Bug Summary

File:nnc/ccv_nnc_symbolic_graph_backward.c
Warning:line 759, column 4
Assigned value is garbage or undefined

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_nnc_symbolic_graph_backward.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -fcoverage-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -resource-dir /usr/local/lib/clang/19 -I ../ -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/19/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/12/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -ferror-limit 19 -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/actions-runner/_work/ccv/ccv/_analyze/2024-11-04-165540-38187-1 -x c ccv_nnc_symbolic_graph_backward.c
1#include "ccv_nnc.h"
2#include "ccv_nnc_easy.h"
3#include "ccv_nnc_internal.h"
4#include "ccv_internal.h"
5#include "_ccv_nnc_symbolic_graph.h"
6
7// MARK - Level-3.5 API
8
9typedef struct {
10 int f_wrt; // Check if both f_symbols and wrt_symbols flow through this node.
11 ccv_array_t* outgoings; // backward traverse nodes.
12 uint64_t* input_bitmasks;
13 int input_bitmask_size;
14 uint64_t* output_bitmasks;
15 int output_bitmask_size;
16} ccv_nnc_graph_backward_info_t;
17
18typedef struct {
19 int input_size;
20 int* inputs;
21 int output;
22 ccv_array_t* outgoings;
23 float value;
24 ccv_nnc_graph_exec_symbol_t symbol;
25} ccv_nnc_sum_or_set_graph_exec_symbol_t;
26
27typedef struct {
28 int input_size;
29 int output_size;
30 int* inputs;
31 int* outputs;
32 ccv_array_t* outgoings;
33 ccv_nnc_cmd_t cmd;
34 ccv_nnc_graph_exec_symbol_t symbol;
35} ccv_nnc_autograd_graph_exec_symbol_t;
36
37typedef struct {
38 int d; // The pointer to the forward level object.
39 int alias_ref; // The alias ref to itself (autograd_tensor_symbols array).
40 int flags; // Flags for this symbol.
41 ccv_nnc_tensor_symbol_t symbol;
42} ccv_nnc_autograd_tensor_symbol_t;
43
44typedef struct {
45 int d; // The tensor symbol ref.
46 int x; // The exec symbol ref.
47 ccv_array_t* exec_registry; // Additional exec symbol refs, similar to x, only useful for aliasing.
48 ccv_array_t* alias_registry; // int point to all the alias (if this is not an alias). The alias is the object in autograd_tensor_symbols, you need another level of indirection to get the actual forward level alias.
49} ccv_nnc_tensor_ref_t;
50
51typedef struct {
52 int c; // The start non-accumulated version.
53 ccv_array_t* ref_version; // tensor ref point to the reverse tensor symbol.
54} ccv_nnc_autograd_tensor_version_t;
55
56typedef struct {
57 int d;
58 int alias_ref;
59} ccv_nnc_sum_variable_t;
60
61// This method tries to figure out if a set of aliases can cover the whole tensor dim.
62// This is not a precise implementation though. The requirement is to answer this question
63// with a given memory constraint, therefore, only allow up to 65536 different tensor locations.
64// If you have more than that, it will assume that it doesn't have fully assigned aliases,
65// and will return 0.
66
67// Return 1 if inserted successfully.
68static inline int _ccv_nnc_try_mix(int* const md, const int ins, const int c)
69{
70 if (!c)
71 {
72 md[0] = ins;
73 return 1;
74 }
75 int ll = 0, uu = c - 1;
76 int mm;
77 do {
78 mm = ll + ((uu - ll) >> 1);
79 if (ins == md[mm])
80 return 0;
81 else if (ins < md[mm])
82 uu = mm - 1;
83 else if (ins > md[mm])
84 ll = mm + 1;
85 } while (ll <= uu);
86 if (ll < c)
87 memmove(md + ll + 1, md + ll, sizeof(int) * (c - ll));
88 md[ll] = ins;
89 return 1;
90}
91
92static inline int _ccv_nnc_mix_idx(const int* const md, const int ins, const int c)
93{
94 if (c <= 1)
95 return 0;
96 int ll = 0, uu = c - 1;
97 int mm;
98 do {
99 mm = ll + ((uu - ll) >> 1);
100 if (ins == md[mm])
101 return mm;
102 else if (ins < md[mm])
103 uu = mm - 1;
104 else if (ins > md[mm])
105 ll = mm + 1;
106 } while (ll <= uu);
107 assert(0 && "Shouldn't reach here")((void) sizeof ((0 && "Shouldn't reach here") ? 1 : 0
), __extension__ ({ if (0 && "Shouldn't reach here") ;
else __assert_fail ("0 && \"Shouldn't reach here\"",
"ccv_nnc_symbolic_graph_backward.c", 107, __extension__ __PRETTY_FUNCTION__
); }))
;
108 return -1;
109}
110
111static inline void _ccv_nnc_try_set_pix_0(const int* const ofs, const int* const dim, const int* const tensor_dim, int* const* const scmd, const int* const cube_dim, const int* const cube_step, uint32_t* const cube, int offset)
112{
113 const int s = (ofs[0] == 0) ? 0 : _ccv_nnc_mix_idx(scmd[0], ofs[0], cube_dim[0]) + 1;
114 const int d = ((ofs[0] + dim[0] == tensor_dim[0]) ? cube_dim[0] : _ccv_nnc_mix_idx(scmd[0], ofs[0] + ccv_max(1, dim[0])({ typeof (1) _a = (1); typeof (dim[0]) _b = (dim[0]); (_a >
_b) ? _a : _b; })
, cube_dim[0])) + 1;
115 assert(s >= 0 && d > s)((void) sizeof ((s >= 0 && d > s) ? 1 : 0), __extension__
({ if (s >= 0 && d > s) ; else __assert_fail (
"s >= 0 && d > s", "ccv_nnc_symbolic_graph_backward.c"
, 115, __extension__ __PRETTY_FUNCTION__); }))
;
116 int i;
117 for (i = s; i < d; i++)
118 // Fill this pix. I can make this faster by loop through full ones (divided by 8), but too lazy.
119 cube[(offset + i) >> 5] |= (1u << ((offset + i) & 0x1f));
120}
121
122static inline void _ccv_nnc_try_set_pix_1(const int* const ofs, const int* const dim, const int* const tensor_dim, int* const* const scmd, const int* const cube_dim, const int* const cube_step, uint32_t* const cube, int offset)
123{
124 const int s0 = (ofs[0] == 0) ? 0 : _ccv_nnc_mix_idx(scmd[0], ofs[0], cube_dim[0]) + 1;
125 const int d0 = ((ofs[0] + dim[0] == tensor_dim[0]) ? cube_dim[0] : _ccv_nnc_mix_idx(scmd[0], ofs[0] + ccv_max(1, dim[0])({ typeof (1) _a = (1); typeof (dim[0]) _b = (dim[0]); (_a >
_b) ? _a : _b; })
, cube_dim[0])) + 1;
126 assert(s0 >= 0 && d0 > s0)((void) sizeof ((s0 >= 0 && d0 > s0) ? 1 : 0), __extension__
({ if (s0 >= 0 && d0 > s0) ; else __assert_fail
("s0 >= 0 && d0 > s0", "ccv_nnc_symbolic_graph_backward.c"
, 126, __extension__ __PRETTY_FUNCTION__); }))
;
127 const int s1 = (ofs[1] == 0) ? 0 : _ccv_nnc_mix_idx(scmd[1], ofs[1], cube_dim[1]) + 1;
128 const int d1 = ((ofs[1] + dim[1] == tensor_dim[1]) ? cube_dim[1] : _ccv_nnc_mix_idx(scmd[1], ofs[1] + ccv_max(1, dim[1])({ typeof (1) _a = (1); typeof (dim[1]) _b = (dim[1]); (_a >
_b) ? _a : _b; })
, cube_dim[1])) + 1;
129 assert(s1 >= 0 && d1 > s1)((void) sizeof ((s1 >= 0 && d1 > s1) ? 1 : 0), __extension__
({ if (s1 >= 0 && d1 > s1) ; else __assert_fail
("s1 >= 0 && d1 > s1", "ccv_nnc_symbolic_graph_backward.c"
, 129, __extension__ __PRETTY_FUNCTION__); }))
;
130 int i, j;
131 const int step1 = cube_step[1];
132 if (step1 == d0 - s0)
133 {
134 // Faster one, we can simply loop through.
135 for (i = s1 * step1; i < d1 * step1; i++)
136 cube[(offset + i) >> 5] |= (1u << ((offset + i) & 0x1f));
137 } else {
138 offset += s1 * step1;
139 // There are gaps, slow one.
140 for (i = s1; i < d1; i++, offset += step1)
141 for (j = s0; j < d0; j++)
142 cube[(offset + j) >> 5] |= (1u << ((offset + j) & 0x1f));
143 }
144}
145
146static inline void _ccv_nnc_try_set_pix(const int* const ofs, const int* const dim, const int* const tensor_dim, int* const* const scmd, const int* const cube_dim, const int* const cube_step, uint32_t* const cube, int offset, const int dim_idx)
147{
148 switch (dim_idx)
149 {
150 case 1:
151 _ccv_nnc_try_set_pix_1(ofs, dim, tensor_dim, scmd, cube_dim, cube_step, cube, offset);
152 return;
153 case 0:
154 _ccv_nnc_try_set_pix_0(ofs, dim, tensor_dim, scmd, cube_dim, cube_step, cube, offset);
155 return;
156 }
157 int i;
158 const int s = (ofs[dim_idx] == 0) ? 0 : _ccv_nnc_mix_idx(scmd[dim_idx], ofs[dim_idx], cube_dim[dim_idx]) + 1;
159 const int d = ((ofs[dim_idx] + dim[dim_idx] == tensor_dim[dim_idx]) ? cube_dim[dim_idx] : _ccv_nnc_mix_idx(scmd[dim_idx], ofs[dim_idx] + ccv_max(1, dim[dim_idx])({ typeof (1) _a = (1); typeof (dim[dim_idx]) _b = (dim[dim_idx
]); (_a > _b) ? _a : _b; })
, cube_dim[dim_idx])) + 1;
160 assert(s >= 0 && d > s)((void) sizeof ((s >= 0 && d > s) ? 1 : 0), __extension__
({ if (s >= 0 && d > s) ; else __assert_fail (
"s >= 0 && d > s", "ccv_nnc_symbolic_graph_backward.c"
, 160, __extension__ __PRETTY_FUNCTION__); }))
;
161 for (i = s; i < d; i++)
162 _ccv_nnc_try_set_pix(ofs, dim, tensor_dim, scmd, cube_dim, cube_step, cube, offset + i * cube_step[dim_idx], dim_idx - 1);
163}
164
165static int _ccv_nnc_tensor_ref_fully_assigned_with_aliases(const ccv_nnc_tensor_ref_t* const tensor_ref, const ccv_array_t* const autograd_tensor_symbols, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info)
166{
167 // Only work with tensor_ref of aliases.
168 assert(tensor_ref->alias_registry)((void) sizeof ((tensor_ref->alias_registry) ? 1 : 0), __extension__
({ if (tensor_ref->alias_registry) ; else __assert_fail (
"tensor_ref->alias_registry", "ccv_nnc_symbolic_graph_backward.c"
, 168, __extension__ __PRETTY_FUNCTION__); }))
;
169 const ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
170 assert(tensor_symbol_info[autograd->d].alias_ref == 0)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
== 0) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd
->d].alias_ref == 0) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref == 0"
, "ccv_nnc_symbolic_graph_backward.c", 170, __extension__ __PRETTY_FUNCTION__
); }))
;
171 const int* tensor_dim = tensor_symbol_info[autograd->d].info.dim;
172 const int tensor_count = ccv_nnc_dimension_count(tensor_dim);
173 int i, j;
174 for (i = 0; i < tensor_ref->alias_registry->rnum; i++)
175 {
176 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, i)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(i)))
;
177 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 177, __extension__ __PRETTY_FUNCTION__
); }))
;
178 const ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
179 assert(tensor_symbol_info[autograd->d].alias_ref)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd->
d].alias_ref) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 179, __extension__ __PRETTY_FUNCTION__
); }))
;
180 const int* stride = tensor_symbol_info[autograd->d].stride;
181 const int* dim = tensor_symbol_info[autograd->d].info.dim;
182 // If this is just reshaped (i.e., dimension is the same, and inc covers the whole). We have fully assigned.
183 if (ccv_nnc_is_tensor_stride_packed(stride, dim) && ccv_nnc_dimension_count(dim) == tensor_count)
184 return 1;
185 }
186 int tensor_nd_reshaped = 0;
187 int tensor_dim_reshaped[CCV_NNC_MAX_DIM_ALLOC(12)] = {0};
188 for (i = 0; i < tensor_ref->alias_registry->rnum; i++)
189 {
190 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, i)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(i)))
;
191 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 191, __extension__ __PRETTY_FUNCTION__
); }))
;
192 const ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
193 assert(tensor_symbol_info[autograd->d].alias_ref)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd->
d].alias_ref) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 193, __extension__ __PRETTY_FUNCTION__
); }))
;
194 const int* stride = tensor_symbol_info[autograd->d].stride;
195 const int nd = ccv_nnc_tensor_nd(stride);
196 if (i == 0) // Derive a tensor dim from the first one, by doing divisions on strides.
197 {
198 if (nd > 0)
199 {
200 tensor_dim_reshaped[0] = tensor_count / stride[0];
201 for (j = 1; j < nd; j++)
202 tensor_dim_reshaped[j] = stride[j - 1] / stride[j];
203 tensor_nd_reshaped = nd;
204 }
205 continue;
206 }
207 // If reshaped differently, we cannot run out fill algorithm, do this conservatively.
208 if (nd != tensor_nd_reshaped)
209 return 0;
210 // Otherwise if inc doesn't match original dim, it is not covered.
211 if (!ccv_nnc_is_tensor_stride_packed(stride, tensor_dim_reshaped))
212 return 0;
213 }
214 if (tensor_nd_reshaped > 0)
215 tensor_dim = tensor_dim_reshaped;
216 /* We need a solid cube (potentially hyper dimensional) to compute if there are overlaps.
217 * To make this cube as small as possible, we need to map the actual tensor dimension
218 * (therefore, we don't actually allocate the whole tensor to compute overlaps) to a smaller
219 * cube given the ofs and dim size of its aliases.
220 *
221 * The following code generated the dimension mapping (using scratch space) with binary search + insertion
222 * and then we fill the cube with a given tensor alias's dimensional information (ofs, dim).
223 * Afterwards, we simply need to check if the cube is totally filled up to know if this tensor
224 * is fully assigned with its aliases (if that is the case, we can skip zeroing for this tensor).
225 *
226 * There are several restrictions though to make this faster: 1). I cannot handle any cube that all side
227 * lengths combined larger than 1023 (scm only have 1024 scratch space). 2). I cannot handle any cube
228 * that the total volume is larger than 2048 * 8 (I only allocate 2K on stack for this).
229 * */
230 int scm[1024]; // Having 1024 int scratch space for mapping dimensions. (Or sparse coordinate mapping).
231 int cube_dim[CCV_NNC_MAX_DIM_ALLOC(12)] = {}; // Mapping dimension size.
232 int cube_size = 1;
233 int* scmptr = scm;
234 for (i = 0; i < CCV_NNC_MAX_DIM_ALLOC(12) && tensor_dim[i]; i++)
235 {
236 int head = 0, tail = 0; // Note that we touched both the head and tail (otherwise this dimension is not fully covered).
237 int len = 0;
238 for (j = 0; j < tensor_ref->alias_registry->rnum; j++)
239 {
240 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, j)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(j)))
;
241 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 241, __extension__ __PRETTY_FUNCTION__
); }))
;
242 const ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
243 assert(tensor_symbol_info[autograd->d].alias_ref)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd->
d].alias_ref) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 243, __extension__ __PRETTY_FUNCTION__
); }))
;
244 const int* ofs = tensor_symbol_info[autograd->d].ofs;
245 const int* dim = tensor_symbol_info[autograd->d].info.dim;
246 head = head || (ofs[i] == 0);
247 tail = tail || (ofs[i] + ccv_max(1, dim[i])({ typeof (1) _a = (1); typeof (dim[i]) _b = (dim[i]); (_a >
_b) ? _a : _b; })
== tensor_dim[i]);
248 if (ofs[i] != 0)
249 len += _ccv_nnc_try_mix(scmptr, ofs[i], len);
250 if (scmptr - scm + len >= 1024) // Cannot handle that much, abort.
251 return 0;
252 if (ofs[i] + ccv_max(1, dim[i])({ typeof (1) _a = (1); typeof (dim[i]) _b = (dim[i]); (_a >
_b) ? _a : _b; })
< tensor_dim[i])
253 len += _ccv_nnc_try_mix(scmptr, ofs[i] + ccv_max(1, dim[i])({ typeof (1) _a = (1); typeof (dim[i]) _b = (dim[i]); (_a >
_b) ? _a : _b; })
, len);
254 if (scmptr - scm + len >= 1024) // Cannot handle that much, abort.
255 return 0;
256 }
257 if (!head || !tail)
258 return 0;
259 cube_size *= (len + 1);
260 cube_dim[i] = len;
261 scmptr += len; // Moving to next level.
262 }
263 // The cube map is too large, cannot do the computation, assume it is not fully assigned.
264 if (cube_size > 2048 * 8)
265 return 0;
266 // binary map to see if it fills up.
267 uint32_t cube[(cube_size + 31) >> 5];
268 memset(cube, 0, sizeof(uint32_t) * ((cube_size + 31) >> 5));
269 int* scmd[CCV_NNC_MAX_DIM_ALLOC(12)] = {}; // Sparse coordinate map at dimension x.
270 int cube_step[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
271 for (i = 0; i < CCV_NNC_MAX_DIM_ALLOC(12) && tensor_dim[i]; i++)
272 {
273 cube_step[i] = (i > 0) ? cube_step[i - 1] * (cube_dim[i - 1] + 1) : 1;
274 scmd[i] = (i > 0) ? scmd[i - 1] + cube_dim[i - 1] : scm;
275 }
276 const int max_dim = i;
277 for (i = 0; i < tensor_ref->alias_registry->rnum; i++)
278 {
279 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, i)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(i)))
;
280 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 280, __extension__ __PRETTY_FUNCTION__
); }))
;
281 const ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
282 assert(tensor_symbol_info[autograd->d].alias_ref)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd->
d].alias_ref) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 282, __extension__ __PRETTY_FUNCTION__
); }))
;
283 const int* ofs = tensor_symbol_info[autograd->d].ofs;
284 const int* dim = tensor_symbol_info[autograd->d].info.dim;
285 _ccv_nnc_try_set_pix(ofs, dim, tensor_dim, scmd, cube_dim, cube_step, cube, 0, max_dim - 1);
286 }
287 // Compare to see now if the binary map filled up. If it filled up, we know it is fully assigned.
288 for (i = 0; i < (cube_size >> 5); i++)
289 if (cube[i] < 0xffffffff)
290 return 0;
291 if ((cube_size & 0x1f) > 0)
292 {
293 // Fetch the rest.
294 uint32_t r = 0;
295 for (i = 0; i < (cube_size & 0x1f); i++)
296 r |= (1u << i);
297 assert(cube[((cube_size + 31) >> 5) - 1] <= r)((void) sizeof ((cube[((cube_size + 31) >> 5) - 1] <=
r) ? 1 : 0), __extension__ ({ if (cube[((cube_size + 31) >>
5) - 1] <= r) ; else __assert_fail ("cube[((cube_size + 31) >> 5) - 1] <= r"
, "ccv_nnc_symbolic_graph_backward.c", 297, __extension__ __PRETTY_FUNCTION__
); }))
;
298 if (cube[((cube_size + 31) >> 5) - 1] < r)
299 return 0;
300 }
301 return 1;
302}
303
304static int _ccv_nnc_tensor_ref_version_find_init(const ccv_nnc_autograd_tensor_version_t* const tensor_ver)
305{
306 int i;
307 for (i = 0; i < tensor_ver->ref_version->rnum; i++)
308 if (((ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(i)))
)->x < 0)
309 return i;
310 return -1;
311}
312
313static void _ccv_nnc_graph_sum_autograd_tensor_versions(const int idx, const int d, const int exec_symbol_info_size, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info, ccv_nnc_autograd_tensor_version_t* const tensor_ver, ccv_nnc_autograd_graph_exec_symbol_t* const autograd_execs, ccv_array_t* const autograd_tensor_symbols, ccv_array_t* const sum_or_set_execs)
314{
315 int i, j;
316 assert(tensor_ver->c < tensor_ver->ref_version->rnum)((void) sizeof ((tensor_ver->c < tensor_ver->ref_version
->rnum) ? 1 : 0), __extension__ ({ if (tensor_ver->c <
tensor_ver->ref_version->rnum) ; else __assert_fail ("tensor_ver->c < tensor_ver->ref_version->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 316, __extension__ __PRETTY_FUNCTION__
); }))
;
317 const int input_size = tensor_ver->ref_version->rnum - tensor_ver->c;
318 int* inputs = (int*)ccmallocmalloc(sizeof(int) * input_size);
319 for (i = tensor_ver->c; i < tensor_ver->ref_version->rnum; i++)
320 inputs[i] = ((ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(i)))
)->d;
321 const ccv_nnc_autograd_tensor_symbol_t tensor_sym = {
322 .d = d
323 };
324 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
325 ccv_nnc_sum_or_set_graph_exec_symbol_t sum_exec = {
326 .input_size = input_size,
327 .inputs = inputs,
328 .output = autograd_tensor_symbols->rnum - 1
329 };
330 if (idx >= 0)
331 {
332 sum_exec.outgoings = ccv_array_new(sizeof(int), 1, 0);
333 ccv_array_push(sum_exec.outgoings, &idx);
334 }
335 ccv_array_push(sum_or_set_execs, &sum_exec);
336 const int outgoing = exec_symbol_info_size + sum_or_set_execs->rnum - 1;
337 for (i = tensor_ver->c; i < tensor_ver->ref_version->rnum; i++)
338 {
339 const ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(i)))
;
340 const int x = tensor_ref->x;
341 if (x < 0) /* This is initialization tensor, it has to be occurred before the execution anyway. */
342 {
343 // No alias.
344 assert(!tensor_ref->alias_registry)((void) sizeof ((!tensor_ref->alias_registry) ? 1 : 0), __extension__
({ if (!tensor_ref->alias_registry) ; else __assert_fail (
"!tensor_ref->alias_registry", "ccv_nnc_symbolic_graph_backward.c"
, 344, __extension__ __PRETTY_FUNCTION__); }))
;
345 // No associated additional execs.
346 assert(!tensor_ref->exec_registry)((void) sizeof ((!tensor_ref->exec_registry) ? 1 : 0), __extension__
({ if (!tensor_ref->exec_registry) ; else __assert_fail (
"!tensor_ref->exec_registry", "ccv_nnc_symbolic_graph_backward.c"
, 346, __extension__ __PRETTY_FUNCTION__); }))
;
347 continue;
348 }
349 if (x < exec_symbol_info_size)
350 {
351 ccv_nnc_autograd_graph_exec_symbol_t* back_exec = autograd_execs + x;
352 if (!back_exec->outgoings)
353 back_exec->outgoings = ccv_array_new(sizeof(int), 1, 0);
354 ccv_array_replace_unique_int(back_exec->outgoings, idx, outgoing);
355 } else {
356 // This tensor_ref is generated by the sum operation.
