File: | nnc/ccv_nnc_micro_core.c |
Warning: | line 642, column 42 Potential memory leak |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include "ccv_nnc.h" | |||
2 | #include "ccv_nnc_easy.h" | |||
3 | #include "ccv_nnc_internal.h" | |||
4 | #include "ccv_internal.h" | |||
5 | #include "_ccv_nnc_micro.h" | |||
6 | #include "3rdparty/khash/khash.h" | |||
7 | ||||
8 | // MARK - Level-1 API | |||
9 | ||||
10 | const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_input_isa = {}; | |||
11 | ||||
12 | #define GRAD(_id)(2 * (var_count) - 1 - (_id)) (2 * (var_count) - 1 - (_id)) | |||
13 | ||||
14 | ccv_nnc_micro_io_t ccv_nnc_micro_input(const int dimensions) | |||
15 | { | |||
16 | assert(dimensions <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((dimensions <= (12)) ? 1 : 0), __extension__ ({ if (dimensions <= (12)) ; else __assert_fail ("dimensions <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 16, __extension__ __PRETTY_FUNCTION__ ); })); | |||
17 | ccv_nnc_micro_io_t input = cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_s)); | |||
18 | input->isa = &ccv_nnc_micro_io_input_isa; | |||
19 | input->dimensions = dimensions; | |||
20 | input->id = 0; | |||
21 | return input; | |||
22 | } | |||
23 | struct ccv_nnc_micro_io_grad_s { | |||
24 | struct ccv_nnc_micro_io_s super; | |||
25 | ccv_nnc_micro_io_t x; | |||
26 | }; | |||
27 | ||||
28 | static void _ccv_nnc_micro_grad_numbering(const ccv_nnc_micro_io_t super, const int id, const int var_count) | |||
29 | { | |||
30 | struct ccv_nnc_micro_io_grad_s* const self = (struct ccv_nnc_micro_io_grad_s*)super; | |||
31 | const int sid = self->x->id; | |||
32 | self->super.id = GRAD(sid)(2 * (var_count) - 1 - (sid)); | |||
33 | } | |||
34 | ||||
35 | const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_grad_isa = { | |||
36 | .numbering = _ccv_nnc_micro_grad_numbering | |||
37 | }; | |||
38 | ||||
39 | ccv_nnc_micro_io_t ccv_nnc_micro_grad(const ccv_nnc_micro_io_t x) | |||
40 | { | |||
41 | struct ccv_nnc_micro_io_grad_s* const grad = cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_grad_s)); | |||
42 | grad->super.isa = &ccv_nnc_micro_io_grad_isa; | |||
43 | grad->super.dimensions = x->dimensions; | |||
44 | grad->super.id = 0; | |||
45 | grad->x = x; | |||
46 | return (ccv_nnc_micro_io_t)grad; | |||
47 | } | |||
48 | ||||
49 | // A simple recursive descent parser. Omitted tokenisation step. | |||
50 | static int _accept(const char** const pos, int* const remain_size, const char* symbol, int size) | |||
51 | { | |||
52 | if (*remain_size < size) | |||
53 | return 0; | |||
54 | if (memcmp(*pos, symbol, size) == 0) | |||
55 | { | |||
56 | *remain_size -= size; | |||
57 | *pos += size; | |||
58 | return 1; | |||
59 | } | |||
60 | return 0; | |||
61 | } | |||
62 | ||||
63 | static int _expect(const char** const pos, int* const remain_size, const char* symbol, int size) | |||
64 | { | |||
65 | if (_accept(pos, remain_size, symbol, size)) | |||
66 | return 1; | |||
67 | assert(0 && "unexpected symbol")((void) sizeof ((0 && "unexpected symbol") ? 1 : 0), __extension__ ({ if (0 && "unexpected symbol") ; else __assert_fail ("0 && \"unexpected symbol\"", "ccv_nnc_micro_core.c" , 67, __extension__ __PRETTY_FUNCTION__); })); | |||
68 | return 0; | |||
69 | } | |||
70 | ||||
71 | static int _constant(const char** const pos, int* const remain_size, int* const id) | |||
72 | { | |||
73 | int size = 0; | |||
74 | *id = 0; | |||
75 | while (*remain_size - size > 0 && pos[0][size] >= '0' && pos[0][size] <= '9') | |||
76 | { | |||
77 | *id *= 10; | |||
78 | *id += (pos[0][size] - '0'); | |||
79 | ++size; | |||
80 | } | |||
81 | *remain_size -= size; | |||
82 | *pos += size; | |||
83 | return size > 0; | |||
84 | } | |||
85 | ||||
86 | static int _index(const char** const pos, int* const remain_size, int* const id) | |||
87 | { | |||
88 | if (!(*remain_size > 0 && pos[0][0] == 'i')) | |||
89 | return 0; | |||
90 | int size = 1; | |||
91 | *id = 0; | |||
92 | while (*remain_size - size > 0 && pos[0][size] >= '0' && pos[0][size] <= '9') | |||
93 | { | |||
94 | *id *= 10; | |||
95 | *id += (pos[0][size] - '0'); | |||
96 | ++size; | |||
97 | } | |||
98 | if (size > 1) | |||
99 | { | |||
100 | *remain_size -= size; | |||
101 | *pos += size; | |||
102 | return 1; | |||
103 | } | |||
104 | return 0; | |||
105 | } | |||
106 | ||||
107 | static int _dim(const char** const pos, int* const remain_size, int* const id, int* const d, ccv_array_t* const equal_assertions) | |||
108 | { | |||
109 | if (!(*remain_size > 1 && pos[0][0] == 'd')) | |||
110 | return 0; | |||
111 | if (!(pos[0][1] >= 'A' && pos[0][1] <= 'Z')) | |||
112 | return 0; | |||
113 | *id = pos[0][1] - 'A'; | |||
114 | int size = 2; | |||
115 | *d = 0; | |||
116 | while (*remain_size - size > 0 && pos[0][size] >= '0' && pos[0][size] <= '9') | |||
117 | { | |||
118 | *d *= 10; | |||
119 | *d += (pos[0][size] - '0'); | |||
120 | ++size; | |||
121 | } | |||
122 | if (size > 1) | |||
123 | { | |||
124 | *remain_size -= size; | |||
125 | *pos += size; | |||
126 | while (_accept(pos, remain_size, " ", 1)) {} | |||
127 | if (_accept(pos, remain_size, "[", 1)) | |||
128 | { | |||
129 | while (_accept(pos, remain_size, " ", 1)) {} | |||
130 | _expect(pos, remain_size, "=", 1); | |||
131 | while (_accept(pos, remain_size, " ", 1)) {} | |||
132 | int next_id; | |||
133 | int next_d; | |||
134 | if (!_dim(pos, remain_size, &next_id, &next_d, equal_assertions)) | |||
135 | { assert(0 && "unexpected symbol")((void) sizeof ((0 && "unexpected symbol") ? 1 : 0), __extension__ ({ if (0 && "unexpected symbol") ; else __assert_fail ("0 && \"unexpected symbol\"", "ccv_nnc_micro_core.c" , 135, __extension__ __PRETTY_FUNCTION__); })); } | |||
136 | const ccv_nnc_micro_id_equal_assertion_t equal_assertion = { | |||
137 | .left = { | |||
138 | .type = CCV_NNC_MICRO_AXIS_SIZE_ID, | |||
139 | .id = -(*id + 1), | |||
140 | .d = *d | |||
141 | }, | |||
142 | .right = { | |||
143 | .type = CCV_NNC_MICRO_AXIS_SIZE_ID, | |||
144 | .id = -(next_id + 1), | |||
145 | .d = next_d | |||
146 | } | |||
147 | }; | |||
148 | ccv_array_push(equal_assertions, &equal_assertion); | |||
149 | while (_accept(pos, remain_size, " ", 1)) {} | |||
150 | _expect(pos, remain_size, "]", 1); | |||
151 | } | |||
152 | return 1; | |||
153 | } | |||
154 | return 0; | |||
155 | } | |||
156 | ||||
157 | static int _var(const char** const pos, int* const remain_size, char** name) | |||
158 | { | |||
159 | if (!(*remain_size > 0 && pos[0][0] == '$')) | |||
160 | return 0; | |||
161 | int size = 1; | |||
162 | while (*remain_size - size > 0 && | |||
163 | ((pos[0][size] >= '0' && pos[0][size] <= '9') || | |||
164 | (pos[0][size] >= 'a' && pos[0][size] <= 'z') || | |||
165 | (pos[0][size] >= 'A' && pos[0][size] <= 'Z') || | |||
166 | pos[0][size] == '_')) | |||
167 | ++size; | |||
168 | if (size > 1) | |||
169 | { | |||
170 | *name = ccmallocmalloc(size + 1); | |||
171 | memcpy(*name, *pos, size); | |||
172 | name[0][size] = 0; | |||
173 | *remain_size -= size; | |||
174 | *pos += size; | |||
175 | return 1; | |||
176 | } | |||
177 | return 0; | |||
178 | } | |||
179 | ||||
180 | static CCV_WARN_UNUSED(ccv_nnc_micro_loop_index_term_t)ccv_nnc_micro_loop_index_term_t __attribute__((warn_unused_result )) _expression(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions); | |||
181 | ||||
182 | static ccv_nnc_micro_loop_index_term_t _factor(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions) | |||
183 | { | |||
184 | ccv_nnc_micro_loop_index_term_t term; | |||
185 | while (_accept(pos, remain_size, " ", 1)) {} | |||
186 | int id, d; | |||
187 | char* name; | |||
188 | if (_constant(pos, remain_size, &id)) { | |||
189 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL; | |||
190 | term.immediate_value = id; | |||
191 | } else if (_index(pos, remain_size, &id)) { | |||
192 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID; | |||
193 | term.id.type = CCV_NNC_MICRO_LOOP_ID; | |||
194 | term.id.id = id; | |||
195 | } else if (_dim(pos, remain_size, &id, &d, equal_assertions)) { | |||
196 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID; | |||
197 | term.id.type = CCV_NNC_MICRO_AXIS_SIZE_ID; | |||
198 | term.id.d = d; | |||
199 | term.id.id = -(id + 1); | |||
200 | } else if (_var(pos, remain_size, &name)) { | |||
201 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR; | |||
202 | term.name = name; | |||
203 | } else if (_accept(pos, remain_size, "(", 1)) { | |||
204 | term = _expression(pos, remain_size, equal_assertions); | |||
205 | _expect(pos, remain_size, ")", 1); | |||
206 | } else { | |||
207 | assert(0 && "factor: syntax error")((void) sizeof ((0 && "factor: syntax error") ? 1 : 0 ), __extension__ ({ if (0 && "factor: syntax error") ; else __assert_fail ("0 && \"factor: syntax error\"", "ccv_nnc_micro_core.c", 207, __extension__ __PRETTY_FUNCTION__ ); })); | |||
208 | } | |||
209 | while (_accept(pos, remain_size, " ", 1)) {} | |||
210 | return term; | |||
211 | } | |||
212 | ||||
213 | static ccv_nnc_micro_loop_index_term_t _term(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions) | |||
214 | { | |||
215 | while (_accept(pos, remain_size, " ", 1)) {} | |||
216 | ccv_nnc_micro_loop_index_term_t term = _factor(pos, remain_size, equal_assertions); | |||
217 | while (*remain_size > 0 && (pos[0][0] == '*' || pos[0][0] == '/')) | |||
218 | { | |||
219 | const int op = pos[0][0] == '*' ? CCV_NNC_MICRO_BINARY_OP_MUL : CCV_NNC_MICRO_BINARY_OP_DIV; | |||
220 | *remain_size -= 1; | |||
221 | *pos += 1; | |||
222 | const ccv_nnc_micro_loop_index_term_t left = term; | |||
223 | const ccv_nnc_micro_loop_index_term_t right = _factor(pos, remain_size, equal_assertions); | |||
224 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY; | |||
225 | term.binary = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
226 | term.binary->op = op; | |||
227 | term.binary->left = left; | |||
228 | term.binary->right = right; | |||
229 | } | |||
230 | while (_accept(pos, remain_size, " ", 1)) {} | |||
231 | return term; | |||
232 | } | |||
233 | ||||
234 | static ccv_nnc_micro_loop_index_term_t _expression(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions) | |||
235 | { | |||
236 | while (_accept(pos, remain_size, " ", 1)) {} | |||
237 | int prefix_op = -1; | |||
238 | if (*remain_size > 0 && (pos[0][0] == '+' || pos[0][0] == '-')) | |||
239 | { | |||
240 | prefix_op = pos[0][0] == '+' ? CCV_NNC_MICRO_BINARY_OP_PLUS : CCV_NNC_MICRO_BINARY_OP_MINUS; | |||
