Bug Summary

File:ccv_bbf.c
Warning:line 82, column 9
Read function called when stream is in EOF state. Function has no effect

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_bbf.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -menable-no-infs -menable-no-nans -fapprox-func -funsafe-math-optimizations -fno-signed-zeros -mreassociate -freciprocal-math -ffp-contract=fast -fno-rounding-math -ffast-math -ffinite-math-only -complex-range=basic -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib -fcoverage-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib -resource-dir /usr/local/lib/clang/19 -I . -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/19/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/12/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -ferror-limit 19 -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/actions-runner/_work/ccv/ccv/_analyze/2024-12-03-120642-617563-1 -x c ccv_bbf.c
1#include "ccv.h"
2#include "ccv_internal.h"
3#include <sys/time.h>
4#ifdef HAVE_GSL1
5#include <gsl/gsl_rng.h>
6#include <gsl/gsl_randist.h>
7#endif
8#ifdef USE_OPENMP
9#include <omp.h>
10#endif
11
12const ccv_bbf_param_t ccv_bbf_default_params = {
13 .interval = 5,
14 .min_neighbors = 2,
15 .accurate = 1,
16 .flags = 0,
17 .size = {
18 24,
19 24,
20 },
21};
22
23#define _ccv_width_padding(x)(((x) + 3) & -4) (((x) + 3) & -4)
24
25static inline int _ccv_run_bbf_feature(ccv_bbf_feature_t* feature, int* step, unsigned char** u8)
26{
27#define pf_at(i) (*(u8[feature->pz[i]] + feature->px[i] + feature->py[i] * step[feature->pz[i]]))
28#define nf_at(i) (*(u8[feature->nz[i]] + feature->nx[i] + feature->ny[i] * step[feature->nz[i]]))
29 unsigned char pmin = pf_at(0), nmax = nf_at(0);
30 /* check if every point in P > every point in N, and take a shortcut */
31 if (pmin <= nmax)
32 return 0;
33 int i;
34 for (i = 1; i < feature->size; i++)
35 {
36 if (feature->pz[i] >= 0)
37 {
38 int p = pf_at(i);
39 if (p < pmin)
40 {
41 if (p <= nmax)
42 return 0;
43 pmin = p;
44 }
45 }
46 if (feature->nz[i] >= 0)
47 {
48 int n = nf_at(i);
49 if (n > nmax)
50 {
51 if (pmin <= n)
52 return 0;
53 nmax = n;
54 }
55 }
56 }
57#undef pf_at
58#undef nf_at
59 return 1;
60}
61
62static int _ccv_read_bbf_stage_classifier(const char* file, ccv_bbf_stage_classifier_t* classifier)
63{
64 FILE* r = fopen(file, "r");
65 if (r
6.1
'r' is not equal to null
== 0) return -1;
7
Taking false branch
66 (void)fscanf(r, "%d", &classifier->count);
67 union { float fl; int i; } fli;
68 (void)fscanf(r, "%d", &fli.i);
69 classifier->threshold = fli.fl;
70 classifier->feature = (ccv_bbf_feature_t*)ccmallocmalloc(classifier->count * sizeof(ccv_bbf_feature_t));
71 classifier->alpha = (float*)ccmallocmalloc(classifier->count * 2 * sizeof(float));
72 int i, j;
73 for (i = 0; i < classifier->count; i++)
8
Assuming 'i' is < field 'count'
9
Loop condition is true. Entering loop body
12
Assuming 'i' is < field 'count'
13
Loop condition is true. Entering loop body
74 {
75 (void)fscanf(r, "%d", &classifier->feature[i].size);
14
Assuming stream reaches end-of-file here
76 for (j = 0; j < classifier->feature[i].size; j++)
10
Assuming 'j' is >= field 'size'
11
Loop condition is false. Execution continues on line 81
15
Assuming 'j' is >= field 'size'
16
Loop condition is false. Execution continues on line 81
77 {
78 (void)fscanf(r, "%d %d %d", &classifier->feature[i].px[j], &classifier->feature[i].py[j], &classifier->feature[i].pz[j]);
79 (void)fscanf(r, "%d %d %d", &classifier->feature[i].nx[j], &classifier->feature[i].ny[j], &classifier->feature[i].nz[j]);
80 }
81 union { float fl; int i; } flia, flib;
82 (void)fscanf(r, "%d %d", &flia.i, &flib.i);
17
Read function called when stream is in EOF state. Function has no effect
83 classifier->alpha[i * 2] = flia.fl;
84 classifier->alpha[i * 2 + 1] = flib.fl;
85 }
86 fclose(r);
87 return 0;
88}
89
90#ifdef HAVE_GSL1
91
92static unsigned int _ccv_bbf_time_measure()
93{
94 struct timeval tv;
95 gettimeofday(&tv, 0);
96 return tv.tv_sec * 1000000 + tv.tv_usec;
97}
98
99#define less_than(a, b, aux) ((a) < (b))
100CCV_IMPLEMENT_QSORT(_ccv_sort_32f, float, less_than)void _ccv_sort_32f(float *array, size_t total, int aux) { int
isort_thresh = 7; float t; int sp = 0; struct { float *lb; float
*ub; } stack[48]; if( total <= 1 ) return; stack[0].lb = array
; stack[0].ub = array + (total - 1); while( sp >= 0 ) { float
* left = stack[sp].lb; float* right = stack[sp--].ub; for(;;)
{ int i, n = (int)(right - left) + 1, m; float* ptr; float* ptr2
