old_saved_aux_size)((void) sizeof ((new_saved_aux_size > old_saved_aux_size) ? 1 : 0), __extension__ ({ if (new_saved_aux_size > old_saved_aux_size ) ; else __assert_fail ("new_saved_aux_size > old_saved_aux_size" , "ccv_cnnp_model.c", 991, __extension__ __PRETTY_FUNCTION__) ; })); |
992 | int i, j; |
993 | for (i = parameter_size - 1; i >= 0; i--) |
994 | { |
995 | for (j = new_saved_aux_size - 1; j >= old_saved_aux_size; j--) |
996 | saved_aux[i * new_saved_aux_size + j].source = saved_aux[i * new_saved_aux_size + j].destination = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
997 | for (j = old_saved_aux_size - 1; j >= 0; j--) |
998 | saved_aux[i * new_saved_aux_size + j] = saved_aux[i * old_saved_aux_size + j]; |
999 | } |
1000 | } |
1001 | |
1002 | static void _ccv_cnnp_model_set_rewindables(ccv_cnnp_model_t* const model) |
1003 | { |
1004 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1005 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 1005, __extension__ __PRETTY_FUNCTION__); })); |
1006 | if (!compiled_data->rewindables) |
1007 | compiled_data->rewindables = ccv_array_new(sizeof(ccv_cnnp_rewind_symbol_t), 0, 0); |
1008 | ccv_nnc_tensor_symbol_new_hook(model->graph, _ccv_cnnp_model_tensor_symbol_new_hook, compiled_data->rewindables, 0); |
1009 | ccv_nnc_tensor_symbol_alias_new_hook(model->graph, _ccv_cnnp_model_tensor_symbol_alias_new_hook, compiled_data->rewindables, 0); |
1010 | ccv_nnc_graph_exec_symbol_new_hook(model->graph, _ccv_cnnp_model_graph_exec_symbol_new_hook, compiled_data->rewindables, 0); |
1011 | } |
1012 | |
1013 | static void _ccv_cnnp_model_gradient_init(ccv_cnnp_model_t* const model, const int gradient_mode, const uint64_t disable_outgrad, ccv_nnc_tensor_t* const* const fits, const int fit_size) |
1014 | { |
1015 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1016 | assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE ) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE" , "ccv_cnnp_model.c", 1016, __extension__ __PRETTY_FUNCTION__ ); })); |
1017 | assert(gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)((void) sizeof ((gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE ) ? 1 : 0), __extension__ ({ if (gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE ) ; else __assert_fail ("gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE" , "ccv_cnnp_model.c", 1017, __extension__ __PRETTY_FUNCTION__ ); })); |
1018 | const int evaluate_to_size = compiled_data->evaluate.to_size; |
1019 | assert(evaluate_to_size > 0)((void) sizeof ((evaluate_to_size > 0) ? 1 : 0), __extension__ ({ if (evaluate_to_size > 0) ; else __assert_fail ("evaluate_to_size > 0" , "ccv_cnnp_model.c", 1019, __extension__ __PRETTY_FUNCTION__ ); })); |
1020 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1021 | compiled_data->evaluate.tos = ccreallocrealloc(compiled_data->evaluate.tos, sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size * parallel_count + sizeof(ccv_nnc_graph_exec_t) * evaluate_to_size * parallel_count); |
1022 | compiled_data->evaluate.to_ops = (ccv_nnc_graph_exec_t*)(compiled_data->evaluate.tos + evaluate_to_size * parallel_count); |
1023 | int i, j; |
1024 | const int output_size = model->output_size; |
1025 | assert(!fits || fit_size == output_size * parallel_count)((void) sizeof ((!fits || fit_size == output_size * parallel_count ) ? 1 : 0), __extension__ ({ if (!fits || fit_size == output_size * parallel_count) ; else __assert_fail ("!fits || fit_size == output_size * parallel_count" , "ccv_cnnp_model.c", 1025, __extension__ __PRETTY_FUNCTION__ ); })); |
1026 | if (fits) |
1027 | for (i = 0; i < output_size; i++) |
1028 | ccv_nnc_tensor_symbol_set(model->graph, compiled_data->fits[i], fits[i]->info); |
1029 | const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size; |
1030 | const int parameter_size = compiled_data->parameters->rnum; |
1031 | compiled_data->updated_parameters = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size + sizeof(ccv_nnc_tensor_symbol_map_t) * max_saved_aux_size * parameter_size); |
1032 | compiled_data->update_nodes = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->updated_parameters + parameter_size); |
1033 | compiled_data->saved_aux = (ccv_nnc_tensor_symbol_map_t*)(compiled_data->update_nodes + parameter_size); |
1034 | int parameter_size_maybe_more = parameter_size; |
1035 | compiled_data->disable_outgrad = disable_outgrad; |
1036 | int outgrad_size; |
1037 | if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || model->input_size == 0) |
1038 | outgrad_size = 0; |
1039 | else if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) // Compute minimize with gradients including inputs. |
1040 | outgrad_size = model->input_size; |
1041 | else { |
1042 | assert(disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL)((void) sizeof ((disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL ) ? 1 : 0), __extension__ ({ if (disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL ) ; else __assert_fail ("disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL" , "ccv_cnnp_model.c", 1042, __extension__ __PRETTY_FUNCTION__ ); })); // If it is disable all, gradient mode won't be this. |
1043 | outgrad_size = 0; |
1044 | for (i = 0; i < model->input_size; i++) |
1045 | if (!(disable_outgrad & ((uint64_t)1 << i))) |
1046 | ++outgrad_size; |
1047 | } |
1048 | compiled_data->outgrad_size = outgrad_size; |
1049 | parameter_size_maybe_more += outgrad_size; |
1050 | compiled_data->gradients = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size_maybe_more + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size_maybe_more * parallel_count); |
1051 | compiled_data->outgrads = parameter_size_maybe_more > parameter_size ? compiled_data->gradients + parameter_size : 0; |
1052 | compiled_data->backward.tos = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->gradients + parameter_size_maybe_more); |
1053 | compiled_data->backward.to_size = parameter_size_maybe_more; |
1054 | ccv_nnc_tensor_symbol_t* parameters = (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))); |
1055 | if (compiled_data->parameter_flags) |
1056 | { |
1057 | parameters = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size); |
1058 | for (i = 0; i < parameter_size; i++) |
1059 | if (compiled_data->parameter_flags[i >> 6] & ((uint64_t)1 << (i & 63))) |
1060 | parameters[i] = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( i))); |
1061 | else |
1062 | parameters[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
1063 | } |
1064 | if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || model->input_size == 0) |
1065 | ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph), compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes); |
1066 | else if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) // Compute minimize with gradients including inputs. |
1067 | ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, model->inputs, model->input_size, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph), compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes); |
1068 | else { // Compute minimize with gradients including selected inputs. |
1069 | assert(model->input_size > 0)((void) sizeof ((model->input_size > 0) ? 1 : 0), __extension__ ({ if (model->input_size > 0) ; else __assert_fail ("model->input_size > 0" , "ccv_cnnp_model.c", 1069, __extension__ __PRETTY_FUNCTION__ ); })); |
1070 | assert(disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL)((void) sizeof ((disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL ) ? 1 : 0), __extension__ ({ if (disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL ) ; else __assert_fail ("disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL" , "ccv_cnnp_model.c", 1070, __extension__ __PRETTY_FUNCTION__ ); })); // If it is disable all, gradient mode won't be this. |
1071 | assert(outgrad_size > 0)((void) sizeof ((outgrad_size > 0) ? 1 : 0), __extension__ ({ if (outgrad_size > 0) ; else __assert_fail ("outgrad_size > 0" , "ccv_cnnp_model.c", 1071, __extension__ __PRETTY_FUNCTION__ ); })); |
1072 | ccv_nnc_tensor_symbol_t outgrads[outgrad_size]; |
1073 | j = 0; |
1074 | for (i = 0; i < model->input_size; i++) |
1075 | if (!(disable_outgrad & ((uint64_t)1 << i))) |
1076 | outgrads[j++] = model->inputs[i]; |
1077 | ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, outgrads, outgrad_size, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph), compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes); |
1078 | } |
1079 | if (compiled_data->parameter_flags) |
1080 | ccfreefree(parameters); |
1081 | _ccv_cnnp_scatter_saved_aux(compiled_data->saved_aux, parameter_size, ccv_nnc_minimizer_saved_aux_size(compiled_data->minimize.minimizer), compiled_data->minimize.max_saved_aux_size); |
1082 | if (compiled_data->minimize.parameters) |
1083 | _ccv_cnnp_apply_parameters_with_minimizer(model); |
1084 | // Go through gradient checkpoints to generate tensor inputs for backward pass just before executing the backward pass. |
1085 | ccv_cnnp_model_apply_gradient_checkpoints(compiled_data, model->graph); |
1086 | for (i = 0; i < output_size; i++) |
1087 | { |
1088 | const ccv_nnc_tensor_symbol_t df = ccv_nnc_tensor_symbol_for_backward(model->graph, compiled_data->f[i]); |
1089 | // Init this to 1 so we can backprop. |
1090 | ccv_nnc_tensor_symbol_set_flags(model->graph, df, CCV_NNC_TENSOR_SYMBOL_INIT_ONES); |
1091 | } |
1092 | compiled_data->backward.to_size = 0; |
1093 | for (i = 0; i < parameter_size_maybe_more; i++) |
1094 | if (compiled_data->gradients[i].d != CCV_NNC_NO_TENSOR_SYMBOL) |
1095 | compiled_data->backward.tos[compiled_data->backward.to_size++] = ccv_nnc_graph_exec_symbol_for_backward(model->graph, compiled_data->gradients[i]); |
1096 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS); |
1097 | ccv_nnc_symbolic_graph_set_destinations(model->graph, compiled_data->update_nodes, parameter_size); |
1098 | for (i = 0; i < parameter_size_maybe_more - parameter_size; i++) |
1099 | { |
1100 | if (compiled_data->outgrads[i].d < 0) // When we go through input, we might find zero-length inputs, and for these, we cannot have any outgrads. |
1101 | continue; |
1102 | const ccv_nnc_graph_exec_symbol_t outgrad = ccv_nnc_graph_exec_symbol_for_backward(model->graph, compiled_data->outgrads[i]); |
1103 | const int* tos; |
1104 | int to_size; |
1105 | ccv_nnc_graph_exec_symbol_to(model->graph, outgrad, &tos, &to_size); |
1106 | if (to_size == 0) // If this is the end (no minimizers afterwards). We need to attach this as a destination. Otherwise this is covered in update_nodes. |
1107 | { |
1108 | const ccv_nnc_graph_exec_symbol_t* destinations = ccv_nnc_symbolic_graph_destinations(model->graph); |
1109 | const int destination_count = ccv_nnc_symbolic_graph_destination_size(model->graph); |
1110 | int flag = 0; |
1111 | const int outgrad_destination_start = ccv_max(0, destination_count - i)({ typeof (0) _a = (0); typeof (destination_count - i) _b = ( destination_count - i); (_a > _b) ? _a : _b; }); |
1112 | for (j = i - 1; !flag && j >= 0; j--) |
1113 | if (j + outgrad_destination_start < destination_count) |
1114 | flag = (destinations[j + outgrad_destination_start].d == outgrad.d); |
1115 | if (!flag) // Only if we cannot find it, we add it. |
1116 | ccv_nnc_symbolic_graph_add_destination(model->graph, outgrad); |
1117 | } |
1118 | } |
1119 | if (parallel_count > 1) |
1120 | { |
1121 | ccv_nnc_symbolic_graph_data_parallel(model->graph, parallel_count, |
1122 | 0, 0, |
1123 | compiled_data->gradients, parameter_size /* No need to deal with outgrads, we don't allreduce outgrads */, |
1124 | compiled_data->gradients /* We only care about gradients before allreduce, thus, update our current pointers */, |
1125 | 0, 0, 0, |
1126 | CCV_NNC_PARALLEL_REDUCE_OP_SUM, |
1127 | SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph)); |
1128 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
1129 | for (i = 0; i < evaluate_to_size; i++) |
1130 | for (j = 1; j < parallel_count; j++) |
1131 | { |
1132 | const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->evaluate.tos[i], j); |
1133 | if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL) |
1134 | compiled_data->evaluate.tos[compiled_data->evaluate.to_size++] = copy; |
1135 | } |
1136 | const int backward_to_size = compiled_data->backward.to_size; |
1137 | for (i = 0; i < backward_to_size; i++) |
1138 | for (j = 1; j < parallel_count; j++) |
1139 | { |
1140 | const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->backward.tos[i], j); |
1141 | if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL) |
1142 | compiled_data->backward.tos[compiled_data->backward.to_size++] = copy; |
1143 | } |
1144 | } |
1145 | // Only use memory compression if we are in gradient parameter mode. |
1146 | if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS) |
1147 | { |
1148 | if (model->memory_compression) |