241 | *remain_size -= 1; | |||
242 | *pos += 1; | |||
243 | } | |||
244 | ccv_nnc_micro_loop_index_term_t node = _term(pos, remain_size, equal_assertions); | |||
245 | while (*remain_size > 0 && (pos[0][0] == '+' || pos[0][0] == '-')) | |||
246 | { | |||
247 | const int op = pos[0][0] == '+' ? CCV_NNC_MICRO_BINARY_OP_PLUS : CCV_NNC_MICRO_BINARY_OP_MINUS; | |||
248 | *remain_size -= 1; | |||
249 | *pos += 1; | |||
250 | const ccv_nnc_micro_loop_index_term_t left = node; | |||
251 | const ccv_nnc_micro_loop_index_term_t right = _term(pos, remain_size, equal_assertions); | |||
252 | node.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY; | |||
253 | node.binary = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
254 | node.binary->op = op; | |||
255 | node.binary->left = left; | |||
256 | node.binary->right = right; | |||
257 | } | |||
258 | while (_accept(pos, remain_size, " ", 1)) {} | |||
259 | if (prefix_op >= 0) | |||
260 | { | |||
261 | ccv_nnc_micro_loop_index_binary_t* const expr = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
262 | expr->op = prefix_op; | |||
263 | expr->left = node; | |||
264 | expr->right.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_NONE; | |||
265 | node.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY; | |||
266 | node.binary = expr; | |||
267 | } | |||
268 | return node; | |||
269 | } | |||
270 | ||||
271 | static void _no_index(const ccv_nnc_micro_loop_index_term_t term) | |||
272 | { | |||
273 | switch (term.type) { | |||
274 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID: | |||
275 | // Can only be axis size id. No loop index. | |||
276 | assert(term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID)((void) sizeof ((term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID) ? 1 : 0), __extension__ ({ if (term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID ) ; else __assert_fail ("term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID" , "ccv_nnc_micro_core.c", 276, __extension__ __PRETTY_FUNCTION__ ); })); | |||
277 | break; | |||
278 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: | |||
279 | _no_index(term.binary->left); | |||
280 | _no_index(term.binary->right); | |||
281 | break; | |||
282 | } | |||
283 | } | |||
284 | ||||
285 | static void _sid_to_axis_size_term(ccv_nnc_micro_loop_index_term_t* const term, const int* const sids, const int sid_count) | |||
286 | { | |||
287 | switch (term->type) { | |||
288 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID: | |||
289 | // Can only be axis size id. No loop index. | |||
290 | if (term->id.type == CCV_NNC_MICRO_AXIS_SIZE_ID && term->id.id < 0) | |||
291 | { | |||
292 | const int id = -(term->id.id + 1); | |||
293 | assert(id >= 0 && id < sid_count)((void) sizeof ((id >= 0 && id < sid_count) ? 1 : 0), __extension__ ({ if (id >= 0 && id < sid_count ) ; else __assert_fail ("id >= 0 && id < sid_count" , "ccv_nnc_micro_core.c", 293, __extension__ __PRETTY_FUNCTION__ ); })); | |||
294 | term->id.id = sids[id]; | |||
295 | } | |||
296 | break; | |||
297 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: | |||
298 | _sid_to_axis_size_term(&term->binary->left, sids, sid_count); | |||
299 | _sid_to_axis_size_term(&term->binary->right, sids, sid_count); | |||
300 | break; | |||
301 | } | |||
302 | } | |||
303 | ||||
304 | struct ccv_nnc_micro_io_reindex_s { | |||
305 | struct ccv_nnc_micro_io_s super; | |||
306 | int s_count; | |||
307 | ccv_nnc_micro_io_t x; | |||
308 | ccv_nnc_micro_loop_index_term_t* shape; | |||
309 | ccv_nnc_micro_loop_index_term_t* reindex; | |||
310 | ccv_nnc_micro_io_t* ss; | |||
311 | ccv_array_t* equal_assertions; | |||
312 | }; | |||
313 | ||||
314 | static void _ccv_nnc_micro_reindex_numbering(const ccv_nnc_micro_io_t super, const int id, const int var_count) | |||
315 | { | |||
316 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
317 | self->super.id = id; | |||
318 | // No need to update axis size. | |||
319 | if (self->s_count == 0) | |||
320 | return; | |||
321 | int sids[self->s_count]; | |||
322 | int i; | |||
323 | for (i = 0; i < self->s_count; i++) | |||
324 | sids[i] = self->ss[i]->id; | |||
325 | for (i = 0; i < self->super.dimensions; i++) | |||
326 | _sid_to_axis_size_term(&self->shape[i], sids, self->s_count); | |||
327 | for (i = 0; i < self->x->dimensions; i++) | |||
328 | _sid_to_axis_size_term(&self->reindex[i], sids, self->s_count); | |||
329 | for (i = 0; i < self->equal_assertions->rnum; i++) | |||
330 | { | |||
331 | ccv_nnc_micro_id_equal_assertion_t* const equal_assertion = (ccv_nnc_micro_id_equal_assertion_t*)ccv_array_get(self->equal_assertions, i)((void*)(((char*)((self->equal_assertions)->data)) + (size_t )(self->equal_assertions)->rsize * (size_t)(i))); | |||
332 | if (equal_assertion->left.type == CCV_NNC_MICRO_AXIS_SIZE_ID && equal_assertion->left.id < 0) | |||
333 | { | |||
334 | const int id = -(equal_assertion->left.id + 1); | |||
335 | assert(id >= 0 && id < self->s_count)((void) sizeof ((id >= 0 && id < self->s_count ) ? 1 : 0), __extension__ ({ if (id >= 0 && id < self->s_count) ; else __assert_fail ("id >= 0 && id < self->s_count" , "ccv_nnc_micro_core.c", 335, __extension__ __PRETTY_FUNCTION__ ); })); | |||
336 | equal_assertion->left.id = sids[id]; | |||
337 | } | |||
338 | if (equal_assertion->right.type == CCV_NNC_MICRO_AXIS_SIZE_ID && equal_assertion->right.id < 0) | |||
339 | { | |||
340 | const int id = -(equal_assertion->right.id + 1); | |||
341 | assert(id >= 0 && id < self->s_count)((void) sizeof ((id >= 0 && id < self->s_count ) ? 1 : 0), __extension__ ({ if (id >= 0 && id < self->s_count) ; else __assert_fail ("id >= 0 && id < self->s_count" , "ccv_nnc_micro_core.c", 341, __extension__ __PRETTY_FUNCTION__ ); })); | |||
342 | equal_assertion->right.id = sids[id]; | |||
343 | } | |||
344 | } | |||
345 | } | |||
346 | ||||
347 | static void _ccv_nnc_micro_reindex_equal_assertions(const ccv_nnc_micro_io_t super, ccv_array_t* const equal_assertions) | |||
348 | { | |||
349 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
350 | int i; | |||
351 | for (i = 0; i < self->equal_assertions->rnum; i++) | |||
352 | { | |||
353 | ccv_nnc_micro_id_equal_assertion_t* const equal_assertion = (ccv_nnc_micro_id_equal_assertion_t*)ccv_array_get(self->equal_assertions, i)((void*)(((char*)((self->equal_assertions)->data)) + (size_t )(self->equal_assertions)->rsize * (size_t)(i))); | |||
354 | ccv_array_push(equal_assertions, equal_assertion); | |||
355 | } | |||
356 | } | |||
357 | ||||
358 | static void _ccv_nnc_bind_scalars_in_term(ccv_nnc_micro_loop_index_term_t* const term, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context) | |||
359 | { | |||
360 | switch (term->type) | |||
361 | { | |||
362 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: | |||
363 | _ccv_nnc_bind_scalars_in_term(&term->binary->left, lookup, context); | |||
364 | _ccv_nnc_bind_scalars_in_term(&term->binary->right, lookup, context); | |||
365 | break; | |||
366 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR: { | |||
367 | char* const name = term->name; | |||
368 | term->id.id = lookup(context, name); | |||
369 | ccfreefree(name); | |||
370 | term->id.d = 0; | |||
371 | term->id.type = CCV_NNC_MICRO_SCALAR_ID; | |||
372 | term->type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID; | |||
373 | break; | |||
374 | } | |||
375 | } | |||
376 | } | |||
377 | ||||
378 | static void _ccv_nnc_micro_reindex_bind_scalars(const ccv_nnc_micro_io_t super, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context) | |||
379 | { | |||
380 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
381 | int i; | |||
382 | for (i = 0; i < self->super.dimensions; i++) | |||
383 | _ccv_nnc_bind_scalars_in_term(&self->shape[i], lookup, context); | |||
384 | for (i = 0; i < self->x->dimensions; i++) | |||
385 | _ccv_nnc_bind_scalars_in_term(&self->reindex[i], lookup, context); | |||
386 | } | |||
387 | ||||
388 | ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_loop_index_deep_copy(const ccv_nnc_micro_loop_index_term_t* const term) | |||
389 | { | |||
390 | switch (term->type) | |||
391 | { | |||
392 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: { | |||
393 | ccv_nnc_micro_loop_index_term_t copy = *term; | |||
394 | copy.binary = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
395 | *copy.binary = *term->binary; | |||
396 | copy.binary->left = ccv_nnc_micro_loop_index_deep_copy(&term->binary->left); | |||
397 | copy.binary->right = ccv_nnc_micro_loop_index_deep_copy(&term->binary->right); | |||
398 | return copy; | |||
399 | } | |||
400 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_NONE: | |||
401 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID: | |||
402 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL: | |||
403 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR: | |||
404 | return *term; | |||
405 | } | |||
406 | return *term; | |||
407 | } | |||
408 | ||||
409 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reindex_emit(const ccv_nnc_micro_io_t super) | |||
410 | { | |||
411 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
412 | const int loop_count = self->super.dimensions; | |||
413 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 413, __extension__ __PRETTY_FUNCTION__ ); })); | |||
414 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
415 | int i; | |||
416 | for (i = 0; i < loop_count; i++) | |||
417 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
418 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
419 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
420 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, self->x->dimensions, self->reindex)) | |||
421 | ); | |||
422 | for (i = 0; i < self->x->dimensions; i++) | |||
423 | self->reindex[i] = ccv_nnc_micro_loop_index_deep_copy(&self->reindex[i]); | |||
424 | loops[loop_count - 1].statement_count = 1; | |||
425 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
426 | loops[loop_count - 1].statements[0] = statement; | |||
427 | return (ccv_nnc_micro_function_t){ | |||
428 | .block_count = 1, | |||
429 | .one_block = { | |||
430 | .loop_count = loop_count, | |||
431 | .loops = loops | |||
432 | } | |||
433 | }; | |||
434 | } | |||
435 | ||||
436 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reindex_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
437 | { | |||
438 | // The grad is var_count + original id. | |||
439 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