; if( n <= isort_thresh ) { insert_sort: for( ptr = left +
1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left
&& less_than(ptr2[0],ptr2[-1], aux); ptr2--) (((t)) =
((ptr2[0])), ((ptr2[0])) = ((ptr2[-1])), ((ptr2[-1])) = ((t)
)); } break; } else { float* left0; float* left1; float* right0
; float* right1; float* pivot; float* a; float* b; float* c; int
swap_cnt = 0; left0 = left; right0 = right; pivot = left + (
n/2); if( n > 40 ) { int d = n / 8; a = left, b = left + d
, c = left + 2*d; left = less_than(*a, *b, aux) ? (less_than(
*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than
(*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); a = pivot
- d, b = pivot, c = pivot + d; pivot = less_than(*a, *b, aux
) ? (less_than(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c
: a)) : (less_than(*c, *b, aux) ? b : (less_than(*a, *c, aux
) ? a : c)); a = right - 2*d, b = right - d, c = right; right
= less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than
(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than
(*a, *c, aux) ? a : c)); } a = left, b = pivot, c = right; pivot
= less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than
(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than
(*a, *c, aux) ? a : c)); if( pivot != left0 ) { (((t)) = ((*pivot
)), ((*pivot)) = ((*left0)), ((*left0)) = ((t))); pivot = left0
; } left = left1 = left0 + 1; right = right1 = right0; for(;;
) { while( left <= right && !less_than(*pivot, *left
, aux) ) { if( !less_than(*left, *pivot, aux) ) { if( left >
left1 ) (((t)) = ((*left1)), ((*left1)) = ((*left)), ((*left
)) = ((t))); swap_cnt = 1; left1++; } left++; } while( left <=
right && !less_than(*right, *pivot, aux) ) { if( !less_than
(*pivot, *right, aux) ) { if( right < right1 ) (((t)) = ((
*right1)), ((*right1)) = ((*right)), ((*right)) = ((t))); swap_cnt
= 1; right1--; } right--; } if( left > right ) break; (((
t)) = ((*left)), ((*left)) = ((*right)), ((*right)) = ((t)));
swap_cnt = 1; left++; right--; } if( swap_cnt == 0 ) { left =
left0, right = right0; goto insert_sort; } n = ({ typeof ((int
)(left1 - left0)) _a = ((int)(left1 - left0)); typeof ((int)(
left - left1)) _b = ((int)(left - left1)); (_a < _b) ? _a :
_b; }); for( i = 0; i < n; i++ ) (((t)) = ((left0[i])), (
(left0[i])) = ((left[i-n])), ((left[i-n])) = ((t))); n = ({ typeof
((int)(right0 - right1)) _a = ((int)(right0 - right1)); typeof
((int)(right1 - right)) _b = ((int)(right1 - right)); (_a <
_b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left
[i])), ((left[i])) = ((right0[i-n+1])), ((right0[i-n+1])) = (
(t))); n = (int)(left - left1); m = (int)(right1 - right); if
( n > 1 ) { if( m > 1 ) { if( n > m ) { stack[++sp].
lb = left0; stack[sp].ub = left0 + n - 1; left = right0 - m +
1, right = right0; } else { stack[++sp].lb = right0 - m + 1;
stack[sp].ub = right0; left = left0, right = left0 + n - 1; }
} else left = left0, right = left0 + n - 1; } else if( m >
1 ) left = right0 - m + 1, right = right0; else break; } } }
}
101#undef less_than
102
103static void _ccv_bbf_eval_data(ccv_bbf_stage_classifier_t* classifier, unsigned char** posdata, int posnum, unsigned char** negdata, int negnum, ccv_size_t size, float* peval, float* neval)
104{
105 int i, j;
106 int steps[] = { _ccv_width_padding(size.width)(((size.width) + 3) & -4),
107 _ccv_width_padding(size.width >> 1)(((size.width >> 1) + 3) & -4),
108 _ccv_width_padding(size.width >> 2)(((size.width >> 2) + 3) & -4) };
109 int isizs0 = steps[0] * size.height;
110 int isizs01 = isizs0 + steps[1] * (size.height >> 1);
111 for (i = 0; i < posnum; i++)
112 {
113 unsigned char* u8[] = { posdata[i], posdata[i] + isizs0, posdata[i] + isizs01 };
114 float sum = 0;
115 float* alpha = classifier->alpha;
116 ccv_bbf_feature_t* feature = classifier->feature;
117 for (j = 0; j < classifier->count; ++j, alpha += 2, ++feature)
118 sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
119 peval[i] = sum;
120 }
121 for (i = 0; i < negnum; i++)
122 {
123 unsigned char* u8[] = { negdata[i], negdata[i] + isizs0, negdata[i] + isizs01 };
124 float sum = 0;
125 float* alpha = classifier->alpha;
126 ccv_bbf_feature_t* feature = classifier->feature;
127 for (j = 0; j < classifier->count; ++j, alpha += 2, ++feature)
128 sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
129 neval[i] = sum;
130 }
131}
132
133static int _ccv_prune_positive_data(ccv_bbf_classifier_cascade_t* cascade, unsigned char** posdata, int posnum, ccv_size_t size)
134{
135 float* peval = (float*)ccmallocmalloc(posnum * sizeof(float));