1149 | ccv_nnc_symbolic_graph_memory_compression(model->graph, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph)); |
1150 | if (model->memory_reduction) |
1151 | ccv_nnc_symbolic_graph_memory_reduction(model->graph, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph)); |
1152 | } |
1153 | compiled_data->backward.to_size = _ccv_nnc_array_dedup_graph_exec_symbols(compiled_data->backward.tos, compiled_data->backward.to_size); |
1154 | compiled_data->gradient_mode = gradient_mode; |
1155 | } |
1156 | |
1157 | void ccv_cnnp_model_tensors_init_0(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data) |
1158 | { |
1159 | assert(!compiled_data->tensors.parameters)((void) sizeof ((!compiled_data->tensors.parameters) ? 1 : 0), __extension__ ({ if (!compiled_data->tensors.parameters ) ; else __assert_fail ("!compiled_data->tensors.parameters" , "ccv_cnnp_model.c", 1159, __extension__ __PRETTY_FUNCTION__ ); })); |
1160 | const int parameter_size = compiled_data->parameters->rnum; |
1161 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1162 | const int internal_size = compiled_data->internals->rnum; |
1163 | compiled_data->tensors_init.size = ccv_nnc_tensor_symbol_count(model->graph); |
1164 | compiled_data->tensors_init.v = cccalloccalloc(((compiled_data->tensors_init.size + 31) >> 5), sizeof(uint32_t)); |
1165 | compiled_data->tensors.parameters = (ccv_nnc_tensor_t**)cccalloccalloc((parameter_size + internal_size) * parallel_count, sizeof(ccv_nnc_tensor_t*)); |
1166 | compiled_data->tensors.internals = compiled_data->tensors.parameters + parameter_size * parallel_count; |
1167 | } |
1168 | |
1169 | int ccv_cnnp_model_tensors_any_to_alloc(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data) |
1170 | { |
1171 | int i, j; |
1172 | const int parameter_size = compiled_data->parameters->rnum; |
1173 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1174 | const int internal_size = compiled_data->internals->rnum; |
1175 | for (i = 0; i < parameter_size; i++) |
1176 | { |
1177 | // parameters has to be allocated all together. |
1178 | if (compiled_data->tensors.parameters[i]) |
1179 | { |
1180 | for (j = 1; j < parallel_count; j++) |
1181 | { assert(compiled_data->tensors.parameters[i + j * parameter_size])((void) sizeof ((compiled_data->tensors.parameters[i + j * parameter_size]) ? 1 : 0), __extension__ ({ if (compiled_data ->tensors.parameters[i + j * parameter_size]) ; else __assert_fail ("compiled_data->tensors.parameters[i + j * parameter_size]" , "ccv_cnnp_model.c", 1181, __extension__ __PRETTY_FUNCTION__ ); })); } |
1182 | continue; |
1183 | } |
1184 | return 1; |
1185 | } |
1186 | for (i = 0; i < internal_size; i++) |
1187 | { |
1188 | if (!compiled_data->tensors.internals[i]) |
1189 | return 1; |
1190 | for (j = 1; j < parallel_count; j++) |
1191 | if (!compiled_data->tensors.internals[i + j * internal_size]) |
1192 | return 1; |
1193 | } |
1194 | return 0; |
1195 | } |
1196 | |
1197 | void ccv_cnnp_model_tensors_init_1(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data) |
1198 | { |
1199 | int i, j; |
1200 | const int parameter_size = compiled_data->parameters->rnum; |
1201 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1202 | const int internal_size = compiled_data->internals->rnum; |
1203 | for (i = 0; i < parameter_size; i++) |
1204 | { |
1205 | // parameters has to be allocated all together. |
1206 | if (compiled_data->tensors.parameters[i]) |
1207 | { |
1208 | for (j = 1; j < parallel_count; j++) |
1209 | { assert(compiled_data->tensors.parameters[i + j * parameter_size])((void) sizeof ((compiled_data->tensors.parameters[i + j * parameter_size]) ? 1 : 0), __extension__ ({ if (compiled_data ->tensors.parameters[i + j * parameter_size]) ; else __assert_fail ("compiled_data->tensors.parameters[i + j * parameter_size]" , "ccv_cnnp_model.c", 1209, __extension__ __PRETTY_FUNCTION__ ); })); } |
1210 | continue; |
1211 | } |
1212 | const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( i))); |
1213 | ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(parameter.graph, parameter); |
1214 | if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY) |
1215 | CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff ) << 8)); |
1216 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8); |
1217 | compiled_data->tensors.parameters[i] = ccv_nnc_tensor_new(0, info, 0); |
1218 | for (j = 1; j < parallel_count; j++) |
1219 | { |
1220 | if (j != device_id) |
1221 | CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff ) << 8)); |
1222 | else |
1223 | CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff ) << 8)); |
1224 | compiled_data->tensors.parameters[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0); |
1225 | } |
1226 | } |
1227 | const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
1228 | for (i = 0; i < internal_size; i++) |
1229 | { |
1230 | const ccv_nnc_tensor_symbol_t retained = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(i)) ); |
1231 | const int d = retained.d; |
1232 | if (init_v[d >> 5] & (1u << (d & 0x1f))) |
1233 | continue; |
1234 | ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(retained.graph, retained); |
1235 | if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY) |
1236 | CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff ) << 8)); |
1237 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8); |
1238 | if (!compiled_data->tensors.internals[i]) |
1239 | compiled_data->tensors.internals[i] = ccv_nnc_tensor_new(0, info, 0); |
1240 | for (j = 1; j < parallel_count; j++) |
1241 | { |
1242 | if (j != device_id) |
1243 | CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff ) << 8)); |
1244 | else |
1245 | CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff ) << 8)); |
1246 | if (!compiled_data->tensors.internals[i + j * internal_size]) |
1247 | compiled_data->tensors.internals[i + j * internal_size] = ccv_nnc_tensor_new(0, info, 0); |
1248 | } |
1249 | } |
1250 | compiled_data->tensors_init.v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); // Remove 1 if any. |
1251 | } |
1252 | |
1253 | static void _ccv_cnnp_model_tensors_init(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data) |
1254 | { |
1255 | ccv_cnnp_model_tensors_init_0(model, compiled_data); |
1256 | ccv_cnnp_model_tensors_init_1(model, compiled_data); |
1257 | } |
1258 | |
1259 | static void _ccv_cnnp_model_copy_tensors(const uint32_t* const tensors_init, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count) |
1260 | { |
1261 | assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__ ({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0" , "ccv_cnnp_model.c", 1261, __extension__ __PRETTY_FUNCTION__ ); })); |
1262 | int i, j; |
1263 | for (i = 0; i < tensor_size; i++) |
1264 | { |
1265 | if (!tensors[i]) |
1266 | continue; |
1267 | const int d = tensor_symbols[i].d; |
1268 | if (!(tensors_init[d >> 5] & (1u << (d & 0x1f)))) |
1269 | continue; |
1270 | for (j = 1; j < parallel_count; j++) |
1271 | if (tensors[i + j * tensor_size]) |
1272 | { |
1273 | ccv_nnc_tensor_t* const input = CCV_NNC_TENSOR(tensors[i])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i]) & ~(uintptr_t )1)); |
1274 | ccv_nnc_tensor_t* const output = CCV_NNC_TENSOR(tensors[i + j * tensor_size])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i + j * tensor_size] ) & ~(uintptr_t)1)); |
1275 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, &input, 1, &output, 1, 0); |
1276 | } |
1277 | } |
1278 | } |
1279 | |
1280 | static void _ccv_cnnp_model_remove_nocopies(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t** const tensors, const int tensor_size, const int parallel_count) |
1281 | { |
1282 | assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__ ({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0" , "ccv_cnnp_model.c", 1282, __extension__ __PRETTY_FUNCTION__ ); })); |
1283 | int i, j; |
1284 | for (i = 0; i < tensor_size; i++) |
1285 | { |
1286 | const ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i]; |
1287 | for (j = 1; j < parallel_count; j++) |
1288 | { |
1289 | const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j); |
1290 | ccv_nnc_tensor_t* copy_tensor = tensors[i + j * tensor_size]; |
1291 | if (copy_tensor && copy.d == CCV_NNC_NO_TENSOR_SYMBOL) |
1292 | { // We shouldn't allocate this, free it up. |
1293 | ccv_nnc_tensor_free(tensors[i + j * tensor_size]); |
1294 | tensors[i + j * tensor_size] = 0; |
1295 | } |
1296 | } |
1297 | } |
1298 | } |
1299 | |
1300 | static void _ccv_cnnp_model_bind_tensors(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count, ccv_array_t* const tensor_binds) |
1301 | { |
1302 | assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__ ({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0" , "ccv_cnnp_model.c", 1302, __extension__ __PRETTY_FUNCTION__ ); })); |
1303 | int i, j; |
1304 | for (i = 0; i < tensor_size; i++) |
1305 | { |
1306 | ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i]; |
1307 | if (tensor_symbol.d == CCV_NNC_NO_TENSOR_SYMBOL) |
1308 | continue; |
1309 | if (graph) |
1310 | { |
1311 | const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph, tensor_symbol); |
1312 | if (alias_to.d != CCV_NNC_NO_TENSOR_SYMBOL) |
1313 | tensor_symbol = alias_to; |
1314 | } |
1315 | ccv_nnc_tensor_t* const tensor = CCV_NNC_TENSOR(tensors[i])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i]) & ~(uintptr_t )1)); |
1316 | if (tensor && tensor_symbol.d != CCV_NNC_NO_TENSOR_SYMBOL) |
1317 | { |
1318 | const ccv_nnc_tensor_bind_t retained_bind = { |
1319 | .symbol = tensor_symbol, |
1320 | .tensor = tensor |
1321 | }; |
1322 | ccv_array_push(tensor_binds, &retained_bind); |
1323 | } |
1324 | for (j = 1; j < parallel_count; j++) |
1325 | { |
1326 | const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j); |
1327 | ccv_nnc_tensor_t* copy_tensor = tensors[i + j * tensor_size]; |
1328 | if (copy_tensor && copy.d != CCV_NNC_NO_TENSOR_SYMBOL) |
1329 | { |
1330 | const ccv_nnc_tensor_bind_t bind = { |
1331 | .symbol = copy, |
1332 | .tensor = tensors[i + j * tensor_size] |
1333 | }; |
1334 | ccv_array_push(tensor_binds, &bind); |
1335 | } |
1336 | } |
1337 | } |
1338 | } |
1339 | |
1340 | static void _ccv_cnnp_compiled_data_graph_free(ccv_cnnp_compiled_data_t* const compiled_data) |
1341 | { |
1342 | if (compiled_data->graph) |
1343 | ccv_nnc_graph_free(compiled_data->graph); |
1344 | compiled_data->graph = 0; |
1345 | compiled_data->is_test = 0; |
1346 | if (compiled_data->tensor_arena) |
1347 | ccv_nnc_tensor_arena_free(compiled_data->tensor_arena); |
1348 | compiled_data->tensor_arena = 0; |
1349 | if (compiled_data->graph_exec_arena) |
1350 | ccv_nnc_graph_exec_arena_free(compiled_data->graph_exec_arena); |
1351 | compiled_data->graph_exec_arena = 0; |
1352 | if (compiled_data->backward.from_ops) |
1353 | ccfreefree(compiled_data->backward.from_ops); |
1354 | compiled_data->backward.from_ops = 0; |
1355 | if (compiled_data->evaluate.schedule) |
1356 | ccv_nnc_graph_static_schedule_free(compiled_data->evaluate.schedule); |
1357 | compiled_data->evaluate.schedule = 0; |
1358 | if (compiled_data->backward.schedule) |
1359 | ccv_nnc_graph_static_schedule_free(compiled_data->backward.schedule); |
1360 | compiled_data->backward.schedule = 0; |
1361 | } |
1362 | |
1363 | static void _ccv_cnnp_compiled_data_gradient_free(ccv_cnnp_compiled_data_t* const compiled_data) |
1364 | { |
1365 | if (compiled_data->gradients) |
1366 | ccfreefree(compiled_data->gradients); |
1367 | compiled_data->gradients = 0; |
1368 | if (compiled_data->updated_parameters) |
1369 | ccfreefree(compiled_data->updated_parameters); |
1370 | compiled_data->updated_parameters = 0; |
1371 | compiled_data->update_nodes = 0; |
1372 | compiled_data->saved_aux = 0; |
1373 | } |
1374 | |
1375 | static void _ccv_cnnp_compiled_data_backward_free(ccv_cnnp_compiled_data_t* const compiled_data) |
1376 | { |
1377 | if (compiled_data->backward.gradients) |
1378 | ccfreefree(compiled_data->backward.gradients); |
1379 | compiled_data->backward.gradients = 0; |
1380 | if (compiled_data->backward.accum) |
1381 | ccv_nnc_graph_free(compiled_data->backward.accum); |
1382 | compiled_data->backward.accum = 0; |
1383 | if (compiled_data->backward.tensor_arena) |
1384 | ccv_nnc_tensor_arena_free(compiled_data->backward.tensor_arena); |
1385 | compiled_data->backward.tensor_arena = 0; |
1386 | if (compiled_data->backward.graph_exec_arena) |
1387 | ccv_nnc_graph_exec_arena_free(compiled_data->backward.graph_exec_arena); |
1388 | compiled_data->backward.graph_exec_arena = 0; |
1389 | } |
1390 | |
1391 | static void _ccv_cnnp_compiled_data_apply_gradients_free(ccv_cnnp_compiled_data_t* const compiled_data) |
1392 | { |
1393 | if (compiled_data->apply_gradients.graph) |
1394 | ccv_nnc_graph_free(compiled_data->apply_gradients.graph); |
1395 | compiled_data->apply_gradients.graph = 0; |
1396 | if (compiled_data->apply_gradients.tensor_arena) |
1397 | ccv_nnc_tensor_arena_free(compiled_data->apply_gradients.tensor_arena); |
1398 | compiled_data->apply_gradients.tensor_arena = 0; |