440 | const int reset_loop_count = self->x->dimensions; | |||
441 | ccv_nnc_micro_loop_t* const reset_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * reset_loop_count); | |||
442 | // This loop reset grad to 0. | |||
443 | int i; | |||
444 | for (i = 0; i < reset_loop_count; i++) | |||
445 | reset_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
446 | const ccv_nnc_micro_loop_statement_t reset_statement = ccv_nnc_micro_loop_assignment( | |||
447 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), reset_loop_count, ccv_nnc_micro_index_of_loops(reset_loops, reset_loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = reset_loop_count > 0 ? reset_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 1 ? reset_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 2 ? reset_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = reset_loop_count > 3 ? reset_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 4 ? reset_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 5 ? reset_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = reset_loop_count > 6 ? reset_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 7 ? reset_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
448 | ccv_nnc_micro_loop_expression_of_value(0) | |||
449 | ); | |||
450 | reset_loops[reset_loop_count - 1].statement_count = 1; | |||
451 | reset_loops[reset_loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
452 | reset_loops[reset_loop_count - 1].statements[0] = reset_statement; | |||
453 | const int loop_count = self->super.dimensions; | |||
454 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
455 | for (i = 0; i < loop_count; i++) | |||
456 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
457 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_compound_assignment_of_tensor( | |||
458 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), self->x->dimensions, self->reindex), | |||
459 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
460 | ); | |||
461 | for (i = 0; i < self->x->dimensions; i++) | |||
462 | self->reindex[i] = ccv_nnc_micro_loop_index_deep_copy(&self->reindex[i]); | |||
463 | loops[loop_count - 1].statement_count = 1; | |||
464 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
465 | loops[loop_count - 1].statements[0] = statement; | |||
466 | ccv_nnc_micro_loop_block_t* const blocks = (ccv_nnc_micro_loop_block_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_block_t) * 2); | |||
467 | blocks[0] = (ccv_nnc_micro_loop_block_t){ | |||
468 | .loop_count = reset_loop_count, | |||
469 | .loops = reset_loops | |||
470 | }; | |||
471 | blocks[1] = (ccv_nnc_micro_loop_block_t){ | |||
472 | .loop_count = loop_count, | |||
473 | .loops = loops | |||
474 | }; | |||
475 | return (ccv_nnc_micro_function_t){ | |||
476 | .block_count = 2, | |||
477 | .blocks = blocks | |||
478 | }; | |||
479 | } | |||
480 | ||||
481 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_reindex_return_shape(const ccv_nnc_micro_io_t super) | |||
482 | { | |||
483 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
484 | ccv_nnc_micro_tensor_t var = {}; | |||
485 | var.dimensions = self->super.dimensions; | |||
486 | var.sibling = -1; | |||
487 | var.input = self->x->id; | |||
488 | var.shape = (ccv_nnc_micro_loop_index_term_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
489 | memcpy(var.shape, self->shape, sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
490 | return var; | |||
491 | } | |||
492 | ||||
493 | static void _ccv_nnc_micro_reindex_deinit(const ccv_nnc_micro_io_t super) | |||
494 | { | |||
495 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
496 | int i; | |||
497 | for (i = 0; i < self->x->dimensions; i++) | |||
498 | ccv_nnc_micro_loop_index_free(&self->reindex[i]); | |||
499 | ccv_array_free(self->equal_assertions); | |||
500 | } | |||
501 | ||||
502 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_reindex_isa = { | |||
503 | .numbering = _ccv_nnc_micro_reindex_numbering, | |||
504 | .equal_assertions = _ccv_nnc_micro_reindex_equal_assertions, | |||
505 | .bind_scalars = _ccv_nnc_micro_reindex_bind_scalars, | |||
506 | .emit = _ccv_nnc_micro_reindex_emit, | |||
507 | .emit_grad = _ccv_nnc_micro_reindex_emit_grad, | |||
508 | .return_shape = _ccv_nnc_micro_reindex_return_shape, | |||
509 | .deinit = _ccv_nnc_micro_reindex_deinit | |||
510 | }; | |||
511 | ||||
512 | ccv_nnc_micro_io_t ccv_nnc_micro_reindex(const char* const* const shape, const int shape_count, const ccv_nnc_micro_io_t* const ss, const int s_count, const char* const* const reindex, const int reindex_count, const ccv_nnc_micro_io_t x) | |||
513 | { | |||
514 | assert(shape_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((shape_count <= (12)) ? 1 : 0), __extension__ ({ if (shape_count <= (12)) ; else __assert_fail ("shape_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 514, __extension__ __PRETTY_FUNCTION__ ); })); | |||
515 | assert(reindex_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((reindex_count <= (12)) ? 1 : 0), __extension__ ({ if (reindex_count <= (12)) ; else __assert_fail ("reindex_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 515, __extension__ __PRETTY_FUNCTION__ ); })); | |||
516 | assert(reindex_count == x->dimensions)((void) sizeof ((reindex_count == x->dimensions) ? 1 : 0), __extension__ ({ if (reindex_count == x->dimensions) ; else __assert_fail ("reindex_count == x->dimensions", "ccv_nnc_micro_core.c" , 516, __extension__ __PRETTY_FUNCTION__); })); | |||
517 | int i; | |||
518 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_reindex_s) + sizeof(ccv_nnc_micro_loop_index_term_t) * (shape_count + reindex_count) + sizeof(ccv_nnc_micro_io_t) * (s_count + 1)); | |||
519 | self->super.isa = &ccv_nnc_micro_io_reindex_isa; | |||
520 | self->super.dimensions = shape_count; | |||
521 | self->super.id = 0; | |||
522 | self->x = x; | |||
523 | self->shape = (ccv_nnc_micro_loop_index_term_t*)(self + 1); | |||
524 | self->reindex = self->shape + shape_count; | |||
525 | self->ss = (ccv_nnc_micro_io_t*)(self->reindex + reindex_count); | |||
526 | self->s_count = s_count; | |||
527 | self->ss[s_count] = x; | |||
528 | self->super.inputs = self->ss; | |||
529 | self->super.input_size = s_count + 1; | |||
530 | if (s_count > 0) | |||
531 | memcpy(self->ss, ss, sizeof(ccv_nnc_micro_io_t) * s_count); | |||
532 | ccv_array_t* const equal_assertions = self->equal_assertions = ccv_array_new(sizeof(ccv_nnc_micro_id_equal_assertion_t), 0, 0); | |||
533 | // Parse shape into expressions and validate the grammar. Do this upfront so we don't fail on parsing | |||
534 | // later, which can be confusing. | |||
535 | // CFG: | |||
536 | // VAR -> $[a-zA-Z0-9]+ | |||
537 | // DIM -> d[A-Z]{1}[0-9]+ | |||
538 | // INDEX -> i[0-9]+ | |||
539 | // CONST -> [0-9]+ | |||
540 | // FACTOR -> VAR | DIM | CONST | INDEX | |||
541 | // TERM -> FACTOR { ("*" | "/") FACTOR } | |||
542 | // EXPRESSION -> ["+" | "-"] TERM { ("+" | "-") TERM } | |||
543 | // Also, we choose to reuse the index expression structure even some information (such as id of tensors | |||
544 | // and the binding variables) not available. In this way, there is no need to reallocate index expression | |||
545 | // later, we just need to simply "patch" it in ccv_nnc_micro_combine_t. | |||
546 | for (i = 0; i < shape_count; i++) | |||
547 | { | |||
548 | int remain_size = strlen(shape[i]); | |||
549 | const char* pos = shape[i]; | |||
550 | ccv_nnc_micro_loop_index_term_t term = _expression(&pos, &remain_size, equal_assertions); | |||
551 | _no_index(term); // Make sure this is not index, no loop index. | |||
552 | self->shape[i] = term; | |||
553 | } | |||
554 | // Parse reindex. | |||
555 | for (i = 0; i < reindex_count; i++) | |||
556 | { | |||
557 | int remain_size = strlen(reindex[i]); | |||
558 | const char* pos = reindex[i]; | |||
559 | self->reindex[i] = _expression(&pos, &remain_size, equal_assertions); | |||
560 | } | |||
561 | return (ccv_nnc_micro_io_t)self; | |||
562 | } | |||
563 | ||||
564 | struct ccv_nnc_micro_io_unary_s { | |||
565 | struct ccv_nnc_micro_io_s super; | |||
566 | uint32_t unary_op; | |||
567 | ccv_nnc_micro_io_t x; | |||
568 | }; | |||
569 | ||||
570 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_unary_emit(const ccv_nnc_micro_io_t super) | |||
571 | { | |||
572 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)super; | |||
573 | const int loop_count = self->super.dimensions; | |||
574 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 574, __extension__ __PRETTY_FUNCTION__ ); })); | |||
575 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 575, __extension__ __PRETTY_FUNCTION__ ); })); | |||
576 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
577 | int i; | |||
578 | for (i = 0; i < loop_count; i++) | |||
579 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
580 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
581 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
582 | ccv_nnc_micro_loop_expression_of_unary( | |||
583 | self->unary_op, | |||
584 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
585 | ) | |||
586 | ); | |||
587 | loops[loop_count - 1].statement_count = 1; | |||
588 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
589 | loops[loop_count - 1].statements[0] = statement; | |||
590 | return (ccv_nnc_micro_function_t){ | |||
591 | .block_count = 1, | |||
592 | .one_block = { | |||
593 | .loop_count = loop_count, | |||
594 | .loops = loops | |||
595 | } | |||
596 | }; | |||
597 | } | |||
598 | ||||
599 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_unary_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
600 | { | |||
601 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)super; | |||
602 | const int loop_count = self->super.dimensions; | |||
603 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 603, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| ||||
604 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 604, __extension__ __PRETTY_FUNCTION__ ); })); | |||
605 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
606 | int i; | |||
607 | for (i = 0; i < loop_count; i++) | |||
608 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
609 | ccv_nnc_micro_loop_statement_t statement; | |||
610 | switch (self->unary_op) | |||
611 | { | |||
612 | case CCV_NNC_MICRO_UNARY_OP_NEG: | |||
613 | statement = ccv_nnc_micro_loop_assignment( | |||
614 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
615 | ccv_nnc_micro_loop_expression_of_unary( | |||