136 int i, j, k, rpos = posnum;
137 for (i = 0; i < cascade->count; i++)
138 {
139 _ccv_bbf_eval_data(cascade->stage_classifier + i, posdata, rpos, 0, 0, size, peval, 0);
140 k = 0;
141 for (j = 0; j < rpos; j++)
142 if (peval[j] >= cascade->stage_classifier[i].threshold)
143 {
144 posdata[k] = posdata[j];
145 ++k;
146 } else {
147 ccfreefree(posdata[j]);
148 }
149 rpos = k;
150 }
151 ccfreefree(peval);
152 return rpos;
153}
154
155static int _ccv_prepare_background_data(ccv_bbf_classifier_cascade_t* cascade, char** bgfiles, int bgnum, unsigned char** negdata, int negnum)
156{
157 int t, i, j, k, q;
158 int negperbg;
159 int negtotal = 0;
160 int steps[] = { _ccv_width_padding(cascade->size.width)(((cascade->size.width) + 3) & -4),
161 _ccv_width_padding(cascade->size.width >> 1)(((cascade->size.width >> 1) + 3) & -4),
162 _ccv_width_padding(cascade->size.width >> 2)(((cascade->size.width >> 2) + 3) & -4) };
163 int isizs0 = steps[0] * cascade->size.height;
164 int isizs1 = steps[1] * (cascade->size.height >> 1);
165 int isizs2 = steps[2] * (cascade->size.height >> 2);
166 int* idcheck = (int*)ccmallocmalloc(negnum * sizeof(int));
167
168 gsl_rng_env_setup();
169
170 gsl_rng* rng = gsl_rng_alloc(gsl_rng_default);
171 gsl_rng_set(rng, (unsigned long int)idcheck);
172
173 ccv_size_t imgsz = cascade->size;
174 int rneg = negtotal;
175 for (t = 0; negtotal < negnum; t++)
176 {
177 PRINT(CCV_CLI_INFO, "preparing negative data ... 0%%")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("preparing negative data ... 0%%"); fflush(stdout); } } while
(0)
;
178 for (i = 0; i < bgnum; i++)
179 {
180 negperbg = (t < 2) ? (negnum - negtotal) / (bgnum - i) + 1 : negnum - negtotal;
181 ccv_dense_matrix_t* image = 0;
182 ccv_read(bgfiles[i], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE)ccv_read_impl(bgfiles[i], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE
, 0, 0, 0)
;
183 assert((image->type & CCV_C1) && (image->type & CCV_8U))((void) sizeof (((image->type & CCV_C1) && (image
->type & CCV_8U)) ? 1 : 0), __extension__ ({ if ((image
->type & CCV_C1) && (image->type & CCV_8U
)) ; else __assert_fail ("(image->type & CCV_C1) && (image->type & CCV_8U)"
, "ccv_bbf.c", 183, __extension__ __PRETTY_FUNCTION__); }))
;
184 if (image == 0)
185 {
186 PRINT(CCV_CLI_ERROR, "\n%s file corrupted\n", bgfiles[i])do { if ((CCV_CLI_ERROR & ccv_cli_get_output_levels())) {
printf("\n%s file corrupted\n", bgfiles[i]); fflush(stdout);
} } while (0)
;
187 continue;
188 }
189 if (t % 2 != 0)
190 ccv_flip(image, 0, 0, CCV_FLIP_X);
191 if (t % 4 >= 2)
192 ccv_flip(image, 0, 0, CCV_FLIP_Y);
193 ccv_bbf_param_t params = { .interval = 3, .min_neighbors = 0, .accurate = 1, .flags = 0, .size = cascade->size };
194 ccv_array_t* detected = ccv_bbf_detect_objects(image, &cascade, 1, params);
195 memset(idcheck, 0, ccv_min(detected->rnum, negperbg)({ typeof (detected->rnum) _a = (detected->rnum); typeof
(negperbg) _b = (negperbg); (_a < _b) ? _a : _b; })
* sizeof(int));
196 for (j = 0; j < ccv_min(detected->rnum, negperbg)({ typeof (detected->rnum) _a = (detected->rnum); typeof
(negperbg) _b = (negperbg); (_a < _b) ? _a : _b; })
; j++)
197 {
198 int r = gsl_rng_uniform_int(rng, detected->rnum);
199 int flag = 1;
200 ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(detected, r)((void*)(((char*)((detected)->data)) + (size_t)(detected)->
rsize * (size_t)(r)))
;
201 while (flag) {
202 flag = 0;
203 for (k = 0; k < j; k++)
204 if (r == idcheck[k])
205 {
206 flag = 1;
207 r = gsl_rng_uniform_int(rng, detected->rnum);
208 break;
209 }
210 rect = (ccv_rect_t*)ccv_array_get(detected, r)((void*)(((char*)((detected)->data)) + (size_t)(detected)->
rsize * (size_t)(r)))
;
211 if ((rect->x < 0) || (rect->y < 0) || (rect->width + rect->x > image->cols) || (rect->height + rect->y > image->rows))
212 {
213 flag = 1;
214 r = gsl_rng_uniform_int(rng, detected->rnum);
215 }
216 }
217 idcheck[j] = r;
218 ccv_dense_matrix_t* temp = 0;
219 ccv_dense_matrix_t* imgs0 = 0;
220 ccv_dense_matrix_t* imgs1 = 0;
221 ccv_dense_matrix_t* imgs2 = 0;
222 ccv_slice(image, (ccv_matrix_t**)&temp, 0, rect->y, rect->x, rect->height, rect->width);
223 ccv_resample(temp, &imgs0, 0, (double)imgsz.height / (double)temp->rows, (double)imgsz.width / (double)temp->cols, CCV_INTER_AREA);
224 assert(imgs0->step == steps[0])((void) sizeof ((imgs0->step == steps[0]) ? 1 : 0), __extension__
({ if (imgs0->step == steps[0]) ; else __assert_fail ("imgs0->step == steps[0]"