1399 | if (compiled_data->apply_gradients.graph_exec_arena) |
1400 | ccv_nnc_graph_exec_arena_free(compiled_data->apply_gradients.graph_exec_arena); |
1401 | compiled_data->apply_gradients.graph_exec_arena = 0; |
1402 | } |
1403 | |
1404 | // Compile the graph to run ccv_cnnp_model_fit |
1405 | static void _ccv_cnnp_model_fit_jit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const fits, const int fit_size, ccv_nnc_tensor_t* const* const outputs, const int output_size) |
1406 | { |
1407 | int i, j; |
1408 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1409 | assert(!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE)((void) sizeof ((!compiled_data->graph || compiled_data-> graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE) ? 1 : 0), __extension__ ({ if (!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE) ; else __assert_fail ("!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE" , "ccv_cnnp_model.c", 1409, __extension__ __PRETTY_FUNCTION__ ); })); |
1410 | compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_FIT_MODE; |
1411 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1412 | assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count ) ? 1 : 0), __extension__ ({ if (output_size == model->output_size * parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count" , "ccv_cnnp_model.c", 1412, __extension__ __PRETTY_FUNCTION__ ); })); |
1413 | assert(!fits || output_size == fit_size)((void) sizeof ((!fits || output_size == fit_size) ? 1 : 0), __extension__ ({ if (!fits || output_size == fit_size) ; else __assert_fail ("!fits || output_size == fit_size", "ccv_cnnp_model.c", 1413 , __extension__ __PRETTY_FUNCTION__); })); |
1414 | assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ ( { if (output_size > 0) ; else __assert_fail ("output_size > 0" , "ccv_cnnp_model.c", 1414, __extension__ __PRETTY_FUNCTION__ ); })); |
1415 | if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) |
1416 | { |
1417 | _ccv_cnnp_model_set_rewindables(model); |
1418 | _ccv_cnnp_model_gradient_init(model, CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES, CCV_CNNP_DISABLE_OUTGRAD_ALL, fits, fit_size); |
1419 | } else if (compiled_data->gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES) { |
1420 | _ccv_cnnp_model_rewind_graph(model); |
1421 | _ccv_cnnp_compiled_data_gradient_free(compiled_data); |
1422 | compiled_data->gradient_mode = CCV_CNNP_COMPILED_DATA_GRADIENT_NONE; |
1423 | _ccv_cnnp_model_gradient_init(model, CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES, CCV_CNNP_DISABLE_OUTGRAD_ALL, fits, fit_size); |
1424 | } |
1425 | const int tensors_init = !!compiled_data->tensors_init.v; |
1426 | if (!tensors_init) |
1427 | _ccv_cnnp_model_tensors_init(model, compiled_data); |
1428 | else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1) |
1429 | // Check if it is not fully allocated, if it is not, init_1. |
1430 | ccv_cnnp_model_tensors_init_1(model, compiled_data); |
1431 | ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0); |
1432 | assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0) , __extension__ ({ if ((input_size % parallel_count) == 0) ; else __assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1432, __extension__ __PRETTY_FUNCTION__); })); |
1433 | assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0 ), __extension__ ({ if ((output_size % parallel_count) == 0) ; else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1433, __extension__ __PRETTY_FUNCTION__); })); |
1434 | assert((fit_size % parallel_count) == 0)((void) sizeof (((fit_size % parallel_count) == 0) ? 1 : 0), __extension__ ({ if ((fit_size % parallel_count) == 0) ; else __assert_fail ("(fit_size % parallel_count) == 0", "ccv_cnnp_model.c", 1434 , __extension__ __PRETTY_FUNCTION__); })); |
1435 | const int input_size_per_p = input_size / parallel_count; |
1436 | _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds); |
1437 | const int output_size_per_p = output_size / parallel_count; |
1438 | _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds); |
1439 | const int fit_size_per_p = fit_size / parallel_count; |
1440 | _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->fits, fits, fit_size_per_p, parallel_count, tensor_binds); |
1441 | const int parameter_size = compiled_data->parameters->rnum; |
1442 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds); |
1443 | _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->updated_parameters, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds); |
1444 | const int internal_size = compiled_data->internals->rnum; |
1445 | _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(0)) ), compiled_data->tensors.internals, internal_size, parallel_count); |
1446 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(0)) ), compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds); |
1447 | ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds )->rsize * (size_t)(0))), tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph), &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena); |
1448 | ccv_array_free(tensor_binds); |
1449 | const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
1450 | if (tensors_init && parallel_count > 1) |
1451 | _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count); |
1452 | // If tensor is not init'ed, we need to init states first. |
1453 | if (_ccv_cnnp_any_to_init(compiled_data)) |
1454 | { |
1455 | ccv_nnc_tensor_init_states_t tensor_init_states = { |
1456 | .parallel_count = parallel_count, |
1457 | .graph = model->graph, |
1458 | .compiled_data = compiled_data, |
1459 | .tensor_arena = compiled_data->tensor_arena |
1460 | }; |
1461 | ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states); |
1462 | } |
1463 | compiled_data->is_test = 0; |
1464 | const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(compiled_data->minimize.minimizer); |
1465 | // No need to set because it is default to training mode. |
1466 | // ccv_cnnp_model_set_is_test(model, 0, _ccv_cnnp_cmd_update_for_execs, &update); |
1467 | for (i = 0; i < saved_aux_size * parameter_size; i++) |
1468 | { |
1469 | if (compiled_data->saved_aux[i].source.d == CCV_NNC_NO_TENSOR_SYMBOL) |
1470 | continue; |
1471 | ccv_nnc_tensor_t* const tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, compiled_data->saved_aux[i].source); |
1472 | ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size ={.dim={1,1,1}},.blas={.a={0,}}}, 0), ccv_nnc_no_hint, 0, 0, 0, &tensor, 1, 0); |
1473 | for (j = 1; j < parallel_count; j++) |
1474 | { |
1475 | ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, compiled_data->saved_aux[i].source, j)); |
1476 | if (copy) |
1477 | ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size ={.dim={1,1,1}},.blas={.a={0,}}}, 0), ccv_nnc_no_hint, 0, 0, 0, ©, 1, 0); |
1478 | } |
1479 | } |
1480 | const int evaluate_to_size = compiled_data->evaluate.to_size; |
1481 | compiled_data->evaluate.to_op_size = 0; |
1482 | for (i = 0; i < evaluate_to_size; i++) |
1483 | { |
1484 | ccv_nnc_graph_exec_t const to = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, compiled_data->evaluate.tos[i]); |
1485 | if (to.graph) |
1486 | compiled_data->evaluate.to_ops[compiled_data->evaluate.to_op_size++] = to; |
1487 | } |
1488 | ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count); |
1489 | ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0); |
1490 | } |
1491 | |
1492 | ccv_nnc_stream_context_t* ccv_cnnp_model_default_stream(const ccv_cnnp_model_t* const model) |
1493 | { |
1494 | const ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1495 | if (!compiled_data || !compiled_data->graph) |
1496 | return 0; |
1497 | return ccv_nnc_graph_default_stream(compiled_data->graph); |
1498 | } |
1499 | |
1500 | uint64_t ccv_cnnp_model_memory_size(const ccv_cnnp_model_t* const model) |
1501 | { |
1502 | const ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1503 | if (!compiled_data || !compiled_data->tensor_arena) |
1504 | return 0; |
1505 | return ccv_nnc_tensor_arena_size(compiled_data->tensor_arena); |
1506 | } |
1507 | |
1508 | static void _ccv_cnnp_bind_tensors_to_arena(ccv_nnc_tensor_arena_t* const tensor_arena, const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count) |
1509 | { |
1510 | int i, j; |
1511 | for (i = 0; i < tensor_size; i++) |
1512 | { |
1513 | ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i]; |
1514 | if (tensor_symbol.d == CCV_NNC_NO_TENSOR_SYMBOL) |
1515 | continue; |
1516 | if (graph) |
1517 | { |
1518 | const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph, tensor_symbol); |
1519 | if (alias_to.d != CCV_NNC_NO_TENSOR_SYMBOL) |
1520 | tensor_symbol = alias_to; |
1521 | } |
1522 | ccv_nnc_tensor_bind_symbol(tensor_arena, tensor_symbol, tensors[i]); |
1523 | for (j = 1; j < parallel_count; j++) |
1524 | { |
1525 | const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j); |
1526 | if (copy.d != CCV_NNC_NO_TENSOR_SYMBOL) |
1527 | ccv_nnc_tensor_bind_symbol(tensor_arena, copy, tensors[i + tensor_size * j]); |
1528 | } |
1529 | } |
1530 | } |
1531 | |
1532 | void ccv_cnnp_model_fit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const fits, const int fit_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context) |
1533 | { |
1534 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1535 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 1535, __extension__ __PRETTY_FUNCTION__); })); |
1536 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1537 | assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count ) ? 1 : 0), __extension__ ({ if (output_size == model->output_size * parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count" , "ccv_cnnp_model.c", 1537, __extension__ __PRETTY_FUNCTION__ ); })); |
1538 | assert(input_size == model->input_size * parallel_count)((void) sizeof ((input_size == model->input_size * parallel_count ) ? 1 : 0), __extension__ ({ if (input_size == model->input_size * parallel_count) ; else __assert_fail ("input_size == model->input_size * parallel_count" , "ccv_cnnp_model.c", 1538, __extension__ __PRETTY_FUNCTION__ ); })); |
1539 | assert(!fits || fit_size == output_size)((void) sizeof ((!fits || fit_size == output_size) ? 1 : 0), __extension__ ({ if (!fits || fit_size == output_size) ; else __assert_fail ("!fits || fit_size == output_size", "ccv_cnnp_model.c", 1539 , __extension__ __PRETTY_FUNCTION__); })); |
1540 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 1540, __extension__ __PRETTY_FUNCTION__); })); |
1541 | if (!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE) |
1542 | { |
1543 | _ccv_cnnp_compiled_data_graph_free(compiled_data); |
1544 | _ccv_cnnp_compiled_data_backward_free(compiled_data); |
1545 | _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data); |
1546 | // Compile the symbolic graph down only when needed. |
1547 | _ccv_cnnp_model_fit_jit(model, inputs, input_size, fits, fit_size, outputs, output_size); |
1548 | } else { |
1549 | assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0) , __extension__ ({ if ((input_size % parallel_count) == 0) ; else __assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1549, __extension__ __PRETTY_FUNCTION__); })); |
1550 | assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0 ), __extension__ ({ if ((output_size % parallel_count) == 0) ; else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1550, __extension__ __PRETTY_FUNCTION__); })); |
1551 | assert((fit_size % parallel_count) == 0)((void) sizeof (((fit_size % parallel_count) == 0) ? 1 : 0), __extension__ ({ if ((fit_size % parallel_count) == 0) ; else __assert_fail ("(fit_size % parallel_count) == 0", "ccv_cnnp_model.c", 1551 , __extension__ __PRETTY_FUNCTION__); })); |
1552 | const int input_size_per_p = input_size / parallel_count; |
1553 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->inputs, inputs, input_size_per_p, parallel_count); |
1554 | const int output_size_per_p = output_size / parallel_count; |
1555 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->outputs, outputs, output_size_per_p, parallel_count); |
1556 | const int fit_size_per_p = fit_size / parallel_count; |
1557 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, compiled_data->fits, fits, fit_size_per_p, parallel_count); |
1558 | } |
1559 | if (compiled_data->is_test) |
1560 | { |
1561 | compiled_data->is_test = 0; |
1562 | ccv_nnc_graph_exec_update_t update = { |
1563 | .parallel_count = parallel_count, |
1564 | .graph = model->graph, |
1565 | .graph_exec_arena = compiled_data->graph_exec_arena, |
1566 | }; |
1567 | ccv_cnnp_model_set_is_test(model, 0, _ccv_cnnp_cmd_update_for_execs, &update); |
1568 | } |
1569 | ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, 0, tensor_tape, stream_context); |
1570 | } |
1571 | |
1572 | // Compile the graph to run ccv_cnnp_model_evaluate with require_grad = false (MULTISTAGE_MODE_NO_GRAD). |
1573 | static void _ccv_cnnp_model_multistage_no_grad_jit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size) |