616 | CCV_NNC_MICRO_UNARY_OP_NEG, | |||
617 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
618 | ) | |||
619 | ); | |||
620 | break; | |||
621 | case CCV_NNC_MICRO_UNARY_OP_EXP: | |||
622 | statement = ccv_nnc_micro_loop_assignment( | |||
623 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
624 | ccv_nnc_micro_loop_expression_of_binary( | |||
625 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
626 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
627 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
628 | ) | |||
629 | ); | |||
630 | break; | |||
631 | case CCV_NNC_MICRO_UNARY_OP_LOG: | |||
632 | statement = ccv_nnc_micro_loop_assignment( | |||
633 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
634 | ccv_nnc_micro_loop_expression_of_binary( | |||
635 | CCV_NNC_MICRO_BINARY_OP_DIV, | |||
636 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
637 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
638 | ) | |||
639 | ); | |||
640 | break; | |||
641 | } | |||
642 | loops[loop_count - 1].statement_count = 1; | |||
| ||||
643 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
644 | loops[loop_count - 1].statements[0] = statement; | |||
645 | return (ccv_nnc_micro_function_t){ | |||
646 | .block_count = 1, | |||
647 | .one_block = { | |||
648 | .loop_count = loop_count, | |||
649 | .loops = loops | |||
650 | } | |||
651 | }; | |||
652 | } | |||
653 | ||||
654 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_unary_return_shape(const ccv_nnc_micro_io_t super) | |||
655 | { | |||
656 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)super; | |||
657 | ccv_nnc_micro_tensor_t var = {}; | |||
658 | var.dimensions = self->super.dimensions; | |||
659 | var.input = self->x->id; | |||
660 | var.sibling = -1; | |||
661 | return var; | |||
662 | } | |||
663 | ||||
664 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_unary_isa = { | |||
665 | .emit = _ccv_nnc_micro_unary_emit, | |||
666 | .emit_grad = _ccv_nnc_micro_unary_emit_grad, | |||
667 | .return_shape = _ccv_nnc_micro_unary_return_shape | |||
668 | }; | |||
669 | ||||
670 | ccv_nnc_micro_io_t ccv_nnc_micro_unary(const uint32_t op, const ccv_nnc_micro_io_t x) | |||
671 | { | |||
672 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_unary_s)); | |||
673 | self->super.isa = &ccv_nnc_micro_io_unary_isa; | |||
674 | self->super.dimensions = x->dimensions; | |||
675 | self->super.id = 0; | |||
676 | self->super.inputs = &self->x; | |||
677 | self->super.input_size = 1; | |||
678 | self->unary_op = op; | |||
679 | self->x = x; | |||
680 | return (ccv_nnc_micro_io_t)self; | |||
681 | } | |||
682 | ||||
683 | struct ccv_nnc_micro_io_binary_s { | |||
684 | struct ccv_nnc_micro_io_s super; | |||
685 | uint32_t binary_op; | |||
686 | ccv_nnc_micro_io_t left; | |||
687 | ccv_nnc_micro_io_t right; | |||
688 | }; | |||
689 | ||||
690 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_binary_emit(const ccv_nnc_micro_io_t super) | |||
691 | { | |||
692 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)super; | |||
693 | const int loop_count = self->super.dimensions; | |||
694 | assert(self->left->dimensions == loop_count)((void) sizeof ((self->left->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->left->dimensions == loop_count) ; else __assert_fail ("self->left->dimensions == loop_count" , "ccv_nnc_micro_core.c", 694, __extension__ __PRETTY_FUNCTION__ ); })); | |||
695 | assert(self->right->dimensions == loop_count)((void) sizeof ((self->right->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->right->dimensions == loop_count) ; else __assert_fail ("self->right->dimensions == loop_count" , "ccv_nnc_micro_core.c", 695, __extension__ __PRETTY_FUNCTION__ ); })); | |||
696 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 696, __extension__ __PRETTY_FUNCTION__ ); })); | |||
697 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
698 | int i; | |||
699 | for (i = 0; i < loop_count; i++) | |||
700 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
701 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
702 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
703 | ccv_nnc_micro_loop_expression_of_binary( | |||
704 | self->binary_op, | |||
705 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
706 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
707 | ) | |||
708 | ); | |||
709 | loops[loop_count - 1].statement_count = 1; | |||
710 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
711 | loops[loop_count - 1].statements[0] = statement; | |||
712 | return (ccv_nnc_micro_function_t){ | |||
713 | .block_count = 1, | |||
714 | .one_block = { | |||
715 | .loop_count = loop_count, | |||
716 | .loops = loops | |||
717 | } | |||
718 | }; | |||
719 | } | |||
720 | ||||
721 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_binary_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
722 | { | |||
723 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)super; | |||
724 | const int loop_count = self->super.dimensions; | |||
725 | assert(self->left->dimensions == loop_count)((void) sizeof ((self->left->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->left->dimensions == loop_count) ; else __assert_fail ("self->left->dimensions == loop_count" , "ccv_nnc_micro_core.c", 725, __extension__ __PRETTY_FUNCTION__ ); })); | |||
726 | assert(self->right->dimensions == loop_count)((void) sizeof ((self->right->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->right->dimensions == loop_count) ; else __assert_fail ("self->right->dimensions == loop_count" , "ccv_nnc_micro_core.c", 726, __extension__ __PRETTY_FUNCTION__ ); })); | |||
727 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 727, __extension__ __PRETTY_FUNCTION__ ); })); | |||
728 | int i; | |||
729 | ccv_nnc_micro_loop_t* const left_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
730 | for (i = 0; i < loop_count; i++) | |||
731 | left_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
732 | ccv_nnc_micro_loop_t* const right_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
733 | for (i = 0; i < loop_count; i++) | |||
734 | right_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
735 | ccv_nnc_micro_loop_statement_t left_statement; | |||
736 | ccv_nnc_micro_loop_statement_t right_statement; | |||
737 | switch (self->binary_op) | |||
738 | { | |||
739 | case CCV_NNC_MICRO_BINARY_OP_DIV: | |||
740 | left_statement = ccv_nnc_micro_loop_assignment( | |||
741 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
742 | ccv_nnc_micro_loop_expression_of_binary( | |||
743 | CCV_NNC_MICRO_BINARY_OP_DIV, | |||
744 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
745 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
746 | ) | |||
747 | ); | |||
748 | right_statement = ccv_nnc_micro_loop_assignment( | |||
749 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
750 | ccv_nnc_micro_loop_expression_of_binary( | |||
751 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
752 | ccv_nnc_micro_loop_expression_of_binary( | |||
753 | CCV_NNC_MICRO_BINARY_OP_DIV, | |||
754 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
755 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
756 | ), | |||
757 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
758 | ) | |||
759 | ); | |||
760 | break; | |||
761 | case CCV_NNC_MICRO_BINARY_OP_MUL: | |||
762 | left_statement = ccv_nnc_micro_loop_assignment( | |||
763 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
764 | ccv_nnc_micro_loop_expression_of_binary( | |||
765 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
766 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
767 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
768 | ) | |||
769 | ); | |||
770 | right_statement = ccv_nnc_micro_loop_assignment( | |||
771 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
772 | ccv_nnc_micro_loop_expression_of_binary( | |||
773 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
774 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
775 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
776 | ) | |||
777 | ); | |||
778 | break; | |||
779 | case CCV_NNC_MICRO_BINARY_OP_PLUS: | |||
780 | left_statement = ccv_nnc_micro_loop_assignment( | |||
781 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
782 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
783 | ); | |||
784 | right_statement = ccv_nnc_micro_loop_assignment( | |||
785 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
786 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
787 | ); | |||
788 | break; | |||
789 | case CCV_NNC_MICRO_BINARY_OP_MINUS: | |||
790 | left_statement = ccv_nnc_micro_loop_assignment( | |||
791 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
792 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
793 | ); | |||
794 | right_statement = ccv_nnc_micro_loop_assignment( | |||
795 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
796 | ccv_nnc_micro_loop_expression_of_unary( | |||
797 | CCV_NNC_MICRO_UNARY_OP_NEG, | |||
798 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
799 | ) | |||
800 | ); | |||
801 | break; | |||
802 | case CCV_NNC_MICRO_BINARY_OP_MIN: | |||
803 | left_statement = ccv_nnc_micro_loop_assignment( | |||
804 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
805 | ccv_nnc_micro_loop_expression_of_ternary( | |||
806 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
807 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
808 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
809 | ), | |||
810 | ccv_nnc_micro_loop_expression_of_value(0), | |||
811 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
812 | ) | |||
813 | ); | |||
814 | right_statement = ccv_nnc_micro_loop_assignment( | |||
815 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
816 | ccv_nnc_micro_loop_expression_of_ternary( | |||
817 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
818 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
819 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
820 | ), | |||
821 | ccv_nnc_micro_loop_expression_of_value(0), | |||
822 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
823 | ) | |||
824 | ); | |||
825 | break; | |||
826 | case CCV_NNC_MICRO_BINARY_OP_MAX: | |||
827 | left_statement = ccv_nnc_micro_loop_assignment( | |||
828 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
829 | ccv_nnc_micro_loop_expression_of_ternary( | |||
830 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
831 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