357 ccv_nnc_sum_or_set_graph_exec_symbol_t* sum_or_set = (ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, x - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(x - exec_symbol_info_size)))
;
358 ccv_array_replace_unique_int(sum_or_set->outgoings, idx, outgoing);
359 }
360 // If this tensor have associated alias, we need to init it to zeros when it is allocated (we only need to set a flag here)
361 // it is handled at compilation phase.
362 if (tensor_ref->alias_registry &&
363 // Loop over to see if this tensor is fully occupied to avoid extra zero step.
364 !_ccv_nnc_tensor_ref_fully_assigned_with_aliases(tensor_ref, autograd_tensor_symbols, tensor_symbol_info))
365 {
366 ccv_nnc_autograd_tensor_symbol_t* tensor_sym = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
367 // By having alias_registry, what this symbol represents must not by an alias.
368 assert(tensor_sym->alias_ref == 0)((void) sizeof ((tensor_sym->alias_ref == 0) ? 1 : 0), __extension__
({ if (tensor_sym->alias_ref == 0) ; else __assert_fail (
"tensor_sym->alias_ref == 0", "ccv_nnc_symbolic_graph_backward.c"
, 368, __extension__ __PRETTY_FUNCTION__); }))
;
369 tensor_sym->flags = CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS;
370 }
371 if (tensor_ref->exec_registry)
372 for (j = 0; j < tensor_ref->exec_registry->rnum; j++)
373 {
374 const int x = *(int*)ccv_array_get(tensor_ref->exec_registry, j)((void*)(((char*)((tensor_ref->exec_registry)->data)) +
(size_t)(tensor_ref->exec_registry)->rsize * (size_t)(
j)))
;
375 assert(x >= 0)((void) sizeof ((x >= 0) ? 1 : 0), __extension__ ({ if (x >=
0) ; else __assert_fail ("x >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 375, __extension__ __PRETTY_FUNCTION__); }))
;
376 // The exec_registry can only be generated by alias registry, therefore, it cannot reference to a sum operation.
377 assert(x < exec_symbol_info_size)((void) sizeof ((x < exec_symbol_info_size) ? 1 : 0), __extension__
({ if (x < exec_symbol_info_size) ; else __assert_fail ("x < exec_symbol_info_size"
, "ccv_nnc_symbolic_graph_backward.c", 377, __extension__ __PRETTY_FUNCTION__
); }))
;
378 ccv_nnc_autograd_graph_exec_symbol_t* back_exec = autograd_execs + x;
379 if (!back_exec->outgoings)
380 back_exec->outgoings = ccv_array_new(sizeof(int), 1, 0);
381 ccv_array_replace_unique_int(back_exec->outgoings, idx, outgoing);
382 }
383 }
384 const ccv_nnc_tensor_ref_t tensor_ref = {
385 .d = autograd_tensor_symbols->rnum - 1,
386 .x = outgoing
387 };
388 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
389 /* Move the c pointer up to the latest summed result. */
390 tensor_ver->c = tensor_ver->ref_version->rnum - 1;
391}
392
393static int _ccv_nnc_tensor_ref_version_involve_alias(const ccv_nnc_tensor_ref_t* const tensor_ref, const ccv_array_t* const autograd_tensor_symbols, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info, const ccv_nnc_tensor_symbol_info_t* const alias)
394{
395 assert(alias->alias_ref > 0)((void) sizeof ((alias->alias_ref > 0) ? 1 : 0), __extension__
({ if (alias->alias_ref > 0) ; else __assert_fail ("alias->alias_ref > 0"
, "ccv_nnc_symbolic_graph_backward.c", 395, __extension__ __PRETTY_FUNCTION__
); }))
;
396 // No alias_registry, must conflict (owns the whole band).
397 if (!tensor_ref->alias_registry)
398 return 1;
399 int i;
400 for (i = 0; i < tensor_ref->alias_registry->rnum; i++)
401 {
402 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, i)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(i)))
;
403 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 403, __extension__ __PRETTY_FUNCTION__
); }))
;
404 ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
405 if (ccv_nnc_over_tensor_symbol_aliases(tensor_symbol_info + autograd->d, alias))
406 return 1;
407 }
408 // All aliases referenced by this ref_version doesn't overlap with the provided one, thus, there is no conflict at all.
409 return 0;
410}
411
412static int _ccv_nnc_tensor_ref_version_find_alias(const ccv_nnc_tensor_ref_t* const tensor_ref, const ccv_array_t* const autograd_tensor_symbols, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info, const ccv_nnc_tensor_symbol_info_t* const alias)
413{
414 assert(alias->alias_ref > 0)((void) sizeof ((alias->alias_ref > 0) ? 1 : 0), __extension__
({ if (alias->alias_ref > 0) ; else __assert_fail ("alias->alias_ref > 0"
, "ccv_nnc_symbolic_graph_backward.c", 414, __extension__ __PRETTY_FUNCTION__
); }))
;
415 // No alias_registry, thus, cannot find the exact matched alias.
416 if (!tensor_ref->alias_registry)
417 return -1;
418 int i;
419 for (i = 0; i < tensor_ref->alias_registry->rnum; i++)
420 {
421 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, i)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(i)))
;
422 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 422, __extension__ __PRETTY_FUNCTION__
); }))
;
423 ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
424 // This must reference to an alias.
425 assert(tensor_symbol_info[autograd->d].alias_ref)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd->
d].alias_ref) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 425, __extension__ __PRETTY_FUNCTION__
); }))
;
426 const int* stride = tensor_symbol_info[autograd->d].stride;
427 const int* ofs = tensor_symbol_info[autograd->d].ofs;
428 const int* dim = tensor_symbol_info[autograd->d].info.dim;
429 // If everything matches, this is the required alias.
430 if (memcmp(stride, alias->stride, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) == 0 &&
431 memcmp(ofs, alias->ofs, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) == 0 &&
432 memcmp(dim, alias->info.dim, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) == 0)
433 return d;
434 }
435 return -1;
436}
437
438static int _ccv_nnc_tensor_ref_version_has_this_alias_exclusively(const ccv_nnc_tensor_ref_t* const tensor_ref, const ccv_array_t* const autograd_tensor_symbols, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info, const ccv_nnc_tensor_symbol_info_t* const alias)
439{
440 assert(alias->alias_ref > 0)((void) sizeof ((alias->alias_ref > 0) ? 1 : 0), __extension__
({ if (alias->alias_ref > 0) ; else __assert_fail ("alias->alias_ref > 0"
, "ccv_nnc_symbolic_graph_backward.c", 440, __extension__ __PRETTY_FUNCTION__
); }))
;
441 // No alias_registry, thus, cannot find the exact matched alias.
442 if (!tensor_ref->alias_registry)
443 return 0;
444 int i;
445 for (i = 0; i < tensor_ref->alias_registry->rnum; i++)
446 {
447 const int d = *(int*)ccv_array_get(tensor_ref->alias_registry, i)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(i)))
;
448 assert(d < autograd_tensor_symbols->rnum)((void) sizeof ((d < autograd_tensor_symbols->rnum) ? 1
: 0), __extension__ ({ if (d < autograd_tensor_symbols->
rnum) ; else __assert_fail ("d < autograd_tensor_symbols->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 448, __extension__ __PRETTY_FUNCTION__
); }))
;
449 ccv_nnc_autograd_tensor_symbol_t* autograd = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(d)))
;
450 // This must reference to an alias.
451 assert(tensor_symbol_info[autograd->d].alias_ref)((void) sizeof ((tensor_symbol_info[autograd->d].alias_ref
) ? 1 : 0), __extension__ ({ if (tensor_symbol_info[autograd->
d].alias_ref) ; else __assert_fail ("tensor_symbol_info[autograd->d].alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 451, __extension__ __PRETTY_FUNCTION__
); }))
;
452 const int* stride = tensor_symbol_info[autograd->d].stride;
453 const int* ofs = tensor_symbol_info[autograd->d].ofs;
454 const int* dim = tensor_symbol_info[autograd->d].info.dim;
455 if (memcmp(stride, alias->stride, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) != 0 ||
456 memcmp(ofs, alias->ofs, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) != 0 ||
457 memcmp(dim, alias->info.dim, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)) != 0)
458 return 0;
459 }
460 // If everything matches for every alias in registry, we can use any of the alias directly.
461 return 1;
462}
463
464static int _ccv_nnc_graph_sum_autograd_tensor_versions_alias(const int idx, const int d, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info, const int exec_symbol_info_size, const ccv_nnc_tensor_symbol_info_t* const alias, ccv_nnc_autograd_tensor_version_t* const tensor_ver, ccv_nnc_autograd_graph_exec_symbol_t* const autograd_execs, ccv_array_t* const autograd_tensor_symbols, ccv_array_t* const sum_or_set_execs)
465{
466 assert(tensor_ver->c < tensor_ver->ref_version->rnum)((void) sizeof ((tensor_ver->c < tensor_ver->ref_version
->rnum) ? 1 : 0), __extension__ ({ if (tensor_ver->c <
tensor_ver->ref_version->rnum) ; else __assert_fail ("tensor_ver->c < tensor_ver->ref_version->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 466, __extension__ __PRETTY_FUNCTION__
); }))
;
467 int i, j = 0;
468 struct {
469 int k;
470 int i;
471 } kd[tensor_ver->ref_version->rnum - tensor_ver->c];
472 for (i = tensor_ver->c; i < tensor_ver->ref_version->rnum; i++)
473 {
474 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(i)))
;
475 const int k = _ccv_nnc_tensor_ref_version_find_alias(tensor_ref, autograd_tensor_symbols, tensor_symbol_info, alias);
476 if (k >= 0)
477 kd[j++] = (typeof(kd[0])){
478 .k = k, .i = i
479 };
480 else if (_ccv_nnc_tensor_ref_version_involve_alias(tensor_ref, autograd_tensor_symbols, tensor_symbol_info, alias))
481 kd[j++] = (typeof(kd[0])) {
482 .k = -1, .i = i // It has dependency to the original tensor (non-alias) now, label this with highest bit.
483 };
484 }
485 // Can only find one. This is the easy case, we can simply return that symbol (or its alias).
486 if (j == 1)
487 {
488 if (kd[0].k >= 0)
489 return kd[0].k; // Only can find one alias, that is the one.
490 // Otherwise, need to create a new alias.
491 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, kd[0].i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(kd[0
].i)))
;
492 ccv_nnc_autograd_tensor_symbol_t* ref = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
493 // Since we create new alias, we need to set the referenced one to be allocated with 0s.
494 if (ref->alias_ref) // If this is an alias, it has to be zero initialized.
495 {
496 ref = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, ref->alias_ref - 1)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(ref->alias_ref
- 1)))
;
497 assert(ref->alias_ref == 0)((void) sizeof ((ref->alias_ref == 0) ? 1 : 0), __extension__
({ if (ref->alias_ref == 0) ; else __assert_fail ("ref->alias_ref == 0"
, "ccv_nnc_symbolic_graph_backward.c", 497, __extension__ __PRETTY_FUNCTION__
); }))
; // This is original.
498 ref->flags = CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS;
499 } else if (tensor_ref->alias_registry && // Otherwise, to see if this symbol is fully occupied.
500 // Loop over to see if this tensor is fully occupied to avoid extra zero step.
501 !_ccv_nnc_tensor_ref_fully_assigned_with_aliases(tensor_ref, autograd_tensor_symbols, tensor_symbol_info)) {
502 ref->flags = CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS;
503 }
504 ccv_nnc_autograd_tensor_symbol_t tensor_sym = {
505 .d = d,
506 .alias_ref = tensor_ref->d + 1
507 };
508 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
509 const int ad = autograd_tensor_symbols->rnum - 1;
510 if (tensor_ref->alias_registry) // Only push this when it has an alias registry (otherwise it already conflict with everyone).
511 ccv_array_push(tensor_ref->alias_registry, &ad);
512 if (tensor_ref->x >= exec_symbol_info_size && idx >= 0)
513 {
514 ccv_nnc_sum_or_set_graph_exec_symbol_t* const sum_or_set_exec = (ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, tensor_ref->x - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(tensor_ref->x - exec_symbol_info_size
)))
;
515 // This may be summed, thus, we need to create a connection between this and the sum.
516 if (!sum_or_set_exec->outgoings)
517 sum_or_set_exec->outgoings = ccv_array_new(sizeof(int), 1, 0);
518 ccv_array_push(sum_or_set_exec->outgoings, &idx);
519 }
520 // The newly inserted tensor symbol.
521 return ad;
522 }
523 // Otherwise, we need to create the sum operation out of these.
524 const int input_size = j;
525 int has_this_alias_exclusively = 1;
526 int* inputs = input_size > 0 ? (int*)ccmallocmalloc(sizeof(int) * input_size) : 0;
527 for (i = 0; i < input_size; i++)
528 {
529 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, kd[i].i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(kd[i
].i)))
;
530 // Can take a fast path if every ref involved has the same alias, our sum operation can be faster (using alias directly).
531 if (has_this_alias_exclusively && kd[i].k >= 0 && _ccv_nnc_tensor_ref_version_has_this_alias_exclusively(tensor_ref, autograd_tensor_symbols, tensor_symbol_info, alias))
532 inputs[i] = *(int*)ccv_array_get(tensor_ref->alias_registry, 0)((void*)(((char*)((tensor_ref->alias_registry)->data)) +
(size_t)(tensor_ref->alias_registry)->rsize * (size_t)
(0)))
; // Assigning the alias.
533 else {
534 if (has_this_alias_exclusively)
535 {
536 has_this_alias_exclusively = 0;
537 for (j = 0; j < i; j++)
538 inputs[j] = ((ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, kd[j].i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(kd[j
].i)))
)->d;
539 }
540 inputs[i] = tensor_ref->d;
541 }
542 }
543 ccv_nnc_autograd_tensor_symbol_t tensor_sym = {
544 .d = alias->alias_ref - 1
545 };
546 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
547 const int tensor_ref_d = autograd_tensor_symbols->rnum - 1;
548 tensor_sym.d = d;
549 tensor_sym.alias_ref = tensor_ref_d + 1;
550 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
551 const int ad = autograd_tensor_symbols->rnum - 1;
552 ccv_nnc_sum_or_set_graph_exec_symbol_t sum_exec = {
553 .input_size = input_size,
554 .inputs = inputs,
555 .output = has_this_alias_exclusively ? ad : tensor_ref_d /* If has this alias exclusively, the output should be alias as well. Otherwise the output is the real tensor. */
556 };
557 if (idx >= 0)
558 {
559 sum_exec.outgoings = ccv_array_new(sizeof(int), 1, 0);
560 ccv_array_push(sum_exec.outgoings, &idx);
561 }
562 ccv_array_push(sum_or_set_execs, &sum_exec);
563 const int outgoing = exec_symbol_info_size + sum_or_set_execs->rnum - 1;
564 int no_alias_registry = 0;
565 for (i = 0; i < input_size; i++)
566 {
567 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, kd[i].i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(kd[i
].i)))
;
568 if (!has_this_alias_exclusively)
569 {
570 // If the sum operation is not operating on one alias. I need to zero this tensor out when it is first
571 // allocated (see discussions around the flags I use).
572 ccv_nnc_autograd_tensor_symbol_t* tensor_sym = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
573 if (tensor_sym->alias_ref)
574 {
575 // Find the original tensor_sym and set its flags (I prefer to set flags on its original).
576 ccv_nnc_autograd_tensor_symbol_t* ref = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_sym->alias_ref - 1)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_sym->
alias_ref - 1)))
;
577 assert(ref->alias_ref == 0)((void) sizeof ((ref->alias_ref == 0) ? 1 : 0), __extension__
({ if (ref->alias_ref == 0) ; else __assert_fail ("ref->alias_ref == 0"
, "ccv_nnc_symbolic_graph_backward.c", 577, __extension__ __PRETTY_FUNCTION__
); }))
; // This is original.
578 ref->flags = CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS;
579 } else if (tensor_ref->alias_registry && // Otherwise, to see if this symbol is fully occupied.
580 // Loop over to see if this tensor is fully occupied to avoid extra zero step.
581 !_ccv_nnc_tensor_ref_fully_assigned_with_aliases(tensor_ref, autograd_tensor_symbols, tensor_symbol_info)) {
582 tensor_sym->flags = CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS;
583 }
584 }
585 // Check to see if any of these tensors doesn't have alias.
586 no_alias_registry |= (!tensor_ref->alias_registry);
587 const int x = tensor_ref->x;
588 assert(x >= 0)((void) sizeof ((x >= 0) ? 1 : 0), __extension__ ({ if (x >=
0) ; else __assert_fail ("x >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 588, __extension__ __PRETTY_FUNCTION__); }))
; /* Otherwise, this is initialization tensor, which is impossible to be summed up by. */
589 if (x < exec_symbol_info_size)
590 {
591 ccv_nnc_autograd_graph_exec_symbol_t* back_exec = autograd_execs + x;
592 if (!back_exec->outgoings)
593 back_exec->outgoings = ccv_array_new(sizeof(int), 1, 0);
594 ccv_array_push(back_exec->outgoings, &outgoing);
595 } else {
596 ccv_nnc_sum_or_set_graph_exec_symbol_t* sum_or_set = (ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, x - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(x - exec_symbol_info_size)))
;
597 ccv_array_push(sum_or_set->outgoings, &outgoing);
598 }
599 if (tensor_ref->exec_registry)
600 for (j = 0; j < tensor_ref->exec_registry->rnum; j++)
601 {
602 const int x = *(int*)ccv_array_get(tensor_ref->exec_registry, j)((void*)(((char*)((tensor_ref->exec_registry)->data)) +
(size_t)(tensor_ref->exec_registry)->rsize * (size_t)(
j)))
;
603 assert(x >= 0)((void) sizeof ((x >= 0) ? 1 : 0), __extension__ ({ if (x >=
0) ; else __assert_fail ("x >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 603, __extension__ __PRETTY_FUNCTION__); }))
; /* Otherwise, this is initialization tensor, which is impossible to be summed up by. */
604 assert(x < exec_symbol_info_size)((void) sizeof ((x < exec_symbol_info_size) ? 1 : 0), __extension__
({ if (x < exec_symbol_info_size) ; else __assert_fail ("x < exec_symbol_info_size"
, "ccv_nnc_symbolic_graph_backward.c", 604, __extension__ __PRETTY_FUNCTION__
); }))
; // exec_registry is only used by alias_registry, it simply cannot reference to a sum operation.
605 ccv_nnc_autograd_graph_exec_symbol_t* back_exec = autograd_execs + x;
606 if (!back_exec->outgoings)
607 back_exec->outgoings = ccv_array_new(sizeof(int), 1, 0);
608 ccv_array_push(back_exec->outgoings, &outgoing);
609 }
610 }
611 const ccv_nnc_tensor_ref_t tensor_ref = {
612 .d = tensor_ref_d,
613 .x = outgoing,
614 .exec_registry = 0, // I don't need to take execution dependencies because this tensor is generated by sum, therefore, we already take that dependency.
615 .alias_registry = !no_alias_registry || has_this_alias_exclusively ? ccv_array_new(sizeof(int), 1, 0) : 0
616 };
617 // If there is no alias registry, then we take the whole tensor ref as one.
618 if (!no_alias_registry || has_this_alias_exclusively)
619 {
620 // If this tensor ref contains multiple different types of alias, have to add them together (otherwise
621 // the computation for if there is an empty slot in this tensor ref is not correct without all the
622 // occupancy availability information).
623 if (!has_this_alias_exclusively)
624 for (i = 0; i < input_size; i++)
625 {
626 ccv_nnc_tensor_ref_t* ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, kd[i].i)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(kd[i
].i)))
;
627 assert(ref->alias_registry)((void) sizeof ((ref->alias_registry) ? 1 : 0), __extension__
({ if (ref->alias_registry) ; else __assert_fail ("ref->alias_registry"
, "ccv_nnc_symbolic_graph_backward.c", 627, __extension__ __PRETTY_FUNCTION__
); }))
;
628 // It may get duplicates. But whatever, won't matter the computation.
629 for (j = 0; j < ref->alias_registry->rnum; j++)
630 ccv_array_push(tensor_ref.alias_registry, ccv_array_get(ref->alias_registry, j)((void*)(((char*)((ref->alias_registry)->data)) + (size_t
)(ref->alias_registry)->rsize * (size_t)(j)))
);
631 }
632 ccv_array_push(tensor_ref.alias_registry, &ad);
633 }
634 assert(input_size <= tensor_ver->ref_version->rnum - tensor_ver->c)((void) sizeof ((input_size <= tensor_ver->ref_version->
rnum - tensor_ver->c) ? 1 : 0), __extension__ ({ if (input_size
<= tensor_ver->ref_version->rnum - tensor_ver->c
) ; else __assert_fail ("input_size <= tensor_ver->ref_version->rnum - tensor_ver->c"
, "ccv_nnc_symbolic_graph_backward.c", 634, __extension__ __PRETTY_FUNCTION__
); }))
;
635 ccv_nnc_tensor_ref_t x;
636 for (i = 0; i < input_size; i++)
637 // If the current one (i + tensor_ver->c) is smaller than the one referenced to, exchange.
638 if (kd[i].i > i + tensor_ver->c)
639 CCV_SWAP(*(ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, i + tensor_ver->c), *(ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, kd[i].i), x)((x) = (*(ccv_nnc_tensor_ref_t*)((void*)(((char*)((tensor_ver
->ref_version)->data)) + (size_t)(tensor_ver->ref_version
)->rsize * (size_t)(i + tensor_ver->c)))), (*(ccv_nnc_tensor_ref_t
*)((void*)(((char*)((tensor_ver->ref_version)->data)) +
(size_t)(tensor_ver->ref_version)->rsize * (size_t)(i +
tensor_ver->c)))) = (*(ccv_nnc_tensor_ref_t*)((void*)(((char
*)((tensor_ver->ref_version)->data)) + (size_t)(tensor_ver
->ref_version)->rsize * (size_t)(kd[i].i)))), (*(ccv_nnc_tensor_ref_t
*)((void*)(((char*)((tensor_ver->ref_version)->data)) +
(size_t)(tensor_ver->ref_version)->rsize * (size_t)(kd
[i].i)))) = (x))
;
640 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
641 // We've consumed input_size tensor refs, now move c up to the pointer of non-consumed tensors.
642 tensor_ver->c += input_size;
643 return ad;
644}
645
646typedef struct ccv_nnc_symbolic_graph_backward_prep_s {
647 int exec_symbol_info_size; // Number of graph exec symbols before adding any new symbols related to automatic differentiation.
648 int tensor_symbol_info_size; // Number of tensor symbols before adding anything new.
649 int sub_prep_size;
650 ccv_nnc_graph_exec_symbol_info_t* exec_symbol_info;
651 ccv_nnc_tensor_symbol_info_t* tensor_symbol_info;
652 ccv_nnc_graph_backward_info_t* backward_info; // Corresponding to forward graph exec symbol info, it is exactly in reverse.
653 ccv_nnc_graph_visit_t* forward_visit; // The visitor structure (top sorted index) when doing traversal.
654 ccv_nnc_graph_visit_t* backward_visit; // The visitor structure (top sorted index) when doing reverse traversal.