1574 | { |
1575 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1576 | compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE_NO_GRAD; |
1577 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1578 | assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count ) ? 1 : 0), __extension__ ({ if (output_size == model->output_size * parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count" , "ccv_cnnp_model.c", 1578, __extension__ __PRETTY_FUNCTION__ ); })); |
1579 | assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ ( { if (output_size > 0) ; else __assert_fail ("output_size > 0" , "ccv_cnnp_model.c", 1579, __extension__ __PRETTY_FUNCTION__ ); })); |
1580 | // If the gradient is not initialized, continue to setup parallel process. We don't init gradient here, but rather, |
1581 | // we setup proper rewindables so the graph can be rewinded to previous state before we run data parallel. |
1582 | if (parallel_count > 1 && compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) |
1583 | { |
1584 | const int evaluate_to_size = compiled_data->evaluate.to_size; |
1585 | compiled_data->evaluate.tos = ccreallocrealloc(compiled_data->evaluate.tos, sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size * parallel_count + sizeof(ccv_nnc_graph_exec_t) * evaluate_to_size * parallel_count); |
1586 | _ccv_cnnp_model_set_rewindables(model); |
1587 | ccv_nnc_symbolic_graph_data_parallel(model->graph, parallel_count, |
1588 | 0, 0, |
1589 | 0, 0, 0, |
1590 | 0, 0, 0, |
1591 | CCV_NNC_PARALLEL_REDUCE_OP_SUM, |
1592 | SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size (model->graph)); |
1593 | ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
1594 | int i, j; |
1595 | for (i = 0; i < evaluate_to_size; i++) |
1596 | for (j = 1; j < parallel_count; j++) |
1597 | { |
1598 | const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->evaluate.tos[i], j); |
1599 | if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL) |
1600 | compiled_data->evaluate.tos[compiled_data->evaluate.to_size++] = copy; |
1601 | } |
1602 | } |
1603 | const int tensors_init = !!compiled_data->tensors_init.v; |
1604 | if (!tensors_init) |
1605 | _ccv_cnnp_model_tensors_init(model, compiled_data); |
1606 | else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1) |
1607 | // Check if it is not fully allocated, if it is not, init_1. |
1608 | ccv_cnnp_model_tensors_init_1(model, compiled_data); |
1609 | ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0); |
1610 | assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0) , __extension__ ({ if ((input_size % parallel_count) == 0) ; else __assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1610, __extension__ __PRETTY_FUNCTION__); })); |
1611 | assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0 ), __extension__ ({ if ((output_size % parallel_count) == 0) ; else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1611, __extension__ __PRETTY_FUNCTION__); })); |
1612 | const int input_size_per_p = input_size / parallel_count; |
1613 | _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds); |
1614 | const int output_size_per_p = output_size / parallel_count; |
1615 | _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds); |
1616 | const int parameter_size = compiled_data->parameters->rnum; |
1617 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds); |
1618 | const int internal_size = compiled_data->internals->rnum; |
1619 | _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(0)) ), compiled_data->tensors.internals, internal_size, parallel_count); |
1620 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(0)) ), compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds); |
1621 | // If we generated gradient for the graph, only compile part of the graph because the rest is irrelevant for evaluation. |
1622 | ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds )->rsize * (size_t)(0))), tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), compiled_data->evaluate.tos, compiled_data->evaluate.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena); |
1623 | ccv_array_free(tensor_binds); |
1624 | const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
1625 | // If tensor is not init'ed, we need to init states first. |
1626 | if (tensors_init && parallel_count > 1) |
1627 | _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count); |
1628 | if (_ccv_cnnp_any_to_init(compiled_data)) |
1629 | { |
1630 | ccv_nnc_tensor_init_states_t tensor_init_states = { |
1631 | .parallel_count = parallel_count, |
1632 | .graph = model->graph, |
1633 | .compiled_data = compiled_data, |
1634 | .tensor_arena = compiled_data->tensor_arena |
1635 | }; |
1636 | ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states); |
1637 | } |
1638 | compiled_data->is_test = 1; |
1639 | ccv_nnc_graph_exec_update_t update = { |
1640 | .parallel_count = parallel_count, |
1641 | .graph = model->graph, |
1642 | .graph_exec_arena = compiled_data->graph_exec_arena, |
1643 | }; |
1644 | ccv_cnnp_model_set_is_test(model, 1, _ccv_cnnp_cmd_update_for_execs, &update); |
1645 | ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count); |
1646 | ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0); |
1647 | } |
1648 | |
1649 | static void _ccv_cnnp_model_gradient_tensors_init(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data) |
1650 | { |
1651 | assert(!compiled_data->tensors.gradients)((void) sizeof ((!compiled_data->tensors.gradients) ? 1 : 0 ), __extension__ ({ if (!compiled_data->tensors.gradients) ; else __assert_fail ("!compiled_data->tensors.gradients" , "ccv_cnnp_model.c", 1651, __extension__ __PRETTY_FUNCTION__ ); })); |
1652 | const int parameter_size = compiled_data->parameters->rnum; |
1653 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1654 | compiled_data->tensors.gradients = (ccv_nnc_tensor_t**)ccmallocmalloc(sizeof(ccv_nnc_tensor_t*) * parameter_size * 2 * parallel_count); |
1655 | compiled_data->tensors.accum_gradients = compiled_data->tensors.gradients + parameter_size * parallel_count; |
1656 | int i, j; |
1657 | for (i = 0; i < parameter_size; i++) |
1658 | { |
1659 | if (compiled_data->parameter_flags && !(compiled_data->parameter_flags[i >> 6] & ((uint64_t)1 << (i & 63)))) |
1660 | { |
1661 | compiled_data->tensors.gradients[i] = 0; |
1662 | compiled_data->tensors.accum_gradients[i] = 0; |
1663 | for (j = 1; j < parallel_count; j++) |
1664 | { |
1665 | compiled_data->tensors.gradients[i + j * parameter_size] = 0; |
1666 | compiled_data->tensors.accum_gradients[i + j * parameter_size] = 0; |
1667 | } |
1668 | continue; |
1669 | } |
1670 | const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( i))); |
1671 | ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(parameter.graph, parameter); |
1672 | if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY) |
1673 | CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff ) << 8)); |
1674 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8); |
1675 | compiled_data->tensors.gradients[i] = ccv_nnc_tensor_new(0, info, 0); |
1676 | compiled_data->tensors.accum_gradients[i] = 0; // delay the accumulated gradient allocation until when we need it. |
1677 | for (j = 1; j < parallel_count; j++) |
1678 | { |
1679 | if (j != device_id) |
1680 | CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff ) << 8)); |
1681 | else |
1682 | CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff ) << 8)); |
1683 | compiled_data->tensors.gradients[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0); |
1684 | compiled_data->tensors.accum_gradients[i + j * parameter_size] = 0; |
1685 | } |
1686 | } |
1687 | } |
1688 | |
1689 | static int _ccv_cnnp_is_disable_outgrad_all(const uint64_t disable_outgrad, const int input_size) |
1690 | { |
1691 | if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_ALL) |
1692 | return 1; |
1693 | if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) |
1694 | return 0; |
1695 | int i; |
1696 | for (i = 0; i < input_size; i++) |
1697 | if (!(disable_outgrad & ((uint64_t)1 << i))) |
1698 | return 0; |
1699 | return 1; |
1700 | } |
1701 | |
1702 | // Compile the graph to run ccv_cnnp_model_evaluate with requires_grad = true (MULTISTAGE_MODE). |
1703 | // Particularly, this method compiles the evaluation and backprop graph (the main graph). |
1704 | static void _ccv_cnnp_model_multistage_jit_0(ccv_cnnp_model_t* const model, const uint64_t disable_outgrad, const int is_test, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size) |
1705 | { |
1706 | int i, j; |
1707 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1708 | const int target_gradient_mode = _ccv_cnnp_is_disable_outgrad_all(disable_outgrad, model->input_size) ? CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES : CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS; |
1709 | assert(!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode)((void) sizeof ((!compiled_data->graph || compiled_data-> graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data ->gradient_mode != target_gradient_mode) ? 1 : 0), __extension__ ({ if (!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data-> gradient_mode != target_gradient_mode) ; else __assert_fail ( "!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode" , "ccv_cnnp_model.c", 1709, __extension__ __PRETTY_FUNCTION__ ); })); |
1710 | compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE; |
1711 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1712 | assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count ) ? 1 : 0), __extension__ ({ if (output_size == model->output_size * parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count" , "ccv_cnnp_model.c", 1712, __extension__ __PRETTY_FUNCTION__ ); })); |
1713 | assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ ( { if (output_size > 0) ; else __assert_fail ("output_size > 0" , "ccv_cnnp_model.c", 1713, __extension__ __PRETTY_FUNCTION__ ); })); |
1714 | // There shouldn't be a loss function if we evaluate with multistage jit. |
1715 | assert(compiled_data->loss.cmd == CCV_NNC_NOOP)((void) sizeof ((compiled_data->loss.cmd == CCV_NNC_NOOP) ? 1 : 0), __extension__ ({ if (compiled_data->loss.cmd == CCV_NNC_NOOP ) ; else __assert_fail ("compiled_data->loss.cmd == CCV_NNC_NOOP" , "ccv_cnnp_model.c", 1715, __extension__ __PRETTY_FUNCTION__ ); })); |
1716 | if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) |
1717 | { |
1718 | _ccv_cnnp_model_set_rewindables(model); |
1719 | _ccv_cnnp_model_gradient_init(model, target_gradient_mode, disable_outgrad, 0, 0); // The type of outputs and fits should be the same. We only use type here. |
1720 | } else if (compiled_data->gradient_mode != target_gradient_mode) { |
1721 | _ccv_cnnp_model_rewind_graph(model); |
1722 | _ccv_cnnp_compiled_data_gradient_free(compiled_data); |
1723 | compiled_data->gradient_mode = CCV_CNNP_COMPILED_DATA_GRADIENT_NONE; |
1724 | _ccv_cnnp_model_gradient_init(model, target_gradient_mode, disable_outgrad, 0, 0); // The type of outputs and fits should be the same. We only use type here. |
1725 | } |
1726 | const int tensors_init = !!compiled_data->tensors_init.v; |
1727 | if (!tensors_init) |
1728 | _ccv_cnnp_model_tensors_init(model, compiled_data); |
1729 | else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1) |
1730 | // Check if it is not fully allocated, if it is not, init_1. |
1731 | ccv_cnnp_model_tensors_init_1(model, compiled_data); |
1732 | ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0); |
1733 | assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0) , __extension__ ({ if ((input_size % parallel_count) == 0) ; else __assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1733, __extension__ __PRETTY_FUNCTION__); })); |
1734 | assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0 ), __extension__ ({ if ((output_size % parallel_count) == 0) ; else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1734, __extension__ __PRETTY_FUNCTION__); })); |
1735 | const int input_size_per_p = input_size / parallel_count; |
1736 | _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds); |
1737 | const int output_size_per_p = output_size / parallel_count; |
1738 | _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds); |
1739 | const int parameter_size = compiled_data->parameters->rnum; |
1740 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds); |
1741 | const int internal_size = compiled_data->internals->rnum; |
1742 | _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(0)) ), compiled_data->tensors.internals, internal_size, parallel_count); |
1743 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + ( size_t)(compiled_data->internals)->rsize * (size_t)(0)) ), compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds); |
1744 | if (!compiled_data->tensors.gradients) |
1745 | _ccv_cnnp_model_gradient_tensors_init(model, compiled_data); |
1746 | _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count, tensor_binds); |