, "ccv_bbf.c", 224, __extension__ __PRETTY_FUNCTION__); }))
;
225 ccv_matrix_free(temp);
226 ccv_sample_down(imgs0, &imgs1, 0, 0, 0);
227 assert(imgs1->step == steps[1])((void) sizeof ((imgs1->step == steps[1]) ? 1 : 0), __extension__
({ if (imgs1->step == steps[1]) ; else __assert_fail ("imgs1->step == steps[1]"
, "ccv_bbf.c", 227, __extension__ __PRETTY_FUNCTION__); }))
;
228 ccv_sample_down(imgs1, &imgs2, 0, 0, 0);
229 assert(imgs2->step == steps[2])((void) sizeof ((imgs2->step == steps[2]) ? 1 : 0), __extension__
({ if (imgs2->step == steps[2]) ; else __assert_fail ("imgs2->step == steps[2]"
, "ccv_bbf.c", 229, __extension__ __PRETTY_FUNCTION__); }))
;
230
231 negdata[negtotal] = (unsigned char*)ccmallocmalloc(isizs0 + isizs1 + isizs2);
232 unsigned char* u8s0 = negdata[negtotal];
233 unsigned char* u8s1 = negdata[negtotal] + isizs0;
234 unsigned char* u8s2 = negdata[negtotal] + isizs0 + isizs1;
235 unsigned char* u8[] = { u8s0, u8s1, u8s2 };
236 memcpy(u8s0, imgs0->data.u8, imgs0->rows * imgs0->step);
237 ccv_matrix_free(imgs0);
238 memcpy(u8s1, imgs1->data.u8, imgs1->rows * imgs1->step);
239 ccv_matrix_free(imgs1);
240 memcpy(u8s2, imgs2->data.u8, imgs2->rows * imgs2->step);
241 ccv_matrix_free(imgs2);
242
243 flag = 1;
244 ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier;
245 for (k = 0; k < cascade->count; ++k, ++classifier)
246 {
247 float sum = 0;
248 float* alpha = classifier->alpha;
249 ccv_bbf_feature_t* feature = classifier->feature;
250 for (q = 0; q < classifier->count; ++q, alpha += 2, ++feature)
251 sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
252 if (sum < classifier->threshold)
253 {
254 flag = 0;
255 break;
256 }
257 }
258 if (!flag)
259 ccfreefree(negdata[negtotal]);
260 else {
261 ++negtotal;
262 if (negtotal >= negnum)
263 break;
264 }
265 }
266 ccv_array_free(detected);
267 ccv_matrix_free(image);
268 ccv_drain_cache();
269 PRINT(CCV_CLI_INFO, "\rpreparing negative data ... %2d%%", 100 * negtotal / negnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\rpreparing negative data ... %2d%%", 100 * negtotal / negnum
); fflush(stdout); } } while (0)
;
270 fflush(0);
271 if (negtotal >= negnum)
272 break;
273 }
274 if (rneg == negtotal)
275 break;
276 rneg = negtotal;
277 PRINT(CCV_CLI_INFO, "\nentering additional round %d\n", t + 1)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\nentering additional round %d\n", t + 1); fflush(stdout); }
} while (0)
;
278 }
279 gsl_rng_free(rng);
280 ccfreefree(idcheck);
281 ccv_drain_cache();
282 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
283 return negtotal;
284}
285
286static void _ccv_prepare_positive_data(ccv_dense_matrix_t** posimg, unsigned char** posdata, ccv_size_t size, int posnum)
287{
288 PRINT(CCV_CLI_INFO, "preparing positive data ... 0%%")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("preparing positive data ... 0%%"); fflush(stdout); } } while
(0)
;
289 int i;
290 for (i = 0; i < posnum; i++)
291 {
292 ccv_dense_matrix_t* imgs0 = posimg[i];
293 ccv_dense_matrix_t* imgs1 = 0;
294 ccv_dense_matrix_t* imgs2 = 0;
295 assert((imgs0->type & CCV_C1) && (imgs0->type & CCV_8U) && imgs0->rows == size.height && imgs0->cols == size.width)((void) sizeof (((imgs0->type & CCV_C1) && (imgs0
->type & CCV_8U) && imgs0->rows == size.height
&& imgs0->cols == size.width) ? 1 : 0), __extension__
({ if ((imgs0->type & CCV_C1) && (imgs0->type
& CCV_8U) && imgs0->rows == size.height &&
imgs0->cols == size.width) ; else __assert_fail ("(imgs0->type & CCV_C1) && (imgs0->type & CCV_8U) && imgs0->rows == size.height && imgs0->cols == size.width"
, "ccv_bbf.c", 295, __extension__ __PRETTY_FUNCTION__); }))
;
296 ccv_sample_down(imgs0, &imgs1, 0, 0, 0);
297 ccv_sample_down(imgs1, &imgs2, 0, 0, 0);
298 int isizs0 = imgs0->rows * imgs0->step;
299 int isizs1 = imgs1->rows * imgs1->step;
300 int isizs2 = imgs2->rows * imgs2->step;
301
302 posdata[i] = (unsigned char*)ccmallocmalloc(isizs0 + isizs1 + isizs2);
303 memcpy(posdata[i], imgs0->data.u8, isizs0);
304 memcpy(posdata[i] + isizs0, imgs1->data.u8, isizs1);
305 memcpy(posdata[i] + isizs0 + isizs1, imgs2->data.u8, isizs2);
306
307 PRINT(CCV_CLI_INFO, "\rpreparing positive data ... %2d%%", 100 * (i + 1) / posnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\rpreparing positive data ... %2d%%", 100 * (i + 1) / posnum
); fflush(stdout); } } while (0)
;
308 fflush(0);
309
310 ccv_matrix_free(imgs1);
311 ccv_matrix_free(imgs2);
312 }
313 ccv_drain_cache();
314 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
315}
316