655 ccv_nnc_autograd_graph_exec_symbol_t* autograd_execs; // The graph exec symbols we need for automatic differentiation. This is a 1:1 mapping for forward graph exec symbols, however, unlike backward_info, its outgoings may be more complex (may contain outgoing flows to sum nodes).
656 ccv_nnc_autograd_tensor_version_t* autograd_tensor_versions; // Corresponding to forward tensor symbols, each may contain multiple versions (due to multi-write).
657 ccv_array_t* autograd_tensor_symbols; // The tensor symbols we need for automatic differentiation (it may not be 1:1 mapping).
658 ccv_array_t* sum_or_set_execs; // The sum nodes, because in reverse mode, a tensor could have multiple versions, we need to sum them up before use.
659 struct ccv_nnc_symbolic_graph_backward_prep_s* sub_preps; // The preps of its sub-graphs.
660 // Pointers not managed by this struct
661 ccv_nnc_symbolic_graph_t* graph;
662} ccv_nnc_symbolic_graph_backward_prep_t;
663
664static ccv_nnc_symbolic_graph_backward_prep_t _ccv_nnc_symbolic_graph_backward_prep(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_graph_exec_symbol_t* const sources, const int source_size, const ccv_nnc_graph_exec_symbol_t* const destinations, const int destination_size)
665{
666 const int exec_symbol_info_size = graph->exec_symbol_info->rnum;
667 assert(exec_symbol_info_size > 0)((void) sizeof ((exec_symbol_info_size > 0) ? 1 : 0), __extension__
({ if (exec_symbol_info_size > 0) ; else __assert_fail ("exec_symbol_info_size > 0"
, "ccv_nnc_symbolic_graph_backward.c", 667, __extension__ __PRETTY_FUNCTION__
); }))
;
668 const int tensor_symbol_info_size = graph->tensor_symbol_info->rnum;
669 assert(tensor_symbol_info_size > 0)((void) sizeof ((tensor_symbol_info_size > 0) ? 1 : 0), __extension__
({ if (tensor_symbol_info_size > 0) ; else __assert_fail (
"tensor_symbol_info_size > 0", "ccv_nnc_symbolic_graph_backward.c"
, 669, __extension__ __PRETTY_FUNCTION__); }))
;
670 ccv_nnc_graph_exec_symbol_info_t* exec_symbol_info = (ccv_nnc_graph_exec_symbol_info_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_info_t) * exec_symbol_info_size);
671 ccv_nnc_tensor_symbol_info_t* tensor_symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_info_t) * tensor_symbol_info_size);
672 ccv_nnc_graph_visit_t* forward_visit = ccv_nnc_graph_visit_new(graph, (ccv_nnc_graph_exec_symbol_info_t*)ccv_array_get(graph->exec_symbol_info, 0), exec_symbol_info_size, sources, source_size, destinations, destination_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_symbol_info_size) - 1)); _visit_->size = 0; do { typedef
struct { int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_symbol_info_size); _i_++) _incoming_edges_ += (((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_i_].outgoings) ? ((ccv_nnc_graph_exec_symbol_info_t*)((void
*)(((char*)((graph->exec_symbol_info)->data)) + (size_t
)(graph->exec_symbol_info)->rsize * (size_t)(0))))[_i_]
.outgoings->rnum : 0; const int _heap_mem_ = ((exec_symbol_info_size
) + _incoming_edges_ > 1024); ccv_nnc_incoming_t* _incomings_
; if (_heap_mem_) _incomings_ = (ccv_nnc_incoming_t*)malloc(sizeof
(ccv_nnc_incoming_t) * (exec_symbol_info_size) + sizeof(int32_t
) * ((exec_symbol_info_size) * 2 + _incoming_edges_)); else _incomings_
= (ccv_nnc_incoming_t*)__builtin_alloca (sizeof(ccv_nnc_incoming_t
) * (exec_symbol_info_size) + sizeof(int32_t) * ((exec_symbol_info_size
) * 2 + _incoming_edges_)); memset(_incomings_, 0, sizeof(ccv_nnc_incoming_t
) * (exec_symbol_info_size)); int32_t* _exists_[2] = { (int32_t
*)(_incomings_ + (exec_symbol_info_size)), (int32_t*)(_incomings_
+ (exec_symbol_info_size)) + (exec_symbol_info_size), }; int32_t
* const _edges_ = _exists_[1] + (exec_symbol_info_size); for (
_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof (((sources
)[_i_].graph == graph) ? 1 : 0), __extension__ ({ if ((sources
)[_i_].graph == graph) ; else __assert_fail ("(sources)[_i_].graph == graph"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 1; _exists_[0][_i_]
= (sources)[_i_].d; } int _exist_size_[2] = { (source_size),
0, }; int _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0)
{ _exist_size_[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_
[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_][_i_]; if (
_incomings_[_idx_].r != 1) continue; _incomings_[_idx_].r = 2
; if (((ccv_nnc_graph_exec_symbol_info_t*)((void*)(((char*)((
graph->exec_symbol_info)->data)) + (size_t)(graph->exec_symbol_info
)->rsize * (size_t)(0))))[_idx_].outgoings) for (_j_ = 0; _j_
< ((ccv_nnc_graph_exec_symbol_info_t*)((void*)(((char*)((
graph->exec_symbol_info)->data)) + (size_t)(graph->exec_symbol_info
)->rsize * (size_t)(0))))[_idx_].outgoings->rnum; _j_++
) { const int d = *(int*)((void*)(((char*)((((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_idx_].outgoings)->data)) + (size_t)(((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_idx_].outgoings)->rsize * (size_t)(_j_))); ++_incomings_
[d].c; if (_incomings_[d].r != 0) continue; _incomings_[d].r =
1; ((void) sizeof ((_exist_size_[_q_] < (exec_symbol_info_size
)) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_symbol_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_symbol_info_size)"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == graph) ? 1 : 0), __extension__ ({ if (
(sources)[_i_].graph == graph) ; else __assert_fail ("(sources)[_i_].graph == graph"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 3; _exists_[0][_i_]
= (sources)[_i_].d; } _exist_size_[0] = (source_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 3) continue; _incomings_[
_idx_].r = 4; if (((ccv_nnc_graph_exec_symbol_info_t*)((void*
)(((char*)((graph->exec_symbol_info)->data)) + (size_t)
(graph->exec_symbol_info)->rsize * (size_t)(0))))[_idx_
].outgoings) for (_j_ = 0; _j_ < ((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_idx_].outgoings->rnum; _j_++) { const int d = *(int*)
((void*)(((char*)((((ccv_nnc_graph_exec_symbol_info_t*)((void
*)(((char*)((graph->exec_symbol_info)->data)) + (size_t
)(graph->exec_symbol_info)->rsize * (size_t)(0))))[_idx_
].outgoings)->data)) + (size_t)(((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_idx_].outgoings)->rsize * (size_t)(_j_))); if (_incomings_
[d].edges == 0) { _incomings_[d].edges = _bump_; _bump_ += _incomings_
[d].c; _incomings_[d].c = 0; } _edges_[_incomings_[d].edges -
1 + _incomings_[d].c] = _idx_; ++_incomings_[d].c; if (_incomings_
[d].r != 2) continue; _incomings_[d].r = 3; ((void) sizeof ((
_exist_size_[_q_] < (exec_symbol_info_size)) ? 1 : 0), __extension__
({ if (_exist_size_[_q_] < (exec_symbol_info_size)) ; else
__assert_fail ("_exist_size_[_q_] < (exec_symbol_info_size)"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == graph) ? 1 : 0), __extension__
({ if ((destinations)[_i_].graph == graph) ; else __assert_fail
("(destinations)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 672, __extension__ __PRETTY_FUNCTION__); })); _incomings_[(
destinations)[_i_].d].r = 5; _exists_[0][_i_] = (destinations
)[_i_].d; } _exist_size_[0] = (destination_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0) {
_exist_size_[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_
]; _i_++) { const int32_t _idx_ = _exists_[_p_][_i_]; if (_incomings_
[_idx_].r != 5) continue; _incomings_[_idx_].r = 6; if (_incomings_
[_idx_].edges > 0) for (_j_ = 0; _j_ < _incomings_[_idx_
].c; _j_++) { const int d = _edges_[_incomings_[_idx_].edges -
1 + _j_]; if (_incomings_[d].r != 4) continue; _incomings_[d
].r = 5; ((void) sizeof ((_exist_size_[_q_] < (exec_symbol_info_size
)) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_symbol_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_symbol_info_size)"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == graph) ? 1 : 0), __extension__
({ if ((destinations)[_i_].graph == graph) ; else __assert_fail
("(destinations)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 672, __extension__ __PRETTY_FUNCTION__); })); _incomings_[(
destinations)[_i_].d].d = 1; } for (_i_ = 0; _i_ < (source_size
); _i_++) { ((void) sizeof (((sources)[_i_].graph == graph) ?
1 : 0), __extension__ ({ if ((sources)[_i_].graph == graph) ;
else __assert_fail ("(sources)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 672, __extension__ __PRETTY_FUNCTION__); })); _exists_[0][_i_
] = (sources)[_i_].d; } _p_ = 0; _q_ = 1; _exist_size_[0] = (
source_size); _exist_size_[1] = 0; int _d_ = 0; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_];) { const int32_t _idx_ = _exists_[_p_][_i_
]; _visit_->node[_visit_->size].index = ((_idx_)); _visit_
->node[_visit_->size].term = ((_incomings_[_idx_].d)); ++
_visit_->size;; if (_incomings_[_idx_].d) { ++_d_; _incomings_
[_idx_].r = 7; } if (((ccv_nnc_graph_exec_symbol_info_t*)((void
*)(((char*)((graph->exec_symbol_info)->data)) + (size_t
)(graph->exec_symbol_info)->rsize * (size_t)(0))))[_idx_
].outgoings) { if (((ccv_nnc_graph_exec_symbol_info_t*)((void
*)(((char*)((graph->exec_symbol_info)->data)) + (size_t
)(graph->exec_symbol_info)->rsize * (size_t)(0))))[_idx_
].outgoings->rnum == 1) { const int d = *(int*)((void*)(((
char*)((((ccv_nnc_graph_exec_symbol_info_t*)((void*)(((char*)
((graph->exec_symbol_info)->data)) + (size_t)(graph->
exec_symbol_info)->rsize * (size_t)(0))))[_idx_].outgoings
)->data)) + (size_t)(((ccv_nnc_graph_exec_symbol_info_t*)(
(void*)(((char*)((graph->exec_symbol_info)->data)) + (size_t
)(graph->exec_symbol_info)->rsize * (size_t)(0))))[_idx_
].outgoings)->rsize * (size_t)(0))); --_incomings_[d].c; if
(_incomings_[d].c == 0 && _incomings_[d].r == 6 &&
_d_ < (destination_size)) { _exists_[_p_][_i_] = d; continue
; } } else for (_j_ = 0; _j_ < ((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_idx_].outgoings->rnum; _j_++) { const int d = *(int*)
((void*)(((char*)((((ccv_nnc_graph_exec_symbol_info_t*)((void
*)(((char*)((graph->exec_symbol_info)->data)) + (size_t
)(graph->exec_symbol_info)->rsize * (size_t)(0))))[_idx_
].outgoings)->data)) + (size_t)(((ccv_nnc_graph_exec_symbol_info_t
*)((void*)(((char*)((graph->exec_symbol_info)->data)) +
(size_t)(graph->exec_symbol_info)->rsize * (size_t)(0)
)))[_idx_].outgoings)->rsize * (size_t)(_j_))); --_incomings_
[d].c; if (_incomings_[d].c == 0 && _incomings_[d].r ==
6 && _d_ < (destination_size)) { ((void) sizeof (
(_exist_size_[_q_] < (exec_symbol_info_size)) ? 1 : 0), __extension__
({ if (_exist_size_[_q_] < (exec_symbol_info_size)) ; else
__assert_fail ("_exist_size_[_q_] < (exec_symbol_info_size)"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (destination_size); _i_++) { (
(void) sizeof (((destinations)[_i_].graph == graph) ? 1 : 0),
__extension__ ({ if ((destinations)[_i_].graph == graph) ; else
__assert_fail ("(destinations)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 672, __extension__ __PRETTY_FUNCTION__); })); if (_incomings_
[(destinations)[_i_].d].r == 7) continue; if (!(0)) { ((void)
sizeof ((_incomings_[(destinations)[_i_].d].c == 0) ? 1 : 0)
, __extension__ ({ if (_incomings_[(destinations)[_i_].d].c ==
0) ; else __assert_fail ("_incomings_[(destinations)[_i_].d].c == 0"
, "ccv_nnc_symbolic_graph_backward.c", 672, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(destinations)[_i_].d].c > 0
) continue; _visit_->node[_visit_->size].index = (((destinations
)[_i_].d)); _visit_->node[_visit_->size].term = ((_incomings_
[(destinations)[_i_].d].d)); ++_visit_->size;; } if (_heap_mem_
) free(_incomings_); } while (0);; ((void) sizeof ((_visit_->
size <= (exec_symbol_info_size)) ? 1 : 0), __extension__ (
{ if (_visit_->size <= (exec_symbol_info_size)) ; else __assert_fail
("_visit_->size <= (exec_symbol_info_size)", "ccv_nnc_symbolic_graph_backward.c"
, 672, __extension__ __PRETTY_FUNCTION__); })); _visit_; })
;
673 ccv_nnc_symbolic_graph_symbol_infer(graph, forward_visit, sources, source_size, destinations, destination_size, 0, 0, tensor_symbol_info, exec_symbol_info);
674 int i;
675 // Now, for each one of these, find a reverse graph.
676 ccv_nnc_graph_backward_info_t* backward_info = (ccv_nnc_graph_backward_info_t*)cccalloccalloc(exec_symbol_info_size, sizeof(ccv_nnc_graph_backward_info_t));
677 ccv_nnc_graph_visit_for(forward_visit, exec_symbol_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (forward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (forward_visit)
->node[_i_].index; const int _node_unused_ __attribute__((
unused)) = (forward_visit)->node[_i_].term; typeof ((exec_symbol_info
)) const node __attribute__((unused)) = (exec_symbol_info) + idx
;
{
678 assert(ccv_nnc_cmd_is_forward(node->cmd) || node->cmd.cmd == CCV_NNC_NOOP)((void) sizeof ((ccv_nnc_cmd_is_forward(node->cmd) || node
->cmd.cmd == CCV_NNC_NOOP) ? 1 : 0), __extension__ ({ if (
ccv_nnc_cmd_is_forward(node->cmd) || node->cmd.cmd == CCV_NNC_NOOP
) ; else __assert_fail ("ccv_nnc_cmd_is_forward(node->cmd) || node->cmd.cmd == CCV_NNC_NOOP"
, "ccv_nnc_symbolic_graph_backward.c", 678, __extension__ __PRETTY_FUNCTION__
); }))
;
679 if (node->outgoings)
680 for (i = 0; i < node->outgoings->rnum; i++)
681 {
682 int d = *(int*)ccv_array_get(node->outgoings, i)((void*)(((char*)((node->outgoings)->data)) + (size_t)(
node->outgoings)->rsize * (size_t)(i)))
;
683 if (!backward_info[d].outgoings)
684 backward_info[d].outgoings = ccv_array_new(sizeof(int32_t), 1, 0);
685 ccv_array_push(backward_info[d].outgoings, &idx);
686 }
687 } ccv_nnc_graph_visit_endfor} }
688 // Also mark only the output bits that we use.
689 for (i = 0; i < exec_symbol_info_size; i++)
690 {
691 backward_info[i].input_bitmask_size = ((exec_symbol_info[i].output_size * 2 + exec_symbol_info[i].input_size + 63) >> 6);
692 backward_info[i].output_bitmask_size = ((exec_symbol_info[i].input_size + 63) >> 6);
693 // Allocate input / output bitmasks
694 if (backward_info[i].input_bitmask_size + backward_info[i].output_bitmask_size > 0)
695 {
696 backward_info[i].input_bitmasks = (uint64_t*)cccalloccalloc(backward_info[i].input_bitmask_size + backward_info[i].output_bitmask_size, sizeof(uint64_t));
697 if (backward_info[i].output_bitmask_size)
698 backward_info[i].output_bitmasks = backward_info[i].input_bitmasks + backward_info[i].input_bitmask_size;
699 }
700 }
701 ccv_nnc_graph_visit_t* backward_visit = ccv_nnc_graph_visit_new(graph, backward_info, exec_symbol_info_size, destinations, destination_size, sources, source_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_symbol_info_size) - 1)); _visit_->size = 0; do { typedef
struct { int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_symbol_info_size); _i_++) _incoming_edges_ += ((backward_info
)[_i_].outgoings) ? (backward_info)[_i_].outgoings->rnum :
0; const int _heap_mem_ = ((exec_symbol_info_size) + _incoming_edges_
> 1024); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_)
_incomings_ = (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t
) * (exec_symbol_info_size) + sizeof(int32_t) * ((exec_symbol_info_size
) * 2 + _incoming_edges_)); else _incomings_ = (ccv_nnc_incoming_t
*)__builtin_alloca (sizeof(ccv_nnc_incoming_t) * (exec_symbol_info_size
) + sizeof(int32_t) * ((exec_symbol_info_size) * 2 + _incoming_edges_
)); memset(_incomings_, 0, sizeof(ccv_nnc_incoming_t) * (exec_symbol_info_size
)); int32_t* _exists_[2] = { (int32_t*)(_incomings_ + (exec_symbol_info_size
)), (int32_t*)(_incomings_ + (exec_symbol_info_size)) + (exec_symbol_info_size
), }; int32_t* const _edges_ = _exists_[1] + (exec_symbol_info_size
); for (_i_ = 0; _i_ < (destination_size); _i_++) { ((void
) sizeof (((destinations)[_i_].graph == graph) ? 1 : 0), __extension__
({ if ((destinations)[_i_].graph == graph) ; else __assert_fail
("(destinations)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 701, __extension__ __PRETTY_FUNCTION__); })); _incomings_[(
destinations)[_i_].d].r = 1; _exists_[0][_i_] = (destinations
)[_i_].d; } int _exist_size_[2] = { (destination_size), 0, };
int _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0) { _exist_size_
[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_]; _i_++) {
const int32_t _idx_ = _exists_[_p_][_i_]; if (_incomings_[_idx_
].r != 1) continue; _incomings_[_idx_].r = 2; if ((backward_info
)[_idx_].outgoings) for (_j_ = 0; _j_ < (backward_info)[_idx_
].outgoings->rnum; _j_++) { const int d = *(int*)((void*)(
((char*)(((backward_info)[_idx_].outgoings)->data)) + (size_t
)((backward_info)[_idx_].outgoings)->rsize * (size_t)(_j_)
)); ++_incomings_[d].c; if (_incomings_[d].r != 0) continue; _incomings_
[d].r = 1; ((void) sizeof ((_exist_size_[_q_] < (exec_symbol_info_size
)) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_symbol_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_symbol_info_size)"
, "ccv_nnc_symbolic_graph_backward.c", 701, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == graph) ? 1 : 0), __extension__
({ if ((destinations)[_i_].graph == graph) ; else __assert_fail
("(destinations)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 701, __extension__ __PRETTY_FUNCTION__); })); _incomings_[(
destinations)[_i_].d].r = 3; _exists_[0][_i_] = (destinations
)[_i_].d; } _exist_size_[0] = (destination_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 3) continue; _incomings_[
_idx_].r = 4; if ((backward_info)[_idx_].outgoings) for (_j_ =
0; _j_ < (backward_info)[_idx_].outgoings->rnum; _j_++
) { const int d = *(int*)((void*)(((char*)(((backward_info)[_idx_
].outgoings)->data)) + (size_t)((backward_info)[_idx_].outgoings
)->rsize * (size_t)(_j_))); if (_incomings_[d].edges == 0)
{ _incomings_[d].edges = _bump_; _bump_ += _incomings_[d].c;
_incomings_[d].c = 0; } _edges_[_incomings_[d].edges - 1 + _incomings_
[d].c] = _idx_; ++_incomings_[d].c; if (_incomings_[d].r != 2
) continue; _incomings_[d].r = 3; ((void) sizeof ((_exist_size_
[_q_] < (exec_symbol_info_size)) ? 1 : 0), __extension__ (
{ if (_exist_size_[_q_] < (exec_symbol_info_size)) ; else __assert_fail
("_exist_size_[_q_] < (exec_symbol_info_size)", "ccv_nnc_symbolic_graph_backward.c"
, 701, __extension__ __PRETTY_FUNCTION__); })); _exists_[_q_]
[_exist_size_[_q_]] = d; ++_exist_size_[_q_]; } } ((_i_) = (_p_
), (_p_) = (_q_), (_q_) = (_i_)); } for (_i_ = 0; _i_ < (source_size
); _i_++) { ((void) sizeof (((sources)[_i_].graph == graph) ?