1747 | if (compiled_data->backward.to_size > 0) |
1748 | ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds )->rsize * (size_t)(0))), tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), compiled_data->backward.tos, compiled_data->backward.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena); |
1749 | else |
1750 | ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds )->rsize * (size_t)(0))), tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size (model->graph), compiled_data->evaluate.tos, compiled_data->evaluate.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena); |
1751 | ccv_array_free(tensor_binds); |
1752 | const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
1753 | if (tensors_init && parallel_count > 1) |
1754 | _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count); |
1755 | // If tensor is not init'ed, we need to init states first. |
1756 | if (_ccv_cnnp_any_to_init(compiled_data)) |
1757 | { |
1758 | ccv_nnc_tensor_init_states_t tensor_init_states = { |
1759 | .parallel_count = parallel_count, |
1760 | .graph = model->graph, |
1761 | .compiled_data = compiled_data, |
1762 | .tensor_arena = compiled_data->tensor_arena |
1763 | }; |
1764 | ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states); |
1765 | } |
1766 | compiled_data->is_test = is_test; |
1767 | ccv_nnc_graph_exec_update_t update = { |
1768 | .parallel_count = parallel_count, |
1769 | .graph = model->graph, |
1770 | .graph_exec_arena = compiled_data->graph_exec_arena, |
1771 | }; |
1772 | ccv_cnnp_model_set_is_test(model, is_test, _ccv_cnnp_cmd_update_for_execs, &update); |
1773 | const int evaluate_to_size = compiled_data->evaluate.to_size; |
1774 | compiled_data->evaluate.to_op_size = 0; |
1775 | ccv_array_t* const backward_from = ccv_array_new(sizeof(int), 0, 0); |
1776 | for (i = 0; i < evaluate_to_size; i++) |
1777 | { |
1778 | ccv_nnc_graph_exec_t const to_op = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, compiled_data->evaluate.tos[i]); |
1779 | if (to_op.graph) |
1780 | compiled_data->evaluate.to_ops[compiled_data->evaluate.to_op_size++] = to_op; |
1781 | const int* tos; |
1782 | int to_size; |
1783 | ccv_nnc_graph_exec_symbol_to(model->graph, compiled_data->evaluate.tos[i], &tos, &to_size); |
1784 | for (j = 0; j < to_size; j++) |
1785 | { |
1786 | ccv_nnc_graph_exec_t const to_op = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, (ccv_nnc_graph_exec_symbol_t){ |
1787 | .d = tos[j], |
1788 | .graph = model->graph |
1789 | }); |
1790 | if (to_op.graph) |
1791 | ccv_array_add_unique_int(backward_from, to_op.d); |
1792 | } |
1793 | } |
1794 | assert(backward_from->rnum > 0)((void) sizeof ((backward_from->rnum > 0) ? 1 : 0), __extension__ ({ if (backward_from->rnum > 0) ; else __assert_fail ( "backward_from->rnum > 0", "ccv_cnnp_model.c", 1794, __extension__ __PRETTY_FUNCTION__); })); |
1795 | compiled_data->backward.from_op_size = backward_from->rnum; |
1796 | compiled_data->backward.from_ops = (ccv_nnc_graph_exec_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_t) * backward_from->rnum); |
1797 | for (i = 0; i < backward_from->rnum; i++) |
1798 | compiled_data->backward.from_ops[i] = (ccv_nnc_graph_exec_t){ |
1799 | .d = *(int*)ccv_array_get(backward_from, i)((void*)(((char*)((backward_from)->data)) + (size_t)(backward_from )->rsize * (size_t)(i))), |
1800 | .graph = compiled_data->graph, |
1801 | }; |
1802 | ccv_array_free(backward_from); |
1803 | ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count); |
1804 | ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0); |
1805 | } |
1806 | |
1807 | void ccv_cnnp_model_dry_run(ccv_cnnp_model_t* const model, const ccv_cnnp_evaluate_param_t params, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size) |
1808 | { |
1809 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1810 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 1810, __extension__ __PRETTY_FUNCTION__); })); |
1811 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1812 | assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count ) ? 1 : 0), __extension__ ({ if (output_size == model->output_size * parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count" , "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__ ); })); |
1813 | assert(input_size == model->input_size * parallel_count)((void) sizeof ((input_size == model->input_size * parallel_count ) ? 1 : 0), __extension__ ({ if (input_size == model->input_size * parallel_count) ; else __assert_fail ("input_size == model->input_size * parallel_count" , "ccv_cnnp_model.c", 1813, __extension__ __PRETTY_FUNCTION__ ); })); |
1814 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 1814, __extension__ __PRETTY_FUNCTION__); })); |
1815 | const int target_gradient_mode = _ccv_cnnp_is_disable_outgrad_all(params.disable_outgrad, model->input_size) ? CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES : CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS; |
1816 | const int mode_mismatch = (params.requires_grad && (compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode || compiled_data->disable_outgrad != params.disable_outgrad)); |
1817 | if (!compiled_data->graph || mode_mismatch) |
1818 | { |
1819 | _ccv_cnnp_compiled_data_graph_free(compiled_data); |
1820 | if (mode_mismatch) // If mode mismatch, we need to redo the backward as well (no need to redo apply_gradients, it doesn't require target_gradient_mode or disable_outgrad. |
1821 | _ccv_cnnp_compiled_data_backward_free(compiled_data); |
1822 | if (params.requires_grad) |
1823 | _ccv_cnnp_model_multistage_jit_0(model, params.disable_outgrad, params.is_test, inputs, input_size, outputs, output_size); |
1824 | else |
1825 | _ccv_cnnp_model_multistage_no_grad_jit(model, inputs, input_size, outputs, output_size); |
1826 | } else { |
1827 | ccv_nnc_tensor_arena_clear_bindings(compiled_data->tensor_arena); |
1828 | assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0) , __extension__ ({ if ((input_size % parallel_count) == 0) ; else __assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1828, __extension__ __PRETTY_FUNCTION__); })); |
1829 | const int input_size_per_p = input_size / parallel_count; |
1830 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->inputs, inputs, input_size_per_p, parallel_count); |
1831 | assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0 ), __extension__ ({ if ((output_size % parallel_count) == 0) ; else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c" , 1831, __extension__ __PRETTY_FUNCTION__); })); |
1832 | const int output_size_per_p = output_size / parallel_count; |
1833 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->outputs, outputs, output_size_per_p, parallel_count); |
1834 | } |
1835 | if (compiled_data->is_test != params.is_test) |
1836 | { |
1837 | compiled_data->is_test = params.is_test; |
1838 | ccv_nnc_graph_exec_update_t update = { |
1839 | .parallel_count = parallel_count, |
1840 | .graph = model->graph, |
1841 | .graph_exec_arena = compiled_data->graph_exec_arena, |
1842 | }; |
1843 | ccv_cnnp_model_set_is_test(model, params.is_test, _ccv_cnnp_cmd_update_for_execs, &update); |
1844 | } |
1845 | } |
1846 | |
1847 | void ccv_cnnp_model_evaluate(ccv_cnnp_model_t* const model, const ccv_cnnp_evaluate_param_t params, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context) |
1848 | { |
1849 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1850 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 1850, __extension__ __PRETTY_FUNCTION__); })); |
1851 | ccv_cnnp_model_dry_run(model, params, inputs, input_size, outputs, output_size); |
1852 | if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE_NO_GRAD) |
1853 | ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, 0, tensor_tape, stream_context); |
1854 | else { |
1855 | if (!compiled_data->evaluate.schedule) |
1856 | compiled_data->evaluate.schedule = ccv_nnc_graph_static_schedule_new(compiled_data->graph, compiled_data->stream_type, model->max_stream_count, 0, 0, compiled_data->evaluate.to_ops, compiled_data->evaluate.to_op_size); |
1857 | ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, compiled_data->evaluate.schedule, tensor_tape, stream_context); |
1858 | } |
1859 | } |
1860 | |
1861 | // Compile the graph to run ccv_cnnp_model_backward after ccv_cnnp_model_evaluate with requires_grad = true (MULTISTAGE_MODE). |
1862 | // Particularly, this method compiles the accumulator graph. |
1863 | static void _ccv_cnnp_model_multistage_jit_1(ccv_cnnp_model_t* const model) |
1864 | { |
1865 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1866 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 1866, __extension__ __PRETTY_FUNCTION__); })); |
1867 | assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE ) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail ("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE" , "ccv_cnnp_model.c", 1867, __extension__ __PRETTY_FUNCTION__ ); })); |
1868 | ccv_nnc_symbolic_graph_t* accum = ccv_nnc_symbolic_graph_new(); |
1869 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1870 | const int parameter_size = compiled_data->parameters->rnum; |
1871 | int i, j; |
1872 | compiled_data->backward.gradients = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size * parallel_count * 3); |
1873 | compiled_data->backward.accum_gradients = compiled_data->backward.gradients + parameter_size * parallel_count; |
1874 | compiled_data->backward.updated_accum_gradients = compiled_data->backward.accum_gradients + parameter_size * parallel_count; |
1875 | for (i = 0; i < parameter_size; i++) |
1876 | for (j = 0; j < parallel_count; j++) |
1877 | if (compiled_data->tensors.gradients[i + j * parameter_size]) |
1878 | { |
1879 | const ccv_nnc_tensor_param_t info = compiled_data->tensors.gradients[i + j * parameter_size]->info; |
1880 | // Now, the old gradient is the accumulated gradient, getting new gradient tensor setup so we can collect them. |
1881 | compiled_data->tensors.accum_gradients[i + j * parameter_size] = compiled_data->tensors.gradients[i + j * parameter_size]; |
1882 | compiled_data->tensors.gradients[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0); |
1883 | ccv_nnc_tensor_symbol_t inputs[2]; |
1884 | inputs[0] = compiled_data->backward.accum_gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0); |
1885 | inputs[1] = compiled_data->backward.gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0); |
1886 | ccv_nnc_tensor_symbol_t output = compiled_data->backward.updated_accum_gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0); |
1887 | ccv_nnc_graph_exec_symbol_new(accum, CMD_EWSUM_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSUM_FORWARD, 0, ccv_nnc_cmd_auto, 0), inputs, 2, &output, 1, 0); |
1888 | } else { |
1889 | compiled_data->backward.accum_gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
1890 | compiled_data->backward.gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
1891 | compiled_data->backward.updated_accum_gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; |
1892 | } |
1893 | ccv_nnc_graph_exec_symbol_autogen(accum, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
1894 | if (ccv_nnc_symbolic_graph_source_size(accum) == 0) |
1895 | { |
1896 | ccv_nnc_symbolic_graph_free(accum); |
1897 | // Create empty graph. |
1898 | compiled_data->backward.accum = ccv_nnc_graph_new(); |
1899 | ccv_nnc_graph_topsort(compiled_data->backward.accum, 0, 0); |
1900 | return; |
1901 | } |
1902 | ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0); |
1903 | _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1, tensor_binds); |
1904 | _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.gradients, compiled_data->tensors.gradients, parameter_size * parallel_count, 1, tensor_binds); |
1905 | _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.updated_accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1, tensor_binds); |
1906 | ccv_nnc_symbolic_graph_compile(accum, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds )->rsize * (size_t)(0))), tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(accum)ccv_nnc_symbolic_graph_sources(accum), ccv_nnc_symbolic_graph_source_size (accum), SYMBOLIC_GRAPH_DESTINATIONS(accum)ccv_nnc_symbolic_graph_destinations(accum), ccv_nnc_symbolic_graph_destination_size (accum), &compiled_data->backward.accum, &compiled_data->backward.tensor_arena, &compiled_data->backward.graph_exec_arena); |
1907 | ccv_nnc_symbolic_graph_free(accum); |
1908 | ccv_array_free(tensor_binds); |
1909 | ccv_nnc_graph_set_default_static_schedule(compiled_data->backward.accum, compiled_data->stream_type, model->max_stream_count); |
1910 | } |
1911 | |
1912 | void ccv_cnnp_model_backward(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const ingrads, const int ingrad_size, ccv_nnc_tensor_t* const* const outgrads, const int outgrad_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context) |
1913 | { |