832 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
833 | ), | |||
834 | ccv_nnc_micro_loop_expression_of_value(0), | |||
835 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
836 | ) | |||
837 | ); | |||
838 | right_statement = ccv_nnc_micro_loop_assignment( | |||
839 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
840 | ccv_nnc_micro_loop_expression_of_ternary( | |||
841 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
842 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
843 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
844 | ), | |||
845 | ccv_nnc_micro_loop_expression_of_value(0), | |||
846 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
847 | ) | |||
848 | ); | |||
849 | break; | |||
850 | } | |||
851 | left_loops[loop_count - 1].statement_count = 1; | |||
852 | left_loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
853 | left_loops[loop_count - 1].statements[0] = left_statement; | |||
854 | right_loops[loop_count - 1].statement_count = 1; | |||
855 | right_loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
856 | right_loops[loop_count - 1].statements[0] = right_statement; | |||
857 | ccv_nnc_micro_loop_block_t* const blocks = (ccv_nnc_micro_loop_block_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_block_t) * 2); | |||
858 | blocks[0] = (ccv_nnc_micro_loop_block_t){ | |||
859 | .loop_count = loop_count, | |||
860 | .loops = left_loops | |||
861 | }; | |||
862 | blocks[1] = (ccv_nnc_micro_loop_block_t){ | |||
863 | .loop_count = loop_count, | |||
864 | .loops = right_loops | |||
865 | }; | |||
866 | return (ccv_nnc_micro_function_t){ | |||
867 | .block_count = 2, | |||
868 | .blocks = blocks | |||
869 | }; | |||
870 | } | |||
871 | ||||
872 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_binary_return_shape(const ccv_nnc_micro_io_t super) | |||
873 | { | |||
874 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)super; | |||
875 | ccv_nnc_micro_tensor_t var = {}; | |||
876 | var.dimensions = self->super.dimensions; | |||
877 | var.input = self->left->id; | |||
878 | var.sibling = self->right->id; | |||
879 | return var; | |||
880 | } | |||
881 | ||||
882 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_binary_isa = { | |||
883 | .emit = _ccv_nnc_micro_binary_emit, | |||
884 | .emit_grad = _ccv_nnc_micro_binary_emit_grad, | |||
885 | .return_shape = _ccv_nnc_micro_binary_return_shape | |||
886 | }; | |||
887 | ||||
888 | ccv_nnc_micro_io_t ccv_nnc_micro_binary(const uint32_t op, const ccv_nnc_micro_io_t x, const ccv_nnc_micro_io_t y) | |||
889 | { | |||
890 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_binary_s)); | |||
891 | self->super.isa = &ccv_nnc_micro_io_binary_isa; | |||
892 | self->super.dimensions = x->dimensions; | |||
893 | self->super.id = 0; | |||
894 | self->super.inputs = &self->left; | |||
895 | self->super.input_size = 2; | |||
896 | self->binary_op = op; | |||
897 | self->left = x; | |||
898 | self->right = y; | |||
899 | assert(x->dimensions == y->dimensions)((void) sizeof ((x->dimensions == y->dimensions) ? 1 : 0 ), __extension__ ({ if (x->dimensions == y->dimensions) ; else __assert_fail ("x->dimensions == y->dimensions" , "ccv_nnc_micro_core.c", 899, __extension__ __PRETTY_FUNCTION__ ); })); | |||
900 | return (ccv_nnc_micro_io_t)self; | |||
901 | } | |||
902 | ||||
903 | struct ccv_nnc_micro_io_reduce_s { | |||
904 | struct ccv_nnc_micro_io_s super; | |||
905 | uint32_t reduce_op; | |||
906 | int axis_count; | |||
907 | ccv_nnc_micro_io_t x; | |||
908 | int axis[1]; | |||
909 | }; | |||
910 | ||||
911 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reduce_emit(const ccv_nnc_micro_io_t super) | |||
912 | { | |||
913 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)super; | |||
914 | const int loop_count = self->super.dimensions; | |||
915 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 915, __extension__ __PRETTY_FUNCTION__ ); })); | |||
916 | // If axis_count == loop_count, we need extra loop to reduce. | |||
917 | int has_extra_loop = (self->axis_count == loop_count); | |||
918 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * (loop_count + has_extra_loop)); | |||
919 | int i, j, k; | |||
920 | int8_t reduce_axis[loop_count]; | |||
921 | memset(reduce_axis, 0, sizeof(int8_t) * loop_count); | |||
922 | for (i = 0; i < self->axis_count; i++) | |||
923 | reduce_axis[self->axis[i]] = 1; | |||
924 | j = 0; | |||
925 | // If loop_count == reduce_axis_count, we have extra loop for carried variables and blocks. | |||
926 | if (has_extra_loop) | |||
927 | { | |||
928 | loops[0] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_value(1), 0); | |||
929 | k = 1; | |||
930 | } else | |||
931 | k = loop_count - self->axis_count; | |||
932 | for (i = 0; i < loop_count; i++) | |||
933 | if (reduce_axis[i]) | |||
934 | { | |||
935 | loops[k] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->x->id, i), i + has_extra_loop); | |||
936 | ++k; | |||
937 | } else { | |||
938 | loops[j] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->x->id, i), i + has_extra_loop); | |||
939 | ++j; | |||
940 | } | |||
941 | const int carried_loop_idx = has_extra_loop ? 0 : loop_count - self->axis_count - 1; | |||
942 | loops[carried_loop_idx].carried_count = 1; | |||
943 | loops[carried_loop_idx].carrieds = (ccv_nnc_micro_loop_carried_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_carried_t)); | |||
944 | loops[carried_loop_idx].carrieds[0] = ccv_nnc_micro_loop_carried(self->reduce_op, 0); | |||
945 | j = 0; | |||
946 | k = has_extra_loop ? 1 : loop_count - self->axis_count; | |||
947 | // If loop_count == reduce_axis_count, we have extra loop for carrieds and block. | |||
948 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
949 | for (i = 0; i < loop_count; i++) | |||
950 | if (reduce_axis[i]) | |||
951 | { | |||
952 | index[i] = ccv_nnc_micro_index_of_id(loops[k].id); | |||
953 | ++k; | |||
954 | } else { | |||
955 | index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
956 | ++j; | |||
957 | } | |||
958 | ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_compound_assignment_of_id( | |||
959 | loops[carried_loop_idx].carrieds[0].id, | |||
960 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, index)) | |||
961 | ); | |||
962 | loops[carried_loop_idx + self->axis_count].statement_count = 1; | |||
963 | loops[carried_loop_idx + self->axis_count].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
964 | loops[carried_loop_idx + self->axis_count].statements[0] = statement; | |||
965 | j = 0; | |||
966 | for (i = 0; i < loop_count; i++) | |||
967 | if (reduce_axis[i]) | |||
968 | index[i] = ccv_nnc_micro_index_of_value(0); | |||
969 | else { | |||
970 | index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
971 | ++j; | |||
972 | } | |||
973 | statement = ccv_nnc_micro_loop_assignment( | |||
974 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, index), | |||
975 | ccv_nnc_micro_loop_expression_of_id(loops[carried_loop_idx].carrieds[0].id) | |||
976 | ); | |||
977 | loops[carried_loop_idx].statement_count = 1; | |||
978 | loops[carried_loop_idx].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
979 | loops[carried_loop_idx].statements[0] = statement; | |||
980 | return (ccv_nnc_micro_function_t){ | |||
981 | .block_count = 1, | |||
982 | .one_block = { | |||
983 | .carried_count = 1, | |||
984 | .loop_count = loop_count + has_extra_loop, | |||
985 | .loops = loops | |||
986 | } | |||
987 | }; | |||
988 | } | |||
989 | ||||
990 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reduce_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
991 | { | |||
992 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)super; | |||
993 | assert(self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM)((void) sizeof ((self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM ) ? 1 : 0), __extension__ ({ if (self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM ) ; else __assert_fail ("self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM" , "ccv_nnc_micro_core.c", 993, __extension__ __PRETTY_FUNCTION__ ); })); // I haven't figure out how to do mean without add additional opcode. | |||
994 | const int loop_count = self->super.dimensions; | |||
995 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 995, __extension__ __PRETTY_FUNCTION__ ); })); | |||
996 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
997 | int i, j, k; | |||
998 | int8_t reduce_axis[loop_count]; | |||
999 | memset(reduce_axis, 0, sizeof(int8_t) * loop_count); | |||
1000 | for (i = 0; i < self->axis_count; i++) | |||
1001 | reduce_axis[self->axis[i]] = 1; | |||
1002 | j = 0; | |||
1003 | k = loop_count - self->axis_count; | |||
1004 | for (i = 0; i < loop_count; i++) | |||
1005 | if (reduce_axis[i]) | |||
1006 | { | |||
1007 | loops[k] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
1008 | ++k; | |||
1009 | } else { | |||
1010 | loops[j] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
1011 | ++j; | |||
1012 | } | |||
1013 | j = 0; | |||
1014 | k = loop_count - self->axis_count; | |||
1015 | // If loop_count == reduce_axis_count, we have extra loop for carrieds and block. | |||
1016 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1017 | for (i = 0; i < loop_count; i++) | |||
1018 | if (reduce_axis[i]) | |||
1019 | { | |||
1020 | index[i] = ccv_nnc_micro_index_of_id(loops[k].id); | |||
1021 | ++k; | |||
1022 | } else { | |||
1023 | index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
1024 | ++j; | |||
1025 | } | |||
1026 | j = 0; | |||
1027 | ccv_nnc_micro_loop_index_term_t reduced_index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1028 | for (i = 0; i < loop_count; i++) | |||
1029 | if (reduce_axis[i]) | |||
1030 | reduced_index[i] = ccv_nnc_micro_index_of_value(0); | |||
1031 | else { | |||
1032 | reduced_index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
1033 | ++j; | |||
1034 | } | |||
1035 | ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
1036 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, index), | |||
1037 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, reduced_index)) | |||
1038 | ); | |||
1039 | loops[loop_count - 1].statement_count = 1; | |||
1040 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
1041 | loops[loop_count - 1].statements[0] = statement; | |||
1042 | return (ccv_nnc_micro_function_t){ | |||
1043 | .block_count = 1, | |||
1044 | .one_block = { | |||
1045 | .carried_count = 1, | |||
1046 | .loop_count = loop_count, | |||