1 : 0), __extension__ ({ if ((sources)[_i_].graph == graph) ;
else __assert_fail ("(sources)[_i_].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 701, __extension__ __PRETTY_FUNCTION__); })); _incomings_[(
sources)[_i_].d].r = 5; _exists_[0][_i_] = (sources)[_i_].d; }
_exist_size_[0] = (source_size); _exist_size_[1] = 0; _p_ = 0
, _q_ = 1; while (_exist_size_[_p_] > 0) { _exist_size_[_q_
] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_]; _i_++) { const
int32_t _idx_ = _exists_[_p_][_i_]; if (_incomings_[_idx_].r
!= 5) continue; _incomings_[_idx_].r = 6; if (_incomings_[_idx_
].edges > 0) for (_j_ = 0; _j_ < _incomings_[_idx_].c; _j_
++) { const int d = _edges_[_incomings_[_idx_].edges - 1 + _j_
]; if (_incomings_[d].r != 4) continue; _incomings_[d].r = 5;
((void) sizeof ((_exist_size_[_q_] < (exec_symbol_info_size
)) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_symbol_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_symbol_info_size)"
, "ccv_nnc_symbolic_graph_backward.c", 701, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == graph) ? 1 : 0), __extension__ ({ if (
(sources)[_i_].graph == graph) ; else __assert_fail ("(sources)[_i_].graph == graph"
, "ccv_nnc_symbolic_graph_backward.c", 701, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].d = 1; } for (_i_ = 0; _i_
< (destination_size); _i_++) { ((void) sizeof (((destinations
)[_i_].graph == graph) ? 1 : 0), __extension__ ({ if ((destinations
)[_i_].graph == graph) ; else __assert_fail ("(destinations)[_i_].graph == graph"
, "ccv_nnc_symbolic_graph_backward.c", 701, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (destinations)[_i_].d; } _p_ = 0; _q_
= 1; _exist_size_[0] = (destination_size); _exist_size_[1] =
0; int _d_ = 0; while (_exist_size_[_p_] > 0) { _exist_size_
[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_];) { const
int32_t _idx_ = _exists_[_p_][_i_]; _visit_->node[_visit_
->size].index = ((_idx_)); _visit_->node[_visit_->size
].term = ((_incomings_[_idx_].d)); ++_visit_->size;; if (_incomings_
[_idx_].d) { ++_d_; _incomings_[_idx_].r = 7; } if ((backward_info
)[_idx_].outgoings) { if ((backward_info)[_idx_].outgoings->
rnum == 1) { const int d = *(int*)((void*)(((char*)(((backward_info
)[_idx_].outgoings)->data)) + (size_t)((backward_info)[_idx_
].outgoings)->rsize * (size_t)(0))); --_incomings_[d].c; if
(_incomings_[d].c == 0 && _incomings_[d].r == 6 &&
_d_ < (source_size)) { _exists_[_p_][_i_] = d; continue; }
} else for (_j_ = 0; _j_ < (backward_info)[_idx_].outgoings
->rnum; _j_++) { const int d = *(int*)((void*)(((char*)(((
backward_info)[_idx_].outgoings)->data)) + (size_t)((backward_info
)[_idx_].outgoings)->rsize * (size_t)(_j_))); --_incomings_
[d].c; if (_incomings_[d].c == 0 && _incomings_[d].r ==
6 && _d_ < (source_size)) { ((void) sizeof ((_exist_size_
[_q_] < (exec_symbol_info_size)) ? 1 : 0), __extension__ (
{ if (_exist_size_[_q_] < (exec_symbol_info_size)) ; else __assert_fail
("_exist_size_[_q_] < (exec_symbol_info_size)", "ccv_nnc_symbolic_graph_backward.c"
, 701, __extension__ __PRETTY_FUNCTION__); })); _exists_[_q_]
[_exist_size_[_q_]] = d; ++_exist_size_[_q_]; } } } ++_i_; } (
(_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for (_i_ = 0;
_i_ < (source_size); _i_++) { ((void) sizeof (((sources)[
_i_].graph == graph) ? 1 : 0), __extension__ ({ if ((sources)
[_i_].graph == graph) ; else __assert_fail ("(sources)[_i_].graph == graph"
, "ccv_nnc_symbolic_graph_backward.c", 701, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(sources)[_i_].d].r == 7) continue; if
(!(0)) { ((void) sizeof ((_incomings_[(sources)[_i_].d].c ==
0) ? 1 : 0), __extension__ ({ if (_incomings_[(sources)[_i_]
.d].c == 0) ; else __assert_fail ("_incomings_[(sources)[_i_].d].c == 0"
, "ccv_nnc_symbolic_graph_backward.c", 701, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(sources)[_i_].d].c > 0) continue
; _visit_->node[_visit_->size].index = (((sources)[_i_]
.d)); _visit_->node[_visit_->size].term = ((_incomings_
[(sources)[_i_].d].d)); ++_visit_->size;; } if (_heap_mem_
) free(_incomings_); } while (0);; ((void) sizeof ((_visit_->
size <= (exec_symbol_info_size)) ? 1 : 0), __extension__ (
{ if (_visit_->size <= (exec_symbol_info_size)) ; else __assert_fail
("_visit_->size <= (exec_symbol_info_size)", "ccv_nnc_symbolic_graph_backward.c"
, 701, __extension__ __PRETTY_FUNCTION__); })); _visit_; })
;
702 const int sub_prep_size = graph->sub_graphs ? graph->sub_graphs->rnum : 0;
703 ccv_nnc_symbolic_graph_backward_prep_t* sub_preps = sub_prep_size > 0 ? (ccv_nnc_symbolic_graph_backward_prep_t*)cccalloccalloc(sub_prep_size, sizeof(ccv_nnc_symbolic_graph_backward_prep_t)) : 0;
704 for (i = 0; i < sub_prep_size; i++)
705 {
706 const ccv_nnc_symbolic_graph_t* const sub_graph = *(ccv_nnc_symbolic_graph_t**)ccv_array_get(graph->sub_graphs, i)((void*)(((char*)((graph->sub_graphs)->data)) + (size_t
)(graph->sub_graphs)->rsize * (size_t)(i)))
;
707 sub_preps[i] = _ccv_nnc_symbolic_graph_backward_prep(sub_graph, ccv_nnc_symbolic_graph_sources(sub_graph), ccv_nnc_symbolic_graph_source_size(sub_graph), ccv_nnc_symbolic_graph_destinations(sub_graph), ccv_nnc_symbolic_graph_destination_size(sub_graph));
708 }
709 return (ccv_nnc_symbolic_graph_backward_prep_t){
710 .exec_symbol_info_size = exec_symbol_info_size,
711 .tensor_symbol_info_size = tensor_symbol_info_size,
712 .sub_prep_size = sub_prep_size,
713 .exec_symbol_info = exec_symbol_info,
714 .tensor_symbol_info = tensor_symbol_info,
715 .backward_info = backward_info,
716 .forward_visit = forward_visit,
717 .backward_visit = backward_visit,
718 .sub_preps = sub_preps,
719 .graph = (ccv_nnc_symbolic_graph_t*)graph,
720 };
721}
722
723static void _ccv_nnc_symbolic_graph_backward_exec_io(const ccv_nnc_graph_exec_symbol_info_t* const node, int** const back_input_map, int** const back_output_map, int* const back_input_size, int* const back_output_size)
724{
725 int i;
726 if (node->flags & CCV_NNC_GRAPH_EXEC_CASE_OF)
24
Assuming the condition is true
25
Taking true branch
727 {
728 *back_input_map = node->outputs;
729 *back_input_size = node->output_size;
730 for (i = 0; i < node->case_of.argument.offset; i++)
26
Assuming 'i' is >= field 'offset'
27
Loop condition is false. Execution continues on line 732
731 (*back_output_map)[i] = node->inputs[i];
732 const int argument_offset = node->case_of.argument.offset;
733 const int argument_size = node->case_of.argument.size;
734 // Skip the argument range.
735 for (i = argument_offset + argument_size; i < node->input_size; i++)
28
Assuming 'i' is >= field 'input_size'
29
Loop condition is false. Execution continues on line 737
736 (*back_output_map)[i - argument_size] = node->inputs[i];
737 *back_output_size = node->input_size - node->case_of.argument.size;
738 } else { // if (node->flags & CCV_NNC_GRAPH_EXEC_P_WHILE) {
739 *back_input_map = node->outputs;
740 *back_input_size = node->output_size;
741 *back_output_map = node->inputs;
742 *back_output_size = node->input_size;
743 }
744}
30
Returning without writing to '**back_output_map'
745
746static void _ccv_nnc_symbolic_graph_backward_prep_sub_f_wrt_symbols(const ccv_nnc_graph_exec_symbol_info_t* const forw_exec, const ccv_nnc_symbolic_graph_t* const sub_graph, const int graph_ref, const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info, const uint64_t* const input_bitmasks, const uint64_t* const output_bitmasks, ccv_array_t* const sub_f_symbols, ccv_array_t* const sub_wrt_symbols)
747{
748 int i, j;
749 ccv_array_clear(sub_wrt_symbols);
750 int forw_outputs[ccv_max(1, forw_exec->output_size)({ typeof (1) _a = (1); typeof (forw_exec->output_size) _b
= (forw_exec->output_size); (_a > _b) ? _a : _b; })
];
19
Assuming '_a' is <= '_b'
20
'?' condition is false
751 int forw_inputs[ccv_max(1, forw_exec->input_size)({ typeof (1) _a = (1); typeof (forw_exec->input_size) _b =
(forw_exec->input_size); (_a > _b) ? _a : _b; })
];
21
Assuming '_a' is <= '_b'
22
'?' condition is false
752 int* back_input_map = forw_outputs;
753 int* back_output_map = forw_inputs;
754 int back_input_size, back_output_size;
755 _ccv_nnc_symbolic_graph_backward_exec_io(forw_exec, &back_input_map, &back_output_map, &back_input_size, &back_output_size);
23
Calling '_ccv_nnc_symbolic_graph_backward_exec_io'
31
Returning from '_ccv_nnc_symbolic_graph_backward_exec_io'
756 for (i = 0; i < back_output_size; i++)
32
The value 0 is assigned to 'i'
33
Assuming 'i' is < 'back_output_size'
34
Loop condition is true. Entering loop body
757 if (output_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
35
Assuming the condition is true
36
Taking true branch
758 {
759 const int d = back_output_map[i];
37
Assigned value is garbage or undefined
760 const ccv_array_t* const s_refs = tensor_symbol_info[d].s_ref;
761 const int s_ref = s_refs && s_refs->rnum > graph_ref ? *(int*)ccv_array_get(s_refs, graph_ref)((void*)(((char*)((s_refs)->data)) + (size_t)(s_refs)->
rsize * (size_t)(graph_ref)))
- 1 : -1;
762 if (s_ref >= 0)
763 {
764 ccv_nnc_tensor_symbol_t sub_wrt_symbol = {
765 .d = s_ref,
766 .graph = sub_graph,
767 };
768 ccv_array_push(sub_wrt_symbols, &sub_wrt_symbol);
769 } else
770 ccv_array_push(sub_wrt_symbols, &NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
771 }
772 ccv_array_clear(sub_f_symbols);
773 for (i = 0; i < back_input_size; i++)
774 if (input_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
775 {
776 const int d = back_input_map[i];
777 ccv_nnc_tensor_symbol_t sub_f_symbol = {
778 .d = *(int*)ccv_array_get(tensor_symbol_info[d].s_ref, graph_ref)((void*)(((char*)((tensor_symbol_info[d].s_ref)->data)) + (
size_t)(tensor_symbol_info[d].s_ref)->rsize * (size_t)(graph_ref
)))
- 1,
779 .graph = sub_graph,
780 };
781 ccv_array_push(sub_f_symbols, &sub_f_symbol);
782 }
783 // Go through all its assignments (parameterized loop), making them either wrt or f.
784 // The reason is these must flow through the graph, otherwise we cannot form a full
785 // enclosed loop. Also because they are the additional f / wrt symbols, there is
786 // no case that we cannot find their corresponding gradients in the backward sub graphs
787 // (these gradients have to be parameterized to form an enclosed loop as well).
788 for (i = 0; i < sub_graph->tensor_symbol_info->rnum; i++)
789 {
790 const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(sub_graph->tensor_symbol_info, i)((void*)(((char*)((sub_graph->tensor_symbol_info)->data
)) + (size_t)(sub_graph->tensor_symbol_info)->rsize * (
size_t)(i)))
;
791 if (tensor_symbol_info->assign_ref)
792 {
793 const int assign_ref = tensor_symbol_info->assign_ref - 1;
794 // i is the wrt, assign_ref is the f.
795 int flag = 0;
796 for (j = 0; !flag && j < sub_wrt_symbols->rnum; j++)
797 flag = (((ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, j)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(j)))
)->d == i);
798 if (!flag)
799 {
800 ccv_nnc_tensor_symbol_t sub_wrt_symbol = {
801 .d = i,
802 .graph = sub_graph,
803 };
804 ccv_array_push(sub_wrt_symbols, &sub_wrt_symbol);
805 }
806 flag = 0;
807 for (j = 0; !flag && j < sub_f_symbols->rnum; j++)
808 flag = (((ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, j)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(j)))
)->d == assign_ref);
809 if (!flag)
810 {
811 ccv_nnc_tensor_symbol_t sub_f_symbol = {
812 .d = assign_ref,
813 .graph = sub_graph,
814 };
815 ccv_array_push(sub_f_symbols, &sub_f_symbol);
816 }
817 }
818 }
819}
820
821// Check whether for a given f_symbol, we can compute wrt_symbols at all, if we can, tag the minimal io and ops (some ops can be replaced with noop) required to do so.
822static int _ccv_nnc_symbolic_graph_backward_prep_prune_ops(const ccv_nnc_symbolic_graph_backward_prep_t* const backward_prep, const ccv_nnc_tensor_symbol_t* const f_symbols, const int f_symbol_size, const ccv_nnc_tensor_symbol_t* const wrt_symbols, const int wrt_symbol_size, const ccv_nnc_graph_exec_symbol_t* const sources, const int source_size, const ccv_nnc_graph_exec_symbol_t* const destinations, const int destination_size)
823{
824 int i, j, p;
825 const int tensor_symbol_info_size = backward_prep->tensor_symbol_info_size;
826 const ccv_nnc_graph_exec_symbol_info_t* const exec_symbol_info = backward_prep->exec_symbol_info;
827 const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info =backward_prep->tensor_symbol_info;
828 const ccv_nnc_graph_visit_t* const forward_visit = backward_prep->forward_visit;
829 // Now, for each one of these, find a reverse graph.
830 ccv_nnc_graph_backward_info_t* const backward_info = backward_prep->backward_info;
831 const ccv_nnc_graph_visit_t* const backward_visit = backward_prep->backward_visit;
832 // Find the f_symbols, and tag its flows.
833 ccv_nnc_graph_visit_for(backward_visit, backward_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (backward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (backward_visit
)->node[_i_].index; const int _node_unused_ __attribute__(
(unused)) = (backward_visit)->node[_i_].term; typeof ((backward_info
)) const node __attribute__((unused)) = (backward_info) + idx
;
{
834 int f = node->f_wrt & 0x1;
835 for (i = 0; i < exec_symbol_info[idx].output_size && !f; i++)
836 {
837 int d = exec_symbol_info[idx].outputs[i];
838 if (d < 0)
839 continue;
840 while (tensor_symbol_info[d].alias_ref)
841 d = tensor_symbol_info[d].alias_ref - 1;
842 for (j = 0; j < f_symbol_size && !f; j++)
843 if (d == f_symbols[j].d)
844 f = 1;
845 }
846 if (f)
847 {
848 node->f_wrt |= f;
849 if (node->outgoings)
850 for (i = 0; i < node->outgoings->rnum; i++)
851 {
852 int d = *(int*)ccv_array_get(node->outgoings, i)((void*)(((char*)((node->outgoings)->data)) + (size_t)(
node->outgoings)->rsize * (size_t)(i)))
;
853 backward_info[d].f_wrt |= f;
854 }
855 }
856 } ccv_nnc_graph_visit_endfor} }
857 // Find the wrt_symbols, and tag its flows.
858 ccv_nnc_graph_visit_for(forward_visit, exec_symbol_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (forward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (forward_visit)
->node[_i_].index; const int _node_unused_ __attribute__((
unused)) = (forward_visit)->node[_i_].term; typeof ((exec_symbol_info
)) const node __attribute__((unused)) = (exec_symbol_info) + idx
;
{
859 int wrt = backward_info[idx].f_wrt & 0x2;
860 for (i = 0; i < node->input_size && !wrt; i++)
861 {
862 int d = node->inputs[i];
863 if (d < 0)
864 continue;
865 while (tensor_symbol_info[d].alias_ref)
866 d = tensor_symbol_info[d].alias_ref - 1;
867 for (j = 0; j < wrt_symbol_size && !wrt; j++)
868 {
869 int wrt_d = wrt_symbols[j].d;
870 if (wrt_d < 0)
871 continue;
872 // Find the root of this tensor alias.
873 if (tensor_symbol_info[wrt_d].alias_ref)
874 wrt_d = tensor_symbol_info[wrt_d].alias_ref - 1;
875 if (d == wrt_d)
876 wrt = 0x2;
877 }
878 }
879 if (wrt)
880 {
881 backward_info[idx].f_wrt |= wrt;
882 if (node->outgoings)
883 for (i = 0; i < node->outgoings->rnum; i++)
884 {
885 int d = *(int*)ccv_array_get(node->outgoings, i)((void*)(((char*)((node->outgoings)->data)) + (size_t)(
node->outgoings)->rsize * (size_t)(i)))
;
886 backward_info[d].f_wrt |= wrt;
887 }
888 }
889 } ccv_nnc_graph_visit_endfor} }
890 enum {
891 WRT_SYMBOL_USE = 1,
892 F_SYMBOL_USE = 2
893 };
894 uint8_t* used_grad = (uint8_t*)cccalloccalloc(tensor_symbol_info_size, sizeof(uint8_t));
895 // First, all f_symbols and wrt_symbols are used.
896 for (i = 0; i < f_symbol_size; i++)
897 if (f_symbols[i].d >= 0)
898 used_grad[tensor_symbol_info[f_symbols[i].d].alias_ref ? tensor_symbol_info[f_symbols[i].d].alias_ref - 1 : f_symbols[i].d] |= F_SYMBOL_USE;
899 for (i = 0; i < wrt_symbol_size; i++)
900 if (wrt_symbols[i].d >= 0)
901 used_grad[tensor_symbol_info[wrt_symbols[i].d].alias_ref ? tensor_symbol_info[wrt_symbols[i].d].alias_ref - 1 : wrt_symbols[i].d] |= WRT_SYMBOL_USE;
902 // Do optimistic assumption, and then compute used_grad
903 ccv_nnc_graph_visit_for(forward_visit, exec_symbol_info, _, idx){ int _i_; for (_i_ = 0; _i_ < (forward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (forward_visit)
->node[_i_].index; const int _node_unused_ __attribute__((
unused)) = (forward_visit)->node[_i_].term; typeof ((exec_symbol_info
)) const _ __attribute__((unused)) = (exec_symbol_info) + idx
;
{
904 ccv_nnc_graph_backward_info_t* node = backward_info + idx;
905 /* Only interested in the ones on the f / wrt flow */
906 if ((node->f_wrt & 0x3) == 0x3)
907 {
908 const ccv_nnc_graph_exec_symbol_info_t* forw_exec = exec_symbol_info + idx;
909 ccv_nnc_cmd_t cmd = forw_exec->cmd;
910 if (cmd.cmd != CCV_NNC_NOOP)
911 cmd.cmd += 1; /* Backward command is the one after forward command. */
912 assert(ccv_nnc_cmd_is_backward(cmd) || cmd.cmd == CCV_NNC_NOOP)((void) sizeof ((ccv_nnc_cmd_is_backward(cmd) || cmd.cmd == CCV_NNC_NOOP
) ? 1 : 0), __extension__ ({ if (ccv_nnc_cmd_is_backward(cmd)
|| cmd.cmd == CCV_NNC_NOOP) ; else __assert_fail ("ccv_nnc_cmd_is_backward(cmd) || cmd.cmd == CCV_NNC_NOOP"
, "ccv_nnc_symbolic_graph_backward.c", 912, __extension__ __PRETTY_FUNCTION__
); }))
;
913 for (i = 0; i < forw_exec->output_size * 2 + forw_exec->input_size; i++)
914 if (!(i >= forw_exec->output_size && i < forw_exec->output_size + forw_exec->input_size &&
915 forw_exec->inputs[i - forw_exec->output_size] < 0) && // If the input is empty, no need.
916 !(i >= forw_exec->output_size + forw_exec->input_size && i < forw_exec->output_size * 2 + forw_exec->input_size &&
917 forw_exec->outputs[i - forw_exec->output_size - forw_exec->input_size] < 0) && // If the output is empty, no need.
918 !(i < forw_exec->output_size && forw_exec->outputs[i] < 0)) // If the output is empty for gradient, no need.
919 node->input_bitmasks[i >> 6] |= ((uint64_t)1 << (i & 63));
920 for (i = 0; i < forw_exec->input_size; i++)
921 if (!(forw_exec->inputs[i] < 0)) // If the inputs is empty, no need.
922 node->output_bitmasks[i >> 6] |= ((uint64_t)1 << (i & 63));
923 int maybe_noop = 1;
924 for (i = 0; i < forw_exec->input_size; i++)
925 /* See if it is used as wrt, if not, no need to run this node at all. */
926 if (forw_exec->inputs[i] >= 0 && used_grad[tensor_symbol_info[forw_exec->inputs[i]].alias_ref ? tensor_symbol_info[forw_exec->inputs[i]].alias_ref - 1 : forw_exec->inputs[i]] & WRT_SYMBOL_USE)
927 {
928 maybe_noop = 0;
929 break;
930 }
931 if (maybe_noop)
932 {
933 for (i = 0; i < node->input_bitmask_size; i++)
934 node->input_bitmasks[i] = 0;
935 for (i = 0; i < node->output_bitmask_size; i++)
936 node->output_bitmasks[i] = 0;
937 node->output_bitmask_size = 0;
938 } else if (cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD) {
939 // Clear out all potential outputs if we think it is not a wrt symbols.
940 for (i = 0; i < forw_exec->input_size; i++)
941 if ((node->output_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63))) &&
942 !(used_grad[tensor_symbol_info[forw_exec->inputs[i]].alias_ref ? tensor_symbol_info[forw_exec->inputs[i]].alias_ref - 1 : forw_exec->inputs[i]] & WRT_SYMBOL_USE))
943 node->output_bitmasks[i >> 6] &= ~((uint64_t)1 << (i & 63));
944 // But for now, assuming we need all input gradients.
945 // Clear out all inputs / outputs from forward op.
946 for (i = forw_exec->output_size; i < forw_exec->output_size * 2 + forw_exec->input_size; i++)
947 node->input_bitmasks[i >> 6] &= ~((uint64_t)1 << (i & 63));
948 } else if (ccv_nnc_cmd_bitmask(cmd, forw_exec->output_size * 2 + forw_exec->input_size, forw_exec->input_size, node->input_bitmasks, node->input_bitmask_size, node->output_bitmasks, node->output_bitmask_size)) {
949 int flag; /* Only continue if it changed */
950 do {
951 flag = 0;
952 /* Check if the output first */
953 for (i = 0; i < forw_exec->input_size; i++)
954 /* Only try to eliminate the one that is not used. */
955 if ((node->output_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63))) &&
956 !(used_grad[tensor_symbol_info[forw_exec->inputs[i]].alias_ref ? tensor_symbol_info[forw_exec->inputs[i]].alias_ref - 1 : forw_exec->inputs[i]] & WRT_SYMBOL_USE))
957 {
958 node->output_bitmasks[i >> 6] &= ~((uint64_t)1 << (i & 63));
959 /* If it worked, mark it as flagged. */
960 if (ccv_nnc_cmd_bitmask(cmd, forw_exec->output_size * 2 + forw_exec->input_size, forw_exec->input_size, node->input_bitmasks, node->input_bitmask_size, node->output_bitmasks, node->output_bitmask_size))
961 flag = 1;
962 else /* Refit this with the bit back again. */
963 node->output_bitmasks[i >> 6] |= ((uint64_t)1 << (i & 63));
964 }
965 for (i = 0; i < forw_exec->output_size * 2 + forw_exec->input_size; i++)
966 if ((node->input_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63))) &&
967 (i >= forw_exec->output_size ||
968 !(used_grad[tensor_symbol_info[forw_exec->outputs[i]].alias_ref ? tensor_symbol_info[forw_exec->outputs[i]].alias_ref - 1 : forw_exec->outputs[i]] & F_SYMBOL_USE)))
969 { /* Try to eliminate one of the input. */
970 node->input_bitmasks[i >> 6] &= ~((uint64_t)1 << (i & 63));
971 /* If it worked, mark it as flagged. */
972 if (ccv_nnc_cmd_bitmask(cmd, forw_exec->output_size * 2 + forw_exec->input_size, forw_exec->input_size, node->input_bitmasks, node->input_bitmask_size, node->output_bitmasks, node->output_bitmask_size))
973 flag = 1;
974 else /* Refit this with the bit back again. */
975 node->input_bitmasks[i >> 6] |= ((uint64_t)1 << (i & 63));
976 }
977 } while (flag);
978 }
979 for (i = 0; i < forw_exec->output_size; i++)
980 if (node->input_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
981 /* Mark it is used as wrt. */
982 used_grad[tensor_symbol_info[forw_exec->outputs[i]].alias_ref ? tensor_symbol_info[forw_exec->outputs[i]].alias_ref - 1 : forw_exec->outputs[i]] |= WRT_SYMBOL_USE;
983 for (i = 0; i < forw_exec->input_size; i++)
984 /* Mark it is used as f. */
985 if (node->output_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
986 used_grad[tensor_symbol_info[forw_exec->inputs[i]].alias_ref ? tensor_symbol_info[forw_exec->inputs[i]].alias_ref - 1 : forw_exec->inputs[i]] |= F_SYMBOL_USE;
987 }
988 } ccv_nnc_graph_visit_endfor} }
989 ccv_array_t* sub_f_symbols = 0;
990 ccv_array_t* sub_wrt_symbols = 0;
991 ccv_nnc_graph_visit_for(forward_visit, exec_symbol_info, _, idx){ int _i_; for (_i_ = 0; _i_ < (forward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (forward_visit)
->node[_i_].index; const int _node_unused_ __attribute__((
unused)) = (forward_visit)->node[_i_].term; typeof ((exec_symbol_info
)) const _ __attribute__((unused)) = (exec_symbol_info) + idx
;
{
992 ccv_nnc_graph_backward_info_t* node = backward_info + idx;
993 const ccv_nnc_graph_exec_symbol_info_t* forw_exec = exec_symbol_info + idx;
994 /* Only interested in the ones on the f / wrt flow */
995 if ((node->f_wrt & 0x3) == 0x3 && forw_exec->graph_ref_size > 0)
996 {
997 uint64_t stack_input_bitmasks1[node->input_bitmask_size];
998 uint64_t stack_input_bitmasks2[node->input_bitmask_size];
999 uint64_t* const input_bitmasks = forw_exec->graph_ref_size > 1 ? stack_input_bitmasks1 : node->input_bitmasks;
1000 // We collect input masks into this location.
