Bug Summary

File:nnc/ccv_cnnp_model.c
Warning:line 2500, column 25
Array access (via field 'vals') results in a null pointer dereference

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_cnnp_model.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -fcoverage-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -resource-dir /usr/local/lib/clang/19 -I ../ -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/19/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/12/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -ferror-limit 19 -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/actions-runner/_work/ccv/ccv/_analyze/2024-11-19-223635-166075-1 -x c ccv_cnnp_model.c
1#include "ccv_nnc.h"
2#include "ccv_nnc_easy.h"
3#include "ccv_nnc_internal.h"
4#include "ccv_internal.h"
5#include "_ccv_cnnp_model.h"
6#include "_ccv_nnc_graph.h"
7
8// MARK - Level-5 API
9
10ccv_cnnp_model_io_t ccv_cnnp_model_apply(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t* const inputs, const int input_size)
11{
12 if (!model->io)
13 model->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0);
14 ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s) + sizeof(ccv_nnc_tensor_symbol_t) * model->output_size);
15 model_io->param_ref = 0;
16 model_io->param_sel = 0;
17 model_io->visit = 0;
18 model_io->model = model;
19 model_io->dependencies = 0;
20 model_io->dependents = 0;
21 model_io->outgoings = 0;
22 model_io->outputs = (ccv_nnc_tensor_symbol_t*)(model_io + 1);
23 ccv_array_push(model->io, &model_io);
24 if (input_size > 0)
25 {
26 model_io->incomings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), input_size, 0);
27 ccv_array_resize(model_io->incomings, input_size);
28 int i;
29 memcpy(ccv_array_get(model_io->incomings, 0)((void*)(((char*)((model_io->incomings)->data)) + (size_t
)(model_io->incomings)->rsize * (size_t)(0)))
, inputs, sizeof(ccv_cnnp_model_io_t) * input_size);
30 for (i = 0; i < input_size; i++)
31 {
32 if (!inputs[i]->outgoings)
33 inputs[i]->outgoings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0);
34 ccv_array_push(inputs[i]->outgoings, &model_io);
35 }
36 } else {
37 model_io->incomings = 0;
38 }
39 return model_io;
40}
41
42void ccv_cnnp_model_add_dependencies(ccv_cnnp_model_io_t model_io, const ccv_cnnp_model_io_t* const dependencies, const int dependency_size)
43{
44 assert(dependency_size > 0)((void) sizeof ((dependency_size > 0) ? 1 : 0), __extension__
({ if (dependency_size > 0) ; else __assert_fail ("dependency_size > 0"
, "ccv_cnnp_model.c", 44, __extension__ __PRETTY_FUNCTION__);
}))
;
45 if (!model_io->dependencies)
46 model_io->dependencies = ccv_array_new(sizeof(ccv_cnnp_model_io_t), dependency_size, 0);
47 int i, j;
48 for (i = 0; i < dependency_size; i++)
49 {
50 int flag = 0;
51 // Check if it is already exist or not.
52 for (j = 0; !flag && j < model_io->dependencies->rnum; j++)
53 if (*(ccv_cnnp_model_io_t*)ccv_array_get(model_io->dependencies, j)((void*)(((char*)((model_io->dependencies)->data)) + (size_t
)(model_io->dependencies)->rsize * (size_t)(j)))
== dependencies[i])
54 flag = 1;
55 if (flag)
56 continue;
57 ccv_array_push(model_io->dependencies, dependencies + i);
58 ++dependencies[i]->dependents;
59 }
60}
61
62int ccv_cnnp_model_output_size(const ccv_cnnp_model_t* const model)
63{
64 return model->output_size;
65}
66
67int ccv_cnnp_model_is_trainable(const ccv_cnnp_model_t* const model)
68{
69 // If the model is compiled, it is default to 1 unless it is not.
70 if (model->compiled_data)
71 return model->is_trainable >= 0 ? model->is_trainable : 1;
72 return model->is_trainable;
73}
74
75ccv_cnnp_model_io_t ccv_cnnp_model_parameters(ccv_cnnp_model_t* const model, const int selector, const int index)
76{
77 if (!model->io)
78 model->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0);
79 ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s));
80 model_io->param_ref = index >= 0 ? index + 1 : ALL_PARAMETERS-1;
81 model_io->param_sel = selector >= 0 ? selector + 1 : ALL_PARAMETERS-1;
82 model_io->visit = 0;
83 model_io->model = model;
84 model_io->outputs = 0;
85 model_io->dependencies = 0;
86 model_io->dependents = 0;
87 model_io->incomings = 0;
88 model_io->outgoings = 0;
89 ccv_array_push(model->io, &model_io);
90 return model_io;
91}
92
93void ccv_cnnp_model_notify_hook(ccv_cnnp_model_t* const model, ccv_cnnp_model_notify_f func, void* const context)
94{
95 model->notify_hook.func = func;
96 model->notify_hook.context = context;
97}
98
99void ccv_cnnp_model_notify(const ccv_cnnp_model_t* const model, const int tag, void* const payload)
100{
101 if (model->notify_hook.func)
102 model->notify_hook.func(model, tag, payload, model->notify_hook.context);
103 if (model->isa->notify)
104 model->isa->notify(model, tag, payload);
105}
106
107static int _ccv_nnc_array_dedup_graph_exec_symbols(ccv_nnc_graph_exec_symbol_t* const graph_exec_symbols, int graph_exec_symbol_size)
108{
109 int i, j;
110 for (i = 0; i < graph_exec_symbol_size; i++)
111 {
112 ccv_nnc_graph_exec_symbol_t* const graph_exec_symbol = graph_exec_symbols + i;
113 // Check whether this tensor symbol has any duplicate.
114 for (j = i + 1; j < graph_exec_symbol_size;)
115 {
116 ccv_nnc_graph_exec_symbol_t* const other_symbol = graph_exec_symbols + j;
117 // If there is a same tensor symbol, remove it.
118 if (other_symbol->d == graph_exec_symbol->d && other_symbol->graph == graph_exec_symbol->graph)
119 {
120 if (j + 1 < graph_exec_symbol_size)
121 *other_symbol = graph_exec_symbols[graph_exec_symbol_size - 1];
122 --graph_exec_symbol_size;
123 continue;
124 }
125 ++j;
126 }
127 }
128 return graph_exec_symbol_size;
129}
130
131void ccv_cnnp_model_add_to_array(void* const context, const ccv_nnc_tensor_symbol_t symbol, const int is_trainable)
132{
133 ccv_cnnp_model_add_to_array_context_t* const add_to_array_context = (ccv_cnnp_model_add_to_array_context_t*)context;
134 ccv_cnnp_model_t* const model = add_to_array_context->sequence->model;
135 int i;
136 if (add_to_array_context->add_parameter_indices && !model->parameter_indices)
137 model->parameter_indices = ccv_array_new(sizeof(int), 0, 0);
138 for (i = 0; i < add_to_array_context->symbols->rnum; i++)
139 {
140 const ccv_nnc_tensor_symbol_t other_symbol = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(add_to_array_context->symbols, i)((void*)(((char*)((add_to_array_context->symbols)->data
)) + (size_t)(add_to_array_context->symbols)->rsize * (
size_t)(i)))
;
141 if (other_symbol.d == symbol.d && other_symbol.graph == symbol.graph)
142 {
143 // Only add to parameter_indices if it is trainable.
144 if (add_to_array_context->add_parameter_indices)
145 ccv_array_add_unique_int(model->parameter_indices, i);
146 // Found it, return, don't add it.
147 return;
148 }
149 }
150 // Only add to parameter_indices if it is trainable.
151 if (add_to_array_context->add_parameter_indices)
152 ccv_array_push(model->parameter_indices, &add_to_array_context->symbols->rnum);
153 // This is a new one, no need to add_unique_int, it is unique.
154 ccv_array_push(add_to_array_context->symbols, &symbol);
155 if (add_to_array_context->trainables)
156 ccv_array_push(add_to_array_context->trainables, &is_trainable);
157 char id[2048];
158 id[0] = add_to_array_context->prefix;
159 id[1] = '-';
160 int total_len = 2;
161 for (i = 0; i < add_to_array_context->sequence->sequences->rnum; i++)
162 {
163 const ccv_cnnp_model_name_t* const name = (ccv_cnnp_model_name_t*)ccv_array_get(add_to_array_context->sequence->sequences, i)((void*)(((char*)((add_to_array_context->sequence->sequences
)->data)) + (size_t)(add_to_array_context->sequence->
sequences)->rsize * (size_t)(i)))
;
164 int len;
165 if (name->name && name->name[0] != '\0')
166 len = snprintf(id + total_len, 2048 - total_len, "%s-%d-", name->name, name->sequence);
167 else
168 len = snprintf(id + total_len, 2048 - total_len, "%d-", name->sequence);
169 total_len += len;
170 if (total_len >= 2047)
171 break;
172 }
173 if (total_len < 2047)
174 total_len += snprintf(id + total_len, 2048 - total_len, "%d", add_to_array_context->sequence->it);
175 assert(total_len < 2048)((void) sizeof ((total_len < 2048) ? 1 : 0), __extension__
({ if (total_len < 2048) ; else __assert_fail ("total_len < 2048"
, "ccv_cnnp_model.c", 175, __extension__ __PRETTY_FUNCTION__)
; }))
;
176 char *heap_id = (char*)ccmallocmalloc(total_len + 1);
177 memcpy(heap_id, id, total_len + 1);
178 ccv_array_push(add_to_array_context->ids, &heap_id);
179 ++add_to_array_context->sequence->it;
180}
181
182static void _ccv_cnnp_compiled_data_init(ccv_cnnp_compiled_data_t* const compiled_data, const int output_size, ccv_array_t* const gradient_checkpoints)
183{
184 compiled_data->f = compiled_data->fits + output_size;
185 compiled_data->xpu_alloc.mp_hdr = -1;
186 compiled_data->xpu_alloc.freed = kh_init(dy_str)kh_init_dy_str();
187 compiled_data->xpu_alloc.allocd = kh_init(dy_alloc)kh_init_dy_alloc();
188 compiled_data->gradient_checkpoints = gradient_checkpoints;
189}
190
191static void _ccv_cnnp_model_compile(ccv_cnnp_model_t* const model, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_cmd_t loss)
192{
193 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 193, __extension__ __PRETTY_FUNCTION__); }))
;
194 model->inputs = ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * input_size);
195 int i;
196 for (i = 0; i < input_size; i++)
197 model->inputs[i] = ccv_nnc_tensor_symbol_new(model->graph, inputs[i], 0);
198 ccv_array_t* const parameters = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
199 ccv_array_t* const parameter_ids = ccv_array_new(sizeof(char*), 0, 0);
200 ccv_array_t* const parameter_trainables = ccv_array_new(sizeof(int), 0, 0);
201 ccv_cnnp_model_sequence_t model_sequence = {
202 .bank = kh_init(ccv_cnnp_model_name_bank)kh_init_ccv_cnnp_model_name_bank()
203 };
204 ccv_cnnp_model_add_to_array_context_t add_to_parameter_context = {
205 .add_parameter_indices = 1,
206 .prefix = 't',
207 .sequence = &model_sequence,
208 .symbols = parameters,
209 .ids = parameter_ids,
210 .trainables = parameter_trainables,
211 };
212 ccv_array_t* const internals = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
213 ccv_array_t* const internal_ids = ccv_array_new(sizeof(char*), 0, 0);
214 ccv_cnnp_model_add_to_array_context_t add_to_output_context = {
215 .add_parameter_indices = 0,
216 .prefix = 'r',
217 .sequence = &model_sequence,
218 .symbols = internals,
219 .ids = internal_ids,
220 .trainables = 0,
221 };
222 ccv_cnnp_model_build_data_t build_data = {
223 .is_trainable = model->is_trainable >= 0 ? model->is_trainable : 1,
224 .model_sequence = &model_sequence,
225 .add_to_array = ccv_cnnp_model_add_to_array,
226 .parameters = parameters,
227 .context = {
228 .add_to_parameter = &add_to_parameter_context,
229 .add_to_output = &add_to_output_context,
230 },
231 .gradient_checkpoints = 0,
232 };
233 model->data = &build_data;
234 ccv_cnnp_model_build(model, model->graph, model->inputs, input_size, 0, 0);
235 for (i = 0; i < model->output_size; i++)
236 {
237 const ccv_nnc_tensor_symbol_t output = model->outputs[i];
238 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(model->graph, output);
239 if (alias_to.d == CCV_NNC_NO_TENSOR_SYMBOL)
240 continue;
241 // If output is an alias, insert data transform regardless for result correctness (we cannot bind an alias). You can check ccv_nnc_tensor_bind_symbol method
242 // to see that we can correctly bind a tensor which from it, has aliases, but we cannot bind an alias tensor correctly (this is expected, sort of, to be
243 // honest, because we cannot handle cases of alias is part of the original tensor but bind differently).
244 const ccv_nnc_tensor_param_t output_params = ccv_nnc_tensor_symbol_params(model->graph, output);
245 model->outputs[i] = ccv_nnc_tensor_symbol_new(model->graph, output_params, 0);
246 ccv_nnc_graph_exec_symbol_t make_contiguous = ccv_nnc_graph_exec_symbol_new(model->graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, &output, 1, model->outputs + i, 1, "contiguous");
247 ccv_nnc_graph_exec_symbol_set_flags(model->graph, make_contiguous, CCV_NNC_GRAPH_EXEC_DISABLE_OPT);
248 }
249 model->data = 0;
250 kh_destroy(ccv_cnnp_model_name_bank, model_sequence.bank)kh_destroy_ccv_cnnp_model_name_bank(model_sequence.bank);
251 if (model_sequence.sequences)
252 ccv_array_free(model_sequence.sequences);
253 // Check if there are parameters that are not trainables. If there are, we will allocate uint64 bitmap to record that.
254 int not_trainables = 0;
255 // Assert no parameter is alias.
256 for (i = 0; i < parameters->rnum; i++)
257 {
258 const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(parameters, i)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(i)))
;
259 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(parameter.graph, parameter);
260 assert(alias_to.graph == 0)((void) sizeof ((alias_to.graph == 0) ? 1 : 0), __extension__
({ if (alias_to.graph == 0) ; else __assert_fail ("alias_to.graph == 0"
, "ccv_cnnp_model.c", 260, __extension__ __PRETTY_FUNCTION__)
; }))
; // Cannot find the one alias to.
261 if (*(int*)ccv_array_get(parameter_trainables, i)((void*)(((char*)((parameter_trainables)->data)) + (size_t
)(parameter_trainables)->rsize * (size_t)(i)))
== 0)
262 not_trainables = 1;
263 }
264 assert(parameters->rnum == parameter_trainables->rnum)((void) sizeof ((parameters->rnum == parameter_trainables->
rnum) ? 1 : 0), __extension__ ({ if (parameters->rnum == parameter_trainables
->rnum) ; else __assert_fail ("parameters->rnum == parameter_trainables->rnum"
, "ccv_cnnp_model.c", 264, __extension__ __PRETTY_FUNCTION__)
; }))
;
265 uint64_t* parameter_flags = 0;
266 if (not_trainables)
267 {
268 parameter_flags = (uint64_t*)cccalloccalloc(((parameters->rnum + 63) >> 6), sizeof(uint64_t));
269 for (i = 0; i < parameter_trainables->rnum; i++)
270 if (*(int*)ccv_array_get(parameter_trainables, i)((void*)(((char*)((parameter_trainables)->data)) + (size_t
)(parameter_trainables)->rsize * (size_t)(i)))
)
271 parameter_flags[i >> 6] |= ((uint64_t)1 << (i & 63));
272 }
273 ccv_array_free(parameter_trainables);
274 // Assert no internal is alias.
275 for (i = 0; i < internals->rnum; i++)
276 {
277 const ccv_nnc_tensor_symbol_t internal = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(internals, i)((void*)(((char*)((internals)->data)) + (size_t)(internals
)->rsize * (size_t)(i)))
;
278 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(internal.graph, internal);
279 assert(alias_to.graph == 0)((void) sizeof ((alias_to.graph == 0) ? 1 : 0), __extension__
({ if (alias_to.graph == 0) ; else __assert_fail ("alias_to.graph == 0"
, "ccv_cnnp_model.c", 279, __extension__ __PRETTY_FUNCTION__)
; }))
; // Cannot find the one alias to.
280 }
281 const int output_size = model->output_size;
282 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
283 const int parameters_rnum = parameters->rnum;
284 if (input_size > 0)
285 {
286 ccv_array_resize(parameters, parameters_rnum + input_size);
287 memcpy(ccv_array_get(parameters, parameters_rnum)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(parameters_rnum)))
, model->inputs, input_size * sizeof(ccv_nnc_tensor_symbol_t));
288 }
289 ccv_nnc_symbolic_graph_simplify(model->graph,
290 SYMBOLIC_GRAPH_PASSES(CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
291 CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
292 CCV_NNC_SIMPLIFY_OPS_FUSION,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
293 CCV_NNC_SIMPLIFY_GRAPH_PRUNING)(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
,
294 ccv_array_get(parameters, 0)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(0)))
, parameters_rnum + input_size,
295 model->outputs, output_size,
296 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
297 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
298 // Size it down.
299 parameters->rnum = parameters_rnum;
300 ccv_cnnp_compiled_data_t* compiled_data = model->compiled_data = cccalloccalloc(1, sizeof(ccv_cnnp_compiled_data_t) + sizeof(ccv_nnc_tensor_symbol_t) * (output_size * 2 - 1));
301 _ccv_cnnp_compiled_data_init(compiled_data, output_size, build_data.gradient_checkpoints);
302 const int evaluate_to_size = compiled_data->evaluate.to_size = ccv_nnc_symbolic_graph_destination_size(model->graph);
303 assert(evaluate_to_size > 0)((void) sizeof ((evaluate_to_size > 0) ? 1 : 0), __extension__
({ if (evaluate_to_size > 0) ; else __assert_fail ("evaluate_to_size > 0"
, "ccv_cnnp_model.c", 303, __extension__ __PRETTY_FUNCTION__)
; }))
;
304 compiled_data->evaluate.tos = ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size);
305 memcpy(compiled_data->evaluate.tos, ccv_nnc_symbolic_graph_destinations(model->graph), sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size);
306 compiled_data->loss = loss;
307 if (loss.cmd == CCV_NNC_NOOP)
308 {
309 // If no loss function provided, there is no fits.
310 for (i = 0; i < output_size; i++)
311 {
312 compiled_data->fits[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
313 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(model->graph, model->outputs[i]);
314 if (alias_to.d < 0)
315 compiled_data->f[i] = model->outputs[i];
316 else { // We cannot differentiate against an alias, therefore, we have to verify this output is full, and we can diff against the original.
317 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
318 int inc[CCV_NNC_MAX_DIM_ALLOC(12)];
319 ccv_nnc_tensor_symbol_alias_params(model->graph, model->outputs[i], ofs, inc);
320 int j;
321 for (j = 0; j < CCV_NNC_MAX_DIM_ALLOC(12); j++)
322 { assert(ofs[j] == 0)((void) sizeof ((ofs[j] == 0) ? 1 : 0), __extension__ ({ if (
ofs[j] == 0) ; else __assert_fail ("ofs[j] == 0", "ccv_cnnp_model.c"
, 322, __extension__ __PRETTY_FUNCTION__); }))
; } // There is no ofs.
323 compiled_data->f[i] = alias_to; // Unfortunately, I cannot assert the size yet.
324 }
325 }
326 } else {
327 for (i = 0; i < output_size; i++)
328 {
329 const ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(model->graph, model->outputs[i]);
330 const ccv_nnc_tensor_symbol_t fit = compiled_data->fits[i] = ccv_nnc_tensor_symbol_new(model->graph, info, 0);
331 compiled_data->f[i] = ccv_nnc_tensor_symbol_new(model->graph, ccv_nnc_tensor_auto, 0);
332 ccv_nnc_graph_exec_symbol_new(model->graph, loss, TENSOR_SYMBOL_LIST(model->outputs[i], fit)(const ccv_nnc_tensor_symbol_t []){model->outputs[i], fit}
, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(compiled_data->f[i])(const ccv_nnc_tensor_symbol_t []){compiled_data->f[i]}, (
1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 -1)
, 0);
333 }
334 }
335 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
336 ccv_nnc_symbolic_graph_simplify(model->graph,
337 SYMBOLIC_GRAPH_PASSES(CCV_NNC_SIMPLIFY_OPS_FUSION)(const int []){CCV_NNC_SIMPLIFY_OPS_FUSION}, (1 +1 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, // Only do Ops fusion, in this way, we can fuse the loss function.
338 0, 0, // No need to provide binds at this point.
339 compiled_data->f, model->output_size,
340 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
341 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
342 // If inputs are from GPU, stream type is GPU.
343 compiled_data->parameters = parameters;
344 compiled_data->parameter_flags = parameter_flags;
345 compiled_data->internals = internals;
346 compiled_data->ids.parameters = parameter_ids;
347 compiled_data->ids.internals = internal_ids;
348 ccv_cnnp_model_gradient_checkpoints_cleanup_after_build(compiled_data, model->graph);
349}
350
351static void _ccv_cnnp_graph_push_graph_exec_symbol(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name)
352{
353 ccv_array_t* const stack = (ccv_array_t*)context;
354 ccv_array_push(stack, &symbol.d);
355}
356
357static void _ccv_nnc_tensor_symbol_reinit(const ccv_nnc_symbolic_graph_t* const src_graph, ccv_nnc_symbolic_graph_t* const dest_graph, const int src_index, const int dest_index)
358{
359 const ccv_nnc_tensor_symbol_t src_symbol = {
360 .d = src_index,
361 .graph = src_graph
362 };
363 const ccv_nnc_tensor_symbol_t dest_symbol = {
364 .d = dest_index,
365 .graph = dest_graph
366 };
367 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(src_graph, src_symbol);
368 ccv_nnc_tensor_symbol_set(dest_graph, dest_symbol, params);
369 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
370 int inc[CCV_NNC_MAX_DIM_ALLOC(12)];
371 if (0 == ccv_nnc_tensor_symbol_alias_params(src_graph, src_symbol, ofs, inc))
372 ccv_nnc_tensor_symbol_alias_set(dest_graph, dest_symbol, ofs, inc);
373}
374
375static int _ccv_nnc_tensor_symbol_check_dim(const ccv_nnc_symbolic_graph_t* const src_graph, ccv_nnc_symbolic_graph_t* const dest_graph, const int src_index, const int dest_index)
376{
377 const ccv_nnc_tensor_symbol_t src_symbol = {
378 .d = src_index,
379 .graph = src_graph
380 };
381 const ccv_nnc_tensor_param_t src_params = ccv_nnc_tensor_symbol_params(src_graph, src_symbol);
382 const ccv_nnc_tensor_symbol_t dest_symbol = {
383 .d = dest_index,
384 .graph = dest_graph
385 };
386 const ccv_nnc_tensor_param_t dest_params = ccv_nnc_tensor_symbol_params(dest_graph, dest_symbol);
387 return memcmp(src_params.dim, dest_params.dim, sizeof(src_params.dim)) == 0;
388}
389
390static void _ccv_cnnp_model_gradient_init(ccv_cnnp_model_t* const model, const int gradient_mode, const uint64_t disable_outgrad, ccv_nnc_tensor_t* const* const fits, const int fit_size);
391static void _ccv_cnnp_compiled_data_graph_free(ccv_cnnp_compiled_data_t* const compiled_data);
392
393typedef struct {
394 int parallel_count;
395 ccv_nnc_symbolic_graph_t* graph;
396 ccv_nnc_graph_exec_arena_t* graph_exec_arena;
397} ccv_nnc_graph_exec_update_t;
398
399static void _ccv_cnnp_cmd_update_for_execs(void* const context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint)
400{
401 ccv_nnc_graph_exec_update_t* const graph_exec_update = (ccv_nnc_graph_exec_update_t*)context;
402 ccv_nnc_graph_exec_arena_t* const graph_exec_arena = graph_exec_update->graph_exec_arena;
403 ccv_nnc_graph_exec_t graph_exec = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, symbol);
404 ccv_nnc_graph_exec_set(graph_exec.graph, graph_exec, cmd);
405 ccv_nnc_graph_exec_set_hint(graph_exec.graph, graph_exec, hint);
406 const ccv_nnc_symbolic_graph_t* const graph = graph_exec_update->graph;
407 const int parallel_count = graph_exec_update->parallel_count;
408 int i;
409 for (i = 1; i < parallel_count; i++)
410 {
411 const ccv_nnc_graph_exec_t copy = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, ccv_nnc_graph_exec_symbol_copy(graph, symbol, i));
412 if (!CCV_NO_GRAPH_EXEC(copy)((copy).graph == 0))
413 {
414 ccv_nnc_graph_exec_set(copy.graph, copy, cmd);
415 ccv_nnc_graph_exec_set_hint(copy.graph, copy, hint);
416 }
417 }
418}
419
420void ccv_cnnp_model_absorb(ccv_cnnp_model_t* const model, ccv_cnnp_model_t* const init, const ccv_nnc_tensor_param_t* const inputs, const int input_size)
421{
422 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 422, __extension__ __PRETTY_FUNCTION__); }))
;
423 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 423, __extension__ __PRETTY_FUNCTION__)
; }))
;
424 assert(!init->graph)((void) sizeof ((!init->graph) ? 1 : 0), __extension__ ({ if
(!init->graph) ; else __assert_fail ("!init->graph", "ccv_cnnp_model.c"
, 424, __extension__ __PRETTY_FUNCTION__); }))
;
425 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
426 init->graph = ccv_nnc_symbolic_graph_new();
427 ccv_array_t* const stack = ccv_array_new(sizeof(int), 0, 0);
428 ccv_nnc_graph_exec_symbol_new_hook(init->graph, _ccv_cnnp_graph_push_graph_exec_symbol, stack, 0);
429 _ccv_cnnp_model_compile(init, inputs, input_size, compiled_data->loss);
430 init->parallel_count = model->parallel_count;
431 init->memory_compression = model->memory_compression;
432 init->memory_reduction = model->memory_reduction;
433 init->gradient_checkpointing = model->gradient_checkpointing;
434 init->compiled_data->stream_type = model->compiled_data->stream_type;
435 init->compiled_data->minimize.minimizer = model->compiled_data->minimize.minimizer;
436 init->compiled_data->minimize.max_saved_aux_size = model->compiled_data->minimize.max_saved_aux_size;
437 if (model->compiled_data->gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
438 _ccv_cnnp_model_gradient_init(init, model->compiled_data->gradient_mode, model->compiled_data->disable_outgrad, 0, 0);
439 ccv_nnc_graph_exec_symbol_new_hook(init->graph, 0, 0, 0);
440 ccv_nnc_symbolic_graph_tensor_auto(init->graph, TRAVERSE_FULL0,0,0,0);
441 int i, j;
442 // Verify parameters, internals and saved_aux in both graph has the same dimensionality.
443 for (i = 0; i < compiled_data->parameters->rnum; i++)
444 {
445 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
)->d;
446 assert(_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d))((void) sizeof ((_ccv_nnc_tensor_symbol_check_dim(model->graph
, init->graph, d, d)) ? 1 : 0), __extension__ ({ if (_ccv_nnc_tensor_symbol_check_dim
(model->graph, init->graph, d, d)) ; else __assert_fail
("_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d)"
, "ccv_cnnp_model.c", 446, __extension__ __PRETTY_FUNCTION__)
; }))
;
447 }
448 for (i = 0; i < compiled_data->internals->rnum; i++)
449 {
450 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(i))
)
)->d;
451 assert(_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d))((void) sizeof ((_ccv_nnc_tensor_symbol_check_dim(model->graph
, init->graph, d, d)) ? 1 : 0), __extension__ ({ if (_ccv_nnc_tensor_symbol_check_dim
(model->graph, init->graph, d, d)) ; else __assert_fail
("_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d)"
, "ccv_cnnp_model.c", 451, __extension__ __PRETTY_FUNCTION__)
; }))
;
452 }
453 // Update inputs.