317typedef struct {
318 double fitness;
319 int pk, nk;
320 int age;
321 double error;
322 ccv_bbf_feature_t feature;
323} ccv_bbf_gene_t;
324
325static inline void _ccv_bbf_genetic_fitness(ccv_bbf_gene_t* gene)
326{
327 gene->fitness = (1 - gene->error) * exp(-0.01 * gene->age) * exp((gene->pk + gene->nk) * log(1.015));
328}
329
330static inline int _ccv_bbf_exist_gene_feature(ccv_bbf_gene_t* gene, int x, int y, int z)
331{
332 int i;
333 for (i = 0; i < gene->pk; i++)
334 if (z == gene->feature.pz[i] && x == gene->feature.px[i] && y == gene->feature.py[i])
335 return 1;
336 for (i = 0; i < gene->nk; i++)
337 if (z == gene->feature.nz[i] && x == gene->feature.nx[i] && y == gene->feature.ny[i])
338 return 1;
339 return 0;
340}
341
342static inline void _ccv_bbf_randomize_gene(gsl_rng* rng, ccv_bbf_gene_t* gene, int* rows, int* cols)
343{
344 int i;
345 do {
346 gene->pk = gsl_rng_uniform_int(rng, CCV_BBF_POINT_MAX(8) - 1) + 1;
347 gene->nk = gsl_rng_uniform_int(rng, CCV_BBF_POINT_MAX(8) - 1) + 1;
348 } while (gene->pk + gene->nk < CCV_BBF_POINT_MIN(3)); /* a hard restriction of at least 3 points have to be examed */
349 gene->feature.size = ccv_max(gene->pk, gene->nk)({ typeof (gene->pk) _a = (gene->pk); typeof (gene->
nk) _b = (gene->nk); (_a > _b) ? _a : _b; })
;
350 gene->age = 0;
351 for (i = 0; i < CCV_BBF_POINT_MAX(8); i++)
352 {
353 gene->feature.pz[i] = -1;
354 gene->feature.nz[i] = -1;
355 }
356 int x, y, z;
357 for (i = 0; i < gene->pk; i++)
358 {
359 do {
360 z = gsl_rng_uniform_int(rng, 3);
361 x = gsl_rng_uniform_int(rng, cols[z]);
362 y = gsl_rng_uniform_int(rng, rows[z]);
363 } while (_ccv_bbf_exist_gene_feature(gene, x, y, z));
364 gene->feature.pz[i] = z;
365 gene->feature.px[i] = x;
366 gene->feature.py[i] = y;
367 }
368 for (i = 0; i < gene->nk; i++)
369 {
370 do {
371 z = gsl_rng_uniform_int(rng, 3);
372 x = gsl_rng_uniform_int(rng, cols[z]);
373 y = gsl_rng_uniform_int(rng, rows[z]);
374 } while ( _ccv_bbf_exist_gene_feature(gene, x, y, z));
375 gene->feature.nz[i] = z;
376 gene->feature.nx[i] = x;
377 gene->feature.ny[i] = y;
378 }
379}
380
381static inline double _ccv_bbf_error_rate(ccv_bbf_feature_t* feature, unsigned char** posdata, int posnum, unsigned char** negdata, int negnum, ccv_size_t size, double* pw, double* nw)
382{
383 int i;
384 int steps[] = { _ccv_width_padding(size.width)(((size.width) + 3) & -4),
385 _ccv_width_padding(size.width >> 1)(((size.width >> 1) + 3) & -4),
386 _ccv_width_padding(size.width >> 2)(((size.width >> 2) + 3) & -4) };
387 int isizs0 = steps[0] * size.height;
388 int isizs01 = isizs0 + steps[1] * (size.height >> 1);
389 double error = 0;
390 for (i = 0; i < posnum; i++)
391 {
392 unsigned char* u8[] = { posdata[i], posdata[i] + isizs0, posdata[i] + isizs01 };
393 if (!_ccv_run_bbf_feature(feature, steps, u8))
394 error += pw[i];
395 }
396 for (i = 0; i < negnum; i++)
397 {
398 unsigned char* u8[] = { negdata[i], negdata[i] + isizs0, negdata[i] + isizs01 };
399 if ( _ccv_run_bbf_feature(feature, steps, u8))
400 error += nw[i];
401 }
402 return error;
403}
404
405#define less_than(fit1, fit2, aux) ((fit1).fitness >= (fit2).fitness)
406static CCV_IMPLEMENT_QSORT(_ccv_bbf_genetic_qsort, ccv_bbf_gene_t, less_than)void _ccv_bbf_genetic_qsort(ccv_bbf_gene_t *array, size_t total
, int aux) { int isort_thresh = 7; ccv_bbf_gene_t t; int sp =
0; struct { ccv_bbf_gene_t *lb; ccv_bbf_gene_t *ub; } stack[
48]; if( total <= 1 ) return; stack[0].lb = array; stack[0
].ub = array + (total - 1); while( sp >= 0 ) { ccv_bbf_gene_t
* left = stack[sp].lb; ccv_bbf_gene_t* right = stack[sp--].ub
; for(;;) { int i, n = (int)(right - left) + 1, m; ccv_bbf_gene_t
* ptr; ccv_bbf_gene_t* ptr2; if( n <= isort_thresh ) { insert_sort
: for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 =
ptr; ptr2 > left && less_than(ptr2[0],ptr2[-1], aux
); ptr2--) (((t)) = ((ptr2[0])), ((ptr2[0])) = ((ptr2[-1])), (
(ptr2[-1])) = ((t))); } break; } else { ccv_bbf_gene_t* left0
; ccv_bbf_gene_t* left1; ccv_bbf_gene_t* right0; ccv_bbf_gene_t
* right1; ccv_bbf_gene_t* pivot; ccv_bbf_gene_t* a; ccv_bbf_gene_t
* b; ccv_bbf_gene_t* c; int swap_cnt = 0; left0 = left; right0
= right; pivot = left + (n/2); if( n > 40 ) { int d = n /
8; a = left, b = left + d, c = left + 2*d; left = less_than(
*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, *
c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than(
*a, *c, aux) ? a : c)); a = pivot - d, b = pivot, c = pivot +
d; pivot = less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ?