1047 | .loops = loops | |||
1048 | } | |||
1049 | }; | |||
1050 | } | |||
1051 | ||||
1052 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_reduce_return_shape(const ccv_nnc_micro_io_t super) | |||
1053 | { | |||
1054 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)super; | |||
1055 | ccv_nnc_micro_tensor_t var = {}; | |||
1056 | var.dimensions = self->super.dimensions; | |||
1057 | var.input = self->x->id; | |||
1058 | var.sibling = -1; | |||
1059 | var.shape = (ccv_nnc_micro_loop_index_term_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
1060 | int i; | |||
1061 | for (i = 0; i < self->super.dimensions; i++) | |||
1062 | var.shape[i] = ccv_nnc_micro_index_of_axis_size(self->x->id, i); | |||
1063 | for (i = 0; i < self->axis_count; i++) | |||
1064 | var.shape[self->axis[i]] = ccv_nnc_micro_index_of_value(1); | |||
1065 | return var; | |||
1066 | } | |||
1067 | ||||
1068 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_reduce_isa = { | |||
1069 | .emit = _ccv_nnc_micro_reduce_emit, | |||
1070 | .emit_grad = _ccv_nnc_micro_reduce_emit_grad, | |||
1071 | .return_shape = _ccv_nnc_micro_reduce_return_shape | |||
1072 | }; | |||
1073 | ||||
1074 | ccv_nnc_micro_io_t ccv_nnc_micro_reduce(const uint8_t op, const int* const axis, const int axis_count, const ccv_nnc_micro_io_t x) | |||
1075 | { | |||
1076 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_reduce_s) + sizeof(int) * (axis_count - 1)); | |||
1077 | self->super.isa = &ccv_nnc_micro_io_reduce_isa; | |||
1078 | self->super.dimensions = x->dimensions; | |||
1079 | self->super.id = 0; | |||
1080 | self->super.inputs = &self->x; | |||
1081 | self->super.input_size = 1; | |||
1082 | self->reduce_op = op; | |||
1083 | self->x = x; | |||
1084 | self->axis_count = axis_count; | |||
1085 | assert(axis_count <= x->dimensions)((void) sizeof ((axis_count <= x->dimensions) ? 1 : 0), __extension__ ({ if (axis_count <= x->dimensions) ; else __assert_fail ("axis_count <= x->dimensions", "ccv_nnc_micro_core.c" , 1085, __extension__ __PRETTY_FUNCTION__); })); | |||
1086 | int i; | |||
1087 | for (i = 0; i < axis_count; i++) | |||
1088 | { assert(axis[i] < x->dimensions)((void) sizeof ((axis[i] < x->dimensions) ? 1 : 0), __extension__ ({ if (axis[i] < x->dimensions) ; else __assert_fail ( "axis[i] < x->dimensions", "ccv_nnc_micro_core.c", 1088 , __extension__ __PRETTY_FUNCTION__); })); } | |||
1089 | memcpy(self->axis, axis, sizeof(int) * axis_count); | |||
1090 | return (ccv_nnc_micro_io_t)self; | |||
1091 | } | |||
1092 | ||||
1093 | struct ccv_nnc_micro_io_select_s { | |||
1094 | struct ccv_nnc_micro_io_s super; | |||
1095 | int axis; | |||
1096 | ccv_nnc_micro_io_t x; | |||
1097 | ccv_nnc_micro_io_t index; | |||
1098 | }; | |||
1099 | ||||
1100 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_select_emit(const ccv_nnc_micro_io_t super) | |||
1101 | { | |||
1102 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)super; | |||
1103 | const int loop_count = self->super.dimensions; | |||
1104 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1104, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1105 | assert(self->index->dimensions == loop_count)((void) sizeof ((self->index->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->index->dimensions == loop_count) ; else __assert_fail ("self->index->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1105, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1106 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
1107 | int i; | |||
1108 | for (i = 0; i < loop_count; i++) | |||
1109 | { | |||
1110 | if (i == self->axis) | |||
1111 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_value(1), i); | |||
1112 | else | |||
1113 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
1114 | } | |||
1115 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1116 | for (i = 0; i < loop_count; i++) | |||
1117 | { | |||
1118 | if (i == self->axis) | |||
1119 | index[i] = ccv_nnc_micro_index_of_id(ccv_nnc_micro_id_of_tensor(self->index->id)); | |||
1120 | else | |||
1121 | index[i] = ccv_nnc_micro_index_of_id(loops[i].id); | |||
1122 | } | |||
1123 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
1124 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
1125 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, index)) | |||
1126 | ); | |||
1127 | loops[loop_count - 1].statement_count = 1; | |||
1128 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
1129 | loops[loop_count - 1].statements[0] = statement; | |||
1130 | return (ccv_nnc_micro_function_t){ | |||
1131 | .block_count = 1, | |||
1132 | .one_block = { | |||
1133 | .loop_count = loop_count, | |||
1134 | .loops = loops | |||
1135 | } | |||
1136 | }; | |||
1137 | } | |||
1138 | ||||
1139 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_select_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
1140 | { | |||
1141 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)super; | |||
1142 | const int loop_count = self->super.dimensions; | |||
1143 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1143, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1144 | assert(self->index->dimensions == loop_count)((void) sizeof ((self->index->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->index->dimensions == loop_count) ; else __assert_fail ("self->index->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1144, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1145 | ccv_nnc_micro_loop_t* const reset_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
1146 | int i; | |||
1147 | for (i = 0; i < loop_count; i++) | |||
1148 | reset_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
1149 | const ccv_nnc_micro_loop_statement_t reset_statement = ccv_nnc_micro_loop_assignment( | |||
1150 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(reset_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? reset_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? reset_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? reset_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? reset_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? reset_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? reset_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? reset_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? reset_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
1151 | ccv_nnc_micro_loop_expression_of_value(0) | |||
1152 | ); | |||
1153 | reset_loops[loop_count - 1].statement_count = 1; | |||
1154 | reset_loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
1155 | reset_loops[loop_count - 1].statements[0] = reset_statement; | |||
1156 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
1157 | for (i = 0; i < loop_count; i++) | |||
1158 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
1159 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1160 | for (i = 0; i < loop_count; i++) | |||
1161 | { | |||
1162 | if (i == self->axis) | |||
1163 | index[i] = ccv_nnc_micro_index_of_id(ccv_nnc_micro_id_of_tensor(self->index->id)); | |||
1164 | else | |||
1165 | index[i] = ccv_nnc_micro_index_of_id(loops[i].id); | |||
1166 | } | |||
1167 | // This is only for x, nothing for index. | |||
1168 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_compound_assignment_of_tensor( | |||
1169 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, index), | |||
1170 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
1171 | ); | |||
1172 | loops[loop_count - 1].statement_count = 1; | |||
1173 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
1174 | loops[loop_count - 1].statements[0] = statement; | |||
1175 | ccv_nnc_micro_loop_block_t* const blocks = (ccv_nnc_micro_loop_block_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_block_t) * 2); | |||
1176 | blocks[0] = (ccv_nnc_micro_loop_block_t){ | |||
1177 | .loop_count = loop_count, | |||
1178 | .loops = reset_loops | |||
1179 | }; | |||
1180 | blocks[1] = (ccv_nnc_micro_loop_block_t){ | |||
1181 | .loop_count = loop_count, | |||
1182 | .loops = loops | |||
1183 | }; | |||
1184 | return (ccv_nnc_micro_function_t){ | |||
1185 | .block_count = 2, | |||
1186 | .blocks = blocks | |||
1187 | }; | |||
1188 | } | |||
1189 | ||||
1190 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_select_return_shape(const ccv_nnc_micro_io_t super) | |||
1191 | { | |||
1192 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)super; | |||
1193 | ccv_nnc_micro_tensor_t var = {}; | |||
1194 | var.dimensions = self->super.dimensions; | |||
1195 | var.input = self->x->id; | |||
1196 | var.sibling = -1; | |||
1197 | var.shape = (ccv_nnc_micro_loop_index_term_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
1198 | int i; | |||
1199 | for (i = 0; i < self->super.dimensions; i++) | |||
1200 | { | |||
1201 | if (i != self->axis) | |||
1202 | var.shape[i] = ccv_nnc_micro_index_of_axis_size(self->x->id, i); | |||
1203 | else | |||
1204 | var.shape[i] = ccv_nnc_micro_index_of_value(1); | |||
1205 | } | |||
1206 | return var; | |||
1207 | } | |||
1208 | ||||
1209 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_select_isa = { | |||
1210 | .emit = _ccv_nnc_micro_select_emit, | |||
1211 | .emit_grad = _ccv_nnc_micro_select_emit_grad, | |||
1212 | .return_shape = _ccv_nnc_micro_select_return_shape | |||
1213 | }; | |||
1214 | ||||
1215 | ccv_nnc_micro_io_t ccv_nnc_micro_select(const int axis, const ccv_nnc_micro_io_t x, const ccv_nnc_micro_io_t index) | |||
1216 | { | |||
1217 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_select_s)); | |||
1218 | self->super.isa = &ccv_nnc_micro_io_select_isa; | |||
1219 | self->super.dimensions = x->dimensions; | |||
1220 | self->super.id = 0; | |||
1221 | self->super.inputs = &self->x; | |||
1222 | self->super.input_size = 2; | |||
1223 | self->x = x; | |||
1224 | self->index = index; | |||
1225 | self->axis = axis; | |||
1226 | assert(axis <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis <= (12)) ? 1 : 0), __extension__ ({ if (axis <= (12)) ; else __assert_fail ("axis <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 1226, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1227 | return (ccv_nnc_micro_io_t)self; | |||
1228 | } |
1 | /********************************************************** |
2 | * C-based/Cached/Core Computer Vision Library |
3 | * Liu Liu, 2010-02-01 |
4 | **********************************************************/ |
5 | |
6 | /********************************************************** |