454 assert(model->input_size == init->input_size)((void) sizeof ((model->input_size == init->input_size)
? 1 : 0), __extension__ ({ if (model->input_size == init->
input_size) ; else __assert_fail ("model->input_size == init->input_size"
, "ccv_cnnp_model.c", 454, __extension__ __PRETTY_FUNCTION__)
; }))
;
455 for (i = 0; i < model->input_size; i++)
456 if (model->inputs[i].d >= 0)
457 {
458 assert(init->inputs[i].d >= 0)((void) sizeof ((init->inputs[i].d >= 0) ? 1 : 0), __extension__
({ if (init->inputs[i].d >= 0) ; else __assert_fail ("init->inputs[i].d >= 0"
, "ccv_cnnp_model.c", 458, __extension__ __PRETTY_FUNCTION__)
; }))
;
459 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->inputs[i].d, model->inputs[i].d);
460 }
461 // Update outputs.
462 assert(model->output_size == init->output_size)((void) sizeof ((model->output_size == init->output_size
) ? 1 : 0), __extension__ ({ if (model->output_size == init
->output_size) ; else __assert_fail ("model->output_size == init->output_size"
, "ccv_cnnp_model.c", 462, __extension__ __PRETTY_FUNCTION__)
; }))
;
463 for (i = 0; i < model->output_size; i++)
464 {
465 if (model->outputs[i].d >= 0)
466 {
467 assert(init->outputs[i].d >= 0)((void) sizeof ((init->outputs[i].d >= 0) ? 1 : 0), __extension__
({ if (init->outputs[i].d >= 0) ; else __assert_fail (
"init->outputs[i].d >= 0", "ccv_cnnp_model.c", 467, __extension__
__PRETTY_FUNCTION__); }))
;
468 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->outputs[i].d, model->outputs[i].d);
469 }
470 if (model->outputs[i].d != model->compiled_data->f[i].d)
471 {
472 assert(init->outputs[i].d != init->compiled_data->f[i].d)((void) sizeof ((init->outputs[i].d != init->compiled_data
->f[i].d) ? 1 : 0), __extension__ ({ if (init->outputs[
i].d != init->compiled_data->f[i].d) ; else __assert_fail
("init->outputs[i].d != init->compiled_data->f[i].d"
, "ccv_cnnp_model.c", 472, __extension__ __PRETTY_FUNCTION__)
; }))
;
473 if (model->compiled_data->f[i].d >= 0)
474 {
475 assert(init->compiled_data->f[i].d >= 0)((void) sizeof ((init->compiled_data->f[i].d >= 0) ?
1 : 0), __extension__ ({ if (init->compiled_data->f[i]
.d >= 0) ; else __assert_fail ("init->compiled_data->f[i].d >= 0"
, "ccv_cnnp_model.c", 475, __extension__ __PRETTY_FUNCTION__)
; }))
;
476 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->compiled_data->f[i].d, model->compiled_data->f[i].d);
477 }
478 }
479 }
480 // Go through the graph to set tensor on matching symbols
481 for (i = 0; i < stack->rnum; i++)
482 {
483 const int d = *(int*)ccv_array_get(stack, i)((void*)(((char*)((stack)->data)) + (size_t)(stack)->rsize
* (size_t)(i)))
;
484 // If exceed range, skip.
485 if (d >= ccv_nnc_graph_exec_symbol_count(init->graph) ||
486 d >= ccv_nnc_graph_exec_symbol_count(model->graph))
487 continue;
488 const ccv_nnc_graph_exec_symbol_t src_symbol = {
489 .d = d,
490 .graph = init->graph
491 };
492 const ccv_nnc_graph_exec_symbol_t dest_symbol = {
493 .d = d,
494 .graph = model->graph
495 };
496 const ccv_nnc_cmd_t src_cmd = ccv_nnc_graph_exec_symbol_cmd(init->graph, src_symbol);
497 const ccv_nnc_cmd_t dest_cmd = ccv_nnc_graph_exec_symbol_cmd(model->graph, dest_symbol);
498 // If the name doesn't match, skip.
499 if (dest_cmd.cmd != src_cmd.cmd && src_cmd.cmd != CCV_NNC_NOOP)
500 continue;
501 // Now get all the inputs and outputs, if matches, set them.
502 const int* src_inputs;
503 int src_input_size;
504 const int* src_outputs;
505 int src_output_size;
506 ccv_nnc_graph_exec_symbol_io(init->graph, src_symbol, &src_inputs, &src_input_size, &src_outputs, &src_output_size);
507 const int* dest_inputs;
508 int dest_input_size;
509 const int* dest_outputs;
510 int dest_output_size;
511 ccv_nnc_graph_exec_symbol_io(model->graph, dest_symbol, &dest_inputs, &dest_input_size, &dest_outputs, &dest_output_size);
512 // We may have unmatched input / output size because this is the minimizer and it has
513 // different saved_aux (for example, when we shrunk with CMD_NOOP).
514 if (src_input_size != dest_input_size)
515 continue;
516 if (src_output_size != dest_output_size)
517 continue;
518 ccv_nnc_graph_exec_symbol_set(model->graph, dest_symbol, src_cmd);
519 // There may be mismatches of the source tensor symbols and destination tensor symbols. The reason is because
520 // we may later passed-in the minimizer, therefore, we may allocate tensors for minimizer later in the original
521 // graph whereas in the newly created graph, it is streamlined (the minimizer exists from the beginning). That
522 // will make the order of tensor symbols creation different, therefore, exact which tensor is which wrong as
523 // well. However, set a new minimizer won't change the exec symbol ordering, because we never create new exec
524 // symbols after gradient init step. Changing a new minimizer just updated that exec symbols setting, it is not
525 // a new exec symbol.
526 for (j = 0; j < src_input_size; j++)
527 if (src_inputs[j] >= 0)
528 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, src_inputs[j], dest_inputs[j]);
529 for (j = 0; j < src_output_size; j++)
530 if (src_outputs[j] >= 0)
531 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, src_outputs[j], dest_outputs[j]);
532 }
533 ccv_array_free(stack);
534 // After this, we get all tensors in the model graph resolved through tensor_auto.
535 ccv_nnc_symbolic_graph_tensor_auto(model->graph, TRAVERSE_FULL0,0,0,0);
536 // Verify symbols we get matches.
537 const int parameter_size = compiled_data->parameters->rnum;
538 for (i = 0; i < parameter_size; i++)
539 { assert(((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->parameters, i))->d)((void) sizeof ((((ccv_nnc_tensor_symbol_t*)((void*)(((char*)
((compiled_data->parameters)->data)) + (size_t)(compiled_data
->parameters)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((init->compiled_data->parameters)->
data)) + (size_t)(init->compiled_data->parameters)->
rsize * (size_t)(i))))->d) ? 1 : 0), __extension__ ({ if (
((ccv_nnc_tensor_symbol_t*)((void*)(((char*)((compiled_data->
parameters)->data)) + (size_t)(compiled_data->parameters
)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((init->compiled_data->parameters)->
data)) + (size_t)(init->compiled_data->parameters)->
rsize * (size_t)(i))))->d) ; else __assert_fail ("((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->parameters, i))->d"
, "ccv_cnnp_model.c", 539, __extension__ __PRETTY_FUNCTION__)
; }))
; }
540 const int internal_size = compiled_data->internals->rnum;
541 for (i = 0; i < internal_size; i++)
542 { assert(((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->internals, i))->d)((void) sizeof ((((ccv_nnc_tensor_symbol_t*)((void*)(((char*)
((compiled_data->internals)->data)) + (size_t)(compiled_data
->internals)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((init->compiled_data->internals)->
data)) + (size_t)(init->compiled_data->internals)->rsize
* (size_t)(i))))->d) ? 1 : 0), __extension__ ({ if (((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((compiled_data->internals)->data)) +
(size_t)(compiled_data->internals)->rsize * (size_t)(i
))))->d == ((ccv_nnc_tensor_symbol_t*)((void*)(((char*)((init
->compiled_data->internals)->data)) + (size_t)(init->
compiled_data->internals)->rsize * (size_t)(i))))->d
) ; else __assert_fail ("((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->internals, i))->d"
, "ccv_cnnp_model.c", 542, __extension__ __PRETTY_FUNCTION__)
; }))
; }
543 // Go through compiled data.
544 if (compiled_data->tensor_arena)
545 {
546 const int flag = ccv_nnc_tensor_arena_reinit(compiled_data->tensor_arena, model->graph);
547 if (flag == 0 && compiled_data->graph_exec_arena)
548 {
549 ccv_nnc_graph_exec_reinit(compiled_data->graph_exec_arena, compiled_data->graph, model->graph);
550 // Since we will reinit, if we previously set is_test, we need to set it again.
551 if (compiled_data->is_test)
552 {
553 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
554 ccv_nnc_graph_exec_update_t update = {
555 .parallel_count = parallel_count,
556 .graph = model->graph,
557 .graph_exec_arena = compiled_data->graph_exec_arena,
558 };
559 ccv_cnnp_model_set_is_test(model, 1, _ccv_cnnp_cmd_update_for_execs, &update);
560 }
561 } else
562 // Free-up tensor arena & graph exec arena.
563 _ccv_cnnp_compiled_data_graph_free(compiled_data);
564 }
565 // There are other compiled graphs, for accum and apply gradients.
566 // However, the main conclusion is, these absorb operations shouldn't impact parameters.
567 // Thus, it won't impact the shape of gradients (only outgrad). Since for outgrad, we
568 // don't allocate ourselves, it is not a concern. For normal gradients, the shape cannot
569 // be changed otherwise parameters' shape will be meaningless. The same goes to internals.
570 // That is why we don't update these compiled graphs at all this point.
571 // Free the model, we've already "absorbed" it.
572 ccv_cnnp_model_free(init);
573}
574
575void ccv_cnnp_model_compile(ccv_cnnp_model_t* const model, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_cmd_t minimizer, const ccv_nnc_cmd_t loss)
576{
577 assert(input_size == model->input_size || model->input_size == 0)((void) sizeof ((input_size == model->input_size || model->
input_size == 0) ? 1 : 0), __extension__ ({ if (input_size ==
model->input_size || model->input_size == 0) ; else __assert_fail
("input_size == model->input_size || model->input_size == 0"
, "ccv_cnnp_model.c", 577, __extension__ __PRETTY_FUNCTION__)
; }))
;
578 if (model->input_size == 0)
579 model->input_size = input_size;
580 if (!model->graph) // The graph is not compiled yet.
581 {
582 model->graph = ccv_nnc_symbolic_graph_new();
583 _ccv_cnnp_model_compile(model, inputs, input_size, loss);
584 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 584, __extension__ __PRETTY_FUNCTION__)
; }))
;
585 int i, flag = 0;
586 for (i = 0; !flag && i < input_size; i++)
587 flag = (CCV_TENSOR_GET_MEMORY(inputs[i].type)((inputs[i].type) & 0x3) == CCV_TENSOR_GPU_MEMORY);
588 // If inputs are from GPU, stream type is GPU.
589 model->compiled_data->stream_type = flag ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
590 model->compiled_data->minimize.minimizer = minimizer;
591 model->compiled_data->minimize.max_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(minimizer);
592 } else {
593 // Now, finally fill in this part. If the graph is already compiled, we make a copy of the model.
594 // And then absorb the "new model" to the old one.
595 ccv_cnnp_model_t* const init = ccv_cnnp_model_copy(model, model->is_trainable);
596 ccv_cnnp_model_absorb(model, init, inputs, input_size);
597 // Reset minimizer.
598 ccv_cnnp_model_set_minimizer(model, minimizer, 1, 0, 0);
599 }
600}
601
602ccv_cnnp_model_t* ccv_cnnp_model_copy(const ccv_cnnp_model_t* const model, const int is_trainable)
603{
604 ccv_cnnp_model_t* const new_model = _ccv_cnnp_model_copy(model, 0);
605 new_model->is_trainable = is_trainable;
606 return new_model;
607}
608
609void ccv_cnnp_model_tensor_auto(ccv_cnnp_model_t* const model, ccv_nnc_tensor_param_t* const outputs, const int output_size)
610{
611 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 611, __extension__ __PRETTY_FUNCTION__); }))
;
612 assert(output_size == model->output_size)((void) sizeof ((output_size == model->output_size) ? 1 : 0
), __extension__ ({ if (output_size == model->output_size)
; else __assert_fail ("output_size == model->output_size"
, "ccv_cnnp_model.c", 612, __extension__ __PRETTY_FUNCTION__)
; }))
;
613 ccv_nnc_symbolic_graph_t* const graph = model->graph;
614 ccv_nnc_symbolic_graph_tensor_auto(graph, TRAVERSE_FULL0,0,0,0);
615 int i;
616 for (i = 0; i < output_size; i++)
617 {
618 assert(model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL)((void) sizeof ((model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL
) ? 1 : 0), __extension__ ({ if (model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL
) ; else __assert_fail ("model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL"
, "ccv_cnnp_model.c", 618, __extension__ __PRETTY_FUNCTION__)
; }))
;
619 outputs[i] = ccv_nnc_tensor_symbol_params(graph, model->outputs[i]);
620 }
621}
622
623void ccv_cnnp_model_set_workspace_size(ccv_cnnp_model_t* const model, size_t workspace_size)
624{
625 if (workspace_size == model->workspace_size)
626 return;
627 model->workspace_size = workspace_size;
628 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
629 if (compiled_data && compiled_data->graph)
630 ccv_nnc_graph_autotune(compiled_data->graph, workspace_size, 0, TRAVERSE_FULL0,0,0,0);
631}
632
633size_t ccv_cnnp_model_workspace_size(ccv_cnnp_model_t* const model)
634{
635 return model->workspace_size;
636}
637
638void ccv_cnnp_model_set_data_parallel(ccv_cnnp_model_t* const model, const int parallel)
639{
640 if (parallel == 0)
641 model->parallel_count = ccv_nnc_device_count(CCV_STREAM_CONTEXT_GPU);
642 else
643 model->parallel_count = parallel;
644 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
645 if (compiled_data)
646 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 646, __extension__ __PRETTY_FUNCTION__)
; }))
; }
647}
648
649void ccv_cnnp_model_set_max_concurrency(ccv_cnnp_model_t* const model, const int max_stream_count)
650{
651 model->max_stream_count = max_stream_count;
652 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
653 if (compiled_data)
654 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 654, __extension__ __PRETTY_FUNCTION__)
; }))
; }
655}
656
657void ccv_cnnp_model_set_memory_compression(ccv_cnnp_model_t* const model, const int memory_compression)
658{
659 model->memory_compression = memory_compression;
660 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
661 if (compiled_data)
662 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 662, __extension__ __PRETTY_FUNCTION__)
; }))
; }
663}
664
665void ccv_cnnp_model_set_memory_reduction(ccv_cnnp_model_t* const model, const int memory_reduction)
666{
667 model->memory_reduction = memory_reduction;
668 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
669 if (compiled_data)
670 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 670, __extension__ __PRETTY_FUNCTION__)
; }))
; }
671}
672
673void ccv_cnnp_model_set_gradient_checkpointing(ccv_cnnp_model_t* const model, const int gradient_checkpointing)
674{
675 model->gradient_checkpointing = gradient_checkpointing;
676}
677
678int ccv_cnnp_model_gradient_checkpointing(ccv_cnnp_model_t* const model)
679{
680 return model->gradient_checkpointing;
681}
682
683typedef struct {
684 int parallel_count;
685 ccv_nnc_symbolic_graph_t* graph;
686 ccv_cnnp_compiled_data_t* compiled_data;
687 ccv_nnc_tensor_arena_t* tensor_arena;
688} ccv_nnc_tensor_init_states_t;
689
690static int _ccv_cnnp_any_to_init(const ccv_cnnp_compiled_data_t* const compiled_data)
691{
692 int i;
693 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
694 for (i = 0; i < compiled_data->parameters->rnum; i++)
695 {
696 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
)->d;
697 if (!(init_v[d >> 5] & (1u << (d & 0x1f))))
698 return 1;
699 }
700 for (i = 0; i < compiled_data->internals->rnum; i++)
701 {
702 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(i))
)
)->d;
703 if (!(init_v[d >> 5] & (1u << (d & 0x1f))))
704 return 1;
705 }
706 return 0;
707}
708
709static void _ccv_cnnp_init_states_for_tensors(void* const context, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const input, const ccv_nnc_tensor_symbol_t output_symbol)
710{
711 ccv_nnc_tensor_init_states_t* const tensor_init_states = (ccv_nnc_tensor_init_states_t*)context;
712 ccv_nnc_tensor_arena_t* const tensor_arena = tensor_init_states->tensor_arena;
713 ccv_nnc_tensor_t* const output_tensor = ccv_nnc_tensor_from_symbol(tensor_arena, output_symbol);
714 if (!output_tensor)
715 return;
716 const int d = output_symbol.d;
717 assert(d < tensor_init_states->compiled_data->tensors_init.size)((void) sizeof ((d < tensor_init_states->compiled_data->
tensors_init.size) ? 1 : 0), __extension__ ({ if (d < tensor_init_states
->compiled_data->tensors_init.size) ; else __assert_fail
("d < tensor_init_states->compiled_data->tensors_init.size"
, "ccv_cnnp_model.c", 717, __extension__ __PRETTY_FUNCTION__)
; }))
;
718 uint32_t* const init_v = CCV_NNC_INIT_V(tensor_init_states->compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(tensor_init_states->compiled_data
->tensors_init.v) & ~(uintptr_t)1))
;
719 if (init_v[d >> 5] & (1u << (d & 0x1f)))
720 return;
721 init_v[d >> 5] |= (1u << (d & 0x1f));
722 ccv_nnc_cmd_exec(cmd, hint, flags, &input, input ? 1 : 0, &output_tensor, 1, 0);
723 const ccv_nnc_symbolic_graph_t* const graph = tensor_init_states->graph;
724 const int parallel_count = tensor_init_states->parallel_count;
725 int i;
726 for (i = 1; i < parallel_count; i++)
727 {
728 ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(tensor_arena, ccv_nnc_tensor_symbol_copy(graph, output_symbol, i));
729 if (copy)
730 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, &output_tensor, 1, &copy, 1, 0);
731 }
732}
733
734// This method can only handle cases we added new tensors and exec, never delete. This invariant is true because
735// we setup everything (including calling simplify method) in ccv_cnnp_model_compile method, before this rewind setup.
736static void _ccv_cnnp_model_rewind_graph(ccv_cnnp_model_t* const model)
737{
738 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 738, __extension__ __PRETTY_FUNCTION__); }))
;
739 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 739, __extension__ __PRETTY_FUNCTION__)
; }))
;
740 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
741 assert(compiled_data->rewindables)((void) sizeof ((compiled_data->rewindables) ? 1 : 0), __extension__
({ if (compiled_data->rewindables) ; else __assert_fail (
"compiled_data->rewindables", "ccv_cnnp_model.c", 741, __extension__
__PRETTY_FUNCTION__); }))
;
742 int i;
743 for (i = 0; i < compiled_data->rewindables->rnum; i++)
744 {
745 const ccv_cnnp_rewind_symbol_t* const rewind_symbol = (ccv_cnnp_rewind_symbol_t*)ccv_array_get(compiled_data->rewindables, i)((void*)(((char*)((compiled_data->rewindables)->data)) +
(size_t)(compiled_data->rewindables)->rsize * (size_t)
(i)))
;
746 if (rewind_symbol->type == CCV_CNNP_REWIND_GRAPH_EXEC)
747 ccv_nnc_graph_exec_symbol_free(model->graph, rewind_symbol->graph_exec);
748 else if (rewind_symbol->type == CCV_CNNP_REWIND_TENSOR)
749 ccv_nnc_tensor_symbol_free(model->graph, rewind_symbol->tensor);
750 }
751 ccv_array_clear(compiled_data->rewindables);
752 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
753}
754
755static void _ccv_cnnp_model_tensor_symbol_new_hook(void* context, const ccv_nnc_tensor_symbol_t symbol, const ccv_nnc_tensor_param_t info, const char* const name)
756{
757 const ccv_cnnp_rewind_symbol_t rewind_symbol = {
758 .type = CCV_CNNP_REWIND_TENSOR,
759 .tensor = symbol
760 };
761 ccv_array_t* const rewind_symbols = (ccv_array_t*)context;
762 ccv_array_push(rewind_symbols, &rewind_symbol);
763}
764
765static void _ccv_cnnp_model_tensor_symbol_alias_new_hook(void* context, const ccv_nnc_tensor_symbol_t symbol, const ccv_nnc_tensor_symbol_t from_symbol, const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int inc[CCV_NNC_MAX_DIM_ALLOC(12)], const ccv_nnc_tensor_param_t info, const char* const name)
766{
767 const ccv_cnnp_rewind_symbol_t rewind_symbol = {
768 .type = CCV_CNNP_REWIND_TENSOR,
769 .tensor = symbol
770 };
771 ccv_array_t* const rewind_symbols = (ccv_array_t*)context;
772 ccv_array_push(rewind_symbols, &rewind_symbol);
773}
774
775static void _ccv_cnnp_model_graph_exec_symbol_new_hook(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name)
776{
777 const ccv_cnnp_rewind_symbol_t rewind_symbol = {
778 .type = CCV_CNNP_REWIND_GRAPH_EXEC,
779 .graph_exec = symbol
780 };
781 ccv_array_t* const rewind_symbols = (ccv_array_t*)context;
782 ccv_array_push(rewind_symbols, &rewind_symbol);
783}
784
785static void _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(const ccv_nnc_graph_exec_arena_t* const graph_exec_arena, const int parallel_count, const ccv_nnc_graph_exec_symbol_t exec_symbol, const ccv_nnc_cmd_t cmd, ccv_nnc_symbolic_graph_t* const symbolic_graph)
786{
787 ccv_nnc_graph_exec_t const update_exec = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, exec_symbol);
788 if (!CCV_NO_GRAPH_EXEC(update_exec)((update_exec).graph == 0))
789 ccv_nnc_graph_exec_set(update_exec.graph, update_exec, cmd);
790 int i;
791 for (i = 1; i < parallel_count; i++)
792 {
793 ccv_nnc_graph_exec_symbol_t copy_symbol = ccv_nnc_graph_exec_symbol_copy(symbolic_graph, exec_symbol, i);
794 const ccv_nnc_graph_exec_t copy = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, copy_symbol);
795 if (!CCV_NO_GRAPH_EXEC(copy)((copy).graph == 0))
796 ccv_nnc_graph_exec_set(copy.graph, copy, cmd);
797 }
798}
799
800static void _ccv_cnnp_model_graph_exec_symbol_set(ccv_nnc_symbolic_graph_t* const symbolic_graph, ccv_cnnp_compiled_data_t* const compiled_data, const int parallel_count, const ccv_nnc_graph_exec_symbol_t exec_symbol, const ccv_nnc_cmd_t cmd)
801{
802 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 802, __extension__ __PRETTY_FUNCTION__); }))
;
803 assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if
(symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c"
, 803, __extension__ __PRETTY_FUNCTION__); }))
;
804 ccv_nnc_graph_exec_symbol_set(symbolic_graph, exec_symbol, cmd);
805 int i;
806 for (i = 1; i < parallel_count; i++)
807 {
808 ccv_nnc_graph_exec_symbol_t copy_symbol = ccv_nnc_graph_exec_symbol_copy(symbolic_graph, exec_symbol, i);
809 if (copy_symbol.graph)
810 ccv_nnc_graph_exec_symbol_set(symbolic_graph, copy_symbol, cmd);
811 }
812 ccv_nnc_graph_exec_arena_t* const graph_exec_arena = compiled_data->graph_exec_arena;
813 if (graph_exec_arena)
814 _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(graph_exec_arena, parallel_count, exec_symbol, cmd, symbolic_graph);
815 // Skip backward graph exec arena because it is for a specific accum symbolic graph, not the main graph (model->graph)
816 ccv_nnc_graph_exec_arena_t* const gradient_graph_exec_arena = compiled_data->apply_gradients.graph_exec_arena;
817 if (gradient_graph_exec_arena)
818 _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(gradient_graph_exec_arena, parallel_count, exec_symbol, cmd, symbolic_graph);
819}
820
821static int _ccv_cnnp_set_minimizer_for_parameter(ccv_nnc_symbolic_graph_t* const graph, ccv_cnnp_compiled_data_t* const compiled_data, ccv_nnc_graph_exec_symbol_t* const update_nodes, ccv_nnc_tensor_symbol_t* const updated_parameters, ccv_nnc_tensor_symbol_map_t* const saved_aux, const int parallel_count, const ccv_nnc_cmd_t minimizer, const int saved_aux_size, const int max_saved_aux_size, const int parameter_indice)
822{
823 int this_parameter_flag = 0;
824 if (update_nodes[parameter_indice].d == CCV_NNC_NO_TENSOR_SYMBOL)
825 return this_parameter_flag;
826 const ccv_nnc_cmd_t old_minimizer = ccv_nnc_graph_exec_symbol_cmd(graph, update_nodes[parameter_indice]);
827 int j, k;
828 // For no-op, we can preserve previous saved_aux_size.
829 if (old_minimizer.cmd != minimizer.cmd && minimizer.cmd != CCV_NNC_NOOP)
830 {
831 // If the old minimizer is a noop, then the old_saved_aux_size should be whatever its previous
832 // saved_aux_size is, otherwise we will reinit the saved_aux repeatedly if you switch between
833 // noop and a minimizer. We don't want that because we do that in high-level frameworks to
834 // make sure some model parameters don't update if we don't want them to.
835 int old_saved_aux_size;
836 if (old_minimizer.cmd == CCV_NNC_NOOP)
837 {
838 int input_size;
839 ccv_nnc_graph_exec_symbol_io(graph, update_nodes[parameter_indice], 0, &input_size, 0, 0);
840 if (input_size < 2) // This is not legit.
841 old_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(old_minimizer);
842 else // See ccv_nnc_minimizer_saved_aux_size, the saved_aux is inputs excluding gradients and parameters.
843 old_saved_aux_size = input_size - 2;
844 } else
845 old_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(old_minimizer);
846 if (old_saved_aux_size != saved_aux_size)
847 {
848 this_parameter_flag = 1;
849 if (saved_aux_size > old_saved_aux_size)
850 {
851 // Allocate new tensor symbols.