1001 if (forw_exec->graph_ref_size > 1)
1002 memset(stack_input_bitmasks2, 0, sizeof(uint64_t) * node->input_bitmask_size);
1003 for (p = 0; p < forw_exec->graph_ref_size; p++)
1004 {
1005 // Reset the stack input bitmasks.
1006 if (forw_exec->graph_ref_size > 1)
1007 memcpy(stack_input_bitmasks1, node->input_bitmasks, sizeof(uint64_t) * node->input_bitmask_size);
1008 // Now calling it recursively until we are sure no f_symbols can be removed.
1009 const int graph_ref = CCV_NNC_GRAPH_REF(forw_exec)((forw_exec)->_heap_graph_ref ? (forw_exec)->_heap_graph_ref
: (forw_exec)->_inline_graph_ref)
[p] - 1;
1010 ccv_nnc_symbolic_graph_backward_prep_t* const sub_prep = backward_prep->sub_preps + graph_ref;
1011 if (!sub_wrt_symbols)
1012 sub_wrt_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1013 else
1014 ccv_array_clear(sub_wrt_symbols);
1015 for (i = 0; i < forw_exec->input_size; i++)
1016 if (node->output_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
1017 {
1018 const ccv_array_t* const s_refs = tensor_symbol_info[forw_exec->inputs[i]].s_ref;
1019 const int s_ref = s_refs && s_refs->rnum > graph_ref ? *(int*)ccv_array_get(s_refs, graph_ref)((void*)(((char*)((s_refs)->data)) + (size_t)(s_refs)->
rsize * (size_t)(graph_ref)))
- 1 : -1;
1020 if (s_ref >= 0)
1021 {
1022 ccv_nnc_tensor_symbol_t sub_wrt_symbol = {
1023 .d = s_ref,
1024 .graph = sub_prep->graph,
1025 };
1026 ccv_array_push(sub_wrt_symbols, &sub_wrt_symbol);
1027 }
1028 }
1029 int flag; // Only continue if it changed */
1030 do {
1031 flag = 0;
1032 for (i = 0; i < forw_exec->output_size; i++)
1033 // Try to reduce number of inputs for the backward graph. If it is not tagged as F_SYMBOL_USE, we can reduce it.
1034 // It is reducible because this sub graph may have multiple computation paths, therefore, some of these may not
1035 // involve our wrt symbols at all.
1036 if (!(used_grad[tensor_symbol_info[forw_exec->outputs[i]].alias_ref ? tensor_symbol_info[forw_exec->outputs[i]].alias_ref - 1 : forw_exec->outputs[i]] & F_SYMBOL_USE) &&
1037 input_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
1038 { /* Try to eliminate one of the input. */
1039 input_bitmasks[i >> 6] &= ~((uint64_t)1 << (i & 63));
1040 if (!sub_f_symbols)
1041 sub_f_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1042 else
1043 ccv_array_clear(sub_f_symbols);
1044 for (j = 0; j < forw_exec->output_size; j++)
1045 if (node->input_bitmasks[j >> 6] & ((uint64_t)1 << (j & 63)))
1046 {
1047 const int s_ref = *(int*)ccv_array_get(tensor_symbol_info[forw_exec->outputs[j]].s_ref, graph_ref)((void*)(((char*)((tensor_symbol_info[forw_exec->outputs[j
]].s_ref)->data)) + (size_t)(tensor_symbol_info[forw_exec->
outputs[j]].s_ref)->rsize * (size_t)(graph_ref)))
- 1;
1048 assert(s_ref >= 0)((void) sizeof ((s_ref >= 0) ? 1 : 0), __extension__ ({ if
(s_ref >= 0) ; else __assert_fail ("s_ref >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1048, __extension__ __PRETTY_FUNCTION__); }))
;
1049 ccv_nnc_tensor_symbol_t sub_f_symbol = {
1050 .d = s_ref,
1051 .graph = sub_prep->graph,
1052 };
1053 ccv_array_push(sub_f_symbols, &sub_f_symbol);
1054 }
1055 if (_ccv_nnc_symbolic_graph_backward_prep_prune_ops(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, 0)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(0)))
, sub_f_symbols->rnum, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, ccv_nnc_symbolic_graph_sources(sub_prep->graph), ccv_nnc_symbolic_graph_source_size(sub_prep->graph), ccv_nnc_symbolic_graph_destinations(sub_prep->graph), ccv_nnc_symbolic_graph_destination_size(sub_prep->graph)))
1056 flag = 1;
1057 else /* Refit this with the bit back again. */
1058 input_bitmasks[i >> 6] |= ((uint64_t)1 << (i & 63));
1059 }
1060 } while (flag);
1061 // I am done, need to redo above for sub_prep, and it has to be successful now.
1062 if (!sub_f_symbols)
1063 sub_f_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1064 else
1065 ccv_array_clear(sub_f_symbols);
1066 for (i = 0; i < forw_exec->output_size; i++)
1067 if (input_bitmasks[i >> 6] & ((uint64_t)1 << (i & 63)))
1068 {
1069 const int s_ref = *(int*)ccv_array_get(tensor_symbol_info[forw_exec->outputs[i]].s_ref, graph_ref)((void*)(((char*)((tensor_symbol_info[forw_exec->outputs[i
]].s_ref)->data)) + (size_t)(tensor_symbol_info[forw_exec->
outputs[i]].s_ref)->rsize * (size_t)(graph_ref)))
- 1;
1070 assert(s_ref >= 0)((void) sizeof ((s_ref >= 0) ? 1 : 0), __extension__ ({ if
(s_ref >= 0) ; else __assert_fail ("s_ref >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1070, __extension__ __PRETTY_FUNCTION__); }))
;
1071 ccv_nnc_tensor_symbol_t sub_f_symbol = {
1072 .d = s_ref,
1073 .graph = sub_prep->graph,
1074 };
1075 ccv_array_push(sub_f_symbols, &sub_f_symbol);
1076 }
1077 _ccv_nnc_symbolic_graph_backward_prep_prune_ops(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, 0)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(0)))
, sub_f_symbols->rnum, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, ccv_nnc_symbolic_graph_sources(sub_prep->graph), ccv_nnc_symbolic_graph_source_size(sub_prep->graph), ccv_nnc_symbolic_graph_destinations(sub_prep->graph), ccv_nnc_symbolic_graph_destination_size(sub_prep->graph));
1078 if (forw_exec->graph_ref_size > 1)
1079 for (i = 0; i < node->input_bitmask_size; i++)
1080 stack_input_bitmasks2[i] |= input_bitmasks[i];
1081 }
1082 if (forw_exec->graph_ref_size > 1)
1083 memcpy(node->input_bitmasks, stack_input_bitmasks2, sizeof(uint64_t) * node->input_bitmask_size);
1084 }
1085 } ccv_nnc_graph_visit_endfor} }
1086 if (sub_f_symbols)
1087 ccv_array_free(sub_f_symbols);
1088 if (sub_wrt_symbols)
1089 ccv_array_free(sub_wrt_symbols);
1090 int flag = 1;
1091 for (i = 0; i < f_symbol_size && flag; i++)
1092 flag = (used_grad[tensor_symbol_info[f_symbols[i].d].alias_ref ? tensor_symbol_info[f_symbols[i].d].alias_ref - 1 : f_symbols[i].d] & WRT_SYMBOL_USE);
1093 ccfreefree(used_grad);
1094 return flag;
1095}
1096
1097static void _ccv_nnc_symbolic_graph_backward_prep_gen(ccv_nnc_symbolic_graph_backward_prep_t* const backward_prep, const ccv_nnc_tensor_symbol_t* const f_symbols, const int f_symbol_size, const ccv_nnc_tensor_symbol_t* const wrt_symbols, const int wrt_symbol_size, const int is_while, const ccv_nnc_graph_exec_symbol_t* const sources, const int source_size, const ccv_nnc_graph_exec_symbol_t* const destinations, const int destination_size)
1098{
1099 const int exec_symbol_info_size = backward_prep->exec_symbol_info_size;
1100 const int tensor_symbol_info_size = backward_prep->tensor_symbol_info_size;
1101 const ccv_nnc_graph_exec_symbol_info_t* const exec_symbol_info = backward_prep->exec_symbol_info;
1102 const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info =backward_prep->tensor_symbol_info;
1103 const ccv_nnc_graph_visit_t* const forward_visit = backward_prep->forward_visit;
1104 // Now, for each one of these, find a reverse graph.
1105 ccv_nnc_graph_backward_info_t* const backward_info = backward_prep->backward_info;
1106 const ccv_nnc_graph_visit_t* const backward_visit = backward_prep->backward_visit;
1107 int i, j;
1108 // Now, only the flow from f_symbols back to wrt_symbols are interested to us.
1109 // Visit the graph in reverse order, build the AD nodes.
1110 ccv_nnc_autograd_graph_exec_symbol_t* const autograd_execs = (ccv_nnc_autograd_graph_exec_symbol_t*)cccalloccalloc(exec_symbol_info_size, sizeof(ccv_nnc_autograd_graph_exec_symbol_t));
1111 int max_forw_input_size = 0, max_forw_output_size = 0;
1112 for (i = 0; i < exec_symbol_info_size; i++)
1113 if ((backward_info[i].f_wrt & 0x3) == 0x3)
1114 {
1115 max_forw_input_size = ccv_max(max_forw_input_size, exec_symbol_info[i].input_size)({ typeof (max_forw_input_size) _a = (max_forw_input_size); typeof
(exec_symbol_info[i].input_size) _b = (exec_symbol_info[i].input_size
); (_a > _b) ? _a : _b; })
;
1116 max_forw_output_size = ccv_max(max_forw_output_size, exec_symbol_info[i].output_size)({ typeof (max_forw_output_size) _a = (max_forw_output_size);
typeof (exec_symbol_info[i].output_size) _b = (exec_symbol_info
[i].output_size); (_a > _b) ? _a : _b; })
;
1117 if (backward_info[i].outgoings)
1118 {
1119 // Copy over the outgoing bits.
1120 autograd_execs[i].outgoings = ccv_array_new(sizeof(int), backward_info[i].outgoings->rnum, 0);
1121 for (j = 0; j < backward_info[i].outgoings->rnum; j++)
1122 {
1123 const int d = *(int*)ccv_array_get(backward_info[i].outgoings, j)((void*)(((char*)((backward_info[i].outgoings)->data)) + (
size_t)(backward_info[i].outgoings)->rsize * (size_t)(j)))
;
1124 // Only push the outgoing node if it is in the f_wrt path.
1125 if ((backward_info[d].f_wrt & 0x3) == 0x3)
1126 ccv_array_push(autograd_execs[i].outgoings, &d);
1127 }
1128 }
1129 }
1130 int max_forw_inputs[ccv_max(1, max_forw_input_size)({ typeof (1) _a = (1); typeof (max_forw_input_size) _b = (max_forw_input_size
); (_a > _b) ? _a : _b; })
];
1131 int max_forw_outputs[ccv_max(1, max_forw_output_size)({ typeof (1) _a = (1); typeof (max_forw_output_size) _b = (max_forw_output_size
); (_a > _b) ? _a : _b; })
];
1132 ccv_nnc_autograd_tensor_version_t* const autograd_tensor_versions = (ccv_nnc_autograd_tensor_version_t*)cccalloccalloc(tensor_symbol_info_size, sizeof(ccv_nnc_autograd_tensor_version_t));
1133 ccv_array_t* autograd_tensor_symbols = ccv_array_new(sizeof(ccv_nnc_autograd_tensor_symbol_t), tensor_symbol_info_size, 0);
1134 ccv_array_t* sum_or_set_execs = ccv_array_new(sizeof(ccv_nnc_sum_or_set_graph_exec_symbol_t), 0, 0);
1135 ccv_nnc_graph_visit_for(backward_visit, backward_info, back_info_node, idx){ int _i_; for (_i_ = 0; _i_ < (backward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (backward_visit
)->node[_i_].index; const int _node_unused_ __attribute__(
(unused)) = (backward_visit)->node[_i_].term; typeof ((backward_info
)) const back_info_node __attribute__((unused)) = (backward_info
) + idx;
{
1136 /* This is required by both f flow and wrt flow, therefore, an interest to us */
1137 if ((back_info_node->f_wrt & 0x3) == 0x3)
1138 {
1139 const ccv_nnc_graph_exec_symbol_info_t* forw_exec = exec_symbol_info + idx;
1140 ccv_nnc_autograd_graph_exec_symbol_t* back_exec = autograd_execs + idx;
1141 back_exec->cmd = forw_exec->cmd;
1142 if (back_exec->cmd.cmd != CCV_NNC_NOOP)
1143 back_exec->cmd.cmd += 1; /* Backward command is the one after forward command. */
1144 assert(ccv_nnc_cmd_is_backward(back_exec->cmd) || back_exec->cmd.cmd == CCV_NNC_NOOP)((void) sizeof ((ccv_nnc_cmd_is_backward(back_exec->cmd) ||
back_exec->cmd.cmd == CCV_NNC_NOOP) ? 1 : 0), __extension__
({ if (ccv_nnc_cmd_is_backward(back_exec->cmd) || back_exec
->cmd.cmd == CCV_NNC_NOOP) ; else __assert_fail ("ccv_nnc_cmd_is_backward(back_exec->cmd) || back_exec->cmd.cmd == CCV_NNC_NOOP"
, "ccv_nnc_symbolic_graph_backward.c", 1144, __extension__ __PRETTY_FUNCTION__
); }))
;
1145 if (!back_info_node->output_bitmask_size) /* This has no output, can be a noop. */
1146 back_exec->cmd.cmd = CCV_NNC_NOOP;
1147 else {
1148 int* back_input_map = max_forw_outputs;
1149 int* back_output_map = max_forw_inputs;
1150 _ccv_nnc_symbolic_graph_backward_exec_io(forw_exec, &back_input_map, &back_output_map, &back_exec->input_size, &back_exec->output_size);
1151 back_exec->inputs = ccmallocmalloc(sizeof(int) * (back_exec->input_size + back_exec->output_size));
1152 back_exec->outputs = back_exec->inputs + back_exec->input_size;
1153 /* Need to compute input before we compute output */
1154 for (i = 0; i < back_exec->input_size; i++)
1155 {
1156 /* If we can skip this input, do that. */
1157 if (!(back_info_node->input_bitmasks[i >> 6] & ((uint64_t)1 << i)))
1158 continue;
1159 const int d = back_input_map[i];
1160 const int alias_ref = tensor_symbol_info[d].alias_ref;
1161 ccv_nnc_autograd_tensor_version_t* tensor_ver = alias_ref ? autograd_tensor_versions + (alias_ref - 1) : autograd_tensor_versions + d;
1162 /* Initialization tensor, should corresponding to f symbols */
1163 if (!tensor_ver->ref_version)
1164 {
1165 ccv_nnc_autograd_tensor_symbol_t tensor_sym = {};
1166 if (!alias_ref)
1167 {
1168 tensor_sym.d = d;
1169 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1170 const ccv_nnc_tensor_ref_t tensor_ref = {
1171 .d = autograd_tensor_symbols->rnum - 1,
1172 .x = idx,
1173 .alias_registry = 0
1174 };
1175 tensor_ver->ref_version = ccv_array_new(sizeof(ccv_nnc_tensor_ref_t), 1, 0);
1176 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
1177 } else {
1178 tensor_sym.d = alias_ref - 1;
1179 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1180 const ccv_nnc_tensor_ref_t tensor_ref = {
1181 .d = autograd_tensor_symbols->rnum - 1,
1182 .x = idx,
1183 .alias_registry = ccv_array_new(sizeof(int), 1, 0)
1184 };
1185 tensor_ver->ref_version = ccv_array_new(sizeof(ccv_nnc_tensor_ref_t), 1, 0);
1186 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
1187 tensor_sym.d = d; /* set back */
1188 tensor_sym.alias_ref = tensor_ref.d + 1;
1189 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1190 const int ad = autograd_tensor_symbols->rnum - 1;
1191 ccv_array_push(tensor_ref.alias_registry, &ad);
1192 }
1193 }
1194 /* The simplest case (most common), it is not an alias. */
1195 if (!alias_ref)
1196 {
1197 /* Even simpler, this only have one reference tensor, thus, pass this as input. */
1198 if (tensor_ver->c == tensor_ver->ref_version->rnum - 1)
1199 {
1200 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, tensor_ver->c)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(tensor_ver
->c)))
;
1201 /* There are alias associated with this tensor ref, zero it out when this tensor is allocated. */
1202 /* This is is required. Consider the case that we have an alias of this tensor used somehwere */
1203 /* on forward pass, when we compute backward, we have that alias computed first, however, its */
1204 /* underlying tensor is not zero initialized, and we will end up with garbage values here. */
1205 if (tensor_ref->alias_registry &&
1206 /* Loop over to see if this tensor is fully occupied to avoid extra zero step. */
1207 !_ccv_nnc_tensor_ref_fully_assigned_with_aliases(tensor_ref, autograd_tensor_symbols, tensor_symbol_info))
1208 {
1209 ccv_nnc_autograd_tensor_symbol_t* tensor_sym = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
1210 assert(tensor_sym->alias_ref == 0)((void) sizeof ((tensor_sym->alias_ref == 0) ? 1 : 0), __extension__
({ if (tensor_sym->alias_ref == 0) ; else __assert_fail (
"tensor_sym->alias_ref == 0", "ccv_nnc_symbolic_graph_backward.c"
, 1210, __extension__ __PRETTY_FUNCTION__); }))
;
1211 tensor_sym->flags = CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS;
1212 }
1213 back_exec->inputs[i] = tensor_ref->d;
1214 } else {
1215 /* Otherwise, we need to sum them up, and then pass the summed result to the computation. */
1216 _ccv_nnc_graph_sum_autograd_tensor_versions(idx, d, exec_symbol_info_size, tensor_symbol_info, tensor_ver, autograd_execs, autograd_tensor_symbols, sum_or_set_execs);
1217 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, tensor_ver->c)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(tensor_ver
->c)))
;
1218 back_exec->inputs[i] = tensor_ref->d;
1219 }
1220 } else
1221 /* If this is an alias, go through all available tensor ref versions */
1222 back_exec->inputs[i] = _ccv_nnc_graph_sum_autograd_tensor_versions_alias(idx, d, tensor_symbol_info, exec_symbol_info_size, tensor_symbol_info + d, tensor_ver, autograd_execs, autograd_tensor_symbols, sum_or_set_execs);
1223 }
1224 for (i = 0; i < back_exec->output_size; i++)
1225 {
1226 /* If we can skip this output, do that. */
1227 if (!(back_info_node->output_bitmasks[i >> 6] & ((uint64_t)1 << i)))
1228 continue;
1229 const int d = back_output_map[i];
1230 const int alias_ref = tensor_symbol_info[d].alias_ref;
1231 ccv_nnc_autograd_tensor_symbol_t tensor_sym = {
1232 .d = d
1233 };
1234 /* The simplest case (most common), it is not an alias. */
1235 if (!alias_ref)
1236 {
1237 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1238 const ccv_nnc_tensor_ref_t tensor_ref = {
1239 .d = autograd_tensor_symbols->rnum - 1,
1240 .x = idx,
1241 .exec_registry = 0,
1242 .alias_registry = 0
1243 };
1244 ccv_nnc_autograd_tensor_version_t* tensor_ver = autograd_tensor_versions + d;
1245 if (!tensor_ver->ref_version)
1246 tensor_ver->ref_version = ccv_array_new(sizeof(ccv_nnc_tensor_ref_t), 1, 0);
1247 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
1248 back_exec->outputs[i] = tensor_ref.d;
1249 } else {
1250 /* Otherwise, in case that this is an alias, we try to find the existing one (in tensor_ver
1251 * see if can meet the need (thus, for the tensor info / ofs, it fits). */
1252 ccv_nnc_autograd_tensor_version_t* tensor_ver = autograd_tensor_versions + (alias_ref - 1);
1253 if (!tensor_ver->ref_version)
1254 tensor_ver->ref_version = ccv_array_new(sizeof(ccv_nnc_tensor_ref_t), 1, 0);
1255 /* If already exists a ref version, check if any of these not-sealed tensors have free space. */
1256 int found = 0;
1257 for (j = tensor_ver->c; !found && j < tensor_ver->ref_version->rnum; j++)
1258 {
1259 ccv_nnc_tensor_ref_t* tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, j)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(j)))
;
1260 if (!_ccv_nnc_tensor_ref_version_involve_alias(tensor_ref, autograd_tensor_symbols, tensor_symbol_info, tensor_symbol_info + d))
1261 {
1262 tensor_sym.alias_ref = tensor_ref->d + 1;
1263 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1264 const int ad = autograd_tensor_symbols->rnum - 1;
1265 ccv_array_push(tensor_ref->alias_registry, &ad);
1266 if (!tensor_ref->exec_registry)
1267 tensor_ref->exec_registry = ccv_array_new(sizeof(int), 1, 0);
1268 ccv_array_push(tensor_ref->exec_registry, &idx);
1269 back_exec->outputs[i] = ad;
1270 found = 1;
1271 }
1272 }
1273 if (!found) /* Cannot find an tensor ref to insert, create one first */
1274 {
1275 tensor_sym.d = alias_ref - 1; /* Reference back to the non-alias. */
1276 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1277 const ccv_nnc_tensor_ref_t tensor_ref = {
1278 .d = autograd_tensor_symbols->rnum - 1,
1279 .x = idx,
1280 .exec_registry = 0,
1281 .alias_registry = ccv_array_new(sizeof(int), 1, 0)
1282 };
1283 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
1284 tensor_sym.d = d; /* set back */
1285 tensor_sym.alias_ref = tensor_ref.d + 1;
1286 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1287 const int ad = autograd_tensor_symbols->rnum - 1;
1288 ccv_array_push(tensor_ref.alias_registry, &ad);
1289 back_exec->outputs[i] = ad;
1290 }
1291 }
1292 }
1293 }
1294 }
1295 } ccv_nnc_graph_visit_endfor} }
1296 // Find all relevant wrt symbols, generate sum for them if needed.