b : (less_than(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux
) ? b : (less_than(*a, *c, aux) ? a : c)); a = right - 2*d, b
= right - d, c = right; right = less_than(*a, *b, aux) ? (less_than
(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than
(*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); } a = left
, b = pivot, c = right; pivot = less_than(*a, *b, aux) ? (less_than
(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than
(*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); if( pivot
!= left0 ) { (((t)) = ((*pivot)), ((*pivot)) = ((*left0)), (
(*left0)) = ((t))); pivot = left0; } left = left1 = left0 + 1
; right = right1 = right0; for(;;) { while( left <= right &&
!less_than(*pivot, *left, aux) ) { if( !less_than(*left, *pivot
, aux) ) { if( left > left1 ) (((t)) = ((*left1)), ((*left1
)) = ((*left)), ((*left)) = ((t))); swap_cnt = 1; left1++; } left
++; } while( left <= right && !less_than(*right, *
pivot, aux) ) { if( !less_than(*pivot, *right, aux) ) { if( right
< right1 ) (((t)) = ((*right1)), ((*right1)) = ((*right))
, ((*right)) = ((t))); swap_cnt = 1; right1--; } right--; } if
( left > right ) break; (((t)) = ((*left)), ((*left)) = ((
*right)), ((*right)) = ((t))); swap_cnt = 1; left++; right--;
} if( swap_cnt == 0 ) { left = left0, right = right0; goto insert_sort
; } n = ({ typeof ((int)(left1 - left0)) _a = ((int)(left1 - left0
)); typeof ((int)(left - left1)) _b = ((int)(left - left1)); (
_a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t))
= ((left0[i])), ((left0[i])) = ((left[i-n])), ((left[i-n])) =
((t))); n = ({ typeof ((int)(right0 - right1)) _a = ((int)(right0
- right1)); typeof ((int)(right1 - right)) _b = ((int)(right1
- right)); (_a < _b) ? _a : _b; }); for( i = 0; i < n;
i++ ) (((t)) = ((left[i])), ((left[i])) = ((right0[i-n+1])),
((right0[i-n+1])) = ((t))); n = (int)(left - left1); m = (int
)(right1 - right); if( n > 1 ) { if( m > 1 ) { if( n >
m ) { stack[++sp].lb = left0; stack[sp].ub = left0 + n - 1; left
= right0 - m + 1, right = right0; } else { stack[++sp].lb = right0
- m + 1; stack[sp].ub = right0; left = left0, right = left0 +
n - 1; } } else left = left0, right = left0 + n - 1; } else if
( m > 1 ) left = right0 - m + 1, right = right0; else break
; } } } }
407#undef less_than
408
409static ccv_bbf_feature_t _ccv_bbf_genetic_optimize(unsigned char** posdata, int posnum, unsigned char** negdata, int negnum, int ftnum, ccv_size_t size, double* pw, double* nw)
410{
411 ccv_bbf_feature_t best;
412 /* seed (random method) */
413 gsl_rng_env_setup();
414 gsl_rng* rng = gsl_rng_alloc(gsl_rng_default);
415 union { unsigned long int li; double db; } dbli;
416 dbli.db = pw[0] + nw[0];
417 gsl_rng_set(rng, dbli.li);
418 int i, j;
419 int pnum = ftnum * 100;
420 assert(pnum > 0)((void) sizeof ((pnum > 0) ? 1 : 0), __extension__ ({ if (
pnum > 0) ; else __assert_fail ("pnum > 0", "ccv_bbf.c"
, 420, __extension__ __PRETTY_FUNCTION__); }))
;
421 ccv_bbf_gene_t* gene = (ccv_bbf_gene_t*)ccmallocmalloc(pnum * sizeof(ccv_bbf_gene_t));
422 int rows[] = { size.height, size.height >> 1, size.height >> 2 };
423 int cols[] = { size.width, size.width >> 1, size.width >> 2 };
424 for (i = 0; i < pnum; i++)
425 _ccv_bbf_randomize_gene(rng, &gene[i], rows, cols);
426 unsigned int timer = _ccv_bbf_time_measure();
427#ifdef USE_OPENMP
428#pragma omp parallel for private(i) schedule(dynamic)
429#endif
430 for (i = 0; i < pnum; i++)
431 gene[i].error = _ccv_bbf_error_rate(&gene[i].feature, posdata, posnum, negdata, negnum, size, pw, nw);
432 timer = _ccv_bbf_time_measure() - timer;
433 for (i = 0; i < pnum; i++)
434 _ccv_bbf_genetic_fitness(&gene[i]);
435 double best_err = 1;
436 int rnum = ftnum * 39; /* number of randomize */
437 int mnum = ftnum * 40; /* number of mutation */
438 int hnum = ftnum * 20; /* number of hybrid */
439 /* iteration stop crit : best no change in 40 iterations */
440 int it = 0, t;
441 for (t = 0 ; it < 40; ++it, ++t)
442 {
443 int min_id = 0;
444 double min_err = gene[0].error;
445 for (i = 1; i < pnum; i++)
446 if (gene[i].error < min_err)
447 {
448 min_id = i;
449 min_err = gene[i].error;
450 }