852 const ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(graph, updated_parameters[parameter_indice]);
853 for (j = old_saved_aux_size; j < saved_aux_size; j++)
854 {
855 saved_aux[parameter_indice * max_saved_aux_size + j].source = ccv_nnc_tensor_symbol_new(graph, info, 0);
856 saved_aux[parameter_indice * max_saved_aux_size + j].destination = ccv_nnc_tensor_symbol_new(graph, info, 0);
857 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
858 for (k = 1; k < parallel_count; k++)
859 {
860 ccv_nnc_tensor_param_t dev_info = info;
861 if (k != device_id)
862 CCV_TENSOR_SET_DEVICE_ID(dev_info.type, k)(dev_info.type) = (((dev_info.type) & ~0xfff00) | (((k) &
0xfff) << 8))
;
863 else
864 CCV_TENSOR_SET_DEVICE_ID(dev_info.type, 0)(dev_info.type) = (((dev_info.type) & ~0xfff00) | (((0) &
0xfff) << 8))
;
865 const ccv_nnc_tensor_symbol_t src_copy = ccv_nnc_tensor_symbol_new(graph, dev_info, 0);
866 const ccv_nnc_tensor_symbol_t dest_copy = ccv_nnc_tensor_symbol_new(graph, dev_info, 0);
867 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k, src_copy);
868 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k, dest_copy);
869 }
870 }
871 } else {
872 for (j = saved_aux_size; j < old_saved_aux_size; j++)
873 {
874 for (k = 1; k < parallel_count; k++)
875 {
876 const ccv_nnc_tensor_symbol_t src_copy = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k);
877 if (src_copy.d >= 0)
878 {
879 ccv_nnc_tensor_symbol_free(graph, src_copy);
880 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k, NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
881 }
882 const ccv_nnc_tensor_symbol_t dest_copy = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k);
883 if (dest_copy.d >= 0)
884 {
885 ccv_nnc_tensor_symbol_free(graph, dest_copy);
886 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k, NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
887 }
888 }
889 ccv_nnc_tensor_symbol_free(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source);
890 ccv_nnc_tensor_symbol_free(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination);
891 saved_aux[parameter_indice * max_saved_aux_size + j].source = saved_aux[parameter_indice * max_saved_aux_size + j].destination = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
892 }
893 }
894 }
895 }
896 _ccv_cnnp_model_graph_exec_symbol_set(graph, compiled_data, parallel_count, update_nodes[parameter_indice], minimizer);
897 if (this_parameter_flag)
898 {
899 ccv_nnc_tensor_symbol_t update_inputs[saved_aux_size + 2];
900 ccv_nnc_tensor_symbol_t update_outputs[saved_aux_size + 1];
901 const int* inputs = 0;
902 int input_size = 0;
903 ccv_nnc_graph_exec_symbol_io(graph, update_nodes[parameter_indice], &inputs, &input_size, 0, 0);
904 assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ (
{ if (input_size >= 1) ; else __assert_fail ("input_size >= 1"
, "ccv_cnnp_model.c", 904, __extension__ __PRETTY_FUNCTION__)
; }))
;
905 update_inputs[0].d = inputs[0];
906 update_inputs[0].graph = graph;
907 update_inputs[1].d = inputs[1];
908 update_inputs[1].graph = graph;
909 update_outputs[0] = updated_parameters[parameter_indice];
910 for (j = 0; j < saved_aux_size; j++)
911 {
912 update_inputs[j + 2] = saved_aux[parameter_indice * max_saved_aux_size + j].source;
913 update_outputs[j + 1] = saved_aux[parameter_indice * max_saved_aux_size + j].destination;
914 }
915 ccv_nnc_graph_exec_symbol_set_io(graph, update_nodes[parameter_indice], update_inputs, saved_aux_size + 2, update_outputs, saved_aux_size + 1);
916 for (k = 1; k < parallel_count; k++)
917 {
918 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(graph, update_nodes[parameter_indice], k);
919 assert(copy.d >= 0)((void) sizeof ((copy.d >= 0) ? 1 : 0), __extension__ ({ if
(copy.d >= 0) ; else __assert_fail ("copy.d >= 0", "ccv_cnnp_model.c"
, 919, __extension__ __PRETTY_FUNCTION__); }))
;
920 ccv_nnc_graph_exec_symbol_io(graph, copy, &inputs, &input_size, 0, 0);
921 assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ (
{ if (input_size >= 1) ; else __assert_fail ("input_size >= 1"
, "ccv_cnnp_model.c", 921, __extension__ __PRETTY_FUNCTION__)
; }))
;
922 update_inputs[0].d = inputs[0];
923 update_inputs[0].graph = graph;
924 update_inputs[1].d = inputs[1];
925 update_inputs[1].graph = graph;
926 update_outputs[0] = ccv_nnc_tensor_symbol_copy(graph, updated_parameters[parameter_indice], k);
927 for (j = 0; j < saved_aux_size; j++)
928 {
929 update_inputs[j + 2] = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k);
930 update_outputs[j + 1] = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k);
931 }
932 ccv_nnc_graph_exec_symbol_set_io(graph, copy, update_inputs, saved_aux_size + 2, update_outputs, saved_aux_size + 1);
933 }
934 }
935 return this_parameter_flag;
936}
937
938typedef struct {
939 int parameter_size;
940 ccv_nnc_cmd_t minimizer;
941 ccv_cnnp_model_io_t parameters[1];
942} ccv_cnnp_set_minimizer_for_parameter_t;
943
944static int _ccv_cnnp_apply_parameters_with_minimizer(ccv_cnnp_model_t* const model)
945{
946 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
947 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 947, __extension__ __PRETTY_FUNCTION__); }))
;
948 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
949 // We update all parameters, at this point, we have one minimizer.
950 const int parameter_size = compiled_data->parameters->rnum;
951 ccv_nnc_graph_exec_symbol_t* const update_nodes = compiled_data->update_nodes;
952 ccv_nnc_symbolic_graph_t* const symbolic_graph = model->graph;
953 assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if
(symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c"
, 953, __extension__ __PRETTY_FUNCTION__); }))
;
954 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
955 ccv_array_t* const parameters = compiled_data->minimize.parameters;
956 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
957 int i, j, flag = 0;
958 for (i = 0; i < parameters->rnum; i++)
959 {
960 ccv_cnnp_set_minimizer_for_parameter_t* const set_minimizer_for_parameter = *(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(parameters, i)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(i)))
;
961 for (j = 0; j < set_minimizer_for_parameter->parameter_size; j++)
962 {
963 const int param_sel = set_minimizer_for_parameter->parameters[j]->param_sel > 0 ? set_minimizer_for_parameter->parameters[j]->param_sel - 1 : set_minimizer_for_parameter->parameters[j]->param_sel;
964 assert(set_minimizer_for_parameter->parameters[j]->param_sel != 0)((void) sizeof ((set_minimizer_for_parameter->parameters[j
]->param_sel != 0) ? 1 : 0), __extension__ ({ if (set_minimizer_for_parameter
->parameters[j]->param_sel != 0) ; else __assert_fail (
"set_minimizer_for_parameter->parameters[j]->param_sel != 0"
, "ccv_cnnp_model.c", 964, __extension__ __PRETTY_FUNCTION__)
; }))
;
965 const int old_rnum = parameter_indices->rnum;
966 ccv_cnnp_model_add_to_parameter_indices(set_minimizer_for_parameter->parameters[j]->model, param_sel, parameter_indices);
967 const int param_ref = set_minimizer_for_parameter->parameters[j]->param_ref > 0 ? set_minimizer_for_parameter->parameters[j]->param_ref - 1 : set_minimizer_for_parameter->parameters[j]->param_ref;
968 assert(set_minimizer_for_parameter->parameters[j]->param_ref != 0)((void) sizeof ((set_minimizer_for_parameter->parameters[j
]->param_ref != 0) ? 1 : 0), __extension__ ({ if (set_minimizer_for_parameter
->parameters[j]->param_ref != 0) ; else __assert_fail (
"set_minimizer_for_parameter->parameters[j]->param_ref != 0"
, "ccv_cnnp_model.c", 968, __extension__ __PRETTY_FUNCTION__)
; }))
;
969 if (param_ref >= 0)
970 {
971 assert(param_ref + old_rnum < parameter_indices->rnum)((void) sizeof ((param_ref + old_rnum < parameter_indices->
rnum) ? 1 : 0), __extension__ ({ if (param_ref + old_rnum <
parameter_indices->rnum) ; else __assert_fail ("param_ref + old_rnum < parameter_indices->rnum"
, "ccv_cnnp_model.c", 971, __extension__ __PRETTY_FUNCTION__)
; }))
;
972 *(int*)ccv_array_get(parameter_indices, old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(old_rnum)))
= *(int*)ccv_array_get(parameter_indices, param_ref + old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref + old_rnum)))
;
973 parameter_indices->rnum = old_rnum + 1;
974 }
975 }
976 const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(set_minimizer_for_parameter->minimizer);
977 // We may have duplicated indices, but that is OK, we will set it twice.
978 for (j = 0; j < parameter_indices->rnum; j++)
979 {
980 const int d = *(int*)ccv_array_get(parameter_indices, j)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(j)))
;
981 assert(d <= parameter_size)((void) sizeof ((d <= parameter_size) ? 1 : 0), __extension__
({ if (d <= parameter_size) ; else __assert_fail ("d <= parameter_size"
, "ccv_cnnp_model.c", 981, __extension__ __PRETTY_FUNCTION__)
; }))
;
982 if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, set_minimizer_for_parameter->minimizer, saved_aux_size, max_saved_aux_size, d))
983 flag = 1;
984 }
985 ccv_array_clear(parameter_indices);
986 }
987 ccv_array_free(parameter_indices);
988 return flag;
989}
990
991static void _ccv_cnnp_scatter_saved_aux(ccv_nnc_tensor_symbol_map_t* const saved_aux, const int parameter_size, const int old_saved_aux_size, const int new_saved_aux_size)
992{
993 if (new_saved_aux_size == old_saved_aux_size)
994 return;
995 assert(new_saved_aux_size > old_saved_aux_size)((void) sizeof ((new_saved_aux_size > old_saved_aux_size) ?
1 : 0), __extension__ ({ if (new_saved_aux_size > old_saved_aux_size
) ; else __assert_fail ("new_saved_aux_size > old_saved_aux_size"
, "ccv_cnnp_model.c", 995, __extension__ __PRETTY_FUNCTION__)
; }))
;
996 int i, j;
997 for (i = parameter_size - 1; i >= 0; i--)
998 {
999 for (j = new_saved_aux_size - 1; j >= old_saved_aux_size; j--)
1000 saved_aux[i * new_saved_aux_size + j].source = saved_aux[i * new_saved_aux_size + j].destination = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1001 for (j = old_saved_aux_size - 1; j >= 0; j--)
1002 saved_aux[i * new_saved_aux_size + j] = saved_aux[i * old_saved_aux_size + j];
1003 }
1004}
1005
1006static void _ccv_cnnp_model_set_rewindables(ccv_cnnp_model_t* const model)
1007{
1008 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1009 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1009, __extension__ __PRETTY_FUNCTION__); }))
;
1010 if (!compiled_data->rewindables)
1011 compiled_data->rewindables = ccv_array_new(sizeof(ccv_cnnp_rewind_symbol_t), 0, 0);
1012 ccv_nnc_tensor_symbol_new_hook(model->graph, _ccv_cnnp_model_tensor_symbol_new_hook, compiled_data->rewindables, 0);
1013 ccv_nnc_tensor_symbol_alias_new_hook(model->graph, _ccv_cnnp_model_tensor_symbol_alias_new_hook, compiled_data->rewindables, 0);
1014 ccv_nnc_graph_exec_symbol_new_hook(model->graph, _ccv_cnnp_model_graph_exec_symbol_new_hook, compiled_data->rewindables, 0);
1015}
1016
1017static void _ccv_cnnp_model_gradient_init(ccv_cnnp_model_t* const model, const int gradient_mode, const uint64_t disable_outgrad, ccv_nnc_tensor_t* const* const fits, const int fit_size)
1018{
1019 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1020 assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) ; else __assert_fail
("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE"
, "ccv_cnnp_model.c", 1020, __extension__ __PRETTY_FUNCTION__
); }))
;
1021 assert(gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)((void) sizeof ((gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE
) ? 1 : 0), __extension__ ({ if (gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE
) ; else __assert_fail ("gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE"
, "ccv_cnnp_model.c", 1021, __extension__ __PRETTY_FUNCTION__
); }))
;
1022 const int evaluate_to_size = compiled_data->evaluate.to_size;
1023 assert(evaluate_to_size > 0)((void) sizeof ((evaluate_to_size > 0) ? 1 : 0), __extension__
({ if (evaluate_to_size > 0) ; else __assert_fail ("evaluate_to_size > 0"
, "ccv_cnnp_model.c", 1023, __extension__ __PRETTY_FUNCTION__
); }))
;
1024 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1025 compiled_data->evaluate.tos = ccreallocrealloc(compiled_data->evaluate.tos, sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size * parallel_count + sizeof(ccv_nnc_graph_exec_t) * evaluate_to_size * parallel_count);
1026 compiled_data->evaluate.to_ops = (ccv_nnc_graph_exec_t*)(compiled_data->evaluate.tos + evaluate_to_size * parallel_count);
1027 int i, j;
1028 const int output_size = model->output_size;
1029 assert(!fits || fit_size == output_size * parallel_count)((void) sizeof ((!fits || fit_size == output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (!fits || fit_size == output_size
* parallel_count) ; else __assert_fail ("!fits || fit_size == output_size * parallel_count"
, "ccv_cnnp_model.c", 1029, __extension__ __PRETTY_FUNCTION__
); }))
;
1030 if (fits)
1031 for (i = 0; i < output_size; i++)
1032 ccv_nnc_tensor_symbol_set(model->graph, compiled_data->fits[i], fits[i]->info);
1033 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
1034 const int parameter_size = compiled_data->parameters->rnum;
1035 compiled_data->updated_parameters = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size + sizeof(ccv_nnc_tensor_symbol_map_t) * max_saved_aux_size * parameter_size);
1036 compiled_data->update_nodes = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->updated_parameters + parameter_size);
1037 compiled_data->saved_aux = (ccv_nnc_tensor_symbol_map_t*)(compiled_data->update_nodes + parameter_size);
1038 int parameter_size_maybe_more = parameter_size;
1039 compiled_data->disable_outgrad = disable_outgrad;
1040 int outgrad_size;
1041 if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || model->input_size == 0)
1042 outgrad_size = 0;
1043 else if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) // Compute minimize with gradients including inputs.
1044 outgrad_size = model->input_size;
1045 else {
1046 assert(disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL)((void) sizeof ((disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ? 1 : 0), __extension__ ({ if (disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ; else __assert_fail ("disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL"
, "ccv_cnnp_model.c", 1046, __extension__ __PRETTY_FUNCTION__
); }))
; // If it is disable all, gradient mode won't be this.
1047 outgrad_size = 0;
1048 for (i = 0; i < model->input_size; i++)
1049 if (!(disable_outgrad & ((uint64_t)1 << i)))
1050 ++outgrad_size;
1051 }
1052 compiled_data->outgrad_size = outgrad_size;
1053 parameter_size_maybe_more += outgrad_size;
1054 compiled_data->gradients = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size_maybe_more + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size_maybe_more * parallel_count);
1055 compiled_data->outgrads = parameter_size_maybe_more > parameter_size ? compiled_data->gradients + parameter_size : 0;
1056 compiled_data->backward.tos = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->gradients + parameter_size_maybe_more);
1057 compiled_data->backward.to_size = parameter_size_maybe_more;
1058 ccv_nnc_tensor_symbol_t* parameters = (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
;
1059 if (compiled_data->parameter_flags)
1060 {
1061 parameters = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size);
1062 for (i = 0; i < parameter_size; i++)
1063 if (compiled_data->parameter_flags[i >> 6] & ((uint64_t)1 << (i & 63)))
1064 parameters[i] = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
;
1065 else
1066 parameters[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1067 }
1068 if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || model->input_size == 0)
1069 ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes);
1070 else if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) // Compute minimize with gradients including inputs.
1071 ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, model->inputs, model->input_size, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes);
1072 else { // Compute minimize with gradients including selected inputs.
1073 assert(model->input_size > 0)((void) sizeof ((model->input_size > 0) ? 1 : 0), __extension__
({ if (model->input_size > 0) ; else __assert_fail ("model->input_size > 0"
, "ccv_cnnp_model.c", 1073, __extension__ __PRETTY_FUNCTION__
); }))
;
1074 assert(disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL)((void) sizeof ((disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ? 1 : 0), __extension__ ({ if (disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ; else __assert_fail ("disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL"
, "ccv_cnnp_model.c", 1074, __extension__ __PRETTY_FUNCTION__
); }))
; // If it is disable all, gradient mode won't be this.
1075 assert(outgrad_size > 0)((void) sizeof ((outgrad_size > 0) ? 1 : 0), __extension__
({ if (outgrad_size > 0) ; else __assert_fail ("outgrad_size > 0"
, "ccv_cnnp_model.c", 1075, __extension__ __PRETTY_FUNCTION__
); }))
;
1076 ccv_nnc_tensor_symbol_t outgrads[outgrad_size];
1077 j = 0;
1078 for (i = 0; i < model->input_size; i++)
1079 if (!(disable_outgrad & ((uint64_t)1 << i)))
1080 outgrads[j++] = model->inputs[i];
1081 ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, outgrads, outgrad_size, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes);
1082 }
1083 if (compiled_data->parameter_flags)
1084 ccfreefree(parameters);
1085 _ccv_cnnp_scatter_saved_aux(compiled_data->saved_aux, parameter_size, ccv_nnc_minimizer_saved_aux_size(compiled_data->minimize.minimizer), compiled_data->minimize.max_saved_aux_size);
1086 if (compiled_data->minimize.parameters)
1087 _ccv_cnnp_apply_parameters_with_minimizer(model);
1088 // Go through gradient checkpoints to generate tensor inputs for backward pass just before executing the backward pass.
1089 ccv_cnnp_model_apply_gradient_checkpoints(compiled_data, model->graph);
1090 for (i = 0; i < output_size; i++)
1091 {
1092 const ccv_nnc_tensor_symbol_t df = ccv_nnc_tensor_symbol_for_backward(model->graph, compiled_data->f[i]);
1093 // Init this to 1 so we can backprop.
1094 ccv_nnc_tensor_symbol_set_flags(model->graph, df, CCV_NNC_TENSOR_SYMBOL_INIT_ONES);
1095 }
1096 compiled_data->backward.to_size = 0;
1097 for (i = 0; i < parameter_size_maybe_more; i++)
1098 if (compiled_data->gradients[i].d != CCV_NNC_NO_TENSOR_SYMBOL)
1099 compiled_data->backward.tos[compiled_data->backward.to_size++] = ccv_nnc_graph_exec_symbol_for_backward(model->graph, compiled_data->gradients[i]);
1100 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS);
1101 ccv_nnc_symbolic_graph_set_destinations(model->graph, compiled_data->update_nodes, parameter_size);
1102 for (i = 0; i < parameter_size_maybe_more - parameter_size; i++)
1103 {
1104 if (compiled_data->outgrads[i].d < 0) // When we go through input, we might find zero-length inputs, and for these, we cannot have any outgrads.
1105 continue;
1106 const ccv_nnc_graph_exec_symbol_t outgrad = ccv_nnc_graph_exec_symbol_for_backward(model->graph, compiled_data->outgrads[i]);
1107 const int* tos;
1108 int to_size;
1109 ccv_nnc_graph_exec_symbol_to(model->graph, outgrad, &tos, &to_size);
1110 if (to_size == 0) // If this is the end (no minimizers afterwards). We need to attach this as a destination. Otherwise this is covered in update_nodes.
1111 {
1112 const ccv_nnc_graph_exec_symbol_t* destinations = ccv_nnc_symbolic_graph_destinations(model->graph);
1113 const int destination_count = ccv_nnc_symbolic_graph_destination_size(model->graph);
1114 int flag = 0;
1115 const int outgrad_destination_start = ccv_max(0, destination_count - i)({ typeof (0) _a = (0); typeof (destination_count - i) _b = (
destination_count - i); (_a > _b) ? _a : _b; })
;
1116 for (j = i - 1; !flag && j >= 0; j--)
1117 if (j + outgrad_destination_start < destination_count)
1118 flag = (destinations[j + outgrad_destination_start].d == outgrad.d);
1119 if (!flag) // Only if we cannot find it, we add it.
1120 ccv_nnc_symbolic_graph_add_destination(model->graph, outgrad);
1121 }
1122 }
1123 if (parallel_count > 1)
1124 {
1125 ccv_nnc_symbolic_graph_data_parallel(model->graph, parallel_count,
1126 0, 0,
1127 compiled_data->gradients, parameter_size /* No need to deal with outgrads, we don't allreduce outgrads */,
1128 compiled_data->gradients /* We only care about gradients before allreduce, thus, update our current pointers */,
1129 0, 0, 0,
1130 CCV_NNC_PARALLEL_REDUCE_OP_SUM,
1131 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1132 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1133 for (i = 0; i < evaluate_to_size; i++)
1134 for (j = 1; j < parallel_count; j++)
1135 {
1136 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->evaluate.tos[i], j);
1137 if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL)
1138 compiled_data->evaluate.tos[compiled_data->evaluate.to_size++] = copy;
1139 }
1140 const int backward_to_size = compiled_data->backward.to_size;
1141 for (i = 0; i < backward_to_size; i++)
1142 for (j = 1; j < parallel_count; j++)
1143 {
1144 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->backward.tos[i], j);
1145 if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL)
1146 compiled_data->backward.tos[compiled_data->backward.to_size++] = copy;
1147 }
1148 }
1149 // Only use memory compression if we are in gradient parameter mode.
1150 if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS)
1151 {
1152 if (model->memory_compression)
1153 ccv_nnc_symbolic_graph_memory_compression(model->graph, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1154 if (model->memory_reduction)
1155 ccv_nnc_symbolic_graph_memory_reduction(model->graph, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1156 }
1157 compiled_data->backward.to_size = _ccv_nnc_array_dedup_graph_exec_symbols(compiled_data->backward.tos, compiled_data->backward.to_size);
1158 compiled_data->gradient_mode = gradient_mode;
1159}
1160
1161void ccv_cnnp_model_tensors_init_0(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1162{
1163 assert(!compiled_data->tensors.parameters)((void) sizeof ((!compiled_data->tensors.parameters) ? 1 :
0), __extension__ ({ if (!compiled_data->tensors.parameters
) ; else __assert_fail ("!compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 1163, __extension__ __PRETTY_FUNCTION__
); }))
;
1164 const int parameter_size = compiled_data->parameters->rnum;
1165 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1166 const int internal_size = compiled_data->internals->rnum;
1167 compiled_data->tensors_init.size = ccv_nnc_tensor_symbol_count(model->graph);
1168 compiled_data->tensors_init.v = cccalloccalloc(((compiled_data->tensors_init.size + 31) >> 5), sizeof(uint32_t));
1169 compiled_data->tensors.parameters = (ccv_nnc_tensor_t**)cccalloccalloc((parameter_size + internal_size) * parallel_count, sizeof(ccv_nnc_tensor_t*));
1170 compiled_data->tensors.internals = compiled_data->tensors.parameters + parameter_size * parallel_count;
1171}
1172
1173int ccv_cnnp_model_tensors_any_to_alloc(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1174{
1175 int i, j;
1176 const int parameter_size = compiled_data->parameters->rnum;
1177 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1178 const int internal_size = compiled_data->internals->rnum;
1179 for (i = 0; i < parameter_size; i++)
1180 {
1181 // parameters has to be allocated all together.
1182 if (compiled_data->tensors.parameters[i])
1183 {
1184 for (j = 1; j < parallel_count; j++)
1185 { assert(compiled_data->tensors.parameters[i + j * parameter_size])((void) sizeof ((compiled_data->tensors.parameters[i + j *
parameter_size]) ? 1 : 0), __extension__ ({ if (compiled_data
->tensors.parameters[i + j * parameter_size]) ; else __assert_fail
("compiled_data->tensors.parameters[i + j * parameter_size]"
, "ccv_cnnp_model.c", 1185, __extension__ __PRETTY_FUNCTION__
); }))
; }
1186 continue;
1187 }
1188 return 1;
1189 }
1190 for (i = 0; i < internal_size; i++)
1191 {
1192 if (!compiled_data->tensors.internals[i])
1193 return 1;
1194 for (j = 1; j < parallel_count; j++)
1195 if (!compiled_data->tensors.internals[i + j * internal_size])
1196 return 1;
1197 }
1198 return 0;
1199}
1200
1201void ccv_cnnp_model_tensors_init_1(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1202{
1203 int i, j;
1204 const int parameter_size = compiled_data->parameters->rnum;
1205 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1206 const int internal_size = compiled_data->internals->rnum;
1207 for (i = 0; i < parameter_size; i++)
1208 {
1209 // parameters has to be allocated all together.
1210 if (compiled_data->tensors.parameters[i])
1211 {
1212 for (j = 1; j < parallel_count; j++)
1213 { assert(compiled_data->tensors.parameters[i + j * parameter_size])((void) sizeof ((compiled_data->tensors.parameters[i + j *
parameter_size]) ? 1 : 0), __extension__ ({ if (compiled_data
->tensors.parameters[i + j * parameter_size]) ; else __assert_fail
("compiled_data->tensors.parameters[i + j * parameter_size]"
, "ccv_cnnp_model.c", 1213, __extension__ __PRETTY_FUNCTION__
); }))
; }
1214 continue;
1215 }
1216 const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
;
1217 ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(parameter.graph, parameter);
1218 if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY)
1219 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1220 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
1221 compiled_data->tensors.parameters[i] = ccv_nnc_tensor_new(0, info, 0);
1222 for (j = 1; j < parallel_count; j++)
1223 {
1224 if (j != device_id)
1225 CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff
) << 8))
;
1226 else
1227 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1228 compiled_data->tensors.parameters[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0);
1229 }
1230 }
1231 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1232 for (i = 0; i < internal_size; i++)
1233 {
1234 const ccv_nnc_tensor_symbol_t retained = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(i))
)
;
1235 const int d = retained.d;
1236 if (init_v[d >> 5] & (1u << (d & 0x1f)))
1237 continue;
1238 ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(retained.graph, retained);
1239 if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY)
1240 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1241 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
1242 if (!compiled_data->tensors.internals[i])
1243 compiled_data->tensors.internals[i] = ccv_nnc_tensor_new(0, info, 0);
1244 for (j = 1; j < parallel_count; j++)
1245 {
1246 if (j != device_id)
1247 CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff
) << 8))
;
1248 else
1249 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1250 if (!compiled_data->tensors.internals[i + j * internal_size])
1251 compiled_data->tensors.internals[i + j * internal_size] = ccv_nnc_tensor_new(0, info, 0);
1252 }
1253 }
1254 compiled_data->tensors_init.v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
; // Remove 1 if any.
1255}
1256
1257static void _ccv_cnnp_model_tensors_init(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1258{
1259 ccv_cnnp_model_tensors_init_0(model, compiled_data);
1260 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1261}
1262
1263static void _ccv_cnnp_model_copy_tensors(const uint32_t* const tensors_init, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count)
1264{
1265 assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__
({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0"
, "ccv_cnnp_model.c", 1265, __extension__ __PRETTY_FUNCTION__
); }))
;
1266 int i, j;
1267 for (i = 0; i < tensor_size; i++)
1268 {
1269 if (!tensors[i])
1270 continue;
1271 const int d = tensor_symbols[i].d;
1272 if (!(tensors_init[d >> 5] & (1u << (d & 0x1f))))
1273 continue;
1274 for (j = 1; j < parallel_count; j++)
1275 if (tensors[i + j * tensor_size])
1276 {
1277 ccv_nnc_tensor_t* const input = CCV_NNC_TENSOR(tensors[i])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i]) & ~(uintptr_t
)1))
;
1278 ccv_nnc_tensor_t* const output = CCV_NNC_TENSOR(tensors[i + j * tensor_size])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i + j * tensor_size]
) & ~(uintptr_t)1))
;
1279 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, &input, 1, &output, 1, 0);
1280 }
1281 }
1282}
1283
1284static void _ccv_cnnp_model_remove_nocopies(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t** const tensors, const int tensor_size, const int parallel_count)
1285{
1286 assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__
({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0"
, "ccv_cnnp_model.c", 1286, __extension__ __PRETTY_FUNCTION__
); }))
;
1287 int i, j;
1288 for (i = 0; i < tensor_size; i++)
1289 {
1290 const ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i];
1291 for (j = 1; j < parallel_count; j++)
1292 {
1293 const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j);
1294 ccv_nnc_tensor_t* copy_tensor = tensors[i + j * tensor_size];
1295 if (copy_tensor && copy.d == CCV_NNC_NO_TENSOR_SYMBOL)
1296 { // We shouldn't allocate this, free it up.