7 | * CCV - Neural Network Collection |
8 | **********************************************************/ |
9 | |
10 | #ifndef GUARD_ccv_nnc_micro_internal_h |
11 | #define GUARD_ccv_nnc_micro_internal_h |
12 | |
13 | #include "ccv_nnc.h" |
14 | |
15 | enum { |
16 | CCV_NNC_MICRO_LOOP_ID, |
17 | CCV_NNC_MICRO_LOOP_CARRIED_ID, |
18 | CCV_NNC_MICRO_AXIS_SIZE_ID, |
19 | CCV_NNC_MICRO_TENSOR_ID, |
20 | CCV_NNC_MICRO_SCALAR_ID, |
21 | }; |
22 | |
23 | typedef struct { |
24 | uint8_t type; |
25 | uint8_t d; // Only used for axis_size, identify which axis for a tensor. |
26 | int16_t id; |
27 | } ccv_nnc_micro_id_t; |
28 | |
29 | typedef struct { |
30 | ccv_nnc_micro_id_t left; |
31 | ccv_nnc_micro_id_t right; |
32 | } ccv_nnc_micro_id_equal_assertion_t; |
33 | |
34 | enum { |
35 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_NONE, |
36 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, |
37 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL, |
38 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY, |
39 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR, // Unbounded scalar variable, shouldn't be there after fully-evaluated. |
40 | }; |
41 | |
42 | typedef struct ccv_nnc_micro_loop_index_binary_s ccv_nnc_micro_loop_index_binary_t; |
43 | |
44 | typedef struct { |
45 | int type; |
46 | union { |
47 | char* name; // binding variable name. |
48 | ccv_nnc_micro_id_t id; |
49 | int immediate_value; |
50 | ccv_nnc_micro_loop_index_binary_t* binary; |
51 | }; |
52 | } ccv_nnc_micro_loop_index_term_t; |
53 | |
54 | struct ccv_nnc_micro_loop_index_binary_s { |
55 | int op; |
56 | ccv_nnc_micro_loop_index_term_t left; |
57 | ccv_nnc_micro_loop_index_term_t right; |
58 | }; |
59 | |
60 | typedef struct { |
61 | ccv_nnc_micro_id_t id; |
62 | int index_count; |
63 | int no_check_bound[CCV_NNC_MAX_DIM_ALLOC(12)]; |
64 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; |
65 | } ccv_nnc_micro_loop_variable_t; |
66 | |
67 | enum { |
68 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID, |
69 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAL, |
70 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR, |
71 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_UNARY, |
72 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY, |
73 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_TERNAY, |
74 | }; |
75 | |
76 | typedef struct ccv_nnc_micro_loop_expression_s ccv_nnc_micro_loop_expression_t; |
77 | |
78 | typedef struct { |
79 | int unary_op; |
80 | ccv_nnc_micro_loop_expression_t* x; |
81 | } ccv_nnc_micro_loop_unary_t; |
82 | |
83 | typedef struct { |
84 | int binary_op; |
85 | ccv_nnc_micro_loop_expression_t* left; |
86 | ccv_nnc_micro_loop_expression_t* right; |
87 | } ccv_nnc_micro_loop_binary_t; |
88 | |
89 | typedef struct { |
90 | ccv_nnc_micro_loop_expression_t* pivot; // If it is 0, choose left, otherwise choose right. |
91 | ccv_nnc_micro_loop_expression_t* left; |
92 | ccv_nnc_micro_loop_expression_t* right; |
93 | } ccv_nnc_micro_loop_ternary_t; |
94 | |
95 | struct ccv_nnc_micro_loop_expression_s { |
96 | int type; |
97 | union { |
98 | ccv_nnc_micro_id_t id; // If this is a compound assignment, the id to that. |
99 | ccv_nnc_micro_scalar_t immediate_value; |
100 | ccv_nnc_micro_loop_variable_t variable; |
101 | ccv_nnc_micro_loop_unary_t unary; |
102 | ccv_nnc_micro_loop_binary_t binary; |
103 | ccv_nnc_micro_loop_ternary_t ternary; |
104 | }; |
105 | }; |
106 | |
107 | typedef struct { |
108 | ccv_nnc_micro_loop_variable_t lvalue; |
109 | ccv_nnc_micro_loop_expression_t rvalue; |
110 | } ccv_nnc_micro_loop_assignment_t; |
111 | |
112 | |
113 | typedef struct { |
114 | int type; |
115 | union { |
116 | ccv_nnc_micro_id_t id; // If this is a compound assignment, the id to that. |
117 | ccv_nnc_micro_loop_variable_t variable; // This only implies PLUS at the moment. |
118 | }; |
119 | } ccv_nnc_micro_loop_compound_assignment_lvalue_t; |
120 | |
121 | typedef struct { |
122 | ccv_nnc_micro_loop_compound_assignment_lvalue_t lvalue; // It shouldn't be unary or binary, only id or variable. |
123 | ccv_nnc_micro_loop_expression_t rvalue; |
124 | } ccv_nnc_micro_loop_compound_assignment_t; |
125 | |
126 | enum { |
127 | CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_ASSIGNMENT, |
128 | CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT, |
129 | }; |
130 | |
131 | // A generic statement within a loop. |
132 | // For our purpose, there will be two types of generic statement: |
133 | // an assignment statement (for tensors). |
134 | // an compound assignment statement (for loop carry overs). |
135 | typedef struct { |
136 | int type; |
137 | union { |
138 | ccv_nnc_micro_loop_assignment_t assignment; |
139 | ccv_nnc_micro_loop_compound_assignment_t compound_assignment; |
140 | }; |
141 | } ccv_nnc_micro_loop_statement_t; |
142 | |
143 | typedef struct { |
144 | ccv_nnc_micro_id_t id; |
145 | } ccv_nnc_micro_loop_carried_t; // The accumulating register. |
146 | |
147 | // A loop is identified with a loop counter id, some blocks inside this loop, some carry overs within |
148 | // this loop and can be used outside of this loop. |
149 | // If this loop has another loop nested (represented as the next one in the ccv_nnc_micro_nested_loop_t) |
150 | // all blocks are executed after the nested loop finished. |
151 | typedef struct { |
152 | ccv_nnc_micro_id_t id; // Loop counter's id, this will be used for indexing. |
153 | int carried_count; |
154 | int statement_count; |
155 | ccv_nnc_micro_loop_index_term_t start_index; |
156 | ccv_nnc_micro_loop_index_term_t end_index; |
157 | ccv_nnc_micro_loop_carried_t* carrieds; |
158 | ccv_nnc_micro_loop_statement_t* statements; |
159 | } ccv_nnc_micro_loop_t; |
160 | |
161 | // A loop block contains many loops within each other. |
162 | typedef struct { |
163 | int carried_count; |
164 | int loop_count; |
165 | ccv_nnc_micro_loop_t* loops; |
166 | } ccv_nnc_micro_loop_block_t; |
167 | |
168 | typedef struct { |
169 | int input; // The one it derives its shape from. If shape is nullptr, it has the same shape as input. -1 means it is an input. |
170 | int sibling; // The sibling that has the same shape. |
171 | int dimensions; |
172 | int no_alloc; // No need to allocate this tensor. |
173 | ccv_nnc_micro_loop_index_term_t* shape; |
174 | } ccv_nnc_micro_tensor_t; |
175 | |
176 | // A function contains a list of loop blocks that will be executed serially. |
177 | // It also contains references to its dependencies so a function knows its inputs / outputs. |
178 | typedef struct { |
179 | int block_count; |
180 | union { |
181 | ccv_nnc_micro_loop_block_t* blocks; // Heap-allocated blocks. |
182 | ccv_nnc_micro_loop_block_t one_block; // In-place block to optimize memory allocation for one block cases. |
183 | }; |
184 | } ccv_nnc_micro_function_t; |
185 | |
186 | typedef struct { |
187 | int input_size; // Size of inputs. |
188 | int output_size; // Size of outputs. |
189 | // Combined ops only have global vars, there is no local vars. All vars are tensors. |
190 | int var_count; |
191 | // loops are our constructs of IR ops really. It is hierarchical. |
192 | int function_count; |
193 | int* inputs; |
194 | int* outputs; |
195 | ccv_nnc_micro_tensor_t* vars; |
196 | ccv_nnc_micro_function_t* functions; |
197 | } ccv_nnc_micro_program_t; |
198 | |
199 | // A combined op is constructed with many nested loops. These loops may have data dependencies |
200 | // between each other, but they are ordered in topological order to make sure one is finished |
201 | // after the another. |
202 | struct ccv_nnc_micro_combine_s { |
203 | int parameter_size; // Size of parameters. |
204 | ccv_nnc_micro_program_t forward; |
205 | ccv_nnc_micro_program_t backward; |
206 | ccv_array_t* equal_assertions; |
207 | }; |
208 | |
209 | typedef uint32_t(*ccv_nnc_micro_scalar_lookup_f)(const void* const context, const char* const name); |
210 | |
211 | /** |
212 | * This is the virtual table for micro op. |
213 | */ |
214 | struct ccv_nnc_micro_io_vtab_s { |
215 | void (*bind_scalars)(const ccv_nnc_micro_io_t self, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context); /**< Bind scalar name to a scoped id. */ |
216 | void (*numbering)(const ccv_nnc_micro_io_t self, const int id, const int var_count); /**< Assign id to the output of this micro op. */ |
217 | void (*equal_assertions)(const ccv_nnc_micro_io_t self, ccv_array_t* const equal_assertions); /**< Collect assertions about id equal. */ |
218 | ccv_nnc_micro_function_t (*emit)(const ccv_nnc_micro_io_t self); /**< Emit instructions for this micro op. */ |
219 | ccv_nnc_micro_function_t (*emit_grad)(const ccv_nnc_micro_io_t self, const int var_count); /**< Emit backward instructions for this micro op. */ |
220 | ccv_nnc_micro_tensor_t (*return_shape)(const ccv_nnc_micro_io_t self); /**< The shape of the returned tensor. */ |
221 | void (*deinit)(const ccv_nnc_micro_io_t self); /**< Deinit this micro io. */ |
222 | }; |
223 | |
224 | extern const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_input_isa; |
225 | extern const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_grad_isa; |
226 | |
227 | #define CCV_NNC_IS_MICRO_IO_INPUT(x)((x)->isa == &ccv_nnc_micro_io_input_isa) ((x)->isa == &ccv_nnc_micro_io_input_isa) |
228 | #define CCV_NNC_IS_MICRO_IO_GRAD(x)((x)->isa == &ccv_nnc_micro_io_grad_isa) ((x)->isa == &ccv_nnc_micro_io_grad_isa) |
229 | |
230 | static inline void ccv_nnc_micro_numbering(const ccv_nnc_micro_io_t self, const int id, const int var_count) |
231 | { |
232 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
233 | // If we numbering with negative id, we really just enumerate the grad. |
234 | if (id < 0 && !CCV_NNC_IS_MICRO_IO_GRAD(self)((self)->isa == &ccv_nnc_micro_io_grad_isa)) |
235 | return; |
236 | if (isa->numbering) |
237 | isa->numbering(self, id, var_count); |
238 | else |
239 | self->id = id; |
240 | } |
241 | |
242 | static inline void ccv_nnc_micro_equal_assertions(const ccv_nnc_micro_io_t self, ccv_array_t* const equal_assertions) |
243 | { |
244 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
245 | if (isa->equal_assertions) |
246 | isa->equal_assertions(self, equal_assertions); |
247 | } |
248 | |
249 | static inline void ccv_nnc_micro_bind_scalars(const ccv_nnc_micro_io_t self, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context) |
250 | { |
251 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
252 | if (isa->bind_scalars) |
253 | isa->bind_scalars(self, lookup, context); |