1297 for (i = 0; i < wrt_symbol_size; i++)
1298 {
1299 const int d = wrt_symbols[i].d;
1300 if (d < 0)
1301 continue;
1302 const int ref_d = (!tensor_symbol_info[d].alias_ref) ? d : tensor_symbol_info[d].alias_ref - 1;
1303 ccv_nnc_autograd_tensor_version_t* tensor_ver = autograd_tensor_versions + ref_d;
1304 if (!tensor_ver->ref_version)
1305 {
1306 // This wrt symbol is not available at all, for this case, we set its flag to init zero.
1307 const ccv_nnc_autograd_tensor_symbol_t tensor_sym = {
1308 .d = ref_d
1309 };
1310 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1311 ccv_nnc_sum_or_set_graph_exec_symbol_t set_exec = {
1312 .value = 0,
1313 .output = autograd_tensor_symbols->rnum - 1,
1314 };
1315 ccv_array_push(sum_or_set_execs, &set_exec);
1316 // Insert the one to be set to zero.
1317 const ccv_nnc_tensor_ref_t tensor_ref = {
1318 .d = autograd_tensor_symbols->rnum - 1,
1319 .x = exec_symbol_info_size + sum_or_set_execs->rnum - 1,
1320 };
1321 tensor_ver->ref_version = ccv_array_new(sizeof(ccv_nnc_tensor_ref_t), 1, 0);
1322 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
1323 continue;
1324 }
1325 // If it is a while loop, we need to insert an accumulator to the graph (this is expressed as a initialization tensor summed with existing results).
1326 // First, insert the initialization tensor if this wrt results is not used directly in next while loop (thus, it participates the computation, therefore, no need to accumulate).
1327 if (is_while && !tensor_symbol_info[ref_d].assign_ref &&
1328 _ccv_nnc_tensor_ref_version_find_init(tensor_ver) < 0) // If the initialization tensor is not inserted yet.
1329 {
1330 const ccv_nnc_autograd_tensor_symbol_t tensor_sym = {
1331 .d = ref_d
1332 };
1333 ccv_array_push(autograd_tensor_symbols, &tensor_sym);
1334 // Insert the one to be summed.
1335 const ccv_nnc_tensor_ref_t tensor_ref = {
1336 .d = autograd_tensor_symbols->rnum - 1,
1337 .x = -1, // This denotes it is an initialization vector.
1338 };
1339 ccv_array_push(tensor_ver->ref_version, &tensor_ref);
1340 }
1341 // If there are more than one tensor in the list, it is possible to sum them up.
1342 if (tensor_ver->c < tensor_ver->ref_version->rnum - 1)
1343 _ccv_nnc_graph_sum_autograd_tensor_versions(-1, ref_d, exec_symbol_info_size, tensor_symbol_info, tensor_ver, autograd_execs, autograd_tensor_symbols, sum_or_set_execs);
1344 // The tensor version should have ref_version, and only one now (after sum up).
1345 assert(tensor_ver->c == tensor_ver->ref_version->rnum - 1)((void) sizeof ((tensor_ver->c == tensor_ver->ref_version
->rnum - 1) ? 1 : 0), __extension__ ({ if (tensor_ver->
c == tensor_ver->ref_version->rnum - 1) ; else __assert_fail
("tensor_ver->c == tensor_ver->ref_version->rnum - 1"
, "ccv_nnc_symbolic_graph_backward.c", 1345, __extension__ __PRETTY_FUNCTION__
); }))
;
1346 }
1347 // Adding additional fields to backward_prep now.
1348 backward_prep->autograd_execs = autograd_execs;
1349 backward_prep->autograd_tensor_versions = autograd_tensor_versions;
1350 backward_prep->autograd_tensor_symbols = autograd_tensor_symbols;
1351 backward_prep->sum_or_set_execs = sum_or_set_execs;
1352 ccv_array_t* sub_f_symbols = 0;
1353 ccv_array_t* sub_wrt_symbols = 0;
1354 ccv_nnc_graph_visit_for(forward_visit, exec_symbol_info, _, idx){ int _i_; for (_i_ = 0; _i_ < (forward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (forward_visit)
->node[_i_].index; const int _node_unused_ __attribute__((
unused)) = (forward_visit)->node[_i_].term; typeof ((exec_symbol_info
)) const _ __attribute__((unused)) = (exec_symbol_info) + idx
;
{
1355 ccv_nnc_graph_backward_info_t* node = backward_info + idx;
1356 const ccv_nnc_graph_exec_symbol_info_t* forw_exec = exec_symbol_info + idx;
1357 /* Only interested in the ones on the f / wrt flow */
1358 if ((node->f_wrt & 0x3) == 0x3)
1359 {
1360 const int is_while = (forw_exec->flags & CCV_NNC_GRAPH_EXEC_P_WHILE);
1361 for (i = 0; i < forw_exec->graph_ref_size; i++)
1362 {
1363 // Now calling it recursively until we are sure no f_symbols can be removed.
1364 const int graph_ref = CCV_NNC_GRAPH_REF(forw_exec)((forw_exec)->_heap_graph_ref ? (forw_exec)->_heap_graph_ref
: (forw_exec)->_inline_graph_ref)
[i] - 1;
1365 ccv_nnc_symbolic_graph_backward_prep_t* const sub_prep = backward_prep->sub_preps + graph_ref;
1366 if (!sub_wrt_symbols)
1367 sub_wrt_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1368 if (!sub_f_symbols)
1369 sub_f_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1370 _ccv_nnc_symbolic_graph_backward_prep_sub_f_wrt_symbols(forw_exec, sub_prep->graph, graph_ref, tensor_symbol_info, node->input_bitmasks, node->output_bitmasks, sub_f_symbols, sub_wrt_symbols);
1371 _ccv_nnc_symbolic_graph_backward_prep_gen(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, 0)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(0)))
, sub_f_symbols->rnum, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, is_while, ccv_nnc_symbolic_graph_sources(sub_prep->graph), ccv_nnc_symbolic_graph_source_size(sub_prep->graph), ccv_nnc_symbolic_graph_destinations(sub_prep->graph), ccv_nnc_symbolic_graph_destination_size(sub_prep->graph));
1372 }
1373 }
1374 } ccv_nnc_graph_visit_endfor} }
1375 if (sub_f_symbols)
1376 ccv_array_free(sub_f_symbols);
1377 if (sub_wrt_symbols)
1378 ccv_array_free(sub_wrt_symbols);
1379}
1380
1381static void _ccv_nnc_symbolic_graph_backward_prep_free(const ccv_nnc_symbolic_graph_backward_prep_t backward_prep)
1382{
1383 int i, j;
1384 const int exec_symbol_info_size = backward_prep.exec_symbol_info_size;
1385 const int tensor_symbol_info_size = backward_prep.tensor_symbol_info_size;
1386 ccv_nnc_autograd_graph_exec_symbol_t* const autograd_execs = backward_prep.autograd_execs;
1387 if (autograd_execs)
1388 {
1389 for (i = 0; i < exec_symbol_info_size; i++)
1390 {
1391 if (autograd_execs[i].inputs)
1392 ccfreefree(autograd_execs[i].inputs);
1393 if (autograd_execs[i].outgoings)
1394 ccv_array_free(autograd_execs[i].outgoings);
1395 }
1396 ccfreefree(autograd_execs);
1397 }
1398 ccv_nnc_autograd_tensor_version_t* const autograd_tensor_versions = backward_prep.autograd_tensor_versions;
1399 if (autograd_tensor_versions)
1400 {
1401 for (i = 0; i < tensor_symbol_info_size; i++)
1402 {
1403 if (autograd_tensor_versions[i].ref_version)
1404 {
1405 for (j = 0; j < autograd_tensor_versions[i].ref_version->rnum; j++)
1406 {
1407 ccv_nnc_tensor_ref_t* ref_version = (ccv_nnc_tensor_ref_t*)ccv_array_get(autograd_tensor_versions[i].ref_version, j)((void*)(((char*)((autograd_tensor_versions[i].ref_version)->
data)) + (size_t)(autograd_tensor_versions[i].ref_version)->
rsize * (size_t)(j)))
;
1408 if (ref_version->exec_registry)
1409 ccv_array_free(ref_version->exec_registry);
1410 if (ref_version->alias_registry)
1411 ccv_array_free(ref_version->alias_registry);
1412 }
1413 ccv_array_free(autograd_tensor_versions[i].ref_version);
1414 }
1415 }
1416 ccfreefree(autograd_tensor_versions);
1417 }
1418 if (backward_prep.autograd_tensor_symbols)
1419 ccv_array_free(backward_prep.autograd_tensor_symbols);
1420 ccv_array_t* const sum_or_set_execs = backward_prep.sum_or_set_execs;
1421 if (sum_or_set_execs)
1422 {
1423 for (i = 0; i < sum_or_set_execs->rnum; i++)
1424 {
1425 ccv_nnc_sum_or_set_graph_exec_symbol_t* sum_or_set = (ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, i)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(i)))
;
1426 if (sum_or_set->inputs)
1427 ccfreefree(sum_or_set->inputs);
1428 if (sum_or_set->outgoings)
1429 ccv_array_free(sum_or_set->outgoings);
1430 }
1431 ccv_array_free(sum_or_set_execs);
1432 }
1433 // Now afterwards, these are mandatory.
1434 ccv_nnc_graph_backward_info_t* const backward_info = backward_prep.backward_info;
1435 for (i = 0; i < exec_symbol_info_size; i++)
1436 {
1437 if (backward_info[i].outgoings)
1438 ccv_array_free(backward_info[i].outgoings);
1439 if (backward_info[i].input_bitmasks)
1440 ccfreefree(backward_info[i].input_bitmasks);
1441 }
1442 ccfreefree(backward_info);
1443 ccv_nnc_graph_visit_free(backward_prep.backward_visit);
1444 ccv_nnc_graph_visit_free(backward_prep.forward_visit);
1445 ccfreefree(backward_prep.exec_symbol_info);
1446 ccfreefree(backward_prep.tensor_symbol_info);
1447 for (i = 0; i < backward_prep.sub_prep_size; i++)
1448 _ccv_nnc_symbolic_graph_backward_prep_free(backward_prep.sub_preps[i]);
1449 if (backward_prep.sub_preps)
1450 ccfreefree(backward_prep.sub_preps);
1451}
1452
1453static void _ccv_nnc_add_backward_breakpoint_for_symbol(const ccv_nnc_symbolic_graph_backward_prep_t* const backward_prep, const ccv_nnc_graph_exec_symbol_t breakpoint, ccv_nnc_symbolic_graph_t* const graph, ccv_array_t* const sub_breakpoints)
1454{
1455 const ccv_nnc_graph_exec_symbol_t noop = ccv_nnc_graph_exec_symbol_new(graph, ccv_nnc_cmd(CCV_NNC_NOOP, 0, CMD_GENERIC()((ccv_nnc_cmd_param_t){.size={.dim={1,1,1}}}), 0), 0, 0, 0, 0, 0);
1456 ccv_array_push(sub_breakpoints, &noop);
1457 // Now need to hook this up to the graph.
1458 const ccv_nnc_graph_exec_symbol_info_t* const exec_symbol_info = backward_prep->exec_symbol_info;
1459 const ccv_nnc_graph_visit_t* const forward_visit = backward_prep->forward_visit;
1460 // Now, for each one of these, find a reverse graph.
1461 ccv_nnc_graph_backward_info_t* const backward_info = backward_prep->backward_info;
1462 int i;
1463 // Clean up the high bit.
1464 for (i = 0; i < backward_prep->exec_symbol_info_size; i++)
1465 backward_info[i].f_wrt &= ~0x4;
1466 assert((backward_info[breakpoint.d].f_wrt & 0x3) != 0x3)((void) sizeof (((backward_info[breakpoint.d].f_wrt & 0x3
) != 0x3) ? 1 : 0), __extension__ ({ if ((backward_info[breakpoint
.d].f_wrt & 0x3) != 0x3) ; else __assert_fail ("(backward_info[breakpoint.d].f_wrt & 0x3) != 0x3"
, "ccv_nnc_symbolic_graph_backward.c", 1466, __extension__ __PRETTY_FUNCTION__
); }))
;
1467 backward_info[breakpoint.d].f_wrt |= 0x4;
1468 const ccv_nnc_graph_visit_t* const backward_visit = backward_prep->backward_visit;
1469 const ccv_nnc_autograd_graph_exec_symbol_t* const autograd_execs = backward_prep->autograd_execs;
1470 // Going forward to find whether this breakpoint is a source node to some f_wrt nodes.
1471 ccv_nnc_graph_visit_for(forward_visit, exec_symbol_info, forw_exec, idx){ int _i_; for (_i_ = 0; _i_ < (forward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (forward_visit)
->node[_i_].index; const int _node_unused_ __attribute__((
unused)) = (forward_visit)->node[_i_].term; typeof ((exec_symbol_info
)) const forw_exec __attribute__((unused)) = (exec_symbol_info
) + idx;
{
1472 ccv_nnc_graph_backward_info_t* const node = backward_info + idx;
1473 // If it is tagged on breakpoint flow, but not as both f or wrt, flow through it.
1474 if ((node->f_wrt & 0x4) && (node->f_wrt & 0x3) != 0x3)
1475 for (i = 0; forw_exec->outgoings && i < forw_exec->outgoings->rnum; i++)
1476 {
1477 const int outgoing_idx = *(int*)ccv_array_get(forw_exec->outgoings, i)((void*)(((char*)((forw_exec->outgoings)->data)) + (size_t
)(forw_exec->outgoings)->rsize * (size_t)(i)))
;
1478 ccv_nnc_graph_backward_info_t* const outgoing_node = backward_info + outgoing_idx;
1479 // If this is a f_wrt node. Concatenate.
1480 if (!(outgoing_node->f_wrt & 0x4) && (outgoing_node->f_wrt & 0x3) == 0x3)
1481 ccv_nnc_graph_exec_symbol_concat(graph, autograd_execs[outgoing_idx].symbol, noop);
1482 outgoing_node->f_wrt |= 0x4;
1483 }
1484 } ccv_nnc_graph_visit_endfor} }
1485 // Going backward to find whether this breakpoint is a destination node for some f_wrt_nodes.
1486 ccv_nnc_graph_visit_for(backward_visit, backward_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (backward_visit)->size; _i_
++) { const int idx __attribute__((unused)) = (backward_visit
)->node[_i_].index; const int _node_unused_ __attribute__(
(unused)) = (backward_visit)->node[_i_].term; typeof ((backward_info
)) const node __attribute__((unused)) = (backward_info) + idx
;
{
1487 if ((node->f_wrt & 0x4) && (node->f_wrt & 0x3) != 0x3)
1488 for (i = 0; node->outgoings && i < node->outgoings->rnum; i++)
1489 {
1490 const int outgoing_idx = *(int*)ccv_array_get(node->outgoings, i)((void*)(((char*)((node->outgoings)->data)) + (size_t)(
node->outgoings)->rsize * (size_t)(i)))
;
1491 ccv_nnc_graph_backward_info_t* const outgoing_node = backward_info + outgoing_idx;
1492 // If this is a f_wrt node. Concatenate.
1493 if (!(outgoing_node->f_wrt & 0x4) && (outgoing_node->f_wrt & 0x3) == 0x3)
1494 ccv_nnc_graph_exec_symbol_concat(graph, noop, autograd_execs[outgoing_idx].symbol);
1495 outgoing_node->f_wrt |= 0x4;
1496 }
1497 } ccv_nnc_graph_visit_endfor} }
1498}
1499
1500static ccv_nnc_autograd_tensor_symbol_t* _ccv_nnc_autograd_tensor_symbol_from_tensor_version(ccv_array_t* const autograd_tensor_symbols, const ccv_nnc_autograd_tensor_version_t* const tensor_ver)
1501{
1502 assert(tensor_ver->ref_version)((void) sizeof ((tensor_ver->ref_version) ? 1 : 0), __extension__
({ if (tensor_ver->ref_version) ; else __assert_fail ("tensor_ver->ref_version"
, "ccv_nnc_symbolic_graph_backward.c", 1502, __extension__ __PRETTY_FUNCTION__
); }))
;
1503 const ccv_nnc_tensor_ref_t* const tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, tensor_ver->c)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(tensor_ver
->c)))
;
1504 return (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
1505}
1506
1507static void _ccv_nnc_symbolic_graph_set_backward_carry_overs(const ccv_nnc_symbolic_graph_backward_prep_t* const backward_prep, const ccv_nnc_tensor_symbol_t* const wrt_symbols, const int wrt_symbol_size, ccv_nnc_symbolic_graph_t* const graph)
1508{
1509 int i;
1510 for (i = 0; i < backward_prep->graph->tensor_symbol_info->rnum; i++)
1511 {
1512 const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info = backward_prep->tensor_symbol_info + i;
1513 if (tensor_symbol_info->assign_ref)
1514 {
1515 const int assign_ref = tensor_symbol_info->assign_ref - 1;
1516 ccv_nnc_autograd_tensor_symbol_t* const destination_autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(backward_prep->autograd_tensor_symbols, backward_prep->autograd_tensor_versions + assign_ref);
1517 ccv_nnc_autograd_tensor_symbol_t* const source_autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(backward_prep->autograd_tensor_symbols, backward_prep->autograd_tensor_versions + i);
1518 ccv_nnc_symbolic_graph_set_carry_overs(graph, (ccv_nnc_tensor_symbol_map_t []){
1519 { .source = source_autograd_symbol->symbol, .destination = destination_autograd_symbol->symbol }
1520 }, 1);
1521 }
1522 }
1523 for (i = 0; i < wrt_symbol_size; i++)
1524 {
1525 const int d = wrt_symbols[i].d;
1526 if (d < 0)
1527 continue;
1528 const int ref_d = (!backward_prep->tensor_symbol_info[d].alias_ref) ? d : backward_prep->tensor_symbol_info[d].alias_ref - 1;
1529 const ccv_nnc_autograd_tensor_version_t* const tensor_ver = backward_prep->autograd_tensor_versions + ref_d;
1530 const int init_ref_ver = _ccv_nnc_tensor_ref_version_find_init(tensor_ver);
1531 if (init_ref_ver >= 0)
1532 {
1533 const int init_d = ((ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, init_ref_ver)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(init_ref_ver
)))
)->d;
1534 ccv_nnc_autograd_tensor_symbol_t* const destination_autograd_symbol = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(backward_prep->autograd_tensor_symbols, init_d)((void*)(((char*)((backward_prep->autograd_tensor_symbols)
->data)) + (size_t)(backward_prep->autograd_tensor_symbols
)->rsize * (size_t)(init_d)))
;
1535 ccv_nnc_autograd_tensor_symbol_t* const source_autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(backward_prep->autograd_tensor_symbols, backward_prep->autograd_tensor_versions + ref_d);
1536 ccv_nnc_symbolic_graph_set_carry_overs(graph, (ccv_nnc_tensor_symbol_map_t []){
1537 { .source = source_autograd_symbol->symbol, .destination = destination_autograd_symbol->symbol }
1538 }, 1);
1539 }
1540 }
1541}
1542
1543static void _ccv_nnc_symbolic_graph_add_init_zeros(const ccv_nnc_symbolic_graph_backward_prep_t* const sub_prep, const ccv_nnc_tensor_symbol_t* const wrt_symbols, const int wrt_symbol_size, ccv_nnc_symbolic_graph_t* const graph, ccv_nnc_symbolic_graph_t* const sub_graph, ccv_array_t* const symbols)
1544{
1545 int i;
1546 for (i = 0; i < wrt_symbol_size; i++)
1547 {
1548 const int d = wrt_symbols[i].d;
1549 if (d < 0)
1550 continue;
1551 const int ref_d = (!sub_prep->tensor_symbol_info[d].alias_ref) ? d : sub_prep->tensor_symbol_info[d].alias_ref - 1;
1552 const ccv_nnc_autograd_tensor_version_t* const tensor_ver = sub_prep->autograd_tensor_versions + ref_d;
1553 const int init_ref_ver = _ccv_nnc_tensor_ref_version_find_init(tensor_ver);
1554 if (init_ref_ver >= 0)
1555 {
1556 // Need de-dup logic.
1557 const int init_d = ((ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, init_ref_ver)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(init_ref_ver
)))
)->d;
1558 ccv_nnc_autograd_tensor_symbol_t* const init_autograd_symbol = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(sub_prep->autograd_tensor_symbols, init_d)((void*)(((char*)((sub_prep->autograd_tensor_symbols)->
data)) + (size_t)(sub_prep->autograd_tensor_symbols)->rsize
* (size_t)(init_d)))
;
1559 const ccv_nnc_tensor_symbol_info_t* const sub_init_symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(sub_graph->tensor_symbol_info, init_autograd_symbol->symbol.d)((void*)(((char*)((sub_graph->tensor_symbol_info)->data
)) + (size_t)(sub_graph->tensor_symbol_info)->rsize * (
size_t)(init_autograd_symbol->symbol.d)))
;
1560 // If it doesn't have a parent ref yet, create one.