1297 ccv_nnc_tensor_free(tensors[i + j * tensor_size]);
1298 tensors[i + j * tensor_size] = 0;
1299 }
1300 }
1301 }
1302}
1303
1304static void _ccv_cnnp_model_bind_tensors(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count, ccv_array_t* const tensor_binds)
1305{
1306 assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__
({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0"
, "ccv_cnnp_model.c", 1306, __extension__ __PRETTY_FUNCTION__
); }))
;
1307 int i, j;
1308 for (i = 0; i < tensor_size; i++)
1309 {
1310 ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i];
1311 if (tensor_symbol.d == CCV_NNC_NO_TENSOR_SYMBOL)
1312 continue;
1313 if (graph)
1314 {
1315 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph, tensor_symbol);
1316 if (alias_to.d != CCV_NNC_NO_TENSOR_SYMBOL)
1317 tensor_symbol = alias_to;
1318 }
1319 ccv_nnc_tensor_t* const tensor = CCV_NNC_TENSOR(tensors[i])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i]) & ~(uintptr_t
)1))
;
1320 if (tensor && tensor_symbol.d != CCV_NNC_NO_TENSOR_SYMBOL)
1321 {
1322 const ccv_nnc_tensor_bind_t retained_bind = {
1323 .symbol = tensor_symbol,
1324 .tensor = tensor
1325 };
1326 ccv_array_push(tensor_binds, &retained_bind);
1327 }
1328 for (j = 1; j < parallel_count; j++)
1329 {
1330 const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j);
1331 ccv_nnc_tensor_t* copy_tensor = tensors[i + j * tensor_size];
1332 if (copy_tensor && copy.d != CCV_NNC_NO_TENSOR_SYMBOL)
1333 {
1334 const ccv_nnc_tensor_bind_t bind = {
1335 .symbol = copy,
1336 .tensor = tensors[i + j * tensor_size]
1337 };
1338 ccv_array_push(tensor_binds, &bind);
1339 }
1340 }
1341 }
1342}
1343
1344static void _ccv_cnnp_compiled_data_graph_free(ccv_cnnp_compiled_data_t* const compiled_data)
1345{
1346 if (compiled_data->graph)
1347 ccv_nnc_graph_free(compiled_data->graph);
1348 compiled_data->graph = 0;
1349 compiled_data->is_test = 0;
1350 if (compiled_data->tensor_arena)
1351 ccv_nnc_tensor_arena_free(compiled_data->tensor_arena);
1352 compiled_data->tensor_arena = 0;
1353 if (compiled_data->graph_exec_arena)
1354 ccv_nnc_graph_exec_arena_free(compiled_data->graph_exec_arena);
1355 compiled_data->graph_exec_arena = 0;
1356 if (compiled_data->backward.from_ops)
1357 ccfreefree(compiled_data->backward.from_ops);
1358 compiled_data->backward.from_ops = 0;
1359 if (compiled_data->evaluate.schedule)
1360 ccv_nnc_graph_static_schedule_free(compiled_data->evaluate.schedule);
1361 compiled_data->evaluate.schedule = 0;
1362 if (compiled_data->backward.schedule)
1363 ccv_nnc_graph_static_schedule_free(compiled_data->backward.schedule);
1364 compiled_data->backward.schedule = 0;
1365}
1366
1367static void _ccv_cnnp_compiled_data_gradient_free(ccv_cnnp_compiled_data_t* const compiled_data)
1368{
1369 if (compiled_data->gradients)
1370 ccfreefree(compiled_data->gradients);
1371 compiled_data->gradients = 0;
1372 if (compiled_data->updated_parameters)
1373 ccfreefree(compiled_data->updated_parameters);
1374 compiled_data->updated_parameters = 0;
1375 compiled_data->update_nodes = 0;
1376 compiled_data->saved_aux = 0;
1377}
1378
1379static void _ccv_cnnp_compiled_data_backward_free(ccv_cnnp_compiled_data_t* const compiled_data)
1380{
1381 if (compiled_data->backward.gradients)
1382 ccfreefree(compiled_data->backward.gradients);
1383 compiled_data->backward.gradients = 0;
1384 if (compiled_data->backward.accum)
1385 ccv_nnc_graph_free(compiled_data->backward.accum);
1386 compiled_data->backward.accum = 0;
1387 if (compiled_data->backward.tensor_arena)
1388 ccv_nnc_tensor_arena_free(compiled_data->backward.tensor_arena);
1389 compiled_data->backward.tensor_arena = 0;
1390 if (compiled_data->backward.graph_exec_arena)
1391 ccv_nnc_graph_exec_arena_free(compiled_data->backward.graph_exec_arena);
1392 compiled_data->backward.graph_exec_arena = 0;
1393}
1394
1395static void _ccv_cnnp_compiled_data_apply_gradients_free(ccv_cnnp_compiled_data_t* const compiled_data)
1396{
1397 if (compiled_data->apply_gradients.graph)
1398 ccv_nnc_graph_free(compiled_data->apply_gradients.graph);
1399 compiled_data->apply_gradients.graph = 0;
1400 if (compiled_data->apply_gradients.tensor_arena)
1401 ccv_nnc_tensor_arena_free(compiled_data->apply_gradients.tensor_arena);
1402 compiled_data->apply_gradients.tensor_arena = 0;
1403 if (compiled_data->apply_gradients.graph_exec_arena)
1404 ccv_nnc_graph_exec_arena_free(compiled_data->apply_gradients.graph_exec_arena);
1405 compiled_data->apply_gradients.graph_exec_arena = 0;
1406}
1407
1408// Compile the graph to run ccv_cnnp_model_fit
1409static void _ccv_cnnp_model_fit_jit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const fits, const int fit_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1410{
1411 int i, j;
1412 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1413 assert(!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE)((void) sizeof ((!compiled_data->graph || compiled_data->
graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE) ? 1 : 0), __extension__
({ if (!compiled_data->graph || compiled_data->graph_mode
!= CCV_CNNP_MODEL_GRAPH_FIT_MODE) ; else __assert_fail ("!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE"
, "ccv_cnnp_model.c", 1413, __extension__ __PRETTY_FUNCTION__
); }))
;
1414 compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_FIT_MODE;
1415 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1416 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1416, __extension__ __PRETTY_FUNCTION__
); }))
;
1417 assert(!fits || output_size == fit_size)((void) sizeof ((!fits || output_size == fit_size) ? 1 : 0), __extension__
({ if (!fits || output_size == fit_size) ; else __assert_fail
("!fits || output_size == fit_size", "ccv_cnnp_model.c", 1417
, __extension__ __PRETTY_FUNCTION__); }))
;
1418 assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ (
{ if (output_size > 0) ; else __assert_fail ("output_size > 0"
, "ccv_cnnp_model.c", 1418, __extension__ __PRETTY_FUNCTION__
); }))
;
1419 if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
1420 {
1421 _ccv_cnnp_model_set_rewindables(model);
1422 _ccv_cnnp_model_gradient_init(model, CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES, CCV_CNNP_DISABLE_OUTGRAD_ALL, fits, fit_size);
1423 } else if (compiled_data->gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES) {
1424 _ccv_cnnp_model_rewind_graph(model);
1425 _ccv_cnnp_compiled_data_gradient_free(compiled_data);
1426 compiled_data->gradient_mode = CCV_CNNP_COMPILED_DATA_GRADIENT_NONE;
1427 _ccv_cnnp_model_gradient_init(model, CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES, CCV_CNNP_DISABLE_OUTGRAD_ALL, fits, fit_size);
1428 }
1429 const int tensors_init = !!compiled_data->tensors_init.v;
1430 if (!tensors_init)
1431 _ccv_cnnp_model_tensors_init(model, compiled_data);
1432 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
1433 // Check if it is not fully allocated, if it is not, init_1.
1434 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1435 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1436 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1436, __extension__ __PRETTY_FUNCTION__); }))
;
1437 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1437, __extension__ __PRETTY_FUNCTION__); }))
;
1438 assert((fit_size % parallel_count) == 0)((void) sizeof (((fit_size % parallel_count) == 0) ? 1 : 0), __extension__
({ if ((fit_size % parallel_count) == 0) ; else __assert_fail
("(fit_size % parallel_count) == 0", "ccv_cnnp_model.c", 1438
, __extension__ __PRETTY_FUNCTION__); }))
;
1439 const int input_size_per_p = input_size / parallel_count;
1440 _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds);
1441 const int output_size_per_p = output_size / parallel_count;
1442 _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds);
1443 const int fit_size_per_p = fit_size / parallel_count;
1444 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->fits, fits, fit_size_per_p, parallel_count, tensor_binds);
1445 const int parameter_size = compiled_data->parameters->rnum;
1446 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1447 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->updated_parameters, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1448 const int internal_size = compiled_data->internals->rnum;
1449 _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count);
1450 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds);
1451 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1452 ccv_array_free(tensor_binds);
1453 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1454 if (tensors_init && parallel_count > 1)
1455 _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count);
1456 // If tensor is not init'ed, we need to init states first.
1457 if (_ccv_cnnp_any_to_init(compiled_data))
1458 {
1459 ccv_nnc_tensor_init_states_t tensor_init_states = {
1460 .parallel_count = parallel_count,
1461 .graph = model->graph,
1462 .compiled_data = compiled_data,
1463 .tensor_arena = compiled_data->tensor_arena
1464 };
1465 ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states);
1466 }
1467 compiled_data->is_test = 0;
1468 const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(compiled_data->minimize.minimizer);
1469 // No need to set because it is default to training mode.
1470 // ccv_cnnp_model_set_is_test(model, 0, _ccv_cnnp_cmd_update_for_execs, &update);
1471 for (i = 0; i < saved_aux_size * parameter_size; i++)
1472 {
1473 if (compiled_data->saved_aux[i].source.d == CCV_NNC_NO_TENSOR_SYMBOL)
1474 continue;
1475 ccv_nnc_tensor_t* const tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, compiled_data->saved_aux[i].source);
1476 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &tensor, 1, 0);
1477 for (j = 1; j < parallel_count; j++)
1478 {
1479 ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, compiled_data->saved_aux[i].source, j));
1480 if (copy)
1481 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &copy, 1, 0);
1482 }
1483 }
1484 const int evaluate_to_size = compiled_data->evaluate.to_size;
1485 compiled_data->evaluate.to_op_size = 0;
1486 for (i = 0; i < evaluate_to_size; i++)
1487 {
1488 ccv_nnc_graph_exec_t const to = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, compiled_data->evaluate.tos[i]);
1489 if (to.graph)
1490 compiled_data->evaluate.to_ops[compiled_data->evaluate.to_op_size++] = to;
1491 }
1492 ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count);
1493 ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0);
1494}
1495
1496ccv_nnc_stream_context_t* ccv_cnnp_model_default_stream(const ccv_cnnp_model_t* const model)
1497{
1498 const ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1499 if (!compiled_data || !compiled_data->graph)
1500 return 0;
1501 return ccv_nnc_graph_default_stream(compiled_data->graph);
1502}
1503
1504uint64_t ccv_cnnp_model_memory_size(const ccv_cnnp_model_t* const model)
1505{
1506 const ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1507 if (!compiled_data || !compiled_data->tensor_arena)
1508 return 0;
1509 return ccv_nnc_tensor_arena_size(compiled_data->tensor_arena);
1510}
1511
1512static void _ccv_cnnp_bind_tensors_to_arena(ccv_nnc_tensor_arena_t* const tensor_arena, const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count)
1513{
1514 int i, j;
1515 for (i = 0; i < tensor_size; i++)
1516 {
1517 ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i];
1518 if (tensor_symbol.d == CCV_NNC_NO_TENSOR_SYMBOL)
1519 continue;
1520 if (graph)
1521 {
1522 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph, tensor_symbol);
1523 if (alias_to.d != CCV_NNC_NO_TENSOR_SYMBOL)
1524 tensor_symbol = alias_to;
1525 }
1526 ccv_nnc_tensor_bind_symbol(tensor_arena, tensor_symbol, tensors[i]);
1527 for (j = 1; j < parallel_count; j++)
1528 {
1529 const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j);
1530 if (copy.d != CCV_NNC_NO_TENSOR_SYMBOL)
1531 ccv_nnc_tensor_bind_symbol(tensor_arena, copy, tensors[i + tensor_size * j]);
1532 }
1533 }
1534}
1535
1536void ccv_cnnp_model_fit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const fits, const int fit_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context)
1537{
1538 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1539 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1539, __extension__ __PRETTY_FUNCTION__); }))
;
1540 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1541 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1541, __extension__ __PRETTY_FUNCTION__
); }))
;
1542 assert(input_size == model->input_size * parallel_count)((void) sizeof ((input_size == model->input_size * parallel_count
) ? 1 : 0), __extension__ ({ if (input_size == model->input_size
* parallel_count) ; else __assert_fail ("input_size == model->input_size * parallel_count"
, "ccv_cnnp_model.c", 1542, __extension__ __PRETTY_FUNCTION__
); }))
;
1543 assert(!fits || fit_size == output_size)((void) sizeof ((!fits || fit_size == output_size) ? 1 : 0), __extension__
({ if (!fits || fit_size == output_size) ; else __assert_fail
("!fits || fit_size == output_size", "ccv_cnnp_model.c", 1543
, __extension__ __PRETTY_FUNCTION__); }))
;
1544 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 1544, __extension__ __PRETTY_FUNCTION__); }))
;
1545 if (!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE)
1546 {
1547 _ccv_cnnp_compiled_data_graph_free(compiled_data);
1548 _ccv_cnnp_compiled_data_backward_free(compiled_data);
1549 _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data);
1550 // Compile the symbolic graph down only when needed.
1551 _ccv_cnnp_model_fit_jit(model, inputs, input_size, fits, fit_size, outputs, output_size);
1552 } else {
1553 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1553, __extension__ __PRETTY_FUNCTION__); }))
;
1554 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1554, __extension__ __PRETTY_FUNCTION__); }))
;
1555 assert((fit_size % parallel_count) == 0)((void) sizeof (((fit_size % parallel_count) == 0) ? 1 : 0), __extension__
({ if ((fit_size % parallel_count) == 0) ; else __assert_fail
("(fit_size % parallel_count) == 0", "ccv_cnnp_model.c", 1555
, __extension__ __PRETTY_FUNCTION__); }))
;
1556 const int input_size_per_p = input_size / parallel_count;
1557 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->inputs, inputs, input_size_per_p, parallel_count);
1558 const int output_size_per_p = output_size / parallel_count;
1559 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->outputs, outputs, output_size_per_p, parallel_count);
1560 const int fit_size_per_p = fit_size / parallel_count;
1561 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, compiled_data->fits, fits, fit_size_per_p, parallel_count);
1562 }
1563 if (compiled_data->is_test)
1564 {
1565 compiled_data->is_test = 0;
1566 ccv_nnc_graph_exec_update_t update = {
1567 .parallel_count = parallel_count,
1568 .graph = model->graph,
1569 .graph_exec_arena = compiled_data->graph_exec_arena,
1570 };
1571 ccv_cnnp_model_set_is_test(model, 0, _ccv_cnnp_cmd_update_for_execs, &update);
1572 }
1573 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, 0, tensor_tape, stream_context);
1574}
1575
1576// Compile the graph to run ccv_cnnp_model_evaluate with require_grad = false (MULTISTAGE_MODE_NO_GRAD).
1577static void _ccv_cnnp_model_multistage_no_grad_jit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1578{
1579 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1580 compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE_NO_GRAD;
1581 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1582 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1582, __extension__ __PRETTY_FUNCTION__
); }))
;
1583 assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ (
{ if (output_size > 0) ; else __assert_fail ("output_size > 0"
, "ccv_cnnp_model.c", 1583, __extension__ __PRETTY_FUNCTION__
); }))
;
1584 // If the gradient is not initialized, continue to setup parallel process. We don't init gradient here, but rather,
1585 // we setup proper rewindables so the graph can be rewinded to previous state before we run data parallel.
1586 if (parallel_count > 1 && compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
1587 {
1588 const int evaluate_to_size = compiled_data->evaluate.to_size;
1589 compiled_data->evaluate.tos = ccreallocrealloc(compiled_data->evaluate.tos, sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size * parallel_count + sizeof(ccv_nnc_graph_exec_t) * evaluate_to_size * parallel_count);
1590 _ccv_cnnp_model_set_rewindables(model);
1591 ccv_nnc_symbolic_graph_data_parallel(model->graph, parallel_count,
1592 0, 0,
1593 0, 0, 0,
1594 0, 0, 0,
1595 CCV_NNC_PARALLEL_REDUCE_OP_SUM,
1596 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1597 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1598 int i, j;
1599 for (i = 0; i < evaluate_to_size; i++)
1600 for (j = 1; j < parallel_count; j++)
1601 {
1602 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->evaluate.tos[i], j);
1603 if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL)
1604 compiled_data->evaluate.tos[compiled_data->evaluate.to_size++] = copy;
1605 }
1606 }
1607 const int tensors_init = !!compiled_data->tensors_init.v;
1608 if (!tensors_init)
1609 _ccv_cnnp_model_tensors_init(model, compiled_data);
1610 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
1611 // Check if it is not fully allocated, if it is not, init_1.
1612 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1613 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1614 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1614, __extension__ __PRETTY_FUNCTION__); }))
;
1615 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1615, __extension__ __PRETTY_FUNCTION__); }))
;
1616 const int input_size_per_p = input_size / parallel_count;
1617 _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds);
1618 const int output_size_per_p = output_size / parallel_count;
1619 _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds);
1620 const int parameter_size = compiled_data->parameters->rnum;
1621 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1622 const int internal_size = compiled_data->internals->rnum;
1623 _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count);
1624 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds);
1625 // If we generated gradient for the graph, only compile part of the graph because the rest is irrelevant for evaluation.
1626 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, compiled_data->evaluate.tos, compiled_data->evaluate.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1627 ccv_array_free(tensor_binds);
1628 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1629 // If tensor is not init'ed, we need to init states first.
1630 if (tensors_init && parallel_count > 1)
1631 _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count);
1632 if (_ccv_cnnp_any_to_init(compiled_data))
1633 {
1634 ccv_nnc_tensor_init_states_t tensor_init_states = {
1635 .parallel_count = parallel_count,
1636 .graph = model->graph,
1637 .compiled_data = compiled_data,
1638 .tensor_arena = compiled_data->tensor_arena
1639 };
1640 ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states);
1641 }
1642 compiled_data->is_test = 1;
1643 ccv_nnc_graph_exec_update_t update = {
1644 .parallel_count = parallel_count,
1645 .graph = model->graph,
1646 .graph_exec_arena = compiled_data->graph_exec_arena,
1647 };
1648 ccv_cnnp_model_set_is_test(model, 1, _ccv_cnnp_cmd_update_for_execs, &update);
1649 ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count);
1650 ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0);
1651}
1652
1653static void _ccv_cnnp_model_gradient_tensors_init(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1654{
1655 assert(!compiled_data->tensors.gradients)((void) sizeof ((!compiled_data->tensors.gradients) ? 1 : 0
), __extension__ ({ if (!compiled_data->tensors.gradients)
; else __assert_fail ("!compiled_data->tensors.gradients"
, "ccv_cnnp_model.c", 1655, __extension__ __PRETTY_FUNCTION__
); }))
;
1656 const int parameter_size = compiled_data->parameters->rnum;
1657 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1658 compiled_data->tensors.gradients = (ccv_nnc_tensor_t**)ccmallocmalloc(sizeof(ccv_nnc_tensor_t*) * parameter_size * 2 * parallel_count);
1659 compiled_data->tensors.accum_gradients = compiled_data->tensors.gradients + parameter_size * parallel_count;
1660 int i, j;
1661 for (i = 0; i < parameter_size; i++)
1662 {
1663 if (compiled_data->parameter_flags && !(compiled_data->parameter_flags[i >> 6] & ((uint64_t)1 << (i & 63))))
1664 {
1665 compiled_data->tensors.gradients[i] = 0;
1666 compiled_data->tensors.accum_gradients[i] = 0;
1667 for (j = 1; j < parallel_count; j++)
1668 {
1669 compiled_data->tensors.gradients[i + j * parameter_size] = 0;
1670 compiled_data->tensors.accum_gradients[i + j * parameter_size] = 0;
1671 }
1672 continue;
1673 }
1674 const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
;
1675 ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(parameter.graph, parameter);
1676 if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY)
1677 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1678 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
1679 compiled_data->tensors.gradients[i] = ccv_nnc_tensor_new(0, info, 0);
1680 compiled_data->tensors.accum_gradients[i] = 0; // delay the accumulated gradient allocation until when we need it.
1681 for (j = 1; j < parallel_count; j++)
1682 {
1683 if (j != device_id)
1684 CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff
) << 8))
;
1685 else
1686 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1687 compiled_data->tensors.gradients[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0);
1688 compiled_data->tensors.accum_gradients[i + j * parameter_size] = 0;
1689 }
1690 }
1691}
1692
1693static int _ccv_cnnp_is_disable_outgrad_all(const uint64_t disable_outgrad, const int input_size)
1694{
1695 if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_ALL)
1696 return 1;
1697 if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE)
1698 return 0;
1699 int i;
1700 for (i = 0; i < input_size; i++)
1701 if (!(disable_outgrad & ((uint64_t)1 << i)))
1702 return 0;
1703 return 1;
1704}
1705
1706// Compile the graph to run ccv_cnnp_model_evaluate with requires_grad = true (MULTISTAGE_MODE).
1707// Particularly, this method compiles the evaluation and backprop graph (the main graph).
1708static void _ccv_cnnp_model_multistage_jit_0(ccv_cnnp_model_t* const model, const uint64_t disable_outgrad, const int is_test, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1709{
1710 int i, j;
1711 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1712 const int target_gradient_mode = _ccv_cnnp_is_disable_outgrad_all(disable_outgrad, model->input_size) ? CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES : CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS;
1713 assert(!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode)((void) sizeof ((!compiled_data->graph || compiled_data->
graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data
->gradient_mode != target_gradient_mode) ? 1 : 0), __extension__
({ if (!compiled_data->graph || compiled_data->graph_mode
!= CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->
gradient_mode != target_gradient_mode) ; else __assert_fail (
"!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode"
, "ccv_cnnp_model.c", 1713, __extension__ __PRETTY_FUNCTION__
); }))
;
1714 compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE;
1715 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1716 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1716, __extension__ __PRETTY_FUNCTION__
); }))
;
1717 assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ (
{ if (output_size > 0) ; else __assert_fail ("output_size > 0"
, "ccv_cnnp_model.c", 1717, __extension__ __PRETTY_FUNCTION__
); }))
;
1718 // There shouldn't be a loss function if we evaluate with multistage jit.
1719 assert(compiled_data->loss.cmd == CCV_NNC_NOOP)((void) sizeof ((compiled_data->loss.cmd == CCV_NNC_NOOP) ?
1 : 0), __extension__ ({ if (compiled_data->loss.cmd == CCV_NNC_NOOP
) ; else __assert_fail ("compiled_data->loss.cmd == CCV_NNC_NOOP"
, "ccv_cnnp_model.c", 1719, __extension__ __PRETTY_FUNCTION__
); }))
;
1720 if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
1721 {
1722 _ccv_cnnp_model_set_rewindables(model);
1723 _ccv_cnnp_model_gradient_init(model, target_gradient_mode, disable_outgrad, 0, 0); // The type of outputs and fits should be the same. We only use type here.
1724 } else if (compiled_data->gradient_mode != target_gradient_mode) {
1725 _ccv_cnnp_model_rewind_graph(model);
1726 _ccv_cnnp_compiled_data_gradient_free(compiled_data);
1727 compiled_data->gradient_mode = CCV_CNNP_COMPILED_DATA_GRADIENT_NONE;
1728 _ccv_cnnp_model_gradient_init(model, target_gradient_mode, disable_outgrad, 0, 0); // The type of outputs and fits should be the same. We only use type here.
1729 }
1730 const int tensors_init = !!compiled_data->tensors_init.v;
1731 if (!tensors_init)
1732 _ccv_cnnp_model_tensors_init(model, compiled_data);
1733 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
1734 // Check if it is not fully allocated, if it is not, init_1.
1735 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1736 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1737 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1737, __extension__ __PRETTY_FUNCTION__); }))
;
1738 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1738, __extension__ __PRETTY_FUNCTION__); }))
;
1739 const int input_size_per_p = input_size / parallel_count;
1740 _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds);
1741 const int output_size_per_p = output_size / parallel_count;
1742 _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds);
1743 const int parameter_size = compiled_data->parameters->rnum;
1744 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1745 const int internal_size = compiled_data->internals->rnum;
1746 _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count);
1747 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds);
1748 if (!compiled_data->tensors.gradients)
1749 _ccv_cnnp_model_gradient_tensors_init(model, compiled_data);
1750 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count, tensor_binds);
1751 if (compiled_data->backward.to_size > 0)
1752 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, compiled_data->backward.tos, compiled_data->backward.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1753 else
1754 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, compiled_data->evaluate.tos, compiled_data->evaluate.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1755 ccv_array_free(tensor_binds);
1756 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1757 if (tensors_init && parallel_count > 1)
1758 _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count);
1759 // If tensor is not init'ed, we need to init states first.
1760 if (_ccv_cnnp_any_to_init(compiled_data))
1761 {
1762 ccv_nnc_tensor_init_states_t tensor_init_states = {
1763 .parallel_count = parallel_count,
1764 .graph = model->graph,
1765 .compiled_data = compiled_data,
1766 .tensor_arena = compiled_data->tensor_arena
1767 };
1768 ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states);
1769 }
1770 compiled_data->is_test = is_test;
1771 ccv_nnc_graph_exec_update_t update = {
1772 .parallel_count = parallel_count,
1773 .graph = model->graph,
1774 .graph_exec_arena = compiled_data->graph_exec_arena,
1775 };
1776 ccv_cnnp_model_set_is_test(model, is_test, _ccv_cnnp_cmd_update_for_execs, &update);
1777 const int evaluate_to_size = compiled_data->evaluate.to_size;
1778 compiled_data->evaluate.to_op_size = 0;
1779 ccv_array_t* const backward_from = ccv_array_new(sizeof(int), 0, 0);
1780 for (i = 0; i < evaluate_to_size; i++)
1781 {
1782 ccv_nnc_graph_exec_t const to_op = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, compiled_data->evaluate.tos[i]);
1783 if (to_op.graph)
1784 compiled_data->evaluate.to_ops[compiled_data->evaluate.to_op_size++] = to_op;
1785 const int* tos;
1786 int to_size;
1787 ccv_nnc_graph_exec_symbol_to(model->graph, compiled_data->evaluate.tos[i], &tos, &to_size);
1788 for (j = 0; j < to_size; j++)
1789 {
1790 ccv_nnc_graph_exec_t const to_op = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, (ccv_nnc_graph_exec_symbol_t){
1791 .d = tos[j],
1792 .graph = model->graph
1793 });
1794 if (to_op.graph)
1795 ccv_array_add_unique_int(backward_from, to_op.d);
1796 }
1797 }
1798 assert(backward_from->rnum > 0)((void) sizeof ((backward_from->rnum > 0) ? 1 : 0), __extension__
({ if (backward_from->rnum > 0) ; else __assert_fail (
"backward_from->rnum > 0", "ccv_cnnp_model.c", 1798, __extension__
__PRETTY_FUNCTION__); }))
;
1799 compiled_data->backward.from_op_size = backward_from->rnum;
1800 compiled_data->backward.from_ops = (ccv_nnc_graph_exec_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_t) * backward_from->rnum);
1801 for (i = 0; i < backward_from->rnum; i++)
1802 compiled_data->backward.from_ops[i] = (ccv_nnc_graph_exec_t){
1803 .d = *(int*)ccv_array_get(backward_from, i)((void*)(((char*)((backward_from)->data)) + (size_t)(backward_from
)->rsize * (size_t)(i)))
,
1804 .graph = compiled_data->graph,
1805 };
1806 // If there are any set node (to set some tensors to 0) inserted through backward pass, these won't be executed if we just do sources -> evaluate.to_ops, backward.from_ops -> destinations. We need this logic to find out these nodes and explicitly adding them to backward.from_ops.