1914 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
1915 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 1915, __extension__ __PRETTY_FUNCTION__); })); |
1916 | assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE ) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail ("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE" , "ccv_cnnp_model.c", 1916, __extension__ __PRETTY_FUNCTION__ ); })); |
1917 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
1918 | assert(ingrad_size == 0 || ingrad_size == model->output_size * parallel_count)((void) sizeof ((ingrad_size == 0 || ingrad_size == model-> output_size * parallel_count) ? 1 : 0), __extension__ ({ if ( ingrad_size == 0 || ingrad_size == model->output_size * parallel_count ) ; else __assert_fail ("ingrad_size == 0 || ingrad_size == model->output_size * parallel_count" , "ccv_cnnp_model.c", 1918, __extension__ __PRETTY_FUNCTION__ ); })); |
1919 | if (outgrad_size > 0) |
1920 | { assert(outgrad_size == compiled_data->outgrad_size * parallel_count)((void) sizeof ((outgrad_size == compiled_data->outgrad_size * parallel_count) ? 1 : 0), __extension__ ({ if (outgrad_size == compiled_data->outgrad_size * parallel_count) ; else __assert_fail ("outgrad_size == compiled_data->outgrad_size * parallel_count" , "ccv_cnnp_model.c", 1920, __extension__ __PRETTY_FUNCTION__ ); })); } |
1921 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 1921, __extension__ __PRETTY_FUNCTION__); })); |
1922 | assert(compiled_data->graph)((void) sizeof ((compiled_data->graph) ? 1 : 0), __extension__ ({ if (compiled_data->graph) ; else __assert_fail ("compiled_data->graph" , "ccv_cnnp_model.c", 1922, __extension__ __PRETTY_FUNCTION__ ); })); |
1923 | const int parameter_size = compiled_data->parameters->rnum; |
1924 | // If we need to accumulate the gradients now, do jit on accumulator. |
1925 | if (compiled_data->backward.count > 0) |
1926 | { |
1927 | if (!compiled_data->backward.accum) |
1928 | _ccv_cnnp_model_multistage_jit_1(model); |
1929 | else if (compiled_data->backward.count == 1) { |
1930 | // On this round, we need to switch accumulated gradients with gradients (so we can do accumulation properly). |
1931 | int i; |
1932 | for (i = 0; i < parameter_size * parallel_count; i++) |
1933 | { |
1934 | ccv_nnc_tensor_t* tensor; |
1935 | CCV_SWAP(compiled_data->tensors.accum_gradients[i], compiled_data->tensors.gradients[i], tensor)((tensor) = (compiled_data->tensors.accum_gradients[i]), ( compiled_data->tensors.accum_gradients[i]) = (compiled_data ->tensors.gradients[i]), (compiled_data->tensors.gradients [i]) = (tensor)); |
1936 | } |
1937 | if (compiled_data->backward.tensor_arena) |
1938 | { |
1939 | ccv_nnc_tensor_arena_clear_bindings(compiled_data->backward.tensor_arena); |
1940 | // Do rebind in case we messed up the binding (we switch accum_gradients and gradients). |
1941 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.gradients, compiled_data->tensors.gradients, parameter_size * parallel_count, 1); |
1942 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1); |
1943 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.updated_accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1); |
1944 | } |
1945 | } |
1946 | } |
1947 | const int ingrad_size_per_p = model->output_size; |
1948 | const int outgrad_size_per_p = compiled_data->outgrad_size; |
1949 | int i, j; |
1950 | for (i = 0; i < ingrad_size_per_p; i++) |
1951 | { |
1952 | const ccv_nnc_tensor_symbol_t ingrad = ccv_nnc_tensor_symbol_for_backward(model->graph, compiled_data->f[i]); |
1953 | if (!ingrad_size || !ingrads || ingrads[i] == 0) |
1954 | { |
1955 | // Set it to 1 if it is not specified. |
1956 | ccv_nnc_tensor_t* const ingrad_tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ingrad); |
1957 | if (ingrad_tensor) |
1958 | ccv_nnc_cmd_exec(CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size ={.dim={1,1,1}},.blas={.a={1,}}}, 0), ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(ingrad_tensor)(ccv_nnc_tensor_t* []){ingrad_tensor}, (1 +1 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), stream_context); |
1959 | for (j = 1; j < parallel_count; j++) |
1960 | { |
1961 | ccv_nnc_tensor_t* const ingrad_tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, ingrad, j)); |
1962 | if (ingrad_tensor) |
1963 | ccv_nnc_cmd_exec(CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size ={.dim={1,1,1}},.blas={.a={1,}}}, 0), ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(ingrad_tensor)(ccv_nnc_tensor_t* []){ingrad_tensor}, (1 +1 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), stream_context); |
1964 | } |
1965 | } else { |
1966 | // Make sure the length matches, in case it is an alias. |
1967 | assert(ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->graph, ingrad)))((void) sizeof ((ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model-> graph, ingrad))) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_count (ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params (model->graph, ingrad))) ; else __assert_fail ("ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->graph, ingrad))" , "ccv_cnnp_model.c", 1967, __extension__ __PRETTY_FUNCTION__ ); })); |
1968 | ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ingrad, ingrads[i]); |
1969 | for (j = 1; j < parallel_count; j++) |
1970 | ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, ingrad, j), ingrads[i + ingrad_size_per_p * j]); |
1971 | } |
1972 | } |
1973 | if (outgrad_size > 0) |
1974 | { |
1975 | assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad")((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad" ) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad" ) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && \"shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad\"" , "ccv_cnnp_model.c", 1975, __extension__ __PRETTY_FUNCTION__ ); })); |
1976 | for (i = 0; i < outgrad_size_per_p; i++) |
1977 | if (outgrads[i]) |
1978 | { |
1979 | const ccv_nnc_tensor_symbol_t outgrad = compiled_data->outgrads[i]; |
1980 | ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, outgrad, outgrads[i]); |
1981 | for (j = 1; j < parallel_count; j++) |
1982 | ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, outgrad, j), outgrads[i + outgrad_size_per_p * j]); |
1983 | } |
1984 | } else { |
1985 | assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES ||((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS ) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data ->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS ) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS" , "ccv_cnnp_model.c", 1986, __extension__ __PRETTY_FUNCTION__ ); })) |
1986 | compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS)((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS ) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data ->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS ) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS" , "ccv_cnnp_model.c", 1986, __extension__ __PRETTY_FUNCTION__ ); })); |
1987 | } |
1988 | // We need to rebind here because in ccv_cnnp_evaluate, we clear bindings, that will reset all bindings for the gradients. |
1989 | // For parameters and internals these are fine because when we clear bindings, it restores to original bindings, which are these |
1990 | // parameters and internals. The same cannot be said for gradients due to the accum_gradients switching. |
1991 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count); |
1992 | if (!compiled_data->backward.schedule) |
1993 | compiled_data->backward.schedule = ccv_nnc_graph_static_schedule_new(compiled_data->graph, compiled_data->stream_type, model->max_stream_count, compiled_data->backward.from_ops, compiled_data->backward.from_op_size, 0, 0); |
1994 | // Run the backward pass. |
1995 | ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, compiled_data->backward.schedule, tensor_tape, stream_context); |
1996 | // If we need to run accumulation round, do that now. |
1997 | if (compiled_data->backward.count > 0) |
1998 | ccv_nnc_graph_run_with_schedule(compiled_data->backward.accum, 0, 0, 0, stream_context); |
1999 | // Update the count, this determines whether we need to accumulate or not. |
2000 | ++compiled_data->backward.count; |
2001 | } |
2002 | |
2003 | // Compile the graph to run ccv_cnnp_model_apply_gradients after ccv_cnnp_model_backward (MULTISTAGE_MODE). |
2004 | // Particularly, this method compiles the parameter update graph. |
2005 | static void _ccv_cnnp_model_multistage_jit_2(ccv_cnnp_model_t* const model) |
2006 | { |
2007 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2008 | assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE ) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail ("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE" , "ccv_cnnp_model.c", 2008, __extension__ __PRETTY_FUNCTION__ ); })); |
2009 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
2010 | const int parameter_size = compiled_data->parameters->rnum; |
2011 | ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0); |
2012 | _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( 0))), compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds); |
2013 | _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->updated_parameters, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds); |
2014 | // Bind accumulated gradients. |
2015 | if (compiled_data->backward.count > 1) |
2016 | _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.accum_gradients, parameter_size, parallel_count, tensor_binds); |
2017 | else |
2018 | _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count, tensor_binds); |
2019 | ccv_array_t* const apply_gradients_from = ccv_array_new(sizeof(int), 0, 0); |
2020 | int i, j; |
2021 | for (i = 0; i < compiled_data->backward.to_size; i++) |
2022 | { |
2023 | const int* tos; |
2024 | int to_size; |
2025 | ccv_nnc_graph_exec_symbol_to(model->graph, compiled_data->backward.tos[i], &tos, &to_size); |
2026 | for (j = 0; j < to_size; j++) |
2027 | { |
2028 | // Check if this is already show up in the backward graph, if that is the case, it won't be in the apply |
2029 | // gradients graph. |
2030 | const ccv_nnc_graph_exec_t exec = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, (ccv_nnc_graph_exec_symbol_t){ |
2031 | .d = tos[j], |
2032 | .graph = model->graph, |
2033 | }); |
2034 | if (!exec.graph) |
2035 | ccv_array_add_unique_int(apply_gradients_from, tos[j]); |
2036 | } |
2037 | } |
2038 | const int from_size = apply_gradients_from->rnum; |
2039 | if (from_size == 0) |
2040 | { |
2041 | ccv_array_free(apply_gradients_from); |
2042 | ccv_array_free(tensor_binds); |
2043 | return; |
2044 | } |
2045 | ccv_nnc_graph_exec_symbol_t* const froms = (ccv_nnc_graph_exec_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_t) * from_size); |
2046 | for (i = 0; i < from_size; i++) |
2047 | froms[i] = (ccv_nnc_graph_exec_symbol_t){ |
2048 | .d = *(int*)ccv_array_get(apply_gradients_from, i)((void*)(((char*)((apply_gradients_from)->data)) + (size_t )(apply_gradients_from)->rsize * (size_t)(i))), |
2049 | .graph = model->graph |
2050 | }; |
2051 | ccv_array_free(apply_gradients_from); |
2052 | // It can only ends with updates on the parameters. |
2053 | ccv_array_t* const tos = ccv_array_new(sizeof(ccv_nnc_graph_exec_symbol_t), parameter_size * parallel_count, 0); |
2054 | for (i = 0; i < parameter_size; i++) |
2055 | { |
2056 | if (compiled_data->update_nodes[i].d == CCV_NNC_NO_TENSOR_SYMBOL) |
2057 | continue; |
2058 | ccv_array_push(tos, &compiled_data->update_nodes[i]); |
2059 | for (j = 1; j < parallel_count; j++) |
2060 | { |
2061 | const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->update_nodes[i], j); |
2062 | ccv_array_push(tos, ©); |
2063 | } |
2064 | } |
2065 | ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds )->rsize * (size_t)(0))), tensor_binds->rnum, 0, 0, froms, from_size, (ccv_nnc_graph_exec_symbol_t*)ccv_array_get(tos, 0)((void*)(((char*)((tos)->data)) + (size_t)(tos)->rsize * (size_t)(0))), tos->rnum, &compiled_data->apply_gradients.graph, &compiled_data->apply_gradients.tensor_arena, &compiled_data->apply_gradients.graph_exec_arena); |
2066 | ccv_array_free(tos); |
2067 | ccv_array_free(tensor_binds); |
2068 | ccfreefree(froms); |
2069 | const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size; |
2070 | for (i = 0; i < max_saved_aux_size * parameter_size; i++) |
2071 | { |
2072 | // Skip on no tensor. |
2073 | if (compiled_data->saved_aux[i].source.d == CCV_NNC_NO_TENSOR_SYMBOL) |
2074 | continue; |
2075 | ccv_nnc_tensor_t* const tensor = ccv_nnc_tensor_from_symbol(compiled_data->apply_gradients.tensor_arena, compiled_data->saved_aux[i].source); |
2076 | ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size ={.dim={1,1,1}},.blas={.a={0,}}}, 0), ccv_nnc_no_hint, 0, 0, 0, &tensor, 1, 0); |
2077 | for (j = 1; j < parallel_count; j++) |
2078 | { |