1561 if (!sub_init_symbol_info->p_ref)
1562 {
1563 ccv_nnc_tensor_symbol_t new_symbol = ccv_nnc_tensor_symbol_new(graph, sub_prep->tensor_symbol_info[ref_d].info, 0);
1564 ccv_nnc_tensor_symbol_set_flags(graph, new_symbol, CCV_NNC_TENSOR_SYMBOL_INIT_ZEROS);
1565 ccv_array_push(symbols, &new_symbol);
1566 ccv_nnc_tensor_symbol_hookup(graph, sub_graph, new_symbol, init_autograd_symbol->symbol);
1567 }
1568 }
1569 }
1570}
1571
1572static void _ccv_nnc_symbolic_graph_add_tape_vars(const ccv_nnc_symbolic_graph_backward_prep_t* const sub_prep, ccv_nnc_symbolic_graph_t* const root, ccv_nnc_symbolic_graph_t* const graph, ccv_nnc_symbolic_graph_t* const sub_graph, ccv_array_t* const symbols)
1573{
1574 int i;
1575 for (i = 0; i < sub_graph->tensor_symbol_info->rnum; i++)
1576 {
1577 const ccv_nnc_tensor_symbol_info_t* const symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(sub_graph->tensor_symbol_info, i)((void*)(((char*)((sub_graph->tensor_symbol_info)->data
)) + (size_t)(sub_graph->tensor_symbol_info)->rsize * (
size_t)(i)))
;
1578 if ((symbol_info->flags & CCV_NNC_TENSOR_SYMBOL_TAPE_VAR) && symbol_info->pair_ref)
1579 {
1580 const int pair_ref = symbol_info->pair_ref - 1;
1581 const ccv_nnc_tensor_symbol_t root_symbol = ccv_nnc_tensor_symbol_resolve(root, (ccv_nnc_tensor_symbol_t){
1582 .d = pair_ref,
1583 .graph = sub_prep->graph,
1584 });
1585 if (root_symbol.d >= 0)
1586 {
1587 ccv_nnc_tensor_symbol_hookup(root, sub_graph, root_symbol, (ccv_nnc_tensor_symbol_t){
1588 .d = i,
1589 .graph = sub_graph,
1590 });
1591 if (symbols)
1592 {
1593 const ccv_nnc_tensor_symbol_t p_symbol = ccv_nnc_tensor_symbol_resolve(graph, (ccv_nnc_tensor_symbol_t){
1594 .d = i,
1595 .graph = sub_graph,
1596 });
1597 ccv_array_push(symbols, &p_symbol);
1598 }
1599 }
1600 }
1601 }
1602}
1603
1604static void _ccv_nnc_symbolic_graph_backward_gen(const ccv_nnc_symbolic_graph_backward_prep_t* const backward_prep, const ccv_nnc_tensor_symbol_t* const f_symbols, const int f_symbol_size, const ccv_nnc_tensor_symbol_t* const wrt_symbols, const int wrt_symbol_size, ccv_nnc_symbolic_graph_t* const graph, ccv_nnc_symbolic_graph_t* const root)
1605{
1606 assert(graph == backward_prep->graph || graph->pair == backward_prep->graph)((void) sizeof ((graph == backward_prep->graph || graph->
pair == backward_prep->graph) ? 1 : 0), __extension__ ({ if
(graph == backward_prep->graph || graph->pair == backward_prep
->graph) ; else __assert_fail ("graph == backward_prep->graph || graph->pair == backward_prep->graph"
, "ccv_nnc_symbolic_graph_backward.c", 1606, __extension__ __PRETTY_FUNCTION__
); }))
;
1
Assuming 'graph' is not equal to field 'graph'
2
Assuming field 'pair' is equal to field 'graph'
3
Taking true branch
1607 const int exec_symbol_info_size = backward_prep->exec_symbol_info_size;
1608 const int tensor_symbol_info_size = backward_prep->tensor_symbol_info_size;
1609 const ccv_nnc_graph_exec_symbol_info_t* const exec_symbol_info = backward_prep->exec_symbol_info;
1610 const ccv_nnc_tensor_symbol_info_t* const tensor_symbol_info = backward_prep->tensor_symbol_info;
1611 int i, j, k, p;
1612 ccv_array_t* const autograd_tensor_symbols = backward_prep->autograd_tensor_symbols;
1613 // Generate required symbols based on the information gathered above.
1614 for (i = 0; i < autograd_tensor_symbols->rnum; i++)
4
Assuming 'i' is >= field 'rnum'
5
Loop condition is false. Execution continues on line 1633
1615 {
1616 ccv_nnc_autograd_tensor_symbol_t* symbol = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, i)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(i)))
;
1617 assert(symbol->d >= 0)((void) sizeof ((symbol->d >= 0) ? 1 : 0), __extension__
({ if (symbol->d >= 0) ; else __assert_fail ("symbol->d >= 0"
, "ccv_nnc_symbolic_graph_backward.c", 1617, __extension__ __PRETTY_FUNCTION__
); }))
;
1618 assert(symbol->d < tensor_symbol_info_size)((void) sizeof ((symbol->d < tensor_symbol_info_size) ?
1 : 0), __extension__ ({ if (symbol->d < tensor_symbol_info_size
) ; else __assert_fail ("symbol->d < tensor_symbol_info_size"
, "ccv_nnc_symbolic_graph_backward.c", 1618, __extension__ __PRETTY_FUNCTION__
); }))
;
1619 const ccv_nnc_tensor_symbol_info_t* const forw_symbol = tensor_symbol_info + symbol->d;
1620 if (!symbol->alias_ref)
1621 {
1622 assert(!forw_symbol->alias_ref)((void) sizeof ((!forw_symbol->alias_ref) ? 1 : 0), __extension__
({ if (!forw_symbol->alias_ref) ; else __assert_fail ("!forw_symbol->alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 1622, __extension__ __PRETTY_FUNCTION__
); }))
;
1623 symbol->symbol = ccv_nnc_tensor_symbol_new(graph, forw_symbol->info, 0);
1624 ccv_nnc_tensor_symbol_set_flags(graph, symbol->symbol, symbol->flags);
1625 } else {
1626 assert(forw_symbol->alias_ref)((void) sizeof ((forw_symbol->alias_ref) ? 1 : 0), __extension__
({ if (forw_symbol->alias_ref) ; else __assert_fail ("forw_symbol->alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 1626, __extension__ __PRETTY_FUNCTION__
); }))
;
1627 assert(symbol->flags == 0)((void) sizeof ((symbol->flags == 0) ? 1 : 0), __extension__
({ if (symbol->flags == 0) ; else __assert_fail ("symbol->flags == 0"
, "ccv_nnc_symbolic_graph_backward.c", 1627, __extension__ __PRETTY_FUNCTION__
); }))
; // We don't set flags on alias.
1628 // Due to our generation order, this must be after the original symbol is created.
1629 ccv_nnc_autograd_tensor_symbol_t* ref = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, symbol->alias_ref - 1)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(symbol->alias_ref
- 1)))
;
1630 symbol->symbol = ccv_nnc_tensor_symbol_alias_new(graph, ref->symbol, forw_symbol->ofs, forw_symbol->stride, forw_symbol->info, 0);
1631 }
1632 }
1633 ccv_nnc_graph_backward_info_t* const backward_info = backward_prep->backward_info;
1634 ccv_nnc_autograd_graph_exec_symbol_t* const autograd_execs = backward_prep->autograd_execs;
1635 ccv_array_t* symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1636 ccv_array_t* symbol_map = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_map_t), 0, 0);
1637 ccv_array_t* sub_f_symbols = 0;
1638 ccv_array_t* sub_wrt_symbols = 0;
1639 ccv_array_t* sub_execs = 0;
1640 for (i = 0; i < exec_symbol_info_size; i++)
6
Assuming 'i' is < 'exec_symbol_info_size'
7
Loop condition is true. Entering loop body
1641 {
1642 // This is not going to be an interesting node. Skip.
1643 if ((backward_info[i].f_wrt & 0x3) != 0x3)
8
Assuming the condition is false
9
Taking false branch
1644 continue;
1645 ccv_nnc_graph_backward_info_t* const back_info = backward_info + i;
1646 ccv_nnc_autograd_graph_exec_symbol_t* const back_exec = autograd_execs + i;
1647 if (back_exec->cmd.cmd == CCV_NNC_NOOP)
10
Assuming field 'cmd' is not equal to CCV_NNC_NOOP
11
Taking false branch
1648 {
1649 back_exec->symbol = ccv_nnc_graph_exec_symbol_new(graph, back_exec->cmd, 0, 0, 0, 0, 0);
1650 continue;
1651 }
1652 const ccv_nnc_graph_exec_symbol_info_t* const forw_exec = exec_symbol_info + i;
1653 if (forw_exec->flags & CCV_NNC_GRAPH_EXEC_P_WHILE)
12
Assuming the condition is true
13
Taking true branch
1654 {
1655 ccv_array_clear(symbols);
1656 const int graph_ref = CCV_NNC_GRAPH_REF(forw_exec)((forw_exec)->_heap_graph_ref ? (forw_exec)->_heap_graph_ref
: (forw_exec)->_inline_graph_ref)
[0] - 1;
14
Assuming field '_heap_graph_ref' is null
15
'?' condition is false
1657 ccv_nnc_symbolic_graph_backward_prep_t* sub_prep = backward_prep->sub_preps + graph_ref;
1658 ccv_nnc_symbolic_graph_t* sub_graph = ccv_nnc_symbolic_graph_new();
1659 sub_graph->pair = sub_prep->graph;
1660 if (!sub_wrt_symbols
15.1
'sub_wrt_symbols' is null
)
16
Taking true branch
1661 sub_wrt_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1662 // I am done, need to redo above for sub_prep, and it has to be successful now.
1663 if (!sub_f_symbols
16.1
'sub_f_symbols' is null
)
17
Taking true branch
1664 sub_f_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1665 _ccv_nnc_symbolic_graph_backward_prep_sub_f_wrt_symbols(forw_exec, sub_prep->graph, graph_ref, tensor_symbol_info, back_info->input_bitmasks, back_info->output_bitmasks, sub_f_symbols, sub_wrt_symbols);
18
Calling '_ccv_nnc_symbolic_graph_backward_prep_sub_f_wrt_symbols'
1666 _ccv_nnc_symbolic_graph_backward_gen(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, 0)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(0)))
, sub_f_symbols->rnum, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, sub_graph, root);
1667 back_exec->symbol = ccv_nnc_symbolic_graph_while(graph, back_exec->cmd.cmd, sub_graph, forw_exec->name);
1668 if (!sub_execs)
1669 sub_execs = ccv_array_new(sizeof(ccv_nnc_graph_exec_symbol_t), 0, 0);
1670 ccv_array_clear(sub_execs);
1671 // Find the breakpoints in forward graph, creating the reverse one.
1672 for (j = 0; j < sub_prep->graph->breakpoint_size; j++)
1673 {
1674 const int d = sub_prep->graph->breakpoints[j].d;
1675 if (sub_prep->autograd_execs[d].symbol.graph)
1676 ccv_array_push(sub_execs, &sub_prep->autograd_execs[d].symbol);
1677 else
1678 _ccv_nnc_add_backward_breakpoint_for_symbol(sub_prep, sub_prep->graph->breakpoints[j], sub_graph, sub_execs);
1679 }
1680 ccv_nnc_symbolic_graph_set_while_expr(sub_graph, NOOP_GRAPH_WHILE_EXPR(ccv_nnc_graph_while_f)(1), 0, 0, 0, (ccv_nnc_graph_exec_symbol_t*)ccv_array_get(sub_execs, 0)((void*)(((char*)((sub_execs)->data)) + (size_t)(sub_execs
)->rsize * (size_t)(0)))
, sub_execs->rnum);
1681 ccv_nnc_graph_exec_symbol_autogen(sub_graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1682 _ccv_nnc_symbolic_graph_set_backward_carry_overs(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, sub_graph);
1683 for (j = 0; j < back_exec->input_size; j++)
1684 if (back_info->input_bitmasks[j >> 6] & ((uint64_t)1 << j))
1685 ccv_array_push(symbols, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->inputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
inputs[j])))
)->symbol));
1686 // Find whether in the wrt symbols, anything we need to init to zero, if there are, these need to be inputs here too.
1687 _ccv_nnc_symbolic_graph_add_init_zeros(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, graph, sub_graph, symbols);
1688 _ccv_nnc_symbolic_graph_add_tape_vars(sub_prep, root, graph, sub_graph, symbols);
1689 // input_size at this point, may be different from the back_exec->input_size, the reason is because we may added zeroing tensors as input tensors.
1690 const int input_size = symbols->rnum;
1691 for (j = 0; j < back_exec->output_size; j++)
1692 if (back_info->output_bitmasks[j >> 6] & ((uint64_t)1 << j))
1693 ccv_array_push(symbols, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->outputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
outputs[j])))
)->symbol));
1694 const int output_size = symbols->rnum - input_size;
1695 const int p_idx = sub_prep->graph->p_idx - 1;
1696 assert(back_exec->input_size == forw_exec->output_size)((void) sizeof ((back_exec->input_size == forw_exec->output_size
) ? 1 : 0), __extension__ ({ if (back_exec->input_size == forw_exec
->output_size) ; else __assert_fail ("back_exec->input_size == forw_exec->output_size"
, "ccv_nnc_symbolic_graph_backward.c", 1696, __extension__ __PRETTY_FUNCTION__
); }))
;
1697 k = 0;
1698 for (j = 0; j < back_exec->input_size; j++)
1699 if (back_info->input_bitmasks[j >> 6] & ((uint64_t)1 << j))
1700 {
1701 const ccv_nnc_tensor_symbol_info_t* const info = tensor_symbol_info + forw_exec->outputs[j];
1702 const int s_idx = *(int*)ccv_array_get(info->s_ref, p_idx)((void*)(((char*)((info->s_ref)->data)) + (size_t)(info
->s_ref)->rsize * (size_t)(p_idx)))
- 1;
1703 assert(s_idx >= 0)((void) sizeof ((s_idx >= 0) ? 1 : 0), __extension__ ({ if
(s_idx >= 0) ; else __assert_fail ("s_idx >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1703, __extension__ __PRETTY_FUNCTION__); }))
;
1704 const ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(sub_prep->autograd_tensor_symbols, sub_prep->autograd_tensor_versions + s_idx);
1705 ccv_nnc_tensor_symbol_hookup(graph, sub_graph, *(ccv_nnc_tensor_symbol_t*)ccv_array_get(symbols, k)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(k)))
, autograd_symbol->symbol);
1706 ++k;
1707 }
1708 k = input_size; // Reset k, the symbol pass already set up by add_init_zeros.
1709 assert(back_exec->output_size == forw_exec->input_size)((void) sizeof ((back_exec->output_size == forw_exec->input_size
) ? 1 : 0), __extension__ ({ if (back_exec->output_size ==
forw_exec->input_size) ; else __assert_fail ("back_exec->output_size == forw_exec->input_size"
, "ccv_nnc_symbolic_graph_backward.c", 1709, __extension__ __PRETTY_FUNCTION__
); }))
;
1710 for (j = 0; j < back_exec->output_size; j++)
1711 if (back_info->output_bitmasks[j >> 6] & ((uint64_t)1 << j))
1712 {
1713 const ccv_nnc_tensor_symbol_info_t* const info = tensor_symbol_info + forw_exec->inputs[j];
1714 const int s_idx = *(int*)ccv_array_get(info->s_ref, p_idx)((void*)(((char*)((info->s_ref)->data)) + (size_t)(info
->s_ref)->rsize * (size_t)(p_idx)))
- 1;
1715 assert(s_idx >= 0)((void) sizeof ((s_idx >= 0) ? 1 : 0), __extension__ ({ if
(s_idx >= 0) ; else __assert_fail ("s_idx >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1715, __extension__ __PRETTY_FUNCTION__); }))
;
1716 const ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(sub_prep->autograd_tensor_symbols, sub_prep->autograd_tensor_versions + s_idx);
1717 ccv_nnc_tensor_symbol_hookup(graph, sub_graph, *(ccv_nnc_tensor_symbol_t*)ccv_array_get(symbols, k)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(k)))
, autograd_symbol->symbol);
1718 ++k;
1719 }
1720 ccv_nnc_graph_exec_symbol_set_io(graph, back_exec->symbol, ccv_array_get(symbols, 0)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(0)))
, input_size, ccv_array_get(symbols, input_size)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(input_size)))
, output_size);
1721 } else if (forw_exec->flags & CCV_NNC_GRAPH_EXEC_CASE_OF) {
1722 ccv_array_clear(symbol_map);
1723 for (j = 0; j < back_exec->output_size; j++)
1724 if (back_info->output_bitmasks[j >> 6] & ((uint64_t)1 << j))
1725 {
1726 ccv_nnc_tensor_symbol_map_t symbol = {
1727 .source = ((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->inputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
inputs[j])))
)->symbol,
1728 .destination = ((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->outputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
outputs[j])))
)->symbol,
1729 };
1730 ccv_array_push(symbol_map, &symbol);
1731 }
1732 const int symbol_map_size = symbol_map->rnum;
1733 back_exec->symbol = ccv_nnc_symbolic_graph_case_of_new(graph, back_exec->cmd.cmd, 0, 0, ccv_array_get(symbol_map, 0)((void*)(((char*)((symbol_map)->data)) + (size_t)(symbol_map
)->rsize * (size_t)(0)))
, symbol_map_size, forw_exec->name);
1734 ccv_nnc_symbolic_graph_set_case_of_expr(graph, back_exec->symbol, NOOP_GRAPH_CASE_OF_EXPR(ccv_nnc_graph_case_of_f)(1), 0);
1735 for (p = 0; p < forw_exec->graph_ref_size; p++)
1736 {
1737 const int graph_ref = CCV_NNC_GRAPH_REF(forw_exec)((forw_exec)->_heap_graph_ref ? (forw_exec)->_heap_graph_ref
: (forw_exec)->_inline_graph_ref)
[p] - 1;
1738 ccv_nnc_symbolic_graph_backward_prep_t* sub_prep = backward_prep->sub_preps + graph_ref;
1739 ccv_nnc_symbolic_graph_t* sub_graph = ccv_nnc_symbolic_graph_new();
1740 sub_graph->pair = sub_prep->graph;
1741 if (!sub_wrt_symbols)
1742 sub_wrt_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1743 // I am done, need to redo above for sub_prep, and it has to be successful now.
1744 if (!sub_f_symbols)
1745 sub_f_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
1746 _ccv_nnc_symbolic_graph_backward_prep_sub_f_wrt_symbols(forw_exec, sub_prep->graph, graph_ref, tensor_symbol_info, back_info->input_bitmasks, back_info->output_bitmasks, sub_f_symbols, sub_wrt_symbols);
1747 _ccv_nnc_symbolic_graph_backward_gen(sub_prep, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, 0)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(0)))
, sub_f_symbols->rnum, (ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, 0)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(0)))
, sub_wrt_symbols->rnum, sub_graph, root);
1748 ccv_array_clear(symbol_map);
1749 k = 0;
1750 for (j = 0; j < back_exec->output_size; j++)
1751 if (back_info->output_bitmasks[j >> 6] & ((uint64_t)1 << j))
1752 {
1753 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_wrt_symbols, k)((void*)(((char*)((sub_wrt_symbols)->data)) + (size_t)(sub_wrt_symbols
)->rsize * (size_t)(k)))
)->d;
1754 if (d >= 0)
1755 {
1756 const ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(sub_prep->autograd_tensor_symbols, sub_prep->autograd_tensor_versions + d);
1757 ccv_nnc_tensor_symbol_map_t symbol = {
1758 .source = autograd_symbol->symbol,
1759 .destination = ((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->outputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
outputs[j])))
)->symbol,
1760 };
1761 ccv_array_push(symbol_map, &symbol);
1762 } else {
1763 // Create a new tensor in sub-graph and set it to be 0.
1764 const ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->outputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
outputs[j])))
;
1765 // autograd_symbol->d points to the corresponding forward tensor.
1766 ccv_nnc_tensor_symbol_t zero_symbol = ccv_nnc_tensor_symbol_new(sub_graph, tensor_symbol_info[autograd_symbol->d].info, 0);
1767 ccv_nnc_graph_exec_symbol_new(sub_graph, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, 0, 0, &zero_symbol, 1, 0);
1768 ccv_nnc_tensor_symbol_map_t symbol = {
1769 .source = zero_symbol,
1770 .destination = autograd_symbol->symbol,
1771 };
1772 ccv_array_push(symbol_map, &symbol);
1773 }
1774 ++k;
1775 }
1776 ccv_nnc_graph_exec_symbol_autogen(sub_graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1777 const int symbol_map_size = symbol_map->rnum;
1778 ccv_nnc_symbolic_graph_set_case_of(graph, back_exec->symbol, sub_graph, p, ccv_array_get(symbol_map, 0)((void*)(((char*)((symbol_map)->data)) + (size_t)(symbol_map
)->rsize * (size_t)(0)))
, symbol_map_size);
1779 // Hookup input only after this becomes a sub graph of the graph.
1780 k = 0;
1781 for (j = 0; j < back_exec->input_size; j++)
1782 if (back_info->input_bitmasks[j >> 6] & ((uint64_t)1 << j))
1783 {
1784 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(sub_f_symbols, k)((void*)(((char*)((sub_f_symbols)->data)) + (size_t)(sub_f_symbols
)->rsize * (size_t)(k)))
)->d;
1785 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1785, __extension__ __PRETTY_FUNCTION__); }))
;
1786 // No corresponding sub tensors allocated. Skip.
1787 if (!sub_prep->autograd_tensor_versions[d].ref_version ||
1788 !sub_prep->autograd_tensor_versions[d].ref_version->rnum)
1789 continue;
1790 const ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = _ccv_nnc_autograd_tensor_symbol_from_tensor_version(sub_prep->autograd_tensor_symbols, sub_prep->autograd_tensor_versions + d);
1791 ccv_nnc_tensor_symbol_hookup(graph, sub_graph, ((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->inputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
inputs[j])))
)->symbol, autograd_symbol->symbol);
1792 ++k;
1793 }
1794 // Need to make sure tape vars are hooked up.
1795 _ccv_nnc_symbolic_graph_add_tape_vars(sub_prep, root, graph, sub_graph, 0);
1796 }
1797 } else {
1798 ccv_array_clear(symbols);
1799 // Gradient inputs.
1800 for (j = 0; j < back_exec->input_size; j++)
1801 if (back_info->input_bitmasks[j >> 6] & ((uint64_t)1 << j))
1802 ccv_array_push(symbols, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->inputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
inputs[j])))
)->symbol));
1803 else
1804 ccv_array_push(symbols, &NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
1805 // Inputs from forward function.
1806 for (j = 0; j < forw_exec->input_size; j++)
1807 if (!(back_info->input_bitmasks[(j + back_exec->input_size) >> 6] & ((uint64_t)1 << (j + back_exec->input_size))))
1808 ccv_array_push(symbols, &NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
1809 else {
1810 const ccv_nnc_tensor_symbol_t symbol = {
1811 .d = forw_exec->inputs[j],
1812 .graph = backward_prep->graph
1813 };
1814 if (graph == backward_prep->graph)
1815 ccv_array_push(symbols, &symbol);
1816 else { // Otherwise, create a new symbol, and set its pair to the old symbol.
1817 const ccv_nnc_tensor_symbol_t new_symbol = ccv_nnc_tensor_symbol_new(graph, tensor_symbol_info[forw_exec->inputs[j]].info, tensor_symbol_info[forw_exec->inputs[j]].name);
1818 ccv_nnc_tensor_symbol_pair_with(graph, new_symbol, symbol);
1819 const int flags = ccv_nnc_tensor_symbol_flags(backward_prep->graph, symbol) | CCV_NNC_TENSOR_SYMBOL_TAPE_VAR;
1820 ccv_nnc_tensor_symbol_set_flags(graph, new_symbol, flags);
1821 ccv_nnc_tensor_symbol_set_flags(backward_prep->graph, symbol, flags);
1822 ccv_array_push(symbols, &new_symbol);
1823 }
1824 }
1825 // Outputs from forward function.
1826 for (j = 0; j < forw_exec->output_size; j++)
1827 if (!(back_info->input_bitmasks[(j + back_exec->input_size + forw_exec->input_size) >> 6] & ((uint64_t)1 << (j + back_exec->input_size + forw_exec->input_size))))
1828 ccv_array_push(symbols, &NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
1829 else {
1830 const ccv_nnc_tensor_symbol_t symbol = {
1831 .d = forw_exec->outputs[j],
1832 .graph = backward_prep->graph
1833 };
1834 if (graph == backward_prep->graph)
1835 ccv_array_push(symbols, &symbol);
1836 else { // Otherwise, create a new symbol, and set its pair to the old symbol.