451 min_err = gene[min_id].error = _ccv_bbf_error_rate(&gene[min_id].feature, posdata, posnum, negdata, negnum, size, pw, nw);
452 if (min_err < best_err)
453 {
454 best_err = min_err;
455 memcpy(&best, &gene[min_id].feature, sizeof(best));
456 PRINT(CCV_CLI_INFO, "best bbf feature with error %f\n|-size: %d\n|-positive point: ", best_err, best.size)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("best bbf feature with error %f\n|-size: %d\n|-positive point: "
, best_err, best.size); fflush(stdout); } } while (0)
;
457 for (i = 0; i < best.size; i++)
458 PRINT(CCV_CLI_INFO, "(%d %d %d), ", best.px[i], best.py[i], best.pz[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("(%d %d %d), ", best.px[i], best.py[i], best.pz[i]); fflush(
stdout); } } while (0)
;
459 PRINT(CCV_CLI_INFO, "\n|-negative point: ")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n|-negative point: "); fflush(stdout); } } while (0)
;
460 for (i = 0; i < best.size; i++)
461 PRINT(CCV_CLI_INFO, "(%d %d %d), ", best.nx[i], best.ny[i], best.nz[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("(%d %d %d), ", best.nx[i], best.ny[i], best.nz[i]); fflush(
stdout); } } while (0)
;
462 PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n"); fflush(stdout); } } while (0)
;
463 it = 0;
464 }
465 PRINT(CCV_CLI_INFO, "minimum error achieved in round %d(%d) : %f with %d ms\n", t, it, min_err, timer / 1000)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("minimum error achieved in round %d(%d) : %f with %d ms\n", t
, it, min_err, timer / 1000); fflush(stdout); } } while (0)
;
466 _ccv_bbf_genetic_qsort(gene, pnum, 0);
467 for (i = 0; i < ftnum; i++)
468 ++gene[i].age;
469 for (i = ftnum; i < ftnum + mnum; i++)
470 {
471 int parent = gsl_rng_uniform_int(rng, ftnum);
472 memcpy(gene + i, gene + parent, sizeof(ccv_bbf_gene_t));
473 /* three mutation strategy : 1. add, 2. remove, 3. refine */
474 int pnm, pn = gsl_rng_uniform_int(rng, 2);
475 int* pnk[] = { &gene[i].pk, &gene[i].nk };
476 int* pnx[] = { gene[i].feature.px, gene[i].feature.nx };
477 int* pny[] = { gene[i].feature.py, gene[i].feature.ny };
478 int* pnz[] = { gene[i].feature.pz, gene[i].feature.nz };
479 int x, y, z;
480 int victim, decay = 1;
481 do {
482 switch (gsl_rng_uniform_int(rng, 3))
483 {
484 case 0: /* add */
485 if (gene[i].pk == CCV_BBF_POINT_MAX(8) && gene[i].nk == CCV_BBF_POINT_MAX(8))
486 break;
487 while (*pnk[pn] + 1 > CCV_BBF_POINT_MAX(8))
488 pn = gsl_rng_uniform_int(rng, 2);
489 do {
490 z = gsl_rng_uniform_int(rng, 3);
491 x = gsl_rng_uniform_int(rng, cols[z]);
492 y = gsl_rng_uniform_int(rng, rows[z]);
493 } while (_ccv_bbf_exist_gene_feature(&gene[i], x, y, z));
494 pnz[pn][*pnk[pn]] = z;
495 pnx[pn][*pnk[pn]] = x;
496 pny[pn][*pnk[pn]] = y;
497 ++(*pnk[pn]);
498 gene[i].feature.size = ccv_max(gene[i].pk, gene[i].nk)({ typeof (gene[i].pk) _a = (gene[i].pk); typeof (gene[i].nk)
_b = (gene[i].nk); (_a > _b) ? _a : _b; })
;
499 decay = gene[i].age = 0;
500 break;
501 case 1: /* remove */
502 if (gene[i].pk + gene[i].nk <= CCV_BBF_POINT_MIN(3)) /* at least 3 points have to be examed */
503 break;
504 while (*pnk[pn] - 1 <= 0) // || *pnk[pn] + *pnk[!pn] - 1 < CCV_BBF_POINT_MIN)
505 pn = gsl_rng_uniform_int(rng, 2);
506 victim = gsl_rng_uniform_int(rng, *pnk[pn]);
507 for (j = victim; j < *pnk[pn] - 1; j++)
508 {
509 pnz[pn][j] = pnz[pn][j + 1];
510 pnx[pn][j] = pnx[pn][j + 1];
511 pny[pn][j] = pny[pn][j + 1];
512 }
513 pnz[pn][*pnk[pn] - 1] = -1;
514 --(*pnk[pn]);
515 gene[i].feature.size = ccv_max(gene[i].pk, gene[i].nk)({ typeof (gene[i].pk) _a = (gene[i].pk); typeof (gene[i].nk)
_b = (gene[i].nk); (_a > _b) ? _a : _b; })
;
516 decay = gene[i].age = 0;
517 break;
518 case 2: /* refine */
519 pnm = gsl_rng_uniform_int(rng, *pnk[pn]);
520 do {
521 z = gsl_rng_uniform_int(rng, 3);
522 x = gsl_rng_uniform_int(rng, cols[z]);
523 y = gsl_rng_uniform_int(rng, rows[z]);
524 } while (_ccv_bbf_exist_gene_feature(&gene[i], x, y, z));
525 pnz[pn][pnm] = z;
526 pnx[pn][pnm] = x;
527 pny[pn][pnm] = y;
528 decay = gene[i].age = 0;
529 break;
530 }
531 } while (decay);
532 }
533 for (i = ftnum + mnum; i < ftnum + mnum + hnum; i++)
534 {