1807 ccv_nnc_graph_exec_info_t* const exec_info = (ccv_nnc_graph_exec_info_t*)ccv_array_get(compiled_data->graph->exec_info, 0)((void*)(((char*)((compiled_data->graph->exec_info)->
data)) + (size_t)(compiled_data->graph->exec_info)->
rsize * (size_t)(0)))
;
1808 const int exec_info_size = compiled_data->graph->exec_info->rnum;
1809 uint32_t* const visited = cccalloccalloc((exec_info_size + 31) >> 5, sizeof(uint32_t));
1810 const ccv_nnc_graph_exec_t* const sources = (ccv_nnc_graph_exec_t*)ccv_array_get(compiled_data->graph->sources, 0)((void*)(((char*)((compiled_data->graph->sources)->data
)) + (size_t)(compiled_data->graph->sources)->rsize *
(size_t)(0)))
;
1811 const int source_size = compiled_data->graph->sources->rnum;
1812 ccv_nnc_graph_visit_t* visit = ccv_nnc_graph_visit_new(compiled_data->graph, exec_info, exec_info_size, sources, source_size, compiled_data->evaluate.to_ops, compiled_data->evaluate.to_op_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_info_size) - 1)); _visit_->size = 0; do { typedef struct
{ int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_info_size); _i_++) _incoming_edges_ += ((exec_info)[_i_
].outgoings) ? (exec_info)[_i_].outgoings->rnum : 0; const
int _heap_mem_ = ((exec_info_size) + _incoming_edges_ > 1024
); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_) _incomings_
= (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t) * (
exec_info_size) + sizeof(int32_t) * ((exec_info_size) * 2 + _incoming_edges_
)); else _incomings_ = (ccv_nnc_incoming_t*)__builtin_alloca (
sizeof(ccv_nnc_incoming_t) * (exec_info_size) + sizeof(int32_t
) * ((exec_info_size) * 2 + _incoming_edges_)); memset(_incomings_
, 0, sizeof(ccv_nnc_incoming_t) * (exec_info_size)); int32_t*
_exists_[2] = { (int32_t*)(_incomings_ + (exec_info_size)), (
int32_t*)(_incomings_ + (exec_info_size)) + (exec_info_size),
}; int32_t* const _edges_ = _exists_[1] + (exec_info_size); for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 1; _exists_[0][_i_]
= (sources)[_i_].d; } int _exist_size_[2] = { (source_size),
0, }; int _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0)
{ _exist_size_[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_
[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_][_i_]; if (
_incomings_[_idx_].r != 1) continue; _incomings_[_idx_].r = 2
; if ((exec_info)[_idx_].outgoings) for (_j_ = 0; _j_ < (exec_info
)[_idx_].outgoings->rnum; _j_++) { const int d = *(int*)((
void*)(((char*)(((exec_info)[_idx_].outgoings)->data)) + (
size_t)((exec_info)[_idx_].outgoings)->rsize * (size_t)(_j_
))); ++_incomings_[d].c; if (_incomings_[d].r != 0) continue;
_incomings_[d].r = 1; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 3; _exists_[0][_i_]
= (sources)[_i_].d; } _exist_size_[0] = (source_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 3) continue; _incomings_[
_idx_].r = 4; if ((exec_info)[_idx_].outgoings) for (_j_ = 0;
_j_ < (exec_info)[_idx_].outgoings->rnum; _j_++) { const
int d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings
)->data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize
* (size_t)(_j_))); if (_incomings_[d].edges == 0) { _incomings_
[d].edges = _bump_; _bump_ += _incomings_[d].c; _incomings_[d
].c = 0; } _edges_[_incomings_[d].edges - 1 + _incomings_[d].
c] = _idx_; ++_incomings_[d].c; if (_incomings_[d].r != 2) continue
; _incomings_[d].r = 3; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (compiled_data->evaluate.to_op_size); _i_
++) { ((void) sizeof (((compiled_data->evaluate.to_ops)[_i_
].graph == compiled_data->graph) ? 1 : 0), __extension__ (
{ if ((compiled_data->evaluate.to_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->evaluate.to_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->evaluate.to_ops)[_i_].
d].r = 5; _exists_[0][_i_] = (compiled_data->evaluate.to_ops
)[_i_].d; } _exist_size_[0] = (compiled_data->evaluate.to_op_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 5) continue; _incomings_[
_idx_].r = 6; if (_incomings_[_idx_].edges > 0) for (_j_ =
0; _j_ < _incomings_[_idx_].c; _j_++) { const int d = _edges_
[_incomings_[_idx_].edges - 1 + _j_]; if (_incomings_[d].r !=
4) continue; _incomings_[d].r = 5; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (compiled_data->evaluate.to_op_size); _i_
++) { ((void) sizeof (((compiled_data->evaluate.to_ops)[_i_
].graph == compiled_data->graph) ? 1 : 0), __extension__ (
{ if ((compiled_data->evaluate.to_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->evaluate.to_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->evaluate.to_ops)[_i_].
d].d = 1; } for (_i_ = 0; _i_ < (source_size); _i_++) { ((
void) sizeof (((sources)[_i_].graph == compiled_data->graph
) ? 1 : 0), __extension__ ({ if ((sources)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (sources)[_i_].d; } _p_ = 0; _q_ =
1; _exist_size_[0] = (source_size); _exist_size_[1] = 0; int
_d_ = 0; while (_exist_size_[_p_] > 0) { _exist_size_[_q_
] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_];) { const int32_t
_idx_ = _exists_[_p_][_i_]; _visit_->node[_visit_->size
].index = ((_idx_)); _visit_->node[_visit_->size].term =
((_incomings_[_idx_].d)); ++_visit_->size;; if (_incomings_
[_idx_].d) { ++_d_; _incomings_[_idx_].r = 7; } if ((exec_info
)[_idx_].outgoings) { if ((exec_info)[_idx_].outgoings->rnum
== 1) { const int d = *(int*)((void*)(((char*)(((exec_info)[
_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].outgoings
)->rsize * (size_t)(0))); --_incomings_[d].c; if (_incomings_
[d].c == 0 && _incomings_[d].r == 6 && _d_ <
(compiled_data->evaluate.to_op_size)) { _exists_[_p_][_i_
] = d; continue; } } else for (_j_ = 0; _j_ < (exec_info)[
_idx_].outgoings->rnum; _j_++) { const int d = *(int*)((void
*)(((char*)(((exec_info)[_idx_].outgoings)->data)) + (size_t
)((exec_info)[_idx_].outgoings)->rsize * (size_t)(_j_))); --
_incomings_[d].c; if (_incomings_[d].c == 0 && _incomings_
[d].r == 6 && _d_ < (compiled_data->evaluate.to_op_size
)) { ((void) sizeof ((_exist_size_[_q_] < (exec_info_size)
) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (compiled_data->evaluate.to_op_size
); _i_++) { ((void) sizeof (((compiled_data->evaluate.to_ops
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((compiled_data->evaluate.to_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->evaluate.to_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(compiled_data->evaluate.to_ops)[_i_
].d].r == 7) continue; if (!(0)) { ((void) sizeof ((_incomings_
[(compiled_data->evaluate.to_ops)[_i_].d].c == 0) ? 1 : 0)
, __extension__ ({ if (_incomings_[(compiled_data->evaluate
.to_ops)[_i_].d].c == 0) ; else __assert_fail ("_incomings_[(compiled_data->evaluate.to_ops)[_i_].d].c == 0"
, "ccv_cnnp_model.c", 1812, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(compiled_data->evaluate.to_ops
)[_i_].d].c > 0) continue; _visit_->node[_visit_->size
].index = (((compiled_data->evaluate.to_ops)[_i_].d)); _visit_
->node[_visit_->size].term = ((_incomings_[(compiled_data
->evaluate.to_ops)[_i_].d].d)); ++_visit_->size;; } if (
_heap_mem_) free(_incomings_); } while (0);; ((void) sizeof (
(_visit_->size <= (exec_info_size)) ? 1 : 0), __extension__
({ if (_visit_->size <= (exec_info_size)) ; else __assert_fail
("_visit_->size <= (exec_info_size)", "ccv_cnnp_model.c"
, 1812, __extension__ __PRETTY_FUNCTION__); })); _visit_; })
;
1813 ccv_nnc_graph_visit_for(visit, exec_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (visit)->size; _i_++) { const
int idx __attribute__((unused)) = (visit)->node[_i_].index
; const int _node_unused_ __attribute__((unused)) = (visit)->
node[_i_].term; typeof ((exec_info)) const node __attribute__
((unused)) = (exec_info) + idx;
{
1814 visited[(idx >> 5)] |= (1u << (idx & 31));
1815 } ccv_nnc_graph_visit_endfor} }
1816 ccv_nnc_graph_visit_free(visit);
1817 const ccv_nnc_graph_exec_t* const destinations = (ccv_nnc_graph_exec_t*)ccv_array_get(compiled_data->graph->destinations, 0)((void*)(((char*)((compiled_data->graph->destinations)->
data)) + (size_t)(compiled_data->graph->destinations)->
rsize * (size_t)(0)))
;
1818 const int destination_size = compiled_data->graph->destinations->rnum;
1819 visit = ccv_nnc_graph_visit_new(compiled_data->graph, exec_info, exec_info_size, compiled_data->backward.from_ops, compiled_data->backward.from_op_size, destinations, destination_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_info_size) - 1)); _visit_->size = 0; do { typedef struct
{ int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_info_size); _i_++) _incoming_edges_ += ((exec_info)[_i_
].outgoings) ? (exec_info)[_i_].outgoings->rnum : 0; const
int _heap_mem_ = ((exec_info_size) + _incoming_edges_ > 1024
); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_) _incomings_
= (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t) * (
exec_info_size) + sizeof(int32_t) * ((exec_info_size) * 2 + _incoming_edges_
)); else _incomings_ = (ccv_nnc_incoming_t*)__builtin_alloca (
sizeof(ccv_nnc_incoming_t) * (exec_info_size) + sizeof(int32_t
) * ((exec_info_size) * 2 + _incoming_edges_)); memset(_incomings_
, 0, sizeof(ccv_nnc_incoming_t) * (exec_info_size)); int32_t*
_exists_[2] = { (int32_t*)(_incomings_ + (exec_info_size)), (
int32_t*)(_incomings_ + (exec_info_size)) + (exec_info_size),
}; int32_t* const _edges_ = _exists_[1] + (exec_info_size); for
(_i_ = 0; _i_ < (compiled_data->backward.from_op_size)
; _i_++) { ((void) sizeof (((compiled_data->backward.from_ops
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((compiled_data->backward.from_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->backward.from_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->backward.from_ops)[_i_
].d].r = 1; _exists_[0][_i_] = (compiled_data->backward.from_ops
)[_i_].d; } int _exist_size_[2] = { (compiled_data->backward
.from_op_size), 0, }; int _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 1) continue; _incomings_[
_idx_].r = 2; if ((exec_info)[_idx_].outgoings) for (_j_ = 0;
_j_ < (exec_info)[_idx_].outgoings->rnum; _j_++) { const
int d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings
)->data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize
* (size_t)(_j_))); ++_incomings_[d].c; if (_incomings_[d].r !=
0) continue; _incomings_[d].r = 1; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (compiled_data->backward.from_op_size)
; _i_++) { ((void) sizeof (((compiled_data->backward.from_ops
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((compiled_data->backward.from_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->backward.from_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->backward.from_ops)[_i_
].d].r = 3; _exists_[0][_i_] = (compiled_data->backward.from_ops
)[_i_].d; } _exist_size_[0] = (compiled_data->backward.from_op_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while
(_exist_size_[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_
= 0; _i_ < _exist_size_[_p_]; _i_++) { const int32_t _idx_
= _exists_[_p_][_i_]; if (_incomings_[_idx_].r != 3) continue
; _incomings_[_idx_].r = 4; if ((exec_info)[_idx_].outgoings)
for (_j_ = 0; _j_ < (exec_info)[_idx_].outgoings->rnum
; _j_++) { const int d = *(int*)((void*)(((char*)(((exec_info
)[_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].
outgoings)->rsize * (size_t)(_j_))); if (_incomings_[d].edges
== 0) { _incomings_[d].edges = _bump_; _bump_ += _incomings_
[d].c; _incomings_[d].c = 0; } _edges_[_incomings_[d].edges -
1 + _incomings_[d].c] = _idx_; ++_incomings_[d].c; if (_incomings_
[d].r != 2) continue; _incomings_[d].r = 3; ((void) sizeof ((
_exist_size_[_q_] < (exec_info_size)) ? 1 : 0), __extension__
({ if (_exist_size_[_q_] < (exec_info_size)) ; else __assert_fail
("_exist_size_[_q_] < (exec_info_size)", "ccv_cnnp_model.c"
, 1819, __extension__ __PRETTY_FUNCTION__); })); _exists_[_q_
][_exist_size_[_q_]] = d; ++_exist_size_[_q_]; } } ((_i_) = (
_p_), (_p_) = (_q_), (_q_) = (_i_)); } for (_i_ = 0; _i_ <
(destination_size); _i_++) { ((void) sizeof (((destinations)
[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((destinations)[_i_].graph == compiled_data->graph)
; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].r = 5; _exists_[0]
[_i_] = (destinations)[_i_].d; } _exist_size_[0] = (destination_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 5) continue; _incomings_[
_idx_].r = 6; if (_incomings_[_idx_].edges > 0) for (_j_ =
0; _j_ < _incomings_[_idx_].c; _j_++) { const int d = _edges_
[_incomings_[_idx_].edges - 1 + _j_]; if (_incomings_[d].r !=
4) continue; _incomings_[d].r = 5; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == compiled_data->graph) ? 1 :
0), __extension__ ({ if ((destinations)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].d = 1; } for (_i_ =
0; _i_ < (compiled_data->backward.from_op_size); _i_++
) { ((void) sizeof (((compiled_data->backward.from_ops)[_i_
].graph == compiled_data->graph) ? 1 : 0), __extension__ (
{ if ((compiled_data->backward.from_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->backward.from_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (compiled_data->backward.from_ops
)[_i_].d; } _p_ = 0; _q_ = 1; _exist_size_[0] = (compiled_data
->backward.from_op_size); _exist_size_[1] = 0; int _d_ = 0
; while (_exist_size_[_p_] > 0) { _exist_size_[_q_] = 0; for
(_i_ = 0; _i_ < _exist_size_[_p_];) { const int32_t _idx_
= _exists_[_p_][_i_]; _visit_->node[_visit_->size].index
= ((_idx_)); _visit_->node[_visit_->size].term = ((_incomings_
[_idx_].d)); ++_visit_->size;; if (_incomings_[_idx_].d) {
++_d_; _incomings_[_idx_].r = 7; } if ((exec_info)[_idx_].outgoings
) { if ((exec_info)[_idx_].outgoings->rnum == 1) { const int
d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings)->
data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize * (
size_t)(0))); --_incomings_[d].c; if (_incomings_[d].c == 0 &&
_incomings_[d].r == 6 && _d_ < (destination_size)
) { _exists_[_p_][_i_] = d; continue; } } else for (_j_ = 0; _j_
< (exec_info)[_idx_].outgoings->rnum; _j_++) { const int
d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings)->
data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize * (
size_t)(_j_))); --_incomings_[d].c; if (_incomings_[d].c == 0
&& _incomings_[d].r == 6 && _d_ < (destination_size
)) { ((void) sizeof ((_exist_size_[_q_] < (exec_info_size)
) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (destination_size); _i_++) { (
(void) sizeof (((destinations)[_i_].graph == compiled_data->
graph) ? 1 : 0), __extension__ ({ if ((destinations)[_i_].graph
== compiled_data->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(destinations)[_i_].d].r == 7) continue
; if (!(0)) { ((void) sizeof ((_incomings_[(destinations)[_i_
].d].c == 0) ? 1 : 0), __extension__ ({ if (_incomings_[(destinations
)[_i_].d].c == 0) ; else __assert_fail ("_incomings_[(destinations)[_i_].d].c == 0"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(destinations)[_i_].d].c > 0
) continue; _visit_->node[_visit_->size].index = (((destinations
)[_i_].d)); _visit_->node[_visit_->size].term = ((_incomings_
[(destinations)[_i_].d].d)); ++_visit_->size;; } if (_heap_mem_
) free(_incomings_); } while (0);; ((void) sizeof ((_visit_->
size <= (exec_info_size)) ? 1 : 0), __extension__ ({ if (_visit_
->size <= (exec_info_size)) ; else __assert_fail ("_visit_->size <= (exec_info_size)"
, "ccv_cnnp_model.c", 1819, __extension__ __PRETTY_FUNCTION__
); })); _visit_; })
;
1820 ccv_nnc_graph_visit_for(visit, exec_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (visit)->size; _i_++) { const
int idx __attribute__((unused)) = (visit)->node[_i_].index
; const int _node_unused_ __attribute__((unused)) = (visit)->
node[_i_].term; typeof ((exec_info)) const node __attribute__
((unused)) = (exec_info) + idx;
{
1821 visited[(idx >> 5)] |= (1u << (idx & 31));
1822 } ccv_nnc_graph_visit_endfor} }
1823 ccv_nnc_graph_visit_free(visit);
1824 visit = ccv_nnc_graph_visit_new(compiled_data->graph, exec_info, exec_info_size, sources, source_size, destinations, destination_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_info_size) - 1)); _visit_->size = 0; do { typedef struct
{ int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_info_size); _i_++) _incoming_edges_ += ((exec_info)[_i_
].outgoings) ? (exec_info)[_i_].outgoings->rnum : 0; const
int _heap_mem_ = ((exec_info_size) + _incoming_edges_ > 1024
); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_) _incomings_
= (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t) * (
exec_info_size) + sizeof(int32_t) * ((exec_info_size) * 2 + _incoming_edges_
)); else _incomings_ = (ccv_nnc_incoming_t*)__builtin_alloca (
sizeof(ccv_nnc_incoming_t) * (exec_info_size) + sizeof(int32_t
) * ((exec_info_size) * 2 + _incoming_edges_)); memset(_incomings_
, 0, sizeof(ccv_nnc_incoming_t) * (exec_info_size)); int32_t*
_exists_[2] = { (int32_t*)(_incomings_ + (exec_info_size)), (
int32_t*)(_incomings_ + (exec_info_size)) + (exec_info_size),
}; int32_t* const _edges_ = _exists_[1] + (exec_info_size); for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 1; _exists_[0][_i_]
= (sources)[_i_].d; } int _exist_size_[2] = { (source_size),
0, }; int _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0)
{ _exist_size_[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_
[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_][_i_]; if (
_incomings_[_idx_].r != 1) continue; _incomings_[_idx_].r = 2
; if ((exec_info)[_idx_].outgoings) for (_j_ = 0; _j_ < (exec_info
)[_idx_].outgoings->rnum; _j_++) { const int d = *(int*)((
void*)(((char*)(((exec_info)[_idx_].outgoings)->data)) + (
size_t)((exec_info)[_idx_].outgoings)->rsize * (size_t)(_j_
))); ++_incomings_[d].c; if (_incomings_[d].r != 0) continue;
_incomings_[d].r = 1; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 3; _exists_[0][_i_]
= (sources)[_i_].d; } _exist_size_[0] = (source_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 3) continue; _incomings_[
_idx_].r = 4; if ((exec_info)[_idx_].outgoings) for (_j_ = 0;
_j_ < (exec_info)[_idx_].outgoings->rnum; _j_++) { const
int d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings
)->data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize
* (size_t)(_j_))); if (_incomings_[d].edges == 0) { _incomings_
[d].edges = _bump_; _bump_ += _incomings_[d].c; _incomings_[d
].c = 0; } _edges_[_incomings_[d].edges - 1 + _incomings_[d].
c] = _idx_; ++_incomings_[d].c; if (_incomings_[d].r != 2) continue
; _incomings_[d].r = 3; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == compiled_data->graph) ? 1 :
0), __extension__ ({ if ((destinations)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].r = 5; _exists_[0]
[_i_] = (destinations)[_i_].d; } _exist_size_[0] = (destination_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 5) continue; _incomings_[
_idx_].r = 6; if (_incomings_[_idx_].edges > 0) for (_j_ =
0; _j_ < _incomings_[_idx_].c; _j_++) { const int d = _edges_
[_incomings_[_idx_].edges - 1 + _j_]; if (_incomings_[d].r !=
4) continue; _incomings_[d].r = 5; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == compiled_data->graph) ? 1 :
0), __extension__ ({ if ((destinations)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].d = 1; } for (_i_ =
0; _i_ < (source_size); _i_++) { ((void) sizeof (((sources
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (sources)[_i_].d; } _p_ = 0; _q_ =
1; _exist_size_[0] = (source_size); _exist_size_[1] = 0; int
_d_ = 0; while (_exist_size_[_p_] > 0) { _exist_size_[_q_
] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_];) { const int32_t
_idx_ = _exists_[_p_][_i_]; _visit_->node[_visit_->size
].index = ((_idx_)); _visit_->node[_visit_->size].term =
((_incomings_[_idx_].d)); ++_visit_->size;; if (_incomings_
[_idx_].d) { ++_d_; _incomings_[_idx_].r = 7; } if ((exec_info
)[_idx_].outgoings) { if ((exec_info)[_idx_].outgoings->rnum
== 1) { const int d = *(int*)((void*)(((char*)(((exec_info)[
_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].outgoings
)->rsize * (size_t)(0))); --_incomings_[d].c; if (_incomings_
[d].c == 0 && _incomings_[d].r == 6 && _d_ <
(destination_size)) { _exists_[_p_][_i_] = d; continue; } } else
for (_j_ = 0; _j_ < (exec_info)[_idx_].outgoings->rnum
; _j_++) { const int d = *(int*)((void*)(((char*)(((exec_info
)[_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].
outgoings)->rsize * (size_t)(_j_))); --_incomings_[d].c; if
(_incomings_[d].c == 0 && _incomings_[d].r == 6 &&
_d_ < (destination_size)) { ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (destination_size); _i_++) { (
(void) sizeof (((destinations)[_i_].graph == compiled_data->
graph) ? 1 : 0), __extension__ ({ if ((destinations)[_i_].graph
== compiled_data->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(destinations)[_i_].d].r == 7) continue
; if (!(0)) { ((void) sizeof ((_incomings_[(destinations)[_i_
].d].c == 0) ? 1 : 0), __extension__ ({ if (_incomings_[(destinations
)[_i_].d].c == 0) ; else __assert_fail ("_incomings_[(destinations)[_i_].d].c == 0"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(destinations)[_i_].d].c > 0
) continue; _visit_->node[_visit_->size].index = (((destinations
)[_i_].d)); _visit_->node[_visit_->size].term = ((_incomings_
[(destinations)[_i_].d].d)); ++_visit_->size;; } if (_heap_mem_
) free(_incomings_); } while (0);; ((void) sizeof ((_visit_->
size <= (exec_info_size)) ? 1 : 0), __extension__ ({ if (_visit_
->size <= (exec_info_size)) ; else __assert_fail ("_visit_->size <= (exec_info_size)"
, "ccv_cnnp_model.c", 1824, __extension__ __PRETTY_FUNCTION__
); })); _visit_; })
;
1825 // Find any missing nodes to be added as source. Right now, these are only set nodes.
1826 ccv_nnc_graph_visit_for(visit, exec_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (visit)->size; _i_++) { const
int idx __attribute__((unused)) = (visit)->node[_i_].index
; const int _node_unused_ __attribute__((unused)) = (visit)->
node[_i_].term; typeof ((exec_info)) const node __attribute__
((unused)) = (exec_info) + idx;
{
1827 if (!(visited[(idx >> 5)] & (1u << (idx & 31))))
1828 {
1829 assert(exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD)((void) sizeof ((exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD
) ? 1 : 0), __extension__ ({ if (exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD
) ; else __assert_fail ("exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD"
, "ccv_cnnp_model.c", 1829, __extension__ __PRETTY_FUNCTION__
); }))
;
1830 if (exec_info[idx].cmd.info.blas.a[0] == 0) // Special-casing for empty out the tensor set function, not for the set grad to 1 one.
1831 ccv_array_add_unique_int(backward_from, idx);
1832 }
1833 } ccv_nnc_graph_visit_endfor} }
1834 ccv_nnc_graph_visit_free(visit);
1835 ccfreefree(visited);
1836 if (backward_from->rnum != compiled_data->backward.from_op_size) // If it doesn't match, need to redo this.
1837 {
1838 compiled_data->backward.from_op_size = backward_from->rnum;
1839 compiled_data->backward.from_ops = (ccv_nnc_graph_exec_t*)ccreallocrealloc(compiled_data->backward.from_ops, sizeof(ccv_nnc_graph_exec_t) * backward_from->rnum);
1840 for (i = 0; i < backward_from->rnum; i++)
1841 compiled_data->backward.from_ops[i] = (ccv_nnc_graph_exec_t){
1842 .d = *(int*)ccv_array_get(backward_from, i)((void*)(((char*)((backward_from)->data)) + (size_t)(backward_from
)->rsize * (size_t)(i)))
,
1843 .graph = compiled_data->graph,
1844 };
1845 }
1846 ccv_array_free(backward_from);
1847 ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count);
1848 ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0);
1849}
1850
1851void ccv_cnnp_model_dry_run(ccv_cnnp_model_t* const model, const ccv_cnnp_evaluate_param_t params, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1852{
1853 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1854 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1854, __extension__ __PRETTY_FUNCTION__); }))
;
1855 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1856 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1856, __extension__ __PRETTY_FUNCTION__
); }))
;
1857 assert(input_size == model->input_size * parallel_count)((void) sizeof ((input_size == model->input_size * parallel_count
) ? 1 : 0), __extension__ ({ if (input_size == model->input_size
* parallel_count) ; else __assert_fail ("input_size == model->input_size * parallel_count"
, "ccv_cnnp_model.c", 1857, __extension__ __PRETTY_FUNCTION__
); }))
;
1858 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 1858, __extension__ __PRETTY_FUNCTION__); }))
;
1859 const int target_gradient_mode = _ccv_cnnp_is_disable_outgrad_all(params.disable_outgrad, model->input_size) ? CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES : CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS;
1860 const int mode_mismatch = (params.requires_grad && (compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode || compiled_data->disable_outgrad != params.disable_outgrad));
1861 if (!compiled_data->graph || mode_mismatch)
1862 {
1863 _ccv_cnnp_compiled_data_graph_free(compiled_data);
1864 if (mode_mismatch) // If mode mismatch, we need to redo the backward as well (no need to redo apply_gradients, it doesn't require target_gradient_mode or disable_outgrad.
1865 _ccv_cnnp_compiled_data_backward_free(compiled_data);
1866 if (params.requires_grad)
1867 _ccv_cnnp_model_multistage_jit_0(model, params.disable_outgrad, params.is_test, inputs, input_size, outputs, output_size);
1868 else
1869 _ccv_cnnp_model_multistage_no_grad_jit(model, inputs, input_size, outputs, output_size);
1870 } else {
1871 ccv_nnc_tensor_arena_clear_bindings(compiled_data->tensor_arena);
1872 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1872, __extension__ __PRETTY_FUNCTION__); }))
;
1873 const int input_size_per_p = input_size / parallel_count;
1874 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->inputs, inputs, input_size_per_p, parallel_count);
1875 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1875, __extension__ __PRETTY_FUNCTION__); }))
;
1876 const int output_size_per_p = output_size / parallel_count;
1877 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->outputs, outputs, output_size_per_p, parallel_count);
1878 }
1879 if (compiled_data->is_test != params.is_test)
1880 {
1881 compiled_data->is_test = params.is_test;
1882 ccv_nnc_graph_exec_update_t update = {
1883 .parallel_count = parallel_count,
1884 .graph = model->graph,
1885 .graph_exec_arena = compiled_data->graph_exec_arena,
1886 };
1887 ccv_cnnp_model_set_is_test(model, params.is_test, _ccv_cnnp_cmd_update_for_execs, &update);
1888 }
1889}
1890
1891void ccv_cnnp_model_evaluate(ccv_cnnp_model_t* const model, const ccv_cnnp_evaluate_param_t params, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context)
1892{
1893 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1894 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1894, __extension__ __PRETTY_FUNCTION__); }))
;
1895 ccv_cnnp_model_dry_run(model, params, inputs, input_size, outputs, output_size);
1896 if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE_NO_GRAD)
1897 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, 0, tensor_tape, stream_context);
1898 else {
1899 if (!compiled_data->evaluate.schedule)
1900 compiled_data->evaluate.schedule = ccv_nnc_graph_static_schedule_new(compiled_data->graph, compiled_data->stream_type, model->max_stream_count, 0, 0, compiled_data->evaluate.to_ops, compiled_data->evaluate.to_op_size);
1901 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, compiled_data->evaluate.schedule, tensor_tape, stream_context);
1902 }
1903}
1904
1905// Compile the graph to run ccv_cnnp_model_backward after ccv_cnnp_model_evaluate with requires_grad = true (MULTISTAGE_MODE).
1906// Particularly, this method compiles the accumulator graph.
1907static void _ccv_cnnp_model_multistage_jit_1(ccv_cnnp_model_t* const model)
1908{
1909 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1910 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1910, __extension__ __PRETTY_FUNCTION__); }))
;
1911 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 1911, __extension__ __PRETTY_FUNCTION__
); }))
;
1912 ccv_nnc_symbolic_graph_t* accum = ccv_nnc_symbolic_graph_new();
1913 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1914 const int parameter_size = compiled_data->parameters->rnum;
1915 int i, j;
1916 compiled_data->backward.gradients = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size * parallel_count * 3);
1917 compiled_data->backward.accum_gradients = compiled_data->backward.gradients + parameter_size * parallel_count;
1918 compiled_data->backward.updated_accum_gradients = compiled_data->backward.accum_gradients + parameter_size * parallel_count;
1919 for (i = 0; i < parameter_size; i++)
1920 for (j = 0; j < parallel_count; j++)
1921 if (compiled_data->tensors.gradients[i + j * parameter_size])
1922 {
1923 const ccv_nnc_tensor_param_t info = compiled_data->tensors.gradients[i + j * parameter_size]->info;
1924 // Now, the old gradient is the accumulated gradient, getting new gradient tensor setup so we can collect them.