1837 const ccv_nnc_tensor_symbol_t new_symbol = ccv_nnc_tensor_symbol_new(graph, tensor_symbol_info[forw_exec->outputs[j]].info, tensor_symbol_info[forw_exec->outputs[j]].name);
1838 ccv_nnc_tensor_symbol_pair_with(graph, new_symbol, symbol);
1839 const int flags = ccv_nnc_tensor_symbol_flags(backward_prep->graph, symbol) | CCV_NNC_TENSOR_SYMBOL_TAPE_VAR;
1840 ccv_nnc_tensor_symbol_set_flags(graph, new_symbol, flags);
1841 ccv_nnc_tensor_symbol_set_flags(backward_prep->graph, symbol, flags);
1842 ccv_array_push(symbols, &new_symbol);
1843 }
1844 }
1845 for (j = 0; j < back_exec->output_size; j++)
1846 if (back_info->output_bitmasks[j >> 6] & ((uint64_t)1 << j))
1847 ccv_array_push(symbols, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, back_exec->outputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(back_exec->
outputs[j])))
)->symbol));
1848 else
1849 ccv_array_push(symbols, &NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
1850 back_exec->symbol = ccv_nnc_graph_exec_symbol_new(graph, back_exec->cmd, ccv_array_get(symbols, 0)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(0)))
, back_exec->input_size + forw_exec->input_size + forw_exec->output_size, ccv_array_get(symbols, back_exec->input_size + forw_exec->input_size + forw_exec->output_size)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(back_exec->input_size + forw_exec->input_size
+ forw_exec->output_size)))
, back_exec->output_size, 0);
1851 ccv_nnc_graph_exec_symbol_set_hint(graph, back_exec->symbol, exec_symbol_info[i].hint);
1852 ccv_nnc_graph_exec_symbol_pair_with(graph, back_exec->symbol, (ccv_nnc_graph_exec_symbol_t){
1853 .d = i,
1854 .graph = backward_prep->graph,
1855 });
1856 }
1857 }
1858 if (sub_f_symbols)
1859 ccv_array_free(sub_f_symbols);
1860 if (sub_wrt_symbols)
1861 ccv_array_free(sub_wrt_symbols);
1862 if (sub_execs)
1863 ccv_array_free(sub_execs);
1864 ccv_array_t* const sum_or_set_execs = backward_prep->sum_or_set_execs;
1865 for (i = 0; i < sum_or_set_execs->rnum; i++)
1866 {
1867 ccv_nnc_sum_or_set_graph_exec_symbol_t* sum_or_set_exec = (ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, i)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(i)))
;
1868 // It is sum, set don't have inputs.
1869 if (sum_or_set_exec->input_size)
1870 {
1871 ccv_array_clear(symbols);
1872 // This is to sum.
1873 for (j = 0; j < sum_or_set_exec->input_size; j++)
1874 ccv_array_push(symbols, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, sum_or_set_exec->inputs[j])((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(sum_or_set_exec
->inputs[j])))
)->symbol));
1875 ccv_nnc_cmd_t cmd = ccv_nnc_cmd(CCV_NNC_EWSUM_FORWARD, 0, CMD_GENERIC()((ccv_nnc_cmd_param_t){.size={.dim={1,1,1}}}), 0);
1876 sum_or_set_exec->symbol = ccv_nnc_graph_exec_symbol_new(graph, cmd, ccv_array_get(symbols, 0)((void*)(((char*)((symbols)->data)) + (size_t)(symbols)->
rsize * (size_t)(0)))
, sum_or_set_exec->input_size, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, sum_or_set_exec->output)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(sum_or_set_exec
->output)))
)->symbol), 1, 0);
1877 } else
1878 sum_or_set_exec->symbol = ccv_nnc_graph_exec_symbol_new(graph, CMD_SET_FORWARD(sum_or_set_exec->value)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={sum_or_set_exec->value,}}}, 0)
, 0, 0, &(((ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, sum_or_set_exec->output)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(sum_or_set_exec
->output)))
)->symbol), 1, 0);
1879 }
1880 ccv_array_free(symbol_map);
1881 ccv_array_free(symbols);
1882 for (i = 0; i < exec_symbol_info_size; i++)
1883 {
1884 // This is not going to be an interesting node. Skip.
1885 if ((backward_info[i].f_wrt & 0x3) != 0x3)
1886 continue;
1887 ccv_nnc_autograd_graph_exec_symbol_t* const back_exec = autograd_execs + i;
1888 // If on the same graph, we cannot decide whether it is before or after the forw_exec, enforcing it is after forw_exec.
1889 if (graph == backward_prep->graph)
1890 ccv_nnc_graph_exec_symbol_concat(graph, (ccv_nnc_graph_exec_symbol_t){
1891 .d = i,
1892 .graph = graph
1893 }, back_exec->symbol);
1894 if (back_exec->outgoings)
1895 for (j = 0; j < back_exec->outgoings->rnum; j++)
1896 {
1897 int d = *(int*)ccv_array_get(back_exec->outgoings, j)((void*)(((char*)((back_exec->outgoings)->data)) + (size_t
)(back_exec->outgoings)->rsize * (size_t)(j)))
;
1898 if (d < exec_symbol_info_size)
1899 ccv_nnc_graph_exec_symbol_concat(graph, back_exec->symbol, autograd_execs[d].symbol);
1900 else
1901 ccv_nnc_graph_exec_symbol_concat(graph, back_exec->symbol, ((ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, d - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(d - exec_symbol_info_size)))
)->symbol);
1902 }
1903 }
1904 for (i = 0; i < sum_or_set_execs->rnum; i++)
1905 {
1906 ccv_nnc_sum_or_set_graph_exec_symbol_t* exec = (ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, i)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(i)))
;
1907 if (exec->outgoings)
1908 for (j = 0; j < exec->outgoings->rnum; j++)
1909 {
1910 int d = *(int*)ccv_array_get(exec->outgoings, j)((void*)(((char*)((exec->outgoings)->data)) + (size_t)(
exec->outgoings)->rsize * (size_t)(j)))
;
1911 if (d < exec_symbol_info_size)
1912 ccv_nnc_graph_exec_symbol_concat(graph, exec->symbol, autograd_execs[d].symbol);
1913 else
1914 ccv_nnc_graph_exec_symbol_concat(graph, exec->symbol, ((ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, d - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(d - exec_symbol_info_size)))
)->symbol);
1915 }
1916 }
1917 // Now, everything is done, set the metadata on graph so that we can lookup later for backward symbols
1918 if (graph->backward.tensor_symbol_idx)
1919 graph->backward.tensor_symbol_idx = (int*)ccreallocrealloc(graph->backward.tensor_symbol_idx, sizeof(int) * (graph->tensor_symbol_info->rnum + tensor_symbol_info_size));
1920 else
1921 graph->backward.tensor_symbol_idx = (int*)ccmallocmalloc(sizeof(int) * (graph->tensor_symbol_info->rnum + tensor_symbol_info_size));
1922 graph->backward.tensor_symbol_size = tensor_symbol_info_size;
1923 graph->backward.exec_symbol_idx = graph->backward.tensor_symbol_idx + tensor_symbol_info_size;
1924 graph->backward.exec_symbol_size = graph->tensor_symbol_info->rnum;
1925 for (i = 0; i < tensor_symbol_info_size; i++)
1926 graph->backward.tensor_symbol_idx[i] = -1;
1927 for (i = 0; i < graph->backward.exec_symbol_size; i++)
1928 graph->backward.exec_symbol_idx[i] = -1;
1929 ccv_nnc_autograd_tensor_version_t* const autograd_tensor_versions = backward_prep->autograd_tensor_versions;
1930 // Assigning for wrt symbols.
1931 for (i = 0; i < wrt_symbol_size; i++)
1932 {
1933 const int d = wrt_symbols[i].d;
1934 if (d < 0)
1935 continue;
1936 assert(d < tensor_symbol_info_size)((void) sizeof ((d < tensor_symbol_info_size) ? 1 : 0), __extension__
({ if (d < tensor_symbol_info_size) ; else __assert_fail (
"d < tensor_symbol_info_size", "ccv_nnc_symbolic_graph_backward.c"
, 1936, __extension__ __PRETTY_FUNCTION__); }))
;
1937 const ccv_nnc_tensor_symbol_info_t* const forw_symbol = tensor_symbol_info + d;
1938 ccv_nnc_autograd_tensor_version_t* const tensor_ver = autograd_tensor_versions + ((!forw_symbol->alias_ref) ? d : forw_symbol->alias_ref - 1);
1939 assert(tensor_ver->ref_version)((void) sizeof ((tensor_ver->ref_version) ? 1 : 0), __extension__
({ if (tensor_ver->ref_version) ; else __assert_fail ("tensor_ver->ref_version"
, "ccv_nnc_symbolic_graph_backward.c", 1939, __extension__ __PRETTY_FUNCTION__
); }))
;
1940 ccv_nnc_tensor_ref_t* const tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, tensor_ver->c)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(tensor_ver
->c)))
;
1941 ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
1942 // If this wrt symbol is an alias, create extra alias for this.
1943 if (!forw_symbol->alias_ref)
1944 graph->backward.tensor_symbol_idx[d] = autograd_symbol->symbol.d;
1945 else // We create new alias, and this cannot be referenced from exec_symbol_idx because its size limited to previous tensor symbol size.
1946 graph->backward.tensor_symbol_idx[d] = ccv_nnc_tensor_symbol_alias_new(graph, autograd_symbol->symbol, forw_symbol->ofs, forw_symbol->stride, forw_symbol->info, 0).d;
1947 const int dd = autograd_symbol->symbol.d;
1948 const int x = tensor_ref->x;
1949 if (tensor_ref->exec_registry && tensor_ref->exec_registry->rnum) // Create no-op node.
1950 {
1951 ccv_nnc_graph_exec_symbol_t noop = ccv_nnc_graph_exec_symbol_new(graph, ccv_nnc_cmd(CCV_NNC_NOOP, 0, CMD_GENERIC()((ccv_nnc_cmd_param_t){.size={.dim={1,1,1}}}), 0), 0, 0, 0, 0, 0);
1952 if (x < exec_symbol_info_size)
1953 ccv_nnc_graph_exec_symbol_concat(graph, autograd_execs[x].symbol, noop);
1954 else
1955 ccv_nnc_graph_exec_symbol_concat(graph, ((ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, x - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(x - exec_symbol_info_size)))
)->symbol, noop);
1956 for (j = 0; j < tensor_ref->exec_registry->rnum; j++)
1957 {
1958 const int x = *(int*)ccv_array_get(tensor_ref->exec_registry, j)((void*)(((char*)((tensor_ref->exec_registry)->data)) +
(size_t)(tensor_ref->exec_registry)->rsize * (size_t)(
j)))
;
1959 assert(x >= 0)((void) sizeof ((x >= 0) ? 1 : 0), __extension__ ({ if (x >=
0) ; else __assert_fail ("x >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1959, __extension__ __PRETTY_FUNCTION__); }))
; /* Otherwise, this is initialization tensor, which is impossible to be summed up by. */
1960 assert(x < exec_symbol_info_size)((void) sizeof ((x < exec_symbol_info_size) ? 1 : 0), __extension__
({ if (x < exec_symbol_info_size) ; else __assert_fail ("x < exec_symbol_info_size"
, "ccv_nnc_symbolic_graph_backward.c", 1960, __extension__ __PRETTY_FUNCTION__
); }))
; // exec_registry is only used by alias_registry, it simply cannot reference to a sum operation.
1961 ccv_nnc_graph_exec_symbol_concat(graph, autograd_execs[x].symbol, noop);
1962 }
1963 graph->backward.exec_symbol_idx[dd] = noop.d;
1964 } else {
1965 if (x < exec_symbol_info_size)
1966 graph->backward.exec_symbol_idx[dd] = autograd_execs[x].symbol.d;
1967 else
1968 graph->backward.exec_symbol_idx[dd] = ((ccv_nnc_sum_or_set_graph_exec_symbol_t*)ccv_array_get(sum_or_set_execs, x - exec_symbol_info_size)((void*)(((char*)((sum_or_set_execs)->data)) + (size_t)(sum_or_set_execs
)->rsize * (size_t)(x - exec_symbol_info_size)))
)->symbol.d;
1969 }
1970 }
1971 // Assigning for f symbols.
1972 for (i = 0; i < f_symbol_size; i++)
1973 {
1974 const int d = f_symbols[i].d;
1975 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 1975, __extension__ __PRETTY_FUNCTION__); }))
;
1976 assert(d < tensor_symbol_info_size)((void) sizeof ((d < tensor_symbol_info_size) ? 1 : 0), __extension__
({ if (d < tensor_symbol_info_size) ; else __assert_fail (
"d < tensor_symbol_info_size", "ccv_nnc_symbolic_graph_backward.c"
, 1976, __extension__ __PRETTY_FUNCTION__); }))
;
1977 const ccv_nnc_autograd_tensor_version_t* const tensor_ver = autograd_tensor_versions + d;
1978 if (tensor_ver->ref_version)
1979 {
1980 // We don't use _ccv_nnc_autograd_tensor_symbol_from_tensor_version because that select the last version, but for us, we need the first version.
1981 const ccv_nnc_tensor_ref_t* const tensor_ref = (ccv_nnc_tensor_ref_t*)ccv_array_get(tensor_ver->ref_version, 0)((void*)(((char*)((tensor_ver->ref_version)->data)) + (
size_t)(tensor_ver->ref_version)->rsize * (size_t)(0)))
;
1982 const ccv_nnc_autograd_tensor_symbol_t* const autograd_symbol = (ccv_nnc_autograd_tensor_symbol_t*)ccv_array_get(autograd_tensor_symbols, tensor_ref->d)((void*)(((char*)((autograd_tensor_symbols)->data)) + (size_t
)(autograd_tensor_symbols)->rsize * (size_t)(tensor_ref->
d)))
;
1983 graph->backward.tensor_symbol_idx[d] = autograd_symbol->symbol.d;
1984 // Cannot find relevant backward exec symbols for f, it could be many.
1985 }
1986 }
1987}
1988
1989void ccv_nnc_symbolic_graph_backward(ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const f_symbols, const int f_symbol_size, const ccv_nnc_tensor_symbol_t* const wrt_symbols, const int wrt_symbol_size, const ccv_nnc_graph_exec_symbol_t* const sources, const int source_size, const ccv_nnc_graph_exec_symbol_t* const destinations, const int destination_size)
1990{
1991 int i;
1992 // f symbols cannot be alias.
1993 for (i = 0; i < f_symbol_size; i++)
1994 if (f_symbols[i].d >= 0)
1995 {
1996 assert(f_symbols[i].graph == graph)((void) sizeof ((f_symbols[i].graph == graph) ? 1 : 0), __extension__
({ if (f_symbols[i].graph == graph) ; else __assert_fail ("f_symbols[i].graph == graph"
, "ccv_nnc_symbolic_graph_backward.c", 1996, __extension__ __PRETTY_FUNCTION__
); }))
; // f symbol has to be in the current graph.
1997 assert(!((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, f_symbols[i].d))->alias_ref)((void) sizeof ((!((ccv_nnc_tensor_symbol_info_t*)((void*)(((
char*)((graph->tensor_symbol_info)->data)) + (size_t)(graph
->tensor_symbol_info)->rsize * (size_t)(f_symbols[i].d)
)))->alias_ref) ? 1 : 0), __extension__ ({ if (!((ccv_nnc_tensor_symbol_info_t
*)((void*)(((char*)((graph->tensor_symbol_info)->data))
+ (size_t)(graph->tensor_symbol_info)->rsize * (size_t
)(f_symbols[i].d))))->alias_ref) ; else __assert_fail ("!((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, f_symbols[i].d))->alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 1997, __extension__ __PRETTY_FUNCTION__
); }))
;
1998 }
1999 for (i = 0; i < wrt_symbol_size; i++)
2000 if (wrt_symbols[i].d >= 0)
2001 {
2002 assert(wrt_symbols[i].graph == graph)((void) sizeof ((wrt_symbols[i].graph == graph) ? 1 : 0), __extension__
({ if (wrt_symbols[i].graph == graph) ; else __assert_fail (
"wrt_symbols[i].graph == graph", "ccv_nnc_symbolic_graph_backward.c"
, 2002, __extension__ __PRETTY_FUNCTION__); }))
;
2003 // This is not an alias, or what it refers to is not an alias.
2004 assert(!((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, wrt_symbols[i].d))->alias_ref || !((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, ((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, wrt_symbols[i].d))->alias_ref - 1))->alias_ref)((void) sizeof ((!((ccv_nnc_tensor_symbol_info_t*)((void*)(((
char*)((graph->tensor_symbol_info)->data)) + (size_t)(graph
->tensor_symbol_info)->rsize * (size_t)(wrt_symbols[i].
d))))->alias_ref || !((ccv_nnc_tensor_symbol_info_t*)((void
*)(((char*)((graph->tensor_symbol_info)->data)) + (size_t
)(graph->tensor_symbol_info)->rsize * (size_t)(((ccv_nnc_tensor_symbol_info_t
*)((void*)(((char*)((graph->tensor_symbol_info)->data))
+ (size_t)(graph->tensor_symbol_info)->rsize * (size_t
)(wrt_symbols[i].d))))->alias_ref - 1))))->alias_ref) ?
1 : 0), __extension__ ({ if (!((ccv_nnc_tensor_symbol_info_t
*)((void*)(((char*)((graph->tensor_symbol_info)->data))
+ (size_t)(graph->tensor_symbol_info)->rsize * (size_t
)(wrt_symbols[i].d))))->alias_ref || !((ccv_nnc_tensor_symbol_info_t
*)((void*)(((char*)((graph->tensor_symbol_info)->data))
+ (size_t)(graph->tensor_symbol_info)->rsize * (size_t
)(((ccv_nnc_tensor_symbol_info_t*)((void*)(((char*)((graph->
tensor_symbol_info)->data)) + (size_t)(graph->tensor_symbol_info
)->rsize * (size_t)(wrt_symbols[i].d))))->alias_ref - 1
))))->alias_ref) ; else __assert_fail ("!((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, wrt_symbols[i].d))->alias_ref || !((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, ((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, wrt_symbols[i].d))->alias_ref - 1))->alias_ref"
, "ccv_nnc_symbolic_graph_backward.c", 2004, __extension__ __PRETTY_FUNCTION__
); }))
;
2005 }
2006 const int exec_symbol_info_size = graph->exec_symbol_info->rnum;
2007 const int tensor_symbol_info_size = graph->tensor_symbol_info->rnum;
2008 assert(exec_symbol_info_size > 0)((void) sizeof ((exec_symbol_info_size > 0) ? 1 : 0), __extension__
({ if (exec_symbol_info_size > 0) ; else __assert_fail ("exec_symbol_info_size > 0"
, "ccv_nnc_symbolic_graph_backward.c", 2008, __extension__ __PRETTY_FUNCTION__
); }))
;
2009 assert(tensor_symbol_info_size > 0)((void) sizeof ((tensor_symbol_info_size > 0) ? 1 : 0), __extension__
({ if (tensor_symbol_info_size > 0) ; else __assert_fail (
"tensor_symbol_info_size > 0", "ccv_nnc_symbolic_graph_backward.c"
, 2009, __extension__ __PRETTY_FUNCTION__); }))
;
2010 ccv_nnc_symbolic_graph_backward_prep_t backward_prep = _ccv_nnc_symbolic_graph_backward_prep(graph, sources, source_size, destinations, destination_size);
2011 _ccv_nnc_symbolic_graph_backward_prep_prune_ops(&backward_prep, f_symbols, f_symbol_size, wrt_symbols, wrt_symbol_size, sources, source_size, destinations, destination_size);
2012 _ccv_nnc_symbolic_graph_backward_prep_gen(&backward_prep, f_symbols, f_symbol_size, wrt_symbols, wrt_symbol_size, 0, sources, source_size, destinations, destination_size);
2013 _ccv_nnc_symbolic_graph_backward_gen(&backward_prep, f_symbols, f_symbol_size, wrt_symbols, wrt_symbol_size, graph, graph);
2014 _ccv_nnc_symbolic_graph_backward_prep_free(backward_prep);
2015}
2016
2017ccv_nnc_tensor_symbol_t ccv_nnc_tensor_symbol_for_backward(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t symbol)
2018{
2019 assert(symbol.d >= 0)((void) sizeof ((symbol.d >= 0) ? 1 : 0), __extension__ ({
if (symbol.d >= 0) ; else __assert_fail ("symbol.d >= 0"
, "ccv_nnc_symbolic_graph_backward.c", 2019, __extension__ __PRETTY_FUNCTION__
); }))
;
2020 assert(symbol.d < graph->backward.tensor_symbol_size)((void) sizeof ((symbol.d < graph->backward.tensor_symbol_size
) ? 1 : 0), __extension__ ({ if (symbol.d < graph->backward
.tensor_symbol_size) ; else __assert_fail ("symbol.d < graph->backward.tensor_symbol_size"
, "ccv_nnc_symbolic_graph_backward.c", 2020, __extension__ __PRETTY_FUNCTION__
); }))
;
2021 if (graph->backward.tensor_symbol_idx[symbol.d] < 0)
2022 return NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
2023 ccv_nnc_tensor_symbol_t tensor = {
2024 .d = graph->backward.tensor_symbol_idx[symbol.d],
2025 .graph = graph,
2026 };
2027 return tensor;
2028}
2029
2030ccv_nnc_graph_exec_symbol_t ccv_nnc_graph_exec_symbol_for_backward(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t symbol)
2031{
2032 assert(symbol.d >= 0)((void) sizeof ((symbol.d >= 0) ? 1 : 0), __extension__ ({
if (symbol.d >= 0) ; else __assert_fail ("symbol.d >= 0"
, "ccv_nnc_symbolic_graph_backward.c", 2032, __extension__ __PRETTY_FUNCTION__
); }))
;
2033 assert(symbol.d < graph->tensor_symbol_info->rnum)((void) sizeof ((symbol.d < graph->tensor_symbol_info->
rnum) ? 1 : 0), __extension__ ({ if (symbol.d < graph->
tensor_symbol_info->rnum) ; else __assert_fail ("symbol.d < graph->tensor_symbol_info->rnum"
, "ccv_nnc_symbolic_graph_backward.c", 2033, __extension__ __PRETTY_FUNCTION__
); }))
;
2034 int dd = symbol.d;
2035 // Check if this is an alias. Use the original if it is.
2036 ccv_nnc_tensor_symbol_info_t* const symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(graph->tensor_symbol_info, dd)((void*)(((char*)((graph->tensor_symbol_info)->data)) +
(size_t)(graph->tensor_symbol_info)->rsize * (size_t)(
dd)))
;
2037 if (symbol_info->alias_ref)
2038 dd = symbol_info->alias_ref - 1;
2039 assert(dd >= 0)((void) sizeof ((dd >= 0) ? 1 : 0), __extension__ ({ if (dd
>= 0) ; else __assert_fail ("dd >= 0", "ccv_nnc_symbolic_graph_backward.c"
, 2039, __extension__ __PRETTY_FUNCTION__); }))
;
2040 assert(dd < graph->backward.exec_symbol_size)((void) sizeof ((dd < graph->backward.exec_symbol_size)
? 1 : 0), __extension__ ({ if (dd < graph->backward.exec_symbol_size
) ; else __assert_fail ("dd < graph->backward.exec_symbol_size"
, "ccv_nnc_symbolic_graph_backward.c", 2040, __extension__ __PRETTY_FUNCTION__
); }))
;
2041 if (graph->backward.exec_symbol_idx[dd] < 0)
2042 return (ccv_nnc_graph_exec_symbol_t){
2043 .graph = 0,
2044 .d = CCV_NNC_NO_GRAPH_EXEC_SYMBOL
2045 };
2046 ccv_nnc_graph_exec_symbol_t exec = {
2047 .d = graph->backward.exec_symbol_idx[dd],
2048 .graph = graph
2049 };
2050 return exec;
2051}