2079 | ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(compiled_data->apply_gradients.tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, compiled_data->saved_aux[i].source, j)); |
2080 | if (copy) |
2081 | ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size ={.dim={1,1,1}},.blas={.a={0,}}}, 0), ccv_nnc_no_hint, 0, 0, 0, ©, 1, 0); |
2082 | } |
2083 | } |
2084 | ccv_nnc_graph_set_default_static_schedule(compiled_data->apply_gradients.graph, compiled_data->stream_type, model->max_stream_count); |
2085 | } |
2086 | |
2087 | void ccv_cnnp_model_apply_gradients(ccv_cnnp_model_t* const model, ccv_nnc_stream_context_t* const stream_context) |
2088 | { |
2089 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2090 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 2090, __extension__ __PRETTY_FUNCTION__); })); |
2091 | assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE ) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail ("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE" , "ccv_cnnp_model.c", 2091, __extension__ __PRETTY_FUNCTION__ ); })); |
2092 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
2093 | assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if (model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c" , 2093, __extension__ __PRETTY_FUNCTION__); })); |
2094 | assert(compiled_data->graph)((void) sizeof ((compiled_data->graph) ? 1 : 0), __extension__ ({ if (compiled_data->graph) ; else __assert_fail ("compiled_data->graph" , "ccv_cnnp_model.c", 2094, __extension__ __PRETTY_FUNCTION__ ); })); |
2095 | // Skip if there is no backward pass. |
2096 | if (compiled_data->backward.count <= 0) |
2097 | return; |
2098 | // Skip if there is no parameters. |
2099 | if (compiled_data->parameters->rnum == 0) |
2100 | { |
2101 | compiled_data->backward.count = 0; |
2102 | return; |
2103 | } |
2104 | if (!compiled_data->apply_gradients.graph) |
2105 | _ccv_cnnp_model_multistage_jit_2(model); |
2106 | else { |
2107 | const int parameter_size = compiled_data->parameters->rnum; |
2108 | ccv_nnc_tensor_arena_clear_bindings(compiled_data->apply_gradients.tensor_arena); |
2109 | // Change to bind accum_gradients if we do gradient accumulation (run backward more than once). |
2110 | if (compiled_data->backward.count > 1) |
2111 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->apply_gradients.tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.accum_gradients, parameter_size, parallel_count); |
2112 | else |
2113 | _ccv_cnnp_bind_tensors_to_arena(compiled_data->apply_gradients.tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count); |
2114 | } |
2115 | if (compiled_data->apply_gradients.graph) |
2116 | ccv_nnc_graph_run_with_schedule(compiled_data->apply_gradients.graph, 0, 0, 0, stream_context); |
2117 | // Reset backward count to 0. |
2118 | compiled_data->backward.count = 0; |
2119 | } |
2120 | |
2121 | void ccv_cnnp_model_set_parameter(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter, const ccv_nnc_tensor_t* const tensor) |
2122 | { |
2123 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2124 | const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel; |
2125 | assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__ ({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0" , "ccv_cnnp_model.c", 2125, __extension__ __PRETTY_FUNCTION__ ); })); |
2126 | const int tensors_init = !!compiled_data->tensors_init.v; |
2127 | if (!tensors_init) |
2128 | _ccv_cnnp_model_tensors_init(model, compiled_data); |
2129 | else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1) |
2130 | // Check if it is not fully allocated, if it is not, init_1. |
2131 | ccv_cnnp_model_tensors_init_1(model, compiled_data); |
2132 | ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
2133 | ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices); |
2134 | const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref; |
2135 | if (param_ref < 0) |
2136 | { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__ ({ if (parameter_indices->rnum == 1) ; else __assert_fail ("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2136 , __extension__ __PRETTY_FUNCTION__); })); } |
2137 | else |
2138 | { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ? 1 : 0), __extension__ ({ if (param_ref < parameter_indices ->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum" , "ccv_cnnp_model.c", 2138, __extension__ __PRETTY_FUNCTION__ ); })); } |
2139 | const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(param_ref >= 0 ? param_ref : 0))); |
2140 | ccv_array_free(parameter_indices); |
2141 | const int parameter_size = compiled_data->parameters->rnum; |
2142 | assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >= 0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2142 , __extension__ __PRETTY_FUNCTION__); })); |
2143 | assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__ ({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size" , "ccv_cnnp_model.c", 2143, __extension__ __PRETTY_FUNCTION__ ); })); |
2144 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
2145 | ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters [d]) & ~(uintptr_t)1)); |
2146 | assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ; else __assert_fail ("dest", "ccv_cnnp_model.c", 2146, __extension__ __PRETTY_FUNCTION__); })); |
2147 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, TENSOR_LIST((ccv_nnc_tensor_t*)tensor)(ccv_nnc_tensor_t* []){(ccv_nnc_tensor_t*)tensor}, (1 +1 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1 ), TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), 0); |
2148 | int i; |
2149 | for (i = 1; i < parallel_count; i++) |
2150 | { |
2151 | ccv_nnc_tensor_t* const copy_tensor = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d + i * parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters [d + i * parameter_size]) & ~(uintptr_t)1)); |
2152 | if (copy_tensor) |
2153 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), TENSOR_LIST(copy_tensor)(ccv_nnc_tensor_t* []){copy_tensor}, (1 +1 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), 0); |
2154 | } |
2155 | // Mark this symbol as init'ed. |
2156 | const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, d)((void*)(((char*)((compiled_data->parameters)->data)) + (size_t)(compiled_data->parameters)->rsize * (size_t)( d))))->d; |
2157 | uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
2158 | init_v[s >> 5] |= (1u << (s & 0x1f)); |
2159 | } |
2160 | |
2161 | void ccv_cnnp_model_parameter_copy(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter, ccv_nnc_tensor_t* const tensor) |
2162 | { |
2163 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2164 | const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel; |
2165 | assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__ ({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0" , "ccv_cnnp_model.c", 2165, __extension__ __PRETTY_FUNCTION__ ); })); |
2166 | assert(compiled_data->tensors.parameters)((void) sizeof ((compiled_data->tensors.parameters) ? 1 : 0 ), __extension__ ({ if (compiled_data->tensors.parameters) ; else __assert_fail ("compiled_data->tensors.parameters" , "ccv_cnnp_model.c", 2166, __extension__ __PRETTY_FUNCTION__ ); })); |
2167 | ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
2168 | ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices); |
2169 | const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref; |
2170 | if (param_ref < 0) |
2171 | { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__ ({ if (parameter_indices->rnum == 1) ; else __assert_fail ("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2171 , __extension__ __PRETTY_FUNCTION__); })); } |
2172 | else |
2173 | { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ? 1 : 0), __extension__ ({ if (param_ref < parameter_indices ->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum" , "ccv_cnnp_model.c", 2173, __extension__ __PRETTY_FUNCTION__ ); })); } |
2174 | const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(param_ref >= 0 ? param_ref : 0))); |
2175 | ccv_array_free(parameter_indices); |
2176 | const int parameter_size = compiled_data->parameters->rnum; |
2177 | assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >= 0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2177 , __extension__ __PRETTY_FUNCTION__); })); |
2178 | assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__ ({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size" , "ccv_cnnp_model.c", 2178, __extension__ __PRETTY_FUNCTION__ ); })); |
2179 | // We don't need to consider parallel_count, every parameter on each device is identical. |
2180 | ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters [d]) & ~(uintptr_t)1)); |
2181 | assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else __assert_fail ("src", "ccv_cnnp_model.c", 2181, __extension__ __PRETTY_FUNCTION__); })); |
2182 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, TENSOR_LIST(src)(ccv_nnc_tensor_t* []){src}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), TENSOR_LIST(tensor)(ccv_nnc_tensor_t* []){tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), 0); |
2183 | } |
2184 | |
2185 | ccv_nnc_tensor_param_t ccv_cnnp_model_parameter_tensor_params(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter) |
2186 | { |
2187 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2188 | const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel; |
2189 | assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__ ({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0" , "ccv_cnnp_model.c", 2189, __extension__ __PRETTY_FUNCTION__ ); })); |
2190 | assert(compiled_data->tensors.parameters)((void) sizeof ((compiled_data->tensors.parameters) ? 1 : 0 ), __extension__ ({ if (compiled_data->tensors.parameters) ; else __assert_fail ("compiled_data->tensors.parameters" , "ccv_cnnp_model.c", 2190, __extension__ __PRETTY_FUNCTION__ ); })); |
2191 | ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
2192 | ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices); |
2193 | const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref; |
2194 | if (param_ref < 0) |
2195 | { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__ ({ if (parameter_indices->rnum == 1) ; else __assert_fail ("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2195 , __extension__ __PRETTY_FUNCTION__); })); } |
2196 | else |
2197 | { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ? 1 : 0), __extension__ ({ if (param_ref < parameter_indices ->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum" , "ccv_cnnp_model.c", 2197, __extension__ __PRETTY_FUNCTION__ ); })); } |
2198 | const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(param_ref >= 0 ? param_ref : 0))); |
2199 | ccv_array_free(parameter_indices); |
2200 | const int parameter_size = compiled_data->parameters->rnum; |
2201 | assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >= 0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2201 , __extension__ __PRETTY_FUNCTION__); })); |
2202 | assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__ ({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size" , "ccv_cnnp_model.c", 2202, __extension__ __PRETTY_FUNCTION__ ); })); |
2203 | // We don't need to consider parallel_count, every parameter on each device is identical. |
2204 | ccv_nnc_tensor_t* const tensor = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters [d]) & ~(uintptr_t)1)); |
2205 | assert(tensor)((void) sizeof ((tensor) ? 1 : 0), __extension__ ({ if (tensor ) ; else __assert_fail ("tensor", "ccv_cnnp_model.c", 2205, __extension__ __PRETTY_FUNCTION__); })); |
2206 | return tensor->info; |
2207 | } |
2208 | |
2209 | const char* ccv_cnnp_model_parameter_name(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter) |
2210 | { |
2211 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2212 | const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel; |
2213 | assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__ ({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0" , "ccv_cnnp_model.c", 2213, __extension__ __PRETTY_FUNCTION__ ); })); |
2214 | ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
2215 | ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices); |
2216 | const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref; |
2217 | if (param_ref < 0) |
2218 | { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__ ({ if (parameter_indices->rnum == 1) ; else __assert_fail ("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2218 , __extension__ __PRETTY_FUNCTION__); })); } |
2219 | else |
2220 | { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ? 1 : 0), __extension__ ({ if (param_ref < parameter_indices ->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum" , "ccv_cnnp_model.c", 2220, __extension__ __PRETTY_FUNCTION__ ); })); } |
2221 | const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(param_ref >= 0 ? param_ref : 0))); |
2222 | ccv_array_free(parameter_indices); |