1925 compiled_data->tensors.accum_gradients[i + j * parameter_size] = compiled_data->tensors.gradients[i + j * parameter_size];
1926 compiled_data->tensors.gradients[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0);
1927 ccv_nnc_tensor_symbol_t inputs[2];
1928 inputs[0] = compiled_data->backward.accum_gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0);
1929 inputs[1] = compiled_data->backward.gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0);
1930 ccv_nnc_tensor_symbol_t output = compiled_data->backward.updated_accum_gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0);
1931 ccv_nnc_graph_exec_symbol_new(accum, CMD_EWSUM_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSUM_FORWARD, 0, ccv_nnc_cmd_auto, 0), inputs, 2, &output, 1, 0);
1932 } else {
1933 compiled_data->backward.accum_gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1934 compiled_data->backward.gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1935 compiled_data->backward.updated_accum_gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1936 }
1937 ccv_nnc_graph_exec_symbol_autogen(accum, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1938 if (ccv_nnc_symbolic_graph_source_size(accum) == 0)
1939 {
1940 ccv_nnc_symbolic_graph_free(accum);
1941 // Create empty graph.
1942 compiled_data->backward.accum = ccv_nnc_graph_new();
1943 ccv_nnc_graph_topsort(compiled_data->backward.accum, 0, 0);
1944 return;
1945 }
1946 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1947 _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1, tensor_binds);
1948 _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.gradients, compiled_data->tensors.gradients, parameter_size * parallel_count, 1, tensor_binds);
1949 _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.updated_accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1, tensor_binds);
1950 ccv_nnc_symbolic_graph_compile(accum, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(accum)ccv_nnc_symbolic_graph_sources(accum), ccv_nnc_symbolic_graph_source_size
(accum)
, SYMBOLIC_GRAPH_DESTINATIONS(accum)ccv_nnc_symbolic_graph_destinations(accum), ccv_nnc_symbolic_graph_destination_size
(accum)
, &compiled_data->backward.accum, &compiled_data->backward.tensor_arena, &compiled_data->backward.graph_exec_arena);
1951 ccv_nnc_symbolic_graph_free(accum);
1952 ccv_array_free(tensor_binds);
1953 ccv_nnc_graph_set_default_static_schedule(compiled_data->backward.accum, compiled_data->stream_type, model->max_stream_count);
1954}
1955
1956void ccv_cnnp_model_backward(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const ingrads, const int ingrad_size, ccv_nnc_tensor_t* const* const outgrads, const int outgrad_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context)
1957{
1958 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1959 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1959, __extension__ __PRETTY_FUNCTION__); }))
;
1960 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 1960, __extension__ __PRETTY_FUNCTION__
); }))
;
1961 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1962 assert(ingrad_size == 0 || ingrad_size == model->output_size * parallel_count)((void) sizeof ((ingrad_size == 0 || ingrad_size == model->
output_size * parallel_count) ? 1 : 0), __extension__ ({ if (
ingrad_size == 0 || ingrad_size == model->output_size * parallel_count
) ; else __assert_fail ("ingrad_size == 0 || ingrad_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1962, __extension__ __PRETTY_FUNCTION__
); }))
;
1963 if (outgrad_size > 0)
1964 { assert(outgrad_size == compiled_data->outgrad_size * parallel_count)((void) sizeof ((outgrad_size == compiled_data->outgrad_size
* parallel_count) ? 1 : 0), __extension__ ({ if (outgrad_size
== compiled_data->outgrad_size * parallel_count) ; else __assert_fail
("outgrad_size == compiled_data->outgrad_size * parallel_count"
, "ccv_cnnp_model.c", 1964, __extension__ __PRETTY_FUNCTION__
); }))
; }
1965 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 1965, __extension__ __PRETTY_FUNCTION__); }))
;
1966 assert(compiled_data->graph)((void) sizeof ((compiled_data->graph) ? 1 : 0), __extension__
({ if (compiled_data->graph) ; else __assert_fail ("compiled_data->graph"
, "ccv_cnnp_model.c", 1966, __extension__ __PRETTY_FUNCTION__
); }))
;
1967 const int parameter_size = compiled_data->parameters->rnum;
1968 // If we need to accumulate the gradients now, do jit on accumulator.
1969 if (compiled_data->backward.count > 0)
1970 {
1971 if (!compiled_data->backward.accum)
1972 _ccv_cnnp_model_multistage_jit_1(model);
1973 else if (compiled_data->backward.count == 1) {
1974 // On this round, we need to switch accumulated gradients with gradients (so we can do accumulation properly).
1975 int i;
1976 for (i = 0; i < parameter_size * parallel_count; i++)
1977 {
1978 ccv_nnc_tensor_t* tensor;
1979 CCV_SWAP(compiled_data->tensors.accum_gradients[i], compiled_data->tensors.gradients[i], tensor)((tensor) = (compiled_data->tensors.accum_gradients[i]), (
compiled_data->tensors.accum_gradients[i]) = (compiled_data
->tensors.gradients[i]), (compiled_data->tensors.gradients
[i]) = (tensor))
;
1980 }
1981 if (compiled_data->backward.tensor_arena)
1982 {
1983 ccv_nnc_tensor_arena_clear_bindings(compiled_data->backward.tensor_arena);
1984 // Do rebind in case we messed up the binding (we switch accum_gradients and gradients).
1985 _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.gradients, compiled_data->tensors.gradients, parameter_size * parallel_count, 1);
1986 _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1);
1987 _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.updated_accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1);
1988 }
1989 }
1990 }
1991 const int ingrad_size_per_p = model->output_size;
1992 const int outgrad_size_per_p = compiled_data->outgrad_size;
1993 int i, j;
1994 for (i = 0; i < ingrad_size_per_p; i++)
1995 {
1996 const ccv_nnc_tensor_symbol_t ingrad = ccv_nnc_tensor_symbol_for_backward(model->graph, compiled_data->f[i]);
1997 if (!ingrad_size || !ingrads || ingrads[i] == 0)
1998 {
1999 // Set it to 1 if it is not specified.
2000 ccv_nnc_tensor_t* const ingrad_tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ingrad);
2001 if (ingrad_tensor)
2002 ccv_nnc_cmd_exec(CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(ingrad_tensor)(ccv_nnc_tensor_t* []){ingrad_tensor}, (1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
2003 for (j = 1; j < parallel_count; j++)
2004 {
2005 ccv_nnc_tensor_t* const ingrad_tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, ingrad, j));
2006 if (ingrad_tensor)
2007 ccv_nnc_cmd_exec(CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(ingrad_tensor)(ccv_nnc_tensor_t* []){ingrad_tensor}, (1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
2008 }
2009 } else {
2010 // Make sure the length matches, in case it is an alias.
2011 assert(ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->graph, ingrad)))((void) sizeof ((ccv_nnc_tensor_count(ingrads[i]->info) ==
ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->
graph, ingrad))) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_count
(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params
(model->graph, ingrad))) ; else __assert_fail ("ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->graph, ingrad))"
, "ccv_cnnp_model.c", 2011, __extension__ __PRETTY_FUNCTION__
); }))
;
2012 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ingrad, ingrads[i]);
2013 for (j = 1; j < parallel_count; j++)
2014 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, ingrad, j), ingrads[i + ingrad_size_per_p * j]);
2015 }
2016 }
2017 if (outgrad_size > 0)
2018 {
2019 assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad")((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
&& "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad"
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS &&
"shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad"
) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && \"shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad\""
, "ccv_cnnp_model.c", 2019, __extension__ __PRETTY_FUNCTION__
); }))
;
2020 for (i = 0; i < outgrad_size_per_p; i++)
2021 if (outgrads[i])
2022 {
2023 const ccv_nnc_tensor_symbol_t outgrad = compiled_data->outgrads[i];
2024 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, outgrad, outgrads[i]);
2025 for (j = 1; j < parallel_count; j++)
2026 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, outgrad, j), outgrads[i + outgrad_size_per_p * j]);
2027 }
2028 } else {
2029 assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES ||((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES
|| compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data
->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS"
, "ccv_cnnp_model.c", 2030, __extension__ __PRETTY_FUNCTION__
); }))
2030 compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS)((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES
|| compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data
->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS"
, "ccv_cnnp_model.c", 2030, __extension__ __PRETTY_FUNCTION__
); }))
;
2031 }
2032 // We need to rebind here because in ccv_cnnp_evaluate, we clear bindings, that will reset all bindings for the gradients.
2033 // For parameters and internals these are fine because when we clear bindings, it restores to original bindings, which are these
2034 // parameters and internals. The same cannot be said for gradients due to the accum_gradients switching.
2035 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count);
2036 if (!compiled_data->backward.schedule)
2037 compiled_data->backward.schedule = ccv_nnc_graph_static_schedule_new(compiled_data->graph, compiled_data->stream_type, model->max_stream_count, compiled_data->backward.from_ops, compiled_data->backward.from_op_size, 0, 0);
2038 // Run the backward pass.
2039 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, compiled_data->backward.schedule, tensor_tape, stream_context);
2040 // If we need to run accumulation round, do that now.
2041 if (compiled_data->backward.count > 0)
2042 ccv_nnc_graph_run_with_schedule(compiled_data->backward.accum, 0, 0, 0, stream_context);
2043 // Update the count, this determines whether we need to accumulate or not.
2044 ++compiled_data->backward.count;
2045}
2046
2047// Compile the graph to run ccv_cnnp_model_apply_gradients after ccv_cnnp_model_backward (MULTISTAGE_MODE).
2048// Particularly, this method compiles the parameter update graph.
2049static void _ccv_cnnp_model_multistage_jit_2(ccv_cnnp_model_t* const model)
2050{
2051 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2052 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 2052, __extension__ __PRETTY_FUNCTION__
); }))
;
2053 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2054 const int parameter_size = compiled_data->parameters->rnum;
2055 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
2056 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
2057 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->updated_parameters, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
2058 // Bind accumulated gradients.
2059 if (compiled_data->backward.count > 1)
2060 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.accum_gradients, parameter_size, parallel_count, tensor_binds);
2061 else
2062 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count, tensor_binds);
2063 ccv_array_t* const apply_gradients_from = ccv_array_new(sizeof(int), 0, 0);
2064 int i, j;
2065 for (i = 0; i < compiled_data->backward.to_size; i++)
2066 {
2067 const int* tos;
2068 int to_size;
2069 ccv_nnc_graph_exec_symbol_to(model->graph, compiled_data->backward.tos[i], &tos, &to_size);
2070 for (j = 0; j < to_size; j++)
2071 {
2072 // Check if this is already show up in the backward graph, if that is the case, it won't be in the apply
2073 // gradients graph.
2074 const ccv_nnc_graph_exec_t exec = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, (ccv_nnc_graph_exec_symbol_t){
2075 .d = tos[j],
2076 .graph = model->graph,
2077 });
2078 if (!exec.graph)
2079 ccv_array_add_unique_int(apply_gradients_from, tos[j]);
2080 }
2081 }
2082 const int from_size = apply_gradients_from->rnum;
2083 if (from_size == 0)
2084 {
2085 ccv_array_free(apply_gradients_from);
2086 ccv_array_free(tensor_binds);
2087 return;
2088 }
2089 ccv_nnc_graph_exec_symbol_t* const froms = (ccv_nnc_graph_exec_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_t) * from_size);
2090 for (i = 0; i < from_size; i++)
2091 froms[i] = (ccv_nnc_graph_exec_symbol_t){
2092 .d = *(int*)ccv_array_get(apply_gradients_from, i)((void*)(((char*)((apply_gradients_from)->data)) + (size_t
)(apply_gradients_from)->rsize * (size_t)(i)))
,
2093 .graph = model->graph
2094 };
2095 ccv_array_free(apply_gradients_from);
2096 // It can only ends with updates on the parameters.
2097 ccv_array_t* const tos = ccv_array_new(sizeof(ccv_nnc_graph_exec_symbol_t), parameter_size * parallel_count, 0);
2098 for (i = 0; i < parameter_size; i++)
2099 {
2100 if (compiled_data->update_nodes[i].d == CCV_NNC_NO_TENSOR_SYMBOL)
2101 continue;
2102 ccv_array_push(tos, &compiled_data->update_nodes[i]);
2103 for (j = 1; j < parallel_count; j++)
2104 {
2105 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->update_nodes[i], j);
2106 ccv_array_push(tos, &copy);
2107 }
2108 }
2109 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, froms, from_size, (ccv_nnc_graph_exec_symbol_t*)ccv_array_get(tos, 0)((void*)(((char*)((tos)->data)) + (size_t)(tos)->rsize *
(size_t)(0)))
, tos->rnum, &compiled_data->apply_gradients.graph, &compiled_data->apply_gradients.tensor_arena, &compiled_data->apply_gradients.graph_exec_arena);
2110 ccv_array_free(tos);
2111 ccv_array_free(tensor_binds);
2112 ccfreefree(froms);
2113 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
2114 for (i = 0; i < max_saved_aux_size * parameter_size; i++)
2115 {
2116 // Skip on no tensor.
2117 if (compiled_data->saved_aux[i].source.d == CCV_NNC_NO_TENSOR_SYMBOL)
2118 continue;
2119 ccv_nnc_tensor_t* const tensor = ccv_nnc_tensor_from_symbol(compiled_data->apply_gradients.tensor_arena, compiled_data->saved_aux[i].source);
2120 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &tensor, 1, 0);
2121 for (j = 1; j < parallel_count; j++)
2122 {
2123 ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(compiled_data->apply_gradients.tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, compiled_data->saved_aux[i].source, j));
2124 if (copy)
2125 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &copy, 1, 0);
2126 }
2127 }
2128 ccv_nnc_graph_set_default_static_schedule(compiled_data->apply_gradients.graph, compiled_data->stream_type, model->max_stream_count);
2129}
2130
2131void ccv_cnnp_model_apply_gradients(ccv_cnnp_model_t* const model, ccv_nnc_stream_context_t* const stream_context)
2132{
2133 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2134 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2134, __extension__ __PRETTY_FUNCTION__); }))
;
2135 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 2135, __extension__ __PRETTY_FUNCTION__
); }))
;
2136 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2137 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 2137, __extension__ __PRETTY_FUNCTION__); }))
;
2138 assert(compiled_data->graph)((void) sizeof ((compiled_data->graph) ? 1 : 0), __extension__
({ if (compiled_data->graph) ; else __assert_fail ("compiled_data->graph"
, "ccv_cnnp_model.c", 2138, __extension__ __PRETTY_FUNCTION__
); }))
;
2139 // Skip if there is no backward pass.
2140 if (compiled_data->backward.count <= 0)
2141 return;
2142 // Skip if there is no parameters.
2143 if (compiled_data->parameters->rnum == 0)
2144 {
2145 compiled_data->backward.count = 0;
2146 return;
2147 }
2148 if (!compiled_data->apply_gradients.graph)
2149 _ccv_cnnp_model_multistage_jit_2(model);
2150 else {
2151 const int parameter_size = compiled_data->parameters->rnum;
2152 ccv_nnc_tensor_arena_clear_bindings(compiled_data->apply_gradients.tensor_arena);
2153 // Change to bind accum_gradients if we do gradient accumulation (run backward more than once).
2154 if (compiled_data->backward.count > 1)
2155 _ccv_cnnp_bind_tensors_to_arena(compiled_data->apply_gradients.tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.accum_gradients, parameter_size, parallel_count);
2156 else
2157 _ccv_cnnp_bind_tensors_to_arena(compiled_data->apply_gradients.tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count);
2158 }
2159 if (compiled_data->apply_gradients.graph)
2160 ccv_nnc_graph_run_with_schedule(compiled_data->apply_gradients.graph, 0, 0, 0, stream_context);
2161 // Reset backward count to 0.
2162 compiled_data->backward.count = 0;
2163}
2164
2165void ccv_cnnp_model_set_parameter(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter, const ccv_nnc_tensor_t* const tensor)
2166{
2167 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2168 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2169 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2169, __extension__ __PRETTY_FUNCTION__
); }))
;
2170 const int tensors_init = !!compiled_data->tensors_init.v;
2171 if (!tensors_init)
2172 _ccv_cnnp_model_tensors_init(model, compiled_data);
2173 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
2174 // Check if it is not fully allocated, if it is not, init_1.
2175 ccv_cnnp_model_tensors_init_1(model, compiled_data);
2176 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2177 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2178 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2179 if (param_ref < 0)
2180 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2180
, __extension__ __PRETTY_FUNCTION__); }))
; }
2181 else
2182 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2182, __extension__ __PRETTY_FUNCTION__
); }))
; }
2183 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2184 ccv_array_free(parameter_indices);
2185 const int parameter_size = compiled_data->parameters->rnum;
2186 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2186
, __extension__ __PRETTY_FUNCTION__); }))
;
2187 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2187, __extension__ __PRETTY_FUNCTION__
); }))
;
2188 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2189 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d]) & ~(uintptr_t)1))
;
2190 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2190, __extension__
__PRETTY_FUNCTION__); }))
;
2191 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST((ccv_nnc_tensor_t*)tensor)(ccv_nnc_tensor_t* []){(ccv_nnc_tensor_t*)tensor}, (1 +1 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1
)
, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2192 int i;
2193 for (i = 1; i < parallel_count; i++)
2194 {
2195 ccv_nnc_tensor_t* const copy_tensor = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d + i * parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d + i * parameter_size]) & ~(uintptr_t)1))
;
2196 if (copy_tensor)
2197 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(copy_tensor)(ccv_nnc_tensor_t* []){copy_tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2198 }
2199 // Mark this symbol as init'ed.
2200 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, d)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
d)))
)->d;
2201 uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
2202 init_v[s >> 5] |= (1u << (s & 0x1f));
2203}
2204
2205void ccv_cnnp_model_parameter_copy(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter, ccv_nnc_tensor_t* const tensor)
2206{
2207 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2208 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2209 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2209, __extension__ __PRETTY_FUNCTION__
); }))
;
2210 assert(compiled_data->tensors.parameters)((void) sizeof ((compiled_data->tensors.parameters) ? 1 : 0
), __extension__ ({ if (compiled_data->tensors.parameters)
; else __assert_fail ("compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2210, __extension__ __PRETTY_FUNCTION__
); }))
;
2211 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2212 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2213 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2214 if (param_ref < 0)
2215 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2215
, __extension__ __PRETTY_FUNCTION__); }))
; }
2216 else
2217 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2217, __extension__ __PRETTY_FUNCTION__
); }))
; }
2218 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2219 ccv_array_free(parameter_indices);
2220 const int parameter_size = compiled_data->parameters->rnum;
2221 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2221
, __extension__ __PRETTY_FUNCTION__); }))
;
2222 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2222, __extension__ __PRETTY_FUNCTION__
); }))
;
2223 // We don't need to consider parallel_count, every parameter on each device is identical.
2224 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d]) & ~(uintptr_t)1))
;
2225 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2225, __extension__
__PRETTY_FUNCTION__); }))
;
2226 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(src)(ccv_nnc_tensor_t* []){src}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(tensor)(ccv_nnc_tensor_t* []){tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2227}
2228
2229ccv_nnc_tensor_param_t ccv_cnnp_model_parameter_tensor_params(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter)
2230{
2231 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2232 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2233 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2233, __extension__ __PRETTY_FUNCTION__
); }))
;
2234 assert(compiled_data->tensors.parameters)((void) sizeof ((compiled_data->tensors.parameters) ? 1 : 0
), __extension__ ({ if (compiled_data->tensors.parameters)
; else __assert_fail ("compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2234, __extension__ __PRETTY_FUNCTION__
); }))
;
2235 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2236 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2237 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2238 if (param_ref < 0)
2239 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2239
, __extension__ __PRETTY_FUNCTION__); }))
; }
2240 else
2241 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2241, __extension__ __PRETTY_FUNCTION__
); }))
; }
2242 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2243 ccv_array_free(parameter_indices);
2244 const int parameter_size = compiled_data->parameters->rnum;
2245 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2245
, __extension__ __PRETTY_FUNCTION__); }))
;
2246 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2246, __extension__ __PRETTY_FUNCTION__
); }))
;
2247 // We don't need to consider parallel_count, every parameter on each device is identical.
2248 ccv_nnc_tensor_t* const tensor = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d]) & ~(uintptr_t)1))
;
2249 assert(tensor)((void) sizeof ((tensor) ? 1 : 0), __extension__ ({ if (tensor
) ; else __assert_fail ("tensor", "ccv_cnnp_model.c", 2249, __extension__
__PRETTY_FUNCTION__); }))
;
2250 return tensor->info;
2251}
2252
2253const char* ccv_cnnp_model_parameter_name(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter)
2254{
2255 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2256 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2257 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2257, __extension__ __PRETTY_FUNCTION__
); }))
;
2258 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2259 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2260 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2261 if (param_ref < 0)
2262 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2262
, __extension__ __PRETTY_FUNCTION__); }))
; }
2263 else
2264 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2264, __extension__ __PRETTY_FUNCTION__
); }))
; }
2265 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2266 ccv_array_free(parameter_indices);
2267 const int parameter_size = compiled_data->parameters->rnum;
2268 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2268
, __extension__ __PRETTY_FUNCTION__); }))
;
2269 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2269, __extension__ __PRETTY_FUNCTION__
); }))
;
2270 return *(char**)ccv_array_get(compiled_data->ids.parameters, d)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(d)))
;
2271}
2272
2273int ccv_cnnp_model_parameter_count(ccv_cnnp_model_t* const model)
2274{
2275 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 2275, __extension__ __PRETTY_FUNCTION__
); }))
;
2276 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2277 return compiled_data->parameters->rnum;
2278}
2279
2280ccv_cnnp_model_io_t ccv_cnnp_model_parameter_first(ccv_cnnp_model_t* const model, ccv_cnnp_model_parameters_filter_f first, void* const context)
2281{
2282 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2283 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2283, __extension__ __PRETTY_FUNCTION__); }))
;
2284 const int parameter_size = compiled_data->parameters->rnum;
2285 int i;
2286 for (i = 0; i < parameter_size; i++)
2287 {
2288 const char* const name = *(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(i)))
;
2289 if (first(model, name, context))
2290 return ccv_cnnp_model_parameters(model, -1, i);
2291 }
2292 return 0;
2293}
2294
2295ccv_array_t* ccv_cnnp_model_parameters_filter(ccv_cnnp_model_t* const model, ccv_cnnp_model_parameters_filter_f filter, void* const context)
2296{
2297 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2298 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2298, __extension__ __PRETTY_FUNCTION__); }))
;
2299 ccv_array_t* const parameters = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 0, 0);
2300 const int parameter_size = compiled_data->parameters->rnum;
2301 int i;
2302 for (i = 0; i < parameter_size; i++)
2303 {
2304 const char* const name = *(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(i)))
;
2305 if (filter(model, name, context))
2306 {
2307 ccv_cnnp_model_io_t parameter = ccv_cnnp_model_parameters(model, -1, i);
2308 ccv_array_push(parameters, &parameter);
2309 }
2310 }
2311 return parameters;
2312
2313}
2314
2315CCV_WARN_UNUSED(ccv_cnnp_model_io_t)ccv_cnnp_model_io_t __attribute__((warn_unused_result)) ccv_cnnp_model_parameter_first_uninit(ccv_cnnp_model_t* const model)
2316{
2317 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2318 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2318, __extension__ __PRETTY_FUNCTION__); }))
;
2319 const int tensors_init = !!compiled_data->tensors_init.v;
2320 if (!tensors_init) // If nothing initialized, we return parameter 0.
2321 return ccv_cnnp_model_parameters(model, -1, 0);
2322 const int parameter_size = compiled_data->parameters->rnum;
2323 int i;
2324 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
2325 for (i = 0; i < parameter_size; i++)
2326 {
2327 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
)->d;
2328 if (!(init_v[d >> 5] & (1u << (d & 0x1f))))
2329 return ccv_cnnp_model_parameters(model, -1, i);
2330 }
2331 return 0;
2332}
2333
2334static ccv_array_t* _ccv_cnnp_model_parameter_indices(const ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, int* const param_ref)
2335{
2336 const int to_param_sel = parameters->param_sel > 0 ? parameters->param_sel - 1 : parameters->param_sel;
2337 assert(parameters->param_sel != 0)((void) sizeof ((parameters->param_sel != 0) ? 1 : 0), __extension__
({ if (parameters->param_sel != 0) ; else __assert_fail (
"parameters->param_sel != 0", "ccv_cnnp_model.c", 2337, __extension__
__PRETTY_FUNCTION__); }))
;
2338 ccv_array_t* const to_parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2339 ccv_cnnp_model_add_to_parameter_indices(parameters->model, to_param_sel, to_parameter_indices);
2340 *param_ref = parameters->param_ref > 0 ? parameters->param_ref - 1 : parameters->param_ref;
2341 return to_parameter_indices;
2342}
2343
2344static void _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters, ccv_array_t** const parameter_indices, int* const param_ref, ccv_array_t** const from_parameter_indices, int* const from_param_ref, const int only_init_0)
2345{
2346 // If the model is not compiled yet. Compile them now.
2347 if (!model->graph)
2348 {
2349 model->graph = ccv_nnc_symbolic_graph_new();
2350 assert(from_model->compiled_data)((void) sizeof ((from_model->compiled_data) ? 1 : 0), __extension__
({ if (from_model->compiled_data) ; else __assert_fail ("from_model->compiled_data"
, "ccv_cnnp_model.c", 2350, __extension__ __PRETTY_FUNCTION__
); }))
;
2351 const int input_size = from_model->input_size;
2352 ccv_nnc_tensor_param_t input_params[input_size];
2353 int i;
2354 for (i = 0; i < input_size; i++)
2355 input_params[i] = ccv_nnc_tensor_symbol_params(from_model->graph, from_model->inputs[i]);
2356 _ccv_cnnp_model_compile(model, input_params, input_size, from_model->compiled_data->loss);
2357 model->parallel_count = from_model->parallel_count;
2358 model->memory_compression = from_model->memory_compression;
2359 model->memory_reduction = from_model->memory_reduction;
2360 model->gradient_checkpointing = from_model->gradient_checkpointing;
2361 model->compiled_data->stream_type = from_model->compiled_data->stream_type;
2362 model->compiled_data->minimize.minimizer = from_model->compiled_data->minimize.minimizer;
2363 model->compiled_data->minimize.max_saved_aux_size = from_model->compiled_data->minimize.max_saved_aux_size;
2364 }
2365 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2366 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2366, __extension__ __PRETTY_FUNCTION__
); }))
;
2367 const int to_tensors_init = !!to_compiled_data->tensors_init.v;
2368 if (!to_tensors_init)
2369 {
2370 if (only_init_0)
2371 ccv_cnnp_model_tensors_init_0(model, to_compiled_data);
2372 else
2373 _ccv_cnnp_model_tensors_init(model, to_compiled_data);
2374 } else if (!only_init_0 && (uintptr_t)to_compiled_data->tensors_init.v & (uintptr_t)1)
2375 // Check if it is not fully allocated, if it is not, init_1.