254 | } |
255 | |
256 | static inline void ccv_nnc_micro_deinit(const ccv_nnc_micro_io_t self) |
257 | { |
258 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
259 | if (isa->deinit) |
260 | isa->deinit(self); |
261 | } |
262 | |
263 | static inline CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) ccv_nnc_micro_emit(const ccv_nnc_micro_io_t self) |
264 | { |
265 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
266 | return isa->emit(self); |
267 | } |
268 | |
269 | static inline CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) ccv_nnc_micro_emit_grad(const ccv_nnc_micro_io_t self, const int var_count) |
270 | { |
271 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
272 | return isa->emit_grad(self, var_count); |
273 | } |
274 | |
275 | static inline CCV_WARN_UNUSED(ccv_nnc_micro_tensor_t)ccv_nnc_micro_tensor_t __attribute__((warn_unused_result)) ccv_nnc_micro_return_shape(const ccv_nnc_micro_io_t self) |
276 | { |
277 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
278 | return isa->return_shape(self); |
279 | } |
280 | |
281 | /** |
282 | * Helpers to construct the micro IR. |
283 | */ |
284 | |
285 | static inline ccv_nnc_micro_id_t ccv_nnc_micro_id_of_tensor(const int id) |
286 | { |
287 | return (ccv_nnc_micro_id_t){ |
288 | .type = CCV_NNC_MICRO_TENSOR_ID, |
289 | .id = id, |
290 | .d = 0 |
291 | }; |
292 | } |
293 | |
294 | static inline ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_index_of_value(const int value) |
295 | { |
296 | return (ccv_nnc_micro_loop_index_term_t){ |
297 | .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL, |
298 | .immediate_value = value |
299 | }; |
300 | } |
301 | |
302 | static inline ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_index_of_id(const ccv_nnc_micro_id_t id) |
303 | { |
304 | return (ccv_nnc_micro_loop_index_term_t){ |
305 | .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, |
306 | .id = id |
307 | }; |
308 | } |
309 | |
310 | static inline ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_index_of_axis_size(const int id, const int level) |
311 | { |
312 | return (ccv_nnc_micro_loop_index_term_t){ |
313 | .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, |
314 | .id = { |
315 | .type = CCV_NNC_MICRO_AXIS_SIZE_ID, |
316 | .id = id, |
317 | .d = level |
318 | } |
319 | }; |
320 | } |
321 | |
322 | static inline ccv_nnc_micro_loop_t ccv_nnc_micro_for_in(const ccv_nnc_micro_loop_index_term_t start_index, const ccv_nnc_micro_loop_index_term_t end_index, const int level) |
323 | { |
324 | return (ccv_nnc_micro_loop_t){ |
325 | .start_index = start_index, |
326 | .end_index = end_index, |
327 | .carried_count = 0, |
328 | .carrieds = 0, |
329 | .statement_count = 0, |
330 | .statements = 0, |
331 | .id = { |
332 | .type = CCV_NNC_MICRO_LOOP_ID, |
333 | .d = 0, |
334 | .id = level, |
335 | } |
336 | }; |
337 | } |
338 | |
339 | // This is a macro because C cannot return array type. |
340 | #define ccv_nnc_micro_index_of_loops(_loops, _loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 0 ? _loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 1 ? _loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 2 ? _loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 3 ? _loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 4 ? _loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 5 ? _loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 6 ? _loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 7 ? _loops[7].id : (ccv_nnc_micro_id_t){} } } \ |
341 | (ccv_nnc_micro_loop_index_term_t [CCV_NNC_MAX_DIM_ALLOC(12)]){ \ |
342 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 0 ? _loops[0].id : (ccv_nnc_micro_id_t){} }, \ |
343 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 1 ? _loops[1].id : (ccv_nnc_micro_id_t){} }, \ |
344 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 2 ? _loops[2].id : (ccv_nnc_micro_id_t){} }, \ |
345 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 3 ? _loops[3].id : (ccv_nnc_micro_id_t){} }, \ |
346 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 4 ? _loops[4].id : (ccv_nnc_micro_id_t){} }, \ |
347 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 5 ? _loops[5].id : (ccv_nnc_micro_id_t){} }, \ |
348 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 6 ? _loops[6].id : (ccv_nnc_micro_id_t){} }, \ |
349 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 7 ? _loops[7].id : (ccv_nnc_micro_id_t){} } \ |
350 | } |
351 | |
352 | static inline ccv_nnc_micro_loop_variable_t ccv_nnc_micro_loop_variable_of_tensor(const int id, const int index_count, const ccv_nnc_micro_loop_index_term_t* const index) |
353 | { |
354 | ccv_nnc_micro_loop_variable_t variable = { |
355 | .id = ccv_nnc_micro_id_of_tensor(id), |
356 | .index_count = index_count |
357 | }; |
358 | int i; |
359 | for (i = 0; i < index_count; i++) |
360 | variable.index[i] = index[i]; |
361 | return variable; |
362 | } |
363 | |
364 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_variable(const ccv_nnc_micro_loop_variable_t variable) |
365 | { |
366 | return (ccv_nnc_micro_loop_expression_t){ |
367 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR, |
368 | .variable = variable |
369 | }; |
370 | } |
371 | |
372 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_value(const float value) |
373 | { |
374 | return (ccv_nnc_micro_loop_expression_t){ |
375 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAL, |
376 | .immediate_value = { |
377 | .type = CCV_32F, |
378 | .f32 = value |
379 | } |
380 | }; |
381 | } |
382 | |
383 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_id(const ccv_nnc_micro_id_t id) |
384 | { |
385 | return (ccv_nnc_micro_loop_expression_t){ |
386 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID, |
387 | .id = id |
388 | }; |
389 | } |
390 | |
391 | static inline ccv_nnc_micro_loop_statement_t ccv_nnc_micro_loop_assignment(const ccv_nnc_micro_loop_variable_t lvalue, const ccv_nnc_micro_loop_expression_t rvalue) |
392 | { |
393 | return (ccv_nnc_micro_loop_statement_t){ |
394 | .type = CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_ASSIGNMENT, |
395 | .assignment = { |
396 | .lvalue = lvalue, |
397 | .rvalue = rvalue |
398 | } |
399 | }; |
400 | } |
401 | |
402 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_unary(const int unary_op, const ccv_nnc_micro_loop_expression_t x) |
403 | { |
404 | ccv_nnc_micro_loop_expression_t expression = { |
405 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY |
406 | }; |
407 | expression.unary.unary_op = unary_op; |
408 | expression.unary.x = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
409 | *expression.unary.x = x; |
410 | return expression; |
411 | } |
412 | |
413 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_binary(const int binary_op, const ccv_nnc_micro_loop_expression_t left, const ccv_nnc_micro_loop_expression_t right) |
414 | { |
415 | ccv_nnc_micro_loop_expression_t expression = { |
416 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY |
417 | }; |
418 | expression.binary.binary_op = binary_op; |
419 | expression.binary.left = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
420 | *expression.binary.left = left; |
421 | expression.binary.right = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
422 | *expression.binary.right = right; |
423 | return expression; |
424 | } |
425 | |
426 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_ternary(const ccv_nnc_micro_loop_expression_t pivot, const ccv_nnc_micro_loop_expression_t left, const ccv_nnc_micro_loop_expression_t right) |
427 | { |
428 | ccv_nnc_micro_loop_expression_t expression = { |
429 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_TERNAY |
430 | }; |
431 | expression.ternary.pivot = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
432 | *expression.ternary.pivot = pivot; |
433 | expression.ternary.left = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
434 | *expression.ternary.left = left; |
435 | expression.ternary.right = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
436 | *expression.ternary.right = right; |
437 | return expression; |
438 | } |
439 | |
440 | static inline ccv_nnc_micro_loop_statement_t ccv_nnc_micro_loop_compound_assignment_of_id(const ccv_nnc_micro_id_t lvalue, const ccv_nnc_micro_loop_expression_t rvalue) |
441 | { |
442 | return (ccv_nnc_micro_loop_statement_t){ |
443 | .type = CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT, |
444 | .compound_assignment = { |
445 | .lvalue = { |
446 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID, |
447 | .id = lvalue |
448 | }, |
449 | .rvalue = rvalue |
450 | } |
451 | }; |
452 | } |
453 | |
454 | static inline ccv_nnc_micro_loop_statement_t ccv_nnc_micro_loop_compound_assignment_of_tensor(const ccv_nnc_micro_loop_variable_t lvalue, const ccv_nnc_micro_loop_expression_t rvalue) |
455 | { |
456 | return (ccv_nnc_micro_loop_statement_t){ |
457 | .type = CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT, |
458 | .compound_assignment = { |
459 | .lvalue = { |
460 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR, |
461 | .variable = lvalue |
462 | }, |
463 | .rvalue = rvalue |
464 | } |
465 | }; |
466 | } |
467 | |
468 | static inline ccv_nnc_micro_loop_carried_t ccv_nnc_micro_loop_carried(const uint8_t reduce_op, const int idx) |
469 | { |
470 | return (ccv_nnc_micro_loop_carried_t){ |
471 | .id = { |
472 | .type = CCV_NNC_MICRO_LOOP_CARRIED_ID, |
473 | .d = reduce_op, |
474 | .id = idx |
475 | } |
476 | }; |
477 | } |
478 | |
479 | // This method has to be mutable for efficiency reasons. Hence I kept it private. |
480 | void ccv_nnc_micro_program_simplify(ccv_nnc_micro_program_t* const program, const ccv_nnc_micro_io_t* const inputs, const int input_size, const ccv_nnc_micro_io_t* const outputs, const int output_size, const ccv_array_t* const equal_assertions); |
481 | ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_loop_index_deep_copy(const ccv_nnc_micro_loop_index_term_t* const term); |
482 | void ccv_nnc_micro_loop_index_free(ccv_nnc_micro_loop_index_term_t* const term); |
483 | void ccv_nnc_micro_loop_variable_free(ccv_nnc_micro_loop_variable_t* const var); |
484 | void ccv_nnc_micro_loop_statement_free(ccv_nnc_micro_loop_statement_t* const statement); |
485 | void ccv_nnc_micro_loop_statement_lvalue_free(ccv_nnc_micro_loop_statement_t* const statement); |
486 | void ccv_nnc_micro_loops_free(ccv_nnc_micro_loop_t* const loops, const int loop_count); |
487 | |
488 | #endif |