2223 | const int parameter_size = compiled_data->parameters->rnum; |
2224 | assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >= 0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2224 , __extension__ __PRETTY_FUNCTION__); })); |
2225 | assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__ ({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size" , "ccv_cnnp_model.c", 2225, __extension__ __PRETTY_FUNCTION__ ); })); |
2226 | return *(char**)ccv_array_get(compiled_data->ids.parameters, d)((void*)(((char*)((compiled_data->ids.parameters)->data )) + (size_t)(compiled_data->ids.parameters)->rsize * ( size_t)(d))); |
2227 | } |
2228 | |
2229 | int ccv_cnnp_model_parameter_count(ccv_cnnp_model_t* const model) |
2230 | { |
2231 | assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__ ({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data" , "ccv_cnnp_model.c", 2231, __extension__ __PRETTY_FUNCTION__ ); })); |
2232 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2233 | return compiled_data->parameters->rnum; |
2234 | } |
2235 | |
2236 | ccv_cnnp_model_io_t ccv_cnnp_model_parameter_first(ccv_cnnp_model_t* const model, ccv_cnnp_model_parameters_filter_f first, void* const context) |
2237 | { |
2238 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2239 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 2239, __extension__ __PRETTY_FUNCTION__); })); |
2240 | const int parameter_size = compiled_data->parameters->rnum; |
2241 | int i; |
2242 | for (i = 0; i < parameter_size; i++) |
2243 | { |
2244 | const char* const name = *(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data )) + (size_t)(compiled_data->ids.parameters)->rsize * ( size_t)(i))); |
2245 | if (first(model, name, context)) |
2246 | return ccv_cnnp_model_parameters(model, -1, i); |
2247 | } |
2248 | return 0; |
2249 | } |
2250 | |
2251 | ccv_array_t* ccv_cnnp_model_parameters_filter(ccv_cnnp_model_t* const model, ccv_cnnp_model_parameters_filter_f filter, void* const context) |
2252 | { |
2253 | ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data; |
2254 | assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if (compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c" , 2254, __extension__ __PRETTY_FUNCTION__); })); |
2255 | ccv_array_t* const parameters = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 0, 0); |
2256 | const int parameter_size = compiled_data->parameters->rnum; |
2257 | int i; |
2258 | for (i = 0; i < parameter_size; i++) |
2259 | { |
2260 | const char* const name = *(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data )) + (size_t)(compiled_data->ids.parameters)->rsize * ( size_t)(i))); |
2261 | if (filter(model, name, context)) |
2262 | { |
2263 | ccv_cnnp_model_io_t parameter = ccv_cnnp_model_parameters(model, -1, i); |
2264 | ccv_array_push(parameters, ¶meter); |
2265 | } |
2266 | } |
2267 | return parameters; |
2268 | |
2269 | } |
2270 | |
2271 | static ccv_array_t* _ccv_cnnp_model_parameter_indices(const ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, int* const param_ref) |
2272 | { |
2273 | const int to_param_sel = parameters->param_sel > 0 ? parameters->param_sel - 1 : parameters->param_sel; |
2274 | assert(parameters->param_sel != 0)((void) sizeof ((parameters->param_sel != 0) ? 1 : 0), __extension__ ({ if (parameters->param_sel != 0) ; else __assert_fail ( "parameters->param_sel != 0", "ccv_cnnp_model.c", 2274, __extension__ __PRETTY_FUNCTION__); })); |
2275 | ccv_array_t* const to_parameter_indices = ccv_array_new(sizeof(int), 0, 0); |
2276 | ccv_cnnp_model_add_to_parameter_indices(parameters->model, to_param_sel, to_parameter_indices); |
2277 | *param_ref = parameters->param_ref > 0 ? parameters->param_ref - 1 : parameters->param_ref; |
2278 | return to_parameter_indices; |
2279 | } |
2280 | |
2281 | static void _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters, ccv_array_t** const parameter_indices, int* const param_ref, ccv_array_t** const from_parameter_indices, int* const from_param_ref, const int only_init_0) |
2282 | { |
2283 | // If the model is not compiled yet. Compile them now. |
2284 | if (!model->graph) |
2285 | { |
2286 | model->graph = ccv_nnc_symbolic_graph_new(); |
2287 | assert(from_model->compiled_data)((void) sizeof ((from_model->compiled_data) ? 1 : 0), __extension__ ({ if (from_model->compiled_data) ; else __assert_fail ("from_model->compiled_data" , "ccv_cnnp_model.c", 2287, __extension__ __PRETTY_FUNCTION__ ); })); |
2288 | const int input_size = from_model->input_size; |
2289 | ccv_nnc_tensor_param_t input_params[input_size]; |
2290 | int i; |
2291 | for (i = 0; i < input_size; i++) |
2292 | input_params[i] = ccv_nnc_tensor_symbol_params(from_model->graph, from_model->inputs[i]); |
2293 | _ccv_cnnp_model_compile(model, input_params, input_size, from_model->compiled_data->loss); |
2294 | model->parallel_count = from_model->parallel_count; |
2295 | model->memory_compression = from_model->memory_compression; |
2296 | model->memory_reduction = from_model->memory_reduction; |
2297 | model->gradient_checkpointing = from_model->gradient_checkpointing; |
2298 | model->compiled_data->stream_type = from_model->compiled_data->stream_type; |
2299 | model->compiled_data->minimize.minimizer = from_model->compiled_data->minimize.minimizer; |
2300 | model->compiled_data->minimize.max_saved_aux_size = from_model->compiled_data->minimize.max_saved_aux_size; |
2301 | } |
2302 | ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data; |
2303 | assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({ if (to_compiled_data) ; else __assert_fail ("to_compiled_data" , "ccv_cnnp_model.c", 2303, __extension__ __PRETTY_FUNCTION__ ); })); |
2304 | const int to_tensors_init = !!to_compiled_data->tensors_init.v; |
2305 | if (!to_tensors_init) |
2306 | { |
2307 | if (only_init_0) |
2308 | ccv_cnnp_model_tensors_init_0(model, to_compiled_data); |
2309 | else |
2310 | _ccv_cnnp_model_tensors_init(model, to_compiled_data); |
2311 | } else if (!only_init_0 && (uintptr_t)to_compiled_data->tensors_init.v & (uintptr_t)1) |
2312 | // Check if it is not fully allocated, if it is not, init_1. |
2313 | ccv_cnnp_model_tensors_init_1(model, to_compiled_data); |
2314 | assert(to_compiled_data->tensors.parameters)((void) sizeof ((to_compiled_data->tensors.parameters) ? 1 : 0), __extension__ ({ if (to_compiled_data->tensors.parameters ) ; else __assert_fail ("to_compiled_data->tensors.parameters" , "ccv_cnnp_model.c", 2314, __extension__ __PRETTY_FUNCTION__ ); })); |
2315 | *parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, param_ref); |
2316 | *from_parameter_indices = _ccv_cnnp_model_parameter_indices(from_model, from_parameters, from_param_ref); |
2317 | if (*from_param_ref < 0 && *param_ref >= 0) |
2318 | { assert((*from_parameter_indices)->rnum == 1)((void) sizeof (((*from_parameter_indices)->rnum == 1) ? 1 : 0), __extension__ ({ if ((*from_parameter_indices)->rnum == 1) ; else __assert_fail ("(*from_parameter_indices)->rnum == 1" , "ccv_cnnp_model.c", 2318, __extension__ __PRETTY_FUNCTION__ ); })); } |
2319 | else if (*from_param_ref >= 0) |
2320 | { assert(*from_param_ref < (*from_parameter_indices)->rnum)((void) sizeof ((*from_param_ref < (*from_parameter_indices )->rnum) ? 1 : 0), __extension__ ({ if (*from_param_ref < (*from_parameter_indices)->rnum) ; else __assert_fail ("*from_param_ref < (*from_parameter_indices)->rnum" , "ccv_cnnp_model.c", 2320, __extension__ __PRETTY_FUNCTION__ ); })); } |
2321 | if (*param_ref < 0 && *from_param_ref >= 0) |
2322 | { assert((*parameter_indices)->rnum == 1)((void) sizeof (((*parameter_indices)->rnum == 1) ? 1 : 0) , __extension__ ({ if ((*parameter_indices)->rnum == 1) ; else __assert_fail ("(*parameter_indices)->rnum == 1", "ccv_cnnp_model.c" , 2322, __extension__ __PRETTY_FUNCTION__); })); } |
2323 | else if (*param_ref >= 0) |
2324 | { assert(*param_ref < (*parameter_indices)->rnum)((void) sizeof ((*param_ref < (*parameter_indices)->rnum ) ? 1 : 0), __extension__ ({ if (*param_ref < (*parameter_indices )->rnum) ; else __assert_fail ("*param_ref < (*parameter_indices)->rnum" , "ccv_cnnp_model.c", 2324, __extension__ __PRETTY_FUNCTION__ ); })); } |
2325 | } |
2326 | |
2327 | void ccv_cnnp_model_set_parameters(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters) |
2328 | { |
2329 | ccv_array_t* to_parameter_indices; |
2330 | int to_param_ref; |
2331 | ccv_array_t* from_parameter_indices; |
2332 | int from_param_ref; |
2333 | _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 0); |
2334 | // Should be exactly the same tensor. |
2335 | if (to_param_ref < 0 && from_param_ref < 0) |
2336 | { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices ->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices ->rnum == to_parameter_indices->rnum) ; else __assert_fail ("from_parameter_indices->rnum == to_parameter_indices->rnum" , "ccv_cnnp_model.c", 2336, __extension__ __PRETTY_FUNCTION__ ); })); } |
2337 | // To models. |
2338 | ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data; |
2339 | assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({ if (to_compiled_data) ; else __assert_fail ("to_compiled_data" , "ccv_cnnp_model.c", 2339, __extension__ __PRETTY_FUNCTION__ ); })); |
2340 | // From models. |
2341 | const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data; |
2342 | const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count ); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); |
2343 | const int to_parameter_size = to_compiled_data->parameters->rnum; |
2344 | const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? from_parameter_indices->rnum : 1; |
2345 | int i, j; |
2346 | const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init. v) & ~(uintptr_t)1)); |
2347 | uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v) & ~(uintptr_t)1)); |
2348 | for (i = 0; i < rnum; i++) |
2349 | { |
2350 | const int src_d = *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t )(from_parameter_indices)->rsize * (size_t)(from_param_ref >= 0 ? from_param_ref : i))); |
2351 | assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if (src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c" , 2351, __extension__ __PRETTY_FUNCTION__); })); |
2352 | assert(src_d < from_compiled_data->parameters->rnum)((void) sizeof ((src_d < from_compiled_data->parameters ->rnum) ? 1 : 0), __extension__ ({ if (src_d < from_compiled_data ->parameters->rnum) ; else __assert_fail ("src_d < from_compiled_data->parameters->rnum" , "ccv_cnnp_model.c", 2352, __extension__ __PRETTY_FUNCTION__ ); })); |
2353 | const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data )) + (size_t)(from_compiled_data->parameters)->rsize * ( size_t)(src_d))))->d; |
2354 | // If the original is not init'ed. We cannot copy from. |
2355 | if (!(from_init_v[s >> 5] & (1u << (s & 0x1f)))) |
2356 | continue; |
2357 | const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t )(to_parameter_indices)->rsize * (size_t)(to_param_ref >= 0 ? to_param_ref : i))); |
2358 | assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if (dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c" , 2358, __extension__ __PRETTY_FUNCTION__); })); |
2359 | assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters-> rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data ->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum" , "ccv_cnnp_model.c", 2359, __extension__ __PRETTY_FUNCTION__ ); })); |
2360 | ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors .parameters[src_d]) & ~(uintptr_t)1)); |
2361 | assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else __assert_fail ("src", "ccv_cnnp_model.c", 2361, __extension__ __PRETTY_FUNCTION__); })); |
2362 | ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors .parameters[dest_d]) & ~(uintptr_t)1)); |
2363 | assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ; else __assert_fail ("dest", "ccv_cnnp_model.c", 2363, __extension__ __PRETTY_FUNCTION__); })); |
2364 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, TENSOR_LIST(src)(ccv_nnc_tensor_t* []){src}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), 0); |
2365 | for (j = 1; j < parallel_count; j++) |
2366 | { |
2367 | ccv_nnc_tensor_t* const copy_tensor = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors .parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t )1)); |
2368 | if (copy_tensor) |
2369 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), TENSOR_LIST(copy_tensor)(ccv_nnc_tensor_t* []){copy_tensor}, (1 +1 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1), 0); |
2370 | } |
2371 | // Mark this symbol as init'ed. |
2372 | const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data) ) + (size_t)(to_compiled_data->parameters)->rsize * (size_t )(dest_d))))->d; |
2373 | to_init_v[d >> 5] |= (1u << (d & 0x1f)); |
2374 | } |
2375 | ccv_array_free(to_parameter_indices); |
2376 | ccv_array_free(from_parameter_indices); |
2377 | } |
2378 | |
2379 |