2376 ccv_cnnp_model_tensors_init_1(model, to_compiled_data);
2377 assert(to_compiled_data->tensors.parameters)((void) sizeof ((to_compiled_data->tensors.parameters) ? 1
: 0), __extension__ ({ if (to_compiled_data->tensors.parameters
) ; else __assert_fail ("to_compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2377, __extension__ __PRETTY_FUNCTION__
); }))
;
2378 *parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, param_ref);
2379 *from_parameter_indices = _ccv_cnnp_model_parameter_indices(from_model, from_parameters, from_param_ref);
2380 if (*from_param_ref < 0 && *param_ref >= 0)
2381 { assert((*from_parameter_indices)->rnum == 1)((void) sizeof (((*from_parameter_indices)->rnum == 1) ? 1
: 0), __extension__ ({ if ((*from_parameter_indices)->rnum
== 1) ; else __assert_fail ("(*from_parameter_indices)->rnum == 1"
, "ccv_cnnp_model.c", 2381, __extension__ __PRETTY_FUNCTION__
); }))
; }
2382 else if (*from_param_ref >= 0)
2383 { assert(*from_param_ref < (*from_parameter_indices)->rnum)((void) sizeof ((*from_param_ref < (*from_parameter_indices
)->rnum) ? 1 : 0), __extension__ ({ if (*from_param_ref <
(*from_parameter_indices)->rnum) ; else __assert_fail ("*from_param_ref < (*from_parameter_indices)->rnum"
, "ccv_cnnp_model.c", 2383, __extension__ __PRETTY_FUNCTION__
); }))
; }
2384 if (*param_ref < 0 && *from_param_ref >= 0)
2385 { assert((*parameter_indices)->rnum == 1)((void) sizeof (((*parameter_indices)->rnum == 1) ? 1 : 0)
, __extension__ ({ if ((*parameter_indices)->rnum == 1) ; else
__assert_fail ("(*parameter_indices)->rnum == 1", "ccv_cnnp_model.c"
, 2385, __extension__ __PRETTY_FUNCTION__); }))
; }
2386 else if (*param_ref >= 0)
2387 { assert(*param_ref < (*parameter_indices)->rnum)((void) sizeof ((*param_ref < (*parameter_indices)->rnum
) ? 1 : 0), __extension__ ({ if (*param_ref < (*parameter_indices
)->rnum) ; else __assert_fail ("*param_ref < (*parameter_indices)->rnum"
, "ccv_cnnp_model.c", 2387, __extension__ __PRETTY_FUNCTION__
); }))
; }
2388}
2389
2390void ccv_cnnp_model_set_parameters(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters)
2391{
2392 ccv_array_t* to_parameter_indices;
2393 int to_param_ref;
2394 ccv_array_t* from_parameter_indices;
2395 int from_param_ref;
2396 _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 0);
2397 // Should be exactly the same tensor.
2398 if (to_param_ref < 0 && from_param_ref < 0)
2399 { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices
->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices
->rnum == to_parameter_indices->rnum) ; else __assert_fail
("from_parameter_indices->rnum == to_parameter_indices->rnum"
, "ccv_cnnp_model.c", 2399, __extension__ __PRETTY_FUNCTION__
); }))
; }
2400 // To models.
2401 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2402 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2402, __extension__ __PRETTY_FUNCTION__
); }))
;
2403 // From models.
2404 const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data;
2405 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2406 const int to_parameter_size = to_compiled_data->parameters->rnum;
2407 const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? from_parameter_indices->rnum : 1;
2408 int i, j;
2409 const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init.
v) & ~(uintptr_t)1))
;
2410 uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2411 for (i = 0; i < rnum; i++)
2412 {
2413 const int src_d = *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t
)(from_parameter_indices)->rsize * (size_t)(from_param_ref
>= 0 ? from_param_ref : i)))
;
2414 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2414, __extension__ __PRETTY_FUNCTION__); }))
;
2415 assert(src_d < from_compiled_data->parameters->rnum)((void) sizeof ((src_d < from_compiled_data->parameters
->rnum) ? 1 : 0), __extension__ ({ if (src_d < from_compiled_data
->parameters->rnum) ; else __assert_fail ("src_d < from_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2415, __extension__ __PRETTY_FUNCTION__
); }))
;
2416 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data
)) + (size_t)(from_compiled_data->parameters)->rsize * (
size_t)(src_d)))
)->d;
2417 // If the original is not init'ed. We cannot copy from.
2418 if (!(from_init_v[s >> 5] & (1u << (s & 0x1f))))
2419 continue;
2420 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2421 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2421, __extension__ __PRETTY_FUNCTION__); }))
;
2422 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2422, __extension__ __PRETTY_FUNCTION__
); }))
;
2423 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d]) & ~(uintptr_t)1))
;
2424 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2424, __extension__
__PRETTY_FUNCTION__); }))
;
2425 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d]) & ~(uintptr_t)1))
;
2426 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2426, __extension__
__PRETTY_FUNCTION__); }))
;
2427 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(src)(ccv_nnc_tensor_t* []){src}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2428 for (j = 1; j < parallel_count; j++)
2429 {
2430 ccv_nnc_tensor_t* const copy_tensor = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2431 if (copy_tensor)
2432 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(copy_tensor)(ccv_nnc_tensor_t* []){copy_tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2433 }
2434 // Mark this symbol as init'ed.
2435 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data)
) + (size_t)(to_compiled_data->parameters)->rsize * (size_t
)(dest_d)))
)->d;
2436 to_init_v[d >> 5] |= (1u << (d & 0x1f));
2437 }
2438 ccv_array_free(to_parameter_indices);
2439 ccv_array_free(from_parameter_indices);
2440}
2441
2442KHASH_MAP_INIT_STR(ccv_cnnp_parameter_id, int)typedef struct kh_ccv_cnnp_parameter_id_s { khint_t n_buckets
, size, n_occupied, upper_bound; khint32_t *flags; kh_cstr_t *
keys; int *vals; } kh_ccv_cnnp_parameter_id_t; static inline __attribute__
((__unused__)) kh_ccv_cnnp_parameter_id_t *kh_init_ccv_cnnp_parameter_id
(void) { return (kh_ccv_cnnp_parameter_id_t*)calloc(1,sizeof(
kh_ccv_cnnp_parameter_id_t)); } static inline __attribute__ (
(__unused__)) void kh_destroy_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t
*h) { if (h) { free((void *)h->keys); free(h->flags); free
((void *)h->vals); free(h); } } static inline __attribute__
((__unused__)) void kh_clear_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t
*h) { if (h && h->flags) { memset(h->flags, 0xaa
, ((h->n_buckets) < 16? 1 : (h->n_buckets)>>4)
* sizeof(khint32_t)); h->size = h->n_occupied = 0; } }
static inline __attribute__ ((__unused__)) khint_t kh_get_ccv_cnnp_parameter_id
(const kh_ccv_cnnp_parameter_id_t *h, kh_cstr_t key) { if (h->
n_buckets) { khint_t k, i, last, mask, step = 0; mask = h->
n_buckets - 1; k = __ac_X31_hash_string(key); i = k & mask
; last = i; while (!((h->flags[i>>4]>>((i&
0xfU)<<1))&2) && (((h->flags[i>>4]
>>((i&0xfU)<<1))&1) || !(strcmp(h->keys
[i], key) == 0))) { i = (i + (++step)) & mask; if (i == last
) return h->n_buckets; } return ((h->flags[i>>4]>>
((i&0xfU)<<1))&3)? h->n_buckets : i; } else return
0; } static inline __attribute__ ((__unused__)) int kh_resize_ccv_cnnp_parameter_id
(kh_ccv_cnnp_parameter_id_t *h, khint_t new_n_buckets) { khint32_t
*new_flags = 0; khint_t j = 1; { (--(new_n_buckets), (new_n_buckets
)|=(new_n_buckets)>>1, (new_n_buckets)|=(new_n_buckets)
>>2, (new_n_buckets)|=(new_n_buckets)>>4, (new_n_buckets
)|=(new_n_buckets)>>8, (new_n_buckets)|=(new_n_buckets)
>>16, ++(new_n_buckets)); if (new_n_buckets < 4) new_n_buckets
= 4; if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER
+ 0.5)) j = 0; else { new_flags = (khint32_t*)malloc(((new_n_buckets
) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t))
; if (!new_flags) return -1; memset(new_flags, 0xaa, ((new_n_buckets
) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t))
; if (h->n_buckets < new_n_buckets) { kh_cstr_t *new_keys
= (kh_cstr_t*)realloc((void *)h->keys,new_n_buckets * sizeof
(kh_cstr_t)); if (!new_keys) { free(new_flags); return -1; } h
->keys = new_keys; if (1) { int *new_vals = (int*)realloc(
(void *)h->vals,new_n_buckets * sizeof(int)); if (!new_vals
) { free(new_flags); return -1; } h->vals = new_vals; } } }
} if (j) { for (j = 0; j != h->n_buckets; ++j) { if (((h->
flags[j>>4]>>((j&0xfU)<<1))&3) == 0
) { kh_cstr_t key = h->keys[j]; int val; khint_t new_mask;
new_mask = new_n_buckets - 1; if (1) val = h->vals[j]; (h
->flags[j>>4]|=1ul<<((j&0xfU)<<1)); while
(1) { khint_t k, i, step = 0; k = __ac_X31_hash_string(key);
i = k & new_mask; while (!((new_flags[i>>4]>>
((i&0xfU)<<1))&2)) i = (i + (++step)) & new_mask
; (new_flags[i>>4]&=~(2ul<<((i&0xfU)<<
1))); if (i < h->n_buckets && ((h->flags[i>>
4]>>((i&0xfU)<<1))&3) == 0) { { kh_cstr_t
tmp = h->keys[i]; h->keys[i] = key; key = tmp; } if (1
) { int tmp = h->vals[i]; h->vals[i] = val; val = tmp; }
(h->flags[i>>4]|=1ul<<((i&0xfU)<<1)
); } else { h->keys[i] = key; if (1) h->vals[i] = val; break
; } } } } if (h->n_buckets > new_n_buckets) { h->keys
= (kh_cstr_t*)realloc((void *)h->keys,new_n_buckets * sizeof
(kh_cstr_t)); if (1) h->vals = (int*)realloc((void *)h->
vals,new_n_buckets * sizeof(int)); } free(h->flags); h->
flags = new_flags; h->n_buckets = new_n_buckets; h->n_occupied
= h->size; h->upper_bound = (khint_t)(h->n_buckets *
__ac_HASH_UPPER + 0.5); } return 0; } static inline __attribute__
((__unused__)) khint_t kh_put_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t
*h, kh_cstr_t key, int *ret) { khint_t x; if (h->n_occupied
>= h->upper_bound) { if (h->n_buckets > (h->size
<<1)) { if (kh_resize_ccv_cnnp_parameter_id(h, h->n_buckets
- 1) < 0) { *ret = -1; return h->n_buckets; } } else if
(kh_resize_ccv_cnnp_parameter_id(h, h->n_buckets + 1) <
0) { *ret = -1; return h->n_buckets; } } { khint_t k, i, site
, last, mask = h->n_buckets - 1, step = 0; x = site = h->
n_buckets; k = __ac_X31_hash_string(key); i = k & mask; if
(((h->flags[i>>4]>>((i&0xfU)<<1))&
2)) x = i; else { last = i; while (!((h->flags[i>>4]
>>((i&0xfU)<<1))&2) && (((h->flags
[i>>4]>>((i&0xfU)<<1))&1) || !(strcmp
(h->keys[i], key) == 0))) { if (((h->flags[i>>4]>>
((i&0xfU)<<1))&1)) site = i; i = (i + (++step))
& mask; if (i == last) { x = site; break; } } if (x == h
->n_buckets) { if (((h->flags[i>>4]>>((i&
0xfU)<<1))&2) && site != h->n_buckets) x
= site; else x = i; } } } if (((h->flags[x>>4]>>
((x&0xfU)<<1))&2)) { h->keys[x] = key; (h->
flags[x>>4]&=~(3ul<<((x&0xfU)<<1)))
; ++h->size; ++h->n_occupied; *ret = 1; } else if (((h->
flags[x>>4]>>((x&0xfU)<<1))&1)) { h
->keys[x] = key; (h->flags[x>>4]&=~(3ul<<
((x&0xfU)<<1))); ++h->size; *ret = 2; } else *ret
= 0; return x; } static inline __attribute__ ((__unused__)) void
kh_del_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t *h, khint_t
x) { if (x != h->n_buckets && !((h->flags[x>>
4]>>((x&0xfU)<<1))&3)) { (h->flags[x>>
4]|=1ul<<((x&0xfU)<<1)); --h->size; } }
25
Null pointer value stored to field 'vals'
30
Taking true branch
31
Taking false branch
32
Calling 'kh_resize_ccv_cnnp_parameter_id'
33
Taking true branch
34
Assuming the condition is false
35
Taking false branch
36
'?' condition is true
37
Assuming 'new_flags' is null
38
Taking true branch
39
Returning without writing to 'h->vals'
40
Returning from 'kh_resize_ccv_cnnp_parameter_id'
41
Taking true branch
42
Returning without writing to 'h->vals'
2443
2444void ccv_cnnp_model_share_parameters(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters, ccv_cnnp_model_parameters_renamer_f renamer, void* const context)
2445{
2446 ccv_array_t* to_parameter_indices;
2447 int to_param_ref;
2448 ccv_array_t* from_parameter_indices;
2449 int from_param_ref;
2450 _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 1);
2451 // Should be exactly the same tensor.
2452 if (renamer == 0 && to_param_ref < 0 && from_param_ref < 0)
1
Assuming 'renamer' is not equal to null
2453 { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices
->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices
->rnum == to_parameter_indices->rnum) ; else __assert_fail
("from_parameter_indices->rnum == to_parameter_indices->rnum"
, "ccv_cnnp_model.c", 2453, __extension__ __PRETTY_FUNCTION__
); }))
; }
2454 // To models.
2455 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2456 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2456, __extension__ __PRETTY_FUNCTION__
); }))
;
2
Assuming 'to_compiled_data' is non-null
3
Taking true branch
2457 // From models.
2458 const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data;
2459 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
4
Assuming '_a' is <= '_b'
5
'?' condition is false
2460 assert(parallel_count == ccv_max(from_model->parallel_count, 1))((void) sizeof ((parallel_count == ({ typeof (from_model->
parallel_count) _a = (from_model->parallel_count); typeof (
1) _b = (1); (_a > _b) ? _a : _b; })) ? 1 : 0), __extension__
({ if (parallel_count == ({ typeof (from_model->parallel_count
) _a = (from_model->parallel_count); typeof (1) _b = (1); (
_a > _b) ? _a : _b; })) ; else __assert_fail ("parallel_count == ccv_max(from_model->parallel_count, 1)"
, "ccv_cnnp_model.c", 2460, __extension__ __PRETTY_FUNCTION__
); }))
; // Should have the same parallel count can share parameters.
6
Assuming '_a' is <= '_b'
7
'?' condition is false
8
Taking true branch
2461 const int from_parameter_size = from_compiled_data->parameters->rnum;
2462 const int to_parameter_size = to_compiled_data->parameters->rnum;
2463 const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? to_parameter_indices->rnum : 1;
9
Assuming 'to_param_ref' is >= 0
2464 int i, j;
2465 khash_t(ccv_cnnp_parameter_id)kh_ccv_cnnp_parameter_id_t* id_map = 0;
2466 char* updated_name = 0;
2467 const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init.
v) & ~(uintptr_t)1))
;
2468 uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2469 for (i = 0; i < rnum; i++)
2470 {
2471 int src_d = (from_param_ref >= 0 ? from_param_ref : i) < from_parameter_indices->rnum ? *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t
)(from_parameter_indices)->rsize * (size_t)(from_param_ref
>= 0 ? from_param_ref : i)))
: from_parameter_size;
10
Assuming 'from_param_ref' is < 0
11
'?' condition is false
12
Assuming the condition is false
13
'?' condition is false
2472 // Need to figure out how to use the renamer here.
2473 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
14
'?' condition is true
2474 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2474, __extension__ __PRETTY_FUNCTION__); }))
;
15
Assuming 'dest_d' is >= 0
16
Taking true branch
2475 assert(dest_d < to_parameter_size)((void) sizeof ((dest_d < to_parameter_size) ? 1 : 0), __extension__
({ if (dest_d < to_parameter_size) ; else __assert_fail (
"dest_d < to_parameter_size", "ccv_cnnp_model.c", 2475, __extension__
__PRETTY_FUNCTION__); }))
;
17
Assuming 'dest_d' is < 'to_parameter_size'
18
Taking true branch
2476 if (renamer
18.1
'renamer' is non-null
)
2477 {
2478 const char* const src_name = (src_d
18.2
'src_d' is >= 'from_parameter_size'
< from_parameter_size && src_d >= 0) ? *(char**)ccv_array_get(from_compiled_data->ids.parameters, src_d)((void*)(((char*)((from_compiled_data->ids.parameters)->
data)) + (size_t)(from_compiled_data->ids.parameters)->
rsize * (size_t)(src_d)))
: 0;
2479 const char* const dest_name = *(char**)ccv_array_get(to_compiled_data->ids.parameters, dest_d)((void*)(((char*)((to_compiled_data->ids.parameters)->data
)) + (size_t)(to_compiled_data->ids.parameters)->rsize *
(size_t)(dest_d)))
;
2480 if (!updated_name
18.3
'updated_name' is null
)
19
Taking true branch
2481 updated_name = (char*)ccmallocmalloc(1024);
2482 const size_t src_name_len = src_name
19.1
'src_name' is equal to null
== 0 ? 0 : ccv_min(strnlen(src_name, 1023), 1023)({ typeof (strnlen(src_name, 1023)) _a = (strnlen(src_name, 1023
)); typeof (1023) _b = (1023); (_a < _b) ? _a : _b; })
;
20
'?' condition is true
2483 if (src_name_len
20.1
'src_name_len' is <= 0
> 0)
21
Taking false branch
2484 memcpy(updated_name, src_name, src_name_len);
2485 updated_name[src_name_len] = 0;
2486 if (renamer(context, dest_name, updated_name, 1024) != 0)
22
Assuming the condition is false
2487 continue; // Skip this.
2488 if (src_name
22.1
'src_name' is equal to null
!= 0 && memcmp(updated_name, src_name, src_name_len) == 0 && strnlen(updated_name, 1023) == src_name_len)
2489 {
2490 // Nothing changed.
2491 } else {
2492 if (!id_map
22.2
'id_map' is null
)
23
Taking true branch
2493 {
2494 id_map = kh_init(ccv_cnnp_parameter_id)kh_init_ccv_cnnp_parameter_id();
24
Calling 'kh_init_ccv_cnnp_parameter_id'
26
Returning from 'kh_init_ccv_cnnp_parameter_id'
2495 for (j = 0; j < from_parameter_size; j++)
27
Assuming 'j' is < 'from_parameter_size'
28
Loop condition is true. Entering loop body
2496 {
2497 int ret;
2498 const khiter_t k = kh_put(ccv_cnnp_parameter_id, id_map, *(char**)ccv_array_get(from_compiled_data->ids.parameters, j), &ret)kh_put_ccv_cnnp_parameter_id(id_map, *(char**)((void*)(((char
*)((from_compiled_data->ids.parameters)->data)) + (size_t
)(from_compiled_data->ids.parameters)->rsize * (size_t)
(j))), &ret)
;
29
Calling 'kh_put_ccv_cnnp_parameter_id'
43
Returning from 'kh_put_ccv_cnnp_parameter_id'
2499 assert(ret != 0)((void) sizeof ((ret != 0) ? 1 : 0), __extension__ ({ if (ret
!= 0) ; else __assert_fail ("ret != 0", "ccv_cnnp_model.c", 2499
, __extension__ __PRETTY_FUNCTION__); }))
;
44
Taking true branch
2500 kh_val(id_map, k)((id_map)->vals[k]) = j;
45
Array access (via field 'vals') results in a null pointer dereference
2501 }
2502 }
2503 const khiter_t k = kh_get(ccv_cnnp_parameter_id, id_map, updated_name)kh_get_ccv_cnnp_parameter_id(id_map, updated_name);
2504 if (k == kh_end(id_map)((id_map)->n_buckets)) // Cannot find the name, skip.
2505 continue;
2506 src_d = kh_val(id_map, k)((id_map)->vals[k]);
2507 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2507, __extension__ __PRETTY_FUNCTION__); }))
;
2508 assert(src_d < from_parameter_size)((void) sizeof ((src_d < from_parameter_size) ? 1 : 0), __extension__
({ if (src_d < from_parameter_size) ; else __assert_fail (
"src_d < from_parameter_size", "ccv_cnnp_model.c", 2508, __extension__
__PRETTY_FUNCTION__); }))
;
2509 }
2510 }
2511 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2511, __extension__ __PRETTY_FUNCTION__); }))
;
2512 assert(src_d < from_parameter_size)((void) sizeof ((src_d < from_parameter_size) ? 1 : 0), __extension__
({ if (src_d < from_parameter_size) ; else __assert_fail (
"src_d < from_parameter_size", "ccv_cnnp_model.c", 2512, __extension__
__PRETTY_FUNCTION__); }))
;
2513 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data
)) + (size_t)(from_compiled_data->parameters)->rsize * (
size_t)(src_d)))
)->d;
2514 // If the original is not init'ed. We cannot share from.
2515 if (!(from_init_v[s >> 5] & (1u << (s & 0x1f))))
2516 continue;
2517 for (j = 0; j < parallel_count; j++)
2518 {
2519 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d + j * from_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d + j * from_parameter_size]) & ~(uintptr_t
)1))
;
2520 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2520, __extension__
__PRETTY_FUNCTION__); }))
;
2521 ccv_nnc_tensor_t* const dest = to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size];
2522 if (dest && !((uintptr_t)dest & (uintptr_t)1))
2523 ccv_nnc_tensor_free(dest);
2524 to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size] = (ccv_nnc_tensor_t*)((uintptr_t)src | (uintptr_t)1);
2525 }
2526 // Mark this symbol as init'ed.
2527 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data)
) + (size_t)(to_compiled_data->parameters)->rsize * (size_t
)(dest_d)))
)->d;
2528 to_init_v[d >> 5] |= (1u << (d & 0x1f));
2529 }
2530 ccv_array_free(to_parameter_indices);
2531 ccv_array_free(from_parameter_indices);
2532 if (id_map)
2533 kh_destroy(ccv_cnnp_parameter_id, id_map)kh_destroy_ccv_cnnp_parameter_id(id_map);
2534 if (updated_name)
2535 ccfreefree(updated_name);
2536 // Mark it as incomplete so we will call init_1.
2537 if (ccv_cnnp_model_tensors_any_to_alloc(model, to_compiled_data))
2538 to_compiled_data->tensors_init.v = (uint32_t*)((uintptr_t)to_compiled_data->tensors_init.v | (uintptr_t)1);
2539 else // Remove the flag.
2540 to_compiled_data->tensors_init.v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2541}
2542
2543ccv_nnc_stream_context_t* ccv_cnnp_compiled_data_get_stream(ccv_cnnp_compiled_data_t* const compiled_data, const int type)
2544{
2545 if (!compiled_data->stream_map)
2546 compiled_data->stream_map = kh_init(stream_map)kh_init_stream_map();
2547 int ret = 0;
2548 khiter_t k = kh_put(stream_map, compiled_data->stream_map, type, &ret)kh_put_stream_map(compiled_data->stream_map, type, &ret
)
;
2549 assert(ret >= 0)((void) sizeof ((ret >= 0) ? 1 : 0), __extension__ ({ if (
ret >= 0) ; else __assert_fail ("ret >= 0", "ccv_cnnp_model.c"
, 2549, __extension__ __PRETTY_FUNCTION__); }))
;
2550 ccv_nnc_stream_context_t* stream = kh_val(compiled_data->stream_map, k)((compiled_data->stream_map)->vals[k]);
2551 // If ret == 0, the key already exist, we can return directly, otherwise, create and return.
2552 if (ret != 0)
2553 {
2554 stream = ccv_nnc_stream_context_new(type);
2555 kh_val(compiled_data->stream_map, k)((compiled_data->stream_map)->vals[k]) = stream;
2556 }
2557 return stream;
2558}
2559
2560void ccv_cnnp_model_parameters_zip_map(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const aux_ins, const int aux_in_size, ccv_nnc_tensor_t* const* const aux_outs, const int aux_out_size, ccv_nnc_stream_context_t* const stream_context, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters)
2561{
2562 ccv_array_t* to_parameter_indices;
2563 int to_param_ref;
2564 ccv_array_t* from_parameter_indices;
2565 int from_param_ref;
2566 _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 0);
2567 // Should be exactly the same tensor.
2568 if (to_param_ref < 0 && from_param_ref < 0)
2569 { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices
->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices
->rnum == to_parameter_indices->rnum) ; else __assert_fail
("from_parameter_indices->rnum == to_parameter_indices->rnum"
, "ccv_cnnp_model.c", 2569, __extension__ __PRETTY_FUNCTION__
); }))
; }
2570 // To models.
2571 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2572 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2572, __extension__ __PRETTY_FUNCTION__
); }))
;
2573 // From models.
2574 const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data;
2575 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2576 const int to_parameter_size = to_compiled_data->parameters->rnum;
2577 const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? from_parameter_indices->rnum : 1;
2578 assert(aux_in_size >= 0)((void) sizeof ((aux_in_size >= 0) ? 1 : 0), __extension__
({ if (aux_in_size >= 0) ; else __assert_fail ("aux_in_size >= 0"
, "ccv_cnnp_model.c", 2578, __extension__ __PRETTY_FUNCTION__
); }))
;
2579 assert(aux_out_size >= 0)((void) sizeof ((aux_out_size >= 0) ? 1 : 0), __extension__
({ if (aux_out_size >= 0) ; else __assert_fail ("aux_out_size >= 0"
, "ccv_cnnp_model.c", 2579, __extension__ __PRETTY_FUNCTION__
); }))
;
2580 int i, j;
2581 ccv_nnc_tensor_t* inputs[aux_in_size + 2];
2582 ccv_nnc_tensor_t* outputs[aux_out_size + 1];
2583 for (i = 0; i < aux_in_size; i++)
2584 inputs[i + 2] = aux_ins[i];
2585 for (i = 0; i < aux_out_size; i++)
2586 outputs[i + 1] = aux_outs[i];
2587 const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init.
v) & ~(uintptr_t)1))
;
2588 uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2589 for (i = 0; i < rnum; i++)
2590 {
2591 const int src_d = *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t
)(from_parameter_indices)->rsize * (size_t)(from_param_ref
>= 0 ? from_param_ref : i)))
;
2592 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2592, __extension__ __PRETTY_FUNCTION__); }))
;
2593 assert(src_d < from_compiled_data->parameters->rnum)((void) sizeof ((src_d < from_compiled_data->parameters
->rnum) ? 1 : 0), __extension__ ({ if (src_d < from_compiled_data
->parameters->rnum) ; else __assert_fail ("src_d < from_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2593, __extension__ __PRETTY_FUNCTION__
); }))
;
2594 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data
)) + (size_t)(from_compiled_data->parameters)->rsize * (
size_t)(src_d)))
)->d;
2595 // If the original is not init'ed. We cannot copy from.
2596 if (!(from_init_v[s >> 5] & (1u << (s & 0x1f))))
2597 continue;
2598 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2599 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2599, __extension__ __PRETTY_FUNCTION__); }))
;
2600 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2600, __extension__ __PRETTY_FUNCTION__
); }))
;
2601 if (parallel_count > 1)
2602 {
2603 ccv_nnc_stream_context_t* streams[parallel_count];
2604 ccv_nnc_stream_signal_t* signal;
2605 if (stream_context)
2606 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
2607 for (j = 0; j < parallel_count; j++)
2608 {
2609 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2610 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2611 if (!dest || !src)
2612 {
2613 streams[j] = 0;
2614 continue;
2615 }
2616 // At the moment, can only handle them on the same device.
2617 assert(CCV_TENSOR_GET_MEMORY(src->info.type) == CCV_TENSOR_GET_MEMORY(dest->info.type))((void) sizeof ((((src->info.type) & 0x3) == ((dest->
info.type) & 0x3)) ? 1 : 0), __extension__ ({ if (((src->
info.type) & 0x3) == ((dest->info.type) & 0x3)) ; else
__assert_fail ("CCV_TENSOR_GET_MEMORY(src->info.type) == CCV_TENSOR_GET_MEMORY(dest->info.type)"
, "ccv_cnnp_model.c", 2617, __extension__ __PRETTY_FUNCTION__
); }))
;
2618 assert(CCV_TENSOR_GET_DEVICE_ID(src->info.type) == CCV_TENSOR_GET_DEVICE_ID(dest->info.type))((void) sizeof (((((src->info.type) & 0xfff00) >>
8) == (((dest->info.type) & 0xfff00) >> 8)) ? 1
: 0), __extension__ ({ if ((((src->info.type) & 0xfff00
) >> 8) == (((dest->info.type) & 0xfff00) >>
8)) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE_ID(src->info.type) == CCV_TENSOR_GET_DEVICE_ID(dest->info.type)"
, "ccv_cnnp_model.c", 2618, __extension__ __PRETTY_FUNCTION__
); }))
;
2619 const int stream_type = CCV_TENSOR_GET_MEMORY(src->info.type)((src->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
2620 const int device_id = CCV_TENSOR_GET_DEVICE_ID(src->info.type)(((src->info.type) & 0xfff00) >> 8);
2621 int type = stream_type;
2622 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
2623 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(to_compiled_data, type);
2624 // Wait signal to finish.
2625 if (stream_context)
2626 ccv_nnc_stream_context_wait_signal(stream_0, signal);
2627 inputs[0] = outputs[0] = dest;
2628 inputs[1] = src;
2629 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 2, outputs, aux_out_size + 1, stream_0);
2630 if (stream_context)
2631 {
2632 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
2633 ccv_nnc_stream_context_wait_signal(stream_context, signal);
2634 }
2635 streams[j] = stream_0;
2636 }
2637 // If this should be blocking, blocking it.
2638 if (!stream_context)
2639 for (j = 0; j < parallel_count; j++)
2640 if (streams[j])
2641 ccv_nnc_stream_context_wait(streams[j]);
2642 } else {
2643 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d]) & ~(uintptr_t)1))
;
2644 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2644, __extension__
__PRETTY_FUNCTION__); }))
;
2645 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d]) & ~(uintptr_t)1))
;
2646 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2646, __extension__
__PRETTY_FUNCTION__); }))
;
2647 inputs[0] = outputs[0] = dest;
2648 inputs[1] = src;
2649 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 2, outputs, aux_out_size + 1, stream_context);
2650 }
2651 // Mark this symbol as init'ed.
2652 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data)
) + (size_t)(to_compiled_data->parameters)->rsize * (size_t
)(dest_d)))
)->d;
2653 to_init_v[d >> 5] |= (1u << (d & 0x1f));
2654 }
2655 ccv_array_free(to_parameter_indices);
2656 ccv_array_free(from_parameter_indices);
2657}
2658
2659void ccv_cnnp_model_parameters_map(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const aux_ins, const int aux_in_size, ccv_nnc_tensor_t* const* const aux_outs, const int aux_out_size, ccv_nnc_stream_context_t* const stream_context)
2660{
2661 int to_param_ref;
2662 ccv_array_t* const to_parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, &to_param_ref);
2663 // To models.
2664 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2665 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2665, __extension__ __PRETTY_FUNCTION__
); }))
;
2666 // Tensor has to be inited already.
2667 assert(!!to_compiled_data->tensors_init.v)((void) sizeof ((!!to_compiled_data->tensors_init.v) ? 1 :
0), __extension__ ({ if (!!to_compiled_data->tensors_init
.v) ; else __assert_fail ("!!to_compiled_data->tensors_init.v"
, "ccv_cnnp_model.c", 2667, __extension__ __PRETTY_FUNCTION__
); }))
;
2668 assert(to_compiled_data->tensors.parameters)((void) sizeof ((to_compiled_data->tensors.parameters) ? 1
: 0), __extension__ ({ if (to_compiled_data->tensors.parameters
) ; else __assert_fail ("to_compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2668, __extension__ __PRETTY_FUNCTION__
); }))
;
2669 // From models.
2670 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2671 const int to_parameter_size = to_compiled_data->parameters->rnum;
2672 const int rnum = (to_param_ref < 0) ? to_parameter_indices->rnum : 1;
2673 assert(aux_in_size >= 0)((void) sizeof ((aux_in_size >= 0) ? 1 : 0), __extension__
({ if (aux_in_size >= 0) ; else __assert_fail ("aux_in_size >= 0"
, "ccv_cnnp_model.c", 2673, __extension__ __PRETTY_FUNCTION__
); }))
;
2674 assert(aux_out_size >= 0)((void) sizeof ((aux_out_size >= 0) ? 1 : 0), __extension__
({ if (aux_out_size >= 0) ; else __assert_fail ("aux_out_size >= 0"
, "ccv_cnnp_model.c", 2674, __extension__ __PRETTY_FUNCTION__
); }))
;
2675 int i, j;
2676 ccv_nnc_tensor_t* inputs[aux_in_size + 1];
2677 ccv_nnc_tensor_t* outputs[aux_out_size + 1];
2678 for (i = 0; i < aux_in_size; i++)
2679 inputs[i + 1] = aux_ins[i];
2680 for (i = 0; i < aux_out_size; i++)
2681 outputs[i + 1] = aux_outs[i];
2682 for (i = 0; i < rnum; i++)
2683 {
2684 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2685 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2685, __extension__ __PRETTY_FUNCTION__); }))
;
2686 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2686, __extension__ __PRETTY_FUNCTION__
); }))
;
2687 if (parallel_count > 1)
2688 {
2689 ccv_nnc_stream_context_t* streams[parallel_count];
2690 ccv_nnc_stream_signal_t* signal;
2691 if (stream_context)
2692 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
2693 for (j = 0; j < parallel_count; j++)
2694 {
2695 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2696 if (!dest)
2697 {
2698 streams[j] = 0;
2699 continue;
2700 }
2701 const int stream_type = CCV_TENSOR_GET_MEMORY(dest->info.type)((dest->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
2702 const int device_id = CCV_TENSOR_GET_DEVICE_ID(dest->info.type)(((dest->info.type) & 0xfff00) >> 8);
2703 int type = stream_type;
2704 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
2705 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(to_compiled_data, type);
2706 // Wait signal to finish.
2707 if (stream_context)
2708 ccv_nnc_stream_context_wait_signal(stream_0, signal);
2709 inputs[0] = outputs[0] = dest;
2710 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_0);
2711 if (stream_context)
2712 {
2713 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
2714 ccv_nnc_stream_context_wait_signal(stream_context, signal);
2715 }
2716 streams[j] = stream_0;
2717 }
2718 // If this should be blocking, blocking it.
2719 if (!stream_context)
2720 for (j = 0; j < parallel_count; j++)
2721 if (streams[j])
2722 ccv_nnc_stream_context_wait(streams[j]);
2723 } else {
2724 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d]) & ~(uintptr_t)1))
;
2725 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2725, __extension__
__PRETTY_FUNCTION__); }))
;
2726 inputs[0] = outputs[0] = dest;
2727 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_context);
2728 }
2729 // No need to mark this symbol as init'ed, it is already.
2730 }
2731 ccv_array_free(to_parameter_indices);
2732}
2733
2734void ccv_cnnp_model_parameter_gradients_map(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const aux_ins, const int aux_in_size, ccv_nnc_tensor_t* const* const aux_outs, const int aux_out_size, ccv_nnc_stream_context_t* const stream_context)
2735{
2736 int to_param_ref;
2737 ccv_array_t* const to_parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, &to_param_ref);
2738 // To models.
2739 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2740 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2740, __extension__ __PRETTY_FUNCTION__
); }))
;
2741 // Tensor has to be inited already.
2742 assert(!!to_compiled_data->tensors_init.v)((void) sizeof ((!!to_compiled_data->tensors_init.v) ? 1 :
0), __extension__ ({ if (!!to_compiled_data->tensors_init
.v) ; else __assert_fail ("!!to_compiled_data->tensors_init.v"
, "ccv_cnnp_model.c", 2742, __extension__ __PRETTY_FUNCTION__
); }))
;
2743 ccv_nnc_tensor_t** tensor_gradients;
2744 if (to_compiled_data->backward.count > 1)
2745 tensor_gradients = to_compiled_data->tensors.accum_gradients;
2746 else
2747 tensor_gradients = to_compiled_data->tensors.gradients;
2748 assert(tensor_gradients)((void) sizeof ((tensor_gradients) ? 1 : 0), __extension__ ({
if (tensor_gradients) ; else __assert_fail ("tensor_gradients"
, "ccv_cnnp_model.c", 2748, __extension__ __PRETTY_FUNCTION__
); }))
;
2749 // From models.
2750 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2751 const int to_parameter_size = to_compiled_data->parameters->rnum;
2752 const int rnum = (to_param_ref < 0) ? to_parameter_indices->rnum : 1;
2753 assert(aux_in_size >= 0)((void) sizeof ((aux_in_size >= 0) ? 1 : 0), __extension__
({ if (aux_in_size >= 0) ; else __assert_fail ("aux_in_size >= 0"
, "ccv_cnnp_model.c", 2753, __extension__ __PRETTY_FUNCTION__
); }))
;
2754 assert(aux_out_size >= 0)((void) sizeof ((aux_out_size >= 0) ? 1 : 0), __extension__
({ if (aux_out_size >= 0) ; else __assert_fail ("aux_out_size >= 0"
, "ccv_cnnp_model.c", 2754, __extension__ __PRETTY_FUNCTION__
); }))
;
2755 int i, j;
2756 ccv_nnc_tensor_t* inputs[aux_in_size + 1];
2757 ccv_nnc_tensor_t* outputs[aux_out_size + 1];
2758 for (i = 0; i < aux_in_size; i++)
2759 inputs[i + 1] = aux_ins[i];
2760 for (i = 0; i < aux_out_size; i++)
2761 outputs[i + 1] = aux_outs[i];
2762 for (i = 0; i < rnum; i++)
2763 {
2764 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2765 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2765, __extension__ __PRETTY_FUNCTION__); }))
;
2766 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2766, __extension__ __PRETTY_FUNCTION__
); }))
;
2767 if (parallel_count > 1)
2768 {
2769 ccv_nnc_stream_context_t* streams[parallel_count];
2770 ccv_nnc_stream_signal_t* signal;
2771 if (stream_context)
2772 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
2773 for (j = 0; j < parallel_count; j++)
2774 {
2775 ccv_nnc_tensor_t* const dest = tensor_gradients[dest_d + j * to_parameter_size];
2776 if (!dest)
2777 {
2778 streams[j] = 0;
2779 continue;
2780 }
2781 const int stream_type = CCV_TENSOR_GET_MEMORY(dest->info.type)((dest->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
2782 const int device_id = CCV_TENSOR_GET_DEVICE_ID(dest->info.type)(((dest->info.type) & 0xfff00) >> 8);
2783 int type = stream_type;
2784 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
2785 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(to_compiled_data, type);
2786 // Wait signal to finish.
2787 if (stream_context)
2788 ccv_nnc_stream_context_wait_signal(stream_0, signal);
2789 inputs[0] = outputs[0] = dest;
2790 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_0);
2791 if (stream_context)
2792 {
2793 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
2794 ccv_nnc_stream_context_wait_signal(stream_context, signal);
2795 }
2796 streams[j] = stream_0;
2797 }
2798 // If this should be blocking, blocking it.
2799 if (!stream_context)
2800 for (j = 0; j < parallel_count; j++)
2801 if (streams[j])
2802 ccv_nnc_stream_context_wait(streams[j]);
2803 } else {
2804 ccv_nnc_tensor_t* const dest = tensor_gradients[dest_d];
2805 if (!dest)
2806 continue;
2807 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2807, __extension__
__PRETTY_FUNCTION__); }))
;
2808 inputs[0] = outputs[0] = dest;
2809 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_context);
2810 }
2811 // No need to mark this symbol as init'ed, it is already.
2812 }
2813 ccv_array_free(to_parameter_indices);
2814}
2815
2816ccv_nnc_cmd_t ccv_cnnp_model_minimizer(ccv_cnnp_model_t* const model)
2817{
2818 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2819 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2819, __extension__ __PRETTY_FUNCTION__); }))
;
2820 return compiled_data->minimize.minimizer;
2821}
2822
2823void ccv_cnnp_model_set_minimizer(ccv_cnnp_model_t* const model, const ccv_nnc_cmd_t minimizer, const int reset, const ccv_cnnp_model_io_t* const set_parameters, const int set_parameter_size)
2824{
2825 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2826 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2826, __extension__ __PRETTY_FUNCTION__); }))
;
2827 const int parameter_size = compiled_data->parameters->rnum;
2828 if (parameter_size == 0)
2829 return;
2830 if (reset)
2831 { assert(set_parameters == 0 && set_parameter_size == 0)((void) sizeof ((set_parameters == 0 && set_parameter_size
== 0) ? 1 : 0), __extension__ ({ if (set_parameters == 0 &&
set_parameter_size == 0) ; else __assert_fail ("set_parameters == 0 && set_parameter_size == 0"
, "ccv_cnnp_model.c", 2831, __extension__ __PRETTY_FUNCTION__
); }))
; }
2832 const int old_max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
2833 const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(minimizer);
2834 if (saved_aux_size > compiled_data->minimize.max_saved_aux_size)
2835 compiled_data->minimize.max_saved_aux_size = saved_aux_size;
2836 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
2837 // We update all parameters, at this point, we have one minimizer.
2838 if (set_parameters == 0 || set_parameter_size == 0)
2839 compiled_data->minimize.minimizer = minimizer;
2840 int i;
2841 if (set_parameters && set_parameter_size)
2842 {
2843 // I need to save what's the minimizer along with this.
2844 if (!compiled_data->minimize.parameters)
2845 compiled_data->minimize.parameters = ccv_array_new(sizeof(ccv_cnnp_set_minimizer_for_parameter_t*), 1, 0);
2846 ccv_cnnp_set_minimizer_for_parameter_t* const set_minimizer_for_parameter = ccmallocmalloc(sizeof(ccv_cnnp_set_minimizer_for_parameter_t) + (set_parameter_size - 1) * sizeof(ccv_cnnp_model_io_t));
2847 set_minimizer_for_parameter->minimizer = minimizer;
2848 set_minimizer_for_parameter->parameter_size = set_parameter_size;
2849 memcpy(set_minimizer_for_parameter->parameters, set_parameters, sizeof(ccv_cnnp_model_io_t) * set_parameter_size);
2850 ccv_array_push(compiled_data->minimize.parameters, &set_minimizer_for_parameter);
2851 }
2852 // If reset is true, clear the parameters array.
2853 if (reset && compiled_data->minimize.parameters)
2854 {
2855 for (i = 0; i < compiled_data->minimize.parameters->rnum; i++)
2856 ccfreefree(*(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(compiled_data->minimize.parameters, i)((void*)(((char*)((compiled_data->minimize.parameters)->
data)) + (size_t)(compiled_data->minimize.parameters)->
rsize * (size_t)(i)))
);
2857 ccv_array_clear(compiled_data->minimize.parameters);
2858 }
2859 if (!compiled_data->update_nodes)
2860 return;
2861 ccv_nnc_symbolic_graph_t* const symbolic_graph = model->graph;
2862 assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if
(symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c"
, 2862, __extension__ __PRETTY_FUNCTION__); }))
;
2863 if (saved_aux_size > old_max_saved_aux_size)
2864 {
2865 assert(compiled_data->updated_parameters)((void) sizeof ((compiled_data->updated_parameters) ? 1 : 0
), __extension__ ({ if (compiled_data->updated_parameters)
; else __assert_fail ("compiled_data->updated_parameters"
, "ccv_cnnp_model.c", 2865, __extension__ __PRETTY_FUNCTION__
); }))
;
2866 // Reallocate first, move them around later.
2867 compiled_data->updated_parameters = (ccv_nnc_tensor_symbol_t*)ccreallocrealloc(compiled_data->updated_parameters, sizeof(ccv_nnc_tensor_symbol_t) * parameter_size + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size + sizeof(ccv_nnc_tensor_symbol_map_t) * saved_aux_size * parameter_size);
2868 compiled_data->update_nodes = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->updated_parameters + parameter_size);
2869 compiled_data->saved_aux = (ccv_nnc_tensor_symbol_map_t*)(compiled_data->update_nodes + parameter_size);
2870 // We need to do this from back to front because saved_aux_size > old_saved_aux_size, it could overlap.
2871 _ccv_cnnp_scatter_saved_aux(compiled_data->saved_aux, parameter_size, old_max_saved_aux_size, saved_aux_size);
2872 }
2873 int flag = 0;
2874 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2875 if (set_parameters && set_parameter_size)
2876 {
2877 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2878 for (i = 0; i < set_parameter_size; i++)
2879 {
2880 const int param_sel = set_parameters[i]->param_sel > 0 ? set_parameters[i]->param_sel - 1 : set_parameters[i]->param_sel;
2881 assert(set_parameters[i]->param_sel != 0)((void) sizeof ((set_parameters[i]->param_sel != 0) ? 1 : 0
), __extension__ ({ if (set_parameters[i]->param_sel != 0)
; else __assert_fail ("set_parameters[i]->param_sel != 0"
, "ccv_cnnp_model.c", 2881, __extension__ __PRETTY_FUNCTION__
); }))
;
2882 const int old_rnum = parameter_indices->rnum;
2883 ccv_cnnp_model_add_to_parameter_indices(set_parameters[i]->model, param_sel, parameter_indices);
2884 const int param_ref = set_parameters[i]->param_ref > 0 ? set_parameters[i]->param_ref - 1 : set_parameters[i]->param_ref;
2885 assert(set_parameters[i]->param_ref != 0)((void) sizeof ((set_parameters[i]->param_ref != 0) ? 1 : 0
), __extension__ ({ if (set_parameters[i]->param_ref != 0)
; else __assert_fail ("set_parameters[i]->param_ref != 0"
, "ccv_cnnp_model.c", 2885, __extension__ __PRETTY_FUNCTION__
); }))
;
2886 if (param_ref >= 0)
2887 {
2888 assert(param_ref + old_rnum < parameter_indices->rnum)((void) sizeof ((param_ref + old_rnum < parameter_indices->
rnum) ? 1 : 0), __extension__ ({ if (param_ref + old_rnum <
parameter_indices->rnum) ; else __assert_fail ("param_ref + old_rnum < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2888, __extension__ __PRETTY_FUNCTION__
); }))
;
2889 *(int*)ccv_array_get(parameter_indices, old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(old_rnum)))
= *(int*)ccv_array_get(parameter_indices, param_ref + old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref + old_rnum)))
;
2890 parameter_indices->rnum = old_rnum + 1;
2891 }
2892 }
2893 // We may have duplicated indices, but that is OK, we will set it twice.
2894 for (i = 0; i < parameter_indices->rnum; i++)
2895 {
2896 const int d = *(int*)ccv_array_get(parameter_indices, i)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(i)))
;
2897 if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, compiled_data->update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, minimizer, saved_aux_size, max_saved_aux_size, d))
2898 flag = 1;
2899 }
2900 ccv_array_free(parameter_indices);
2901 } else {
2902 for (i = 0; i < parameter_size; i++)
2903 if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, compiled_data->update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, minimizer, saved_aux_size, max_saved_aux_size, i))
2904 flag = 1;
2905 if (compiled_data->minimize.parameters)
2906 if (_ccv_cnnp_apply_parameters_with_minimizer(model))
2907 flag = 1;
2908 }
2909 if (flag)
2910 {
2911 // If saved_aux_size doesn't match, we need to remove / add new saved_aux to the graph. But first, free up apply gradients graph.
2912 if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_FIT_MODE)
2913 _ccv_cnnp_compiled_data_graph_free(compiled_data);
2914 _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data);
2915 }
2916}
2917
2918void ccv_cnnp_model_set_compile_params(ccv_cnnp_model_t* const model, const ccv_nnc_symbolic_graph_compile_param_t compile_params)
2919{
2920 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2921 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2921, __extension__ __PRETTY_FUNCTION__); }))
;
2922 compiled_data->compile_params = compile_params;
2923}
2924
2925void ccv_cnnp_model_dot(const ccv_cnnp_model_t* const model, const int flags, FILE** const outs, const int out_size)
2926{
2927 if (model->graph && out_size > 0)
2928 ccv_nnc_symbolic_graph_dot(model->graph, flags, outs[0]);
2929 if (model->compiled_data && model->compiled_data->graph && out_size > 1)
2930 ccv_nnc_graph_dot(model->compiled_data->graph, flags, outs[1]);
2931 if (model->compiled_data && model->compiled_data->backward.accum && out_size > 2)
2932 ccv_nnc_graph_dot(model->compiled_data->backward.accum, flags, outs[2]);
2933 if (model->compiled_data && model->compiled_data->apply_gradients.graph && out_size > 3)
2934 ccv_nnc_graph_dot(model->compiled_data->apply_gradients.graph, flags, outs[3]);
2935}
2936
2937void ccv_cnnp_model_format(const ccv_cnnp_model_t* const model, const ccv_nnc_symbolic_graph_format_f format_fn, void* const context)
2938{
2939 if (model->graph)
2940 ccv_nnc_symbolic_graph_format(model->graph, 0, 0, 0, 0, format_fn, context);
2941}
2942
2943static void _ccv_cnnp_compiled_data_free(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
2944{
2945 int i;
2946 const int parameter_size = compiled_data->parameters->rnum;
2947 ccv_array_free(compiled_data->parameters);
2948 if (compiled_data->parameter_flags)
2949 ccfreefree(compiled_data->parameter_flags);
2950 const int internal_size = compiled_data->internals->rnum;
2951 ccv_array_free(compiled_data->internals);
2952 assert(compiled_data->ids.parameters->rnum == parameter_size)((void) sizeof ((compiled_data->ids.parameters->rnum ==
parameter_size) ? 1 : 0), __extension__ ({ if (compiled_data
->ids.parameters->rnum == parameter_size) ; else __assert_fail
("compiled_data->ids.parameters->rnum == parameter_size"
, "ccv_cnnp_model.c", 2952, __extension__ __PRETTY_FUNCTION__
); }))
;
2953 assert(compiled_data->ids.internals->rnum == internal_size)((void) sizeof ((compiled_data->ids.internals->rnum == internal_size
) ? 1 : 0), __extension__ ({ if (compiled_data->ids.internals
->rnum == internal_size) ; else __assert_fail ("compiled_data->ids.internals->rnum == internal_size"
, "ccv_cnnp_model.c", 2953, __extension__ __PRETTY_FUNCTION__
); }))
;
2954 for (i = 0; i < parameter_size; i++)
2955 ccfreefree(*(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(i)))
);
2956 ccv_array_free(compiled_data->ids.parameters);
2957 for (i = 0; i < internal_size; i++)
2958 ccfreefree(*(char**)ccv_array_get(compiled_data->ids.internals, i)((void*)(((char*)((compiled_data->ids.internals)->data)
) + (size_t)(compiled_data->ids.internals)->rsize * (size_t
)(i)))
);
2959 ccv_array_free(compiled_data->ids.internals);
2960 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2961 if (compiled_data->tensors.parameters)
2962 {
2963 for (i = 0; i < parameter_size * parallel_count; i++)
2964 // If it is not marked as not belonging, we can free it.
2965 if (!((uintptr_t)compiled_data->tensors.parameters[i] & (uintptr_t)1))
2966 if (compiled_data->tensors.parameters[i])
2967 ccv_nnc_tensor_free(compiled_data->tensors.parameters[i]);
2968 for (i = 0; i < internal_size * parallel_count; i++)
2969 if (compiled_data->tensors.internals[i])
2970 ccv_nnc_tensor_free(compiled_data->tensors.internals[i]);
2971 ccfreefree(compiled_data->tensors.parameters);
2972 }
2973 if (compiled_data->tensors.gradients)
2974 {
2975 for (i = 0; i < parameter_size * parallel_count; i++)
2976 {
2977 if (compiled_data->tensors.gradients[i])
2978 ccv_nnc_tensor_free(compiled_data->tensors.gradients[i]);
2979 if (compiled_data->tensors.accum_gradients[i])
2980 ccv_nnc_tensor_free(compiled_data->tensors.accum_gradients[i]);
2981 }
2982 ccfreefree(compiled_data->tensors.gradients);
2983 }
2984 if (compiled_data->minimize.parameters)
2985 {
2986 for (i = 0; i < compiled_data->minimize.parameters->rnum; i++)
2987 ccfreefree(*(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(compiled_data->minimize.parameters, i)((void*)(((char*)((compiled_data->minimize.parameters)->
data)) + (size_t)(compiled_data->minimize.parameters)->
rsize * (size_t)(i)))
);
2988 ccv_array_free(compiled_data->minimize.parameters);
2989 }
2990 if (compiled_data->rewindables)
2991 ccv_array_free(compiled_data->rewindables);
2992 if (compiled_data->tensors_init.v)
2993 ccfreefree(CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
);
2994 if (compiled_data->evaluate.tos)
2995 ccfreefree(compiled_data->evaluate.tos);
2996 compiled_data->evaluate.tos = 0;
2997 if (compiled_data->stream_map)
2998 {
2999 khiter_t k;
3000 for (k = kh_begin(compiled_data->stream_map)(khint_t)(0); k != kh_end(compiled_data->stream_map)((compiled_data->stream_map)->n_buckets); ++k)
3001 {
3002 if (!kh_exist(compiled_data->stream_map, k)(!(((compiled_data->stream_map)->flags[(k)>>4]>>
(((k)&0xfU)<<1))&3))
)
3003 continue;
3004 ccv_nnc_stream_context_t* const stream = kh_val(compiled_data->stream_map, k)((compiled_data->stream_map)->vals[k]);
3005 ccv_nnc_stream_context_free(stream);
3006 }
3007 kh_destroy(stream_map, compiled_data->stream_map)kh_destroy_stream_map(compiled_data->stream_map);
3008 }
3009 _ccv_cnnp_compiled_data_graph_free(compiled_data);
3010 _ccv_cnnp_compiled_data_gradient_free(compiled_data);
3011 _ccv_cnnp_compiled_data_backward_free(compiled_data);
3012 _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data);
3013 if (compiled_data->gradient_checkpoints)
3014 {
3015 for (i = 0; i < compiled_data->gradient_checkpoints->rnum; i++)
3016 {
3017 ccv_cnnp_model_gradient_checkpoint_t* const checkpoint = (ccv_cnnp_model_gradient_checkpoint_t*)ccv_array_get(compiled_data->gradient_checkpoints, i)((void*)(((char*)((compiled_data->gradient_checkpoints)->
data)) + (size_t)(compiled_data->gradient_checkpoints)->
rsize * (size_t)(i)))
;
3018 assert(checkpoint->inputs)((void) sizeof ((checkpoint->inputs) ? 1 : 0), __extension__
({ if (checkpoint->inputs) ; else __assert_fail ("checkpoint->inputs"
, "ccv_cnnp_model.c", 3018, __extension__ __PRETTY_FUNCTION__
); }))
;
3019 ccfreefree(checkpoint->inputs);
3020 ccv_array_free(checkpoint->tensor_symbols);
3021 }
3022 ccv_array_free(compiled_data->gradient_checkpoints);
3023 }
3024 ccv_nnc_xpu_alloc_destroy(&compiled_data->xpu_alloc);
3025 ccfreefree(compiled_data);
3026}
3027
3028void ccv_cnnp_model_free(ccv_cnnp_model_t* const model)
3029{
3030 if (model->isa->deinit)
3031 model->isa->deinit(model);
3032 if (model->io)
3033 {
3034 int i;
3035 for (i = 0; i < model->io->rnum; i++)
3036 {
3037 ccv_cnnp_model_io_t model_io = *(ccv_cnnp_model_io_t*)ccv_array_get(model->io, i)((void*)(((char*)((model->io)->data)) + (size_t)(model->
io)->rsize * (size_t)(i)))
;
3038 if (model_io->outgoings)
3039 ccv_array_free(model_io->outgoings);
3040 if (model_io->incomings)
3041 ccv_array_free(model_io->incomings);
3042 if (model_io->dependencies)
3043 ccv_array_free(model_io->dependencies);
3044 ccfreefree(model_io);
3045 }
3046 ccv_array_free(model->io);
3047 }
3048 if (model->parameter_indices)
3049 ccv_array_free(model->parameter_indices);
3050 if (model->inputs)
3051 ccfreefree(model->inputs);
3052 if (model->graph)
3053 ccv_nnc_symbolic_graph_free(model->graph);
3054 if (model->compiled_data)
3055 _ccv_cnnp_compiled_data_free(model, model->compiled_data);
3056 if (model->name)
3057 ccfreefree(model->name);
3058 ccfreefree(model);
3059}
3060
3061void ccv_cnnp_model_cancel(ccv_cnnp_model_t* const model)
3062{
3063 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
3064 if (!compiled_data)
3065 return;
3066 if (compiled_data->graph)
3067 ccv_nnc_graph_cancel(compiled_data->graph);
3068 if (compiled_data->apply_gradients.graph)
3069 ccv_nnc_graph_cancel(compiled_data->apply_gradients.graph);
3070}