535 /* hybrid strategy: taking positive points from dad, negative points from mum */
536 int dad, mum;
537 do {
538 dad = gsl_rng_uniform_int(rng, ftnum);
539 mum = gsl_rng_uniform_int(rng, ftnum);
540 } while (dad == mum || gene[dad].pk + gene[mum].nk < CCV_BBF_POINT_MIN(3)); /* at least 3 points have to be examed */
541 for (j = 0; j < CCV_BBF_POINT_MAX(8); j++)
542 {
543 gene[i].feature.pz[j] = -1;
544 gene[i].feature.nz[j] = -1;
545 }
546 gene[i].pk = gene[dad].pk;
547 for (j = 0; j < gene[i].pk; j++)
548 {
549 gene[i].feature.pz[j] = gene[dad].feature.pz[j];
550 gene[i].feature.px[j] = gene[dad].feature.px[j];
551 gene[i].feature.py[j] = gene[dad].feature.py[j];
552 }
553 gene[i].nk = gene[mum].nk;
554 for (j = 0; j < gene[i].nk; j++)
555 {
556 gene[i].feature.nz[j] = gene[mum].feature.nz[j];
557 gene[i].feature.nx[j] = gene[mum].feature.nx[j];
558 gene[i].feature.ny[j] = gene[mum].feature.ny[j];
559 }
560 gene[i].feature.size = ccv_max(gene[i].pk, gene[i].nk)({ typeof (gene[i].pk) _a = (gene[i].pk); typeof (gene[i].nk)
_b = (gene[i].nk); (_a > _b) ? _a : _b; })
;
561 gene[i].age = 0;
562 }
563 for (i = ftnum + mnum + hnum; i < ftnum + mnum + hnum + rnum; i++)
564 _ccv_bbf_randomize_gene(rng, &gene[i], rows, cols);
565 timer = _ccv_bbf_time_measure();
566#ifdef USE_OPENMP
567#pragma omp parallel for private(i) schedule(dynamic)
568#endif
569 for (i = 0; i < pnum; i++)
570 gene[i].error = _ccv_bbf_error_rate(&gene[i].feature, posdata, posnum, negdata, negnum, size, pw, nw);
571 timer = _ccv_bbf_time_measure() - timer;
572 for (i = 0; i < pnum; i++)
573 _ccv_bbf_genetic_fitness(&gene[i]);
574 }
575 ccfreefree(gene);
576 gsl_rng_free(rng);
577 return best;
578}
579
580#define less_than(fit1, fit2, aux) ((fit1).error < (fit2).error)
581static CCV_IMPLEMENT_QSORT(_ccv_bbf_best_qsort, ccv_bbf_gene_t, less_than)void _ccv_bbf_best_qsort(ccv_bbf_gene_t *array, size_t total,
int aux) { int isort_thresh = 7; ccv_bbf_gene_t t; int sp = 0
; struct { ccv_bbf_gene_t *lb; ccv_bbf_gene_t *ub; } stack[48
]; if( total <= 1 ) return; stack[0].lb = array; stack[0].
ub = array + (total - 1); while( sp >= 0 ) { ccv_bbf_gene_t
* left = stack[sp].lb; ccv_bbf_gene_t* right = stack[sp--].ub
; for(;;) { int i, n = (int)(right - left) + 1, m; ccv_bbf_gene_t
* ptr; ccv_bbf_gene_t* ptr2; if( n <= isort_thresh ) { insert_sort
: for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 =
ptr; ptr2 > left && less_than(ptr2[0],ptr2[-1], aux
); ptr2--) (((t)) = ((ptr2[0])), ((ptr2[0])) = ((ptr2[-1])), (
(ptr2[-1])) = ((t))); } break; } else { ccv_bbf_gene_t* left0
; ccv_bbf_gene_t* left1; ccv_bbf_gene_t* right0; ccv_bbf_gene_t
* right1; ccv_bbf_gene_t* pivot; ccv_bbf_gene_t* a; ccv_bbf_gene_t
* b; ccv_bbf_gene_t* c; int swap_cnt = 0; left0 = left; right0
= right; pivot = left + (n/2); if( n > 40 ) { int d = n /
8; a = left, b = left + d, c = left + 2*d; left = less_than(
*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, *
c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than(
*a, *c, aux) ? a : c)); a = pivot - d, b = pivot, c = pivot +
d; pivot = less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ?
b : (less_than(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux
) ? b : (less_than(*a, *c, aux) ? a : c)); a = right - 2*d, b
= right - d, c = right; right = less_than(*a, *b, aux) ? (less_than
(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than
(*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); } a = left
, b = pivot, c = right; pivot = less_than(*a, *b, aux) ? (less_than
(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than
(*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); if( pivot
!= left0 ) { (((t)) = ((*pivot)), ((*pivot)) = ((*left0)), (
(*left0)) = ((t))); pivot = left0; } left = left1 = left0 + 1
; right = right1 = right0; for(;;) { while( left <= right &&
!less_than(*pivot, *left, aux) ) { if( !less_than(*left, *pivot
, aux) ) { if( left > left1 ) (((t)) = ((*left1)), ((*left1
)) = ((*left)), ((*left)) = ((t))); swap_cnt = 1; left1++; } left
++; } while( left <= right && !less_than(*right, *
pivot, aux) ) { if( !less_than(*pivot, *right, aux) ) { if( right
< right1 ) (((t)) = ((*right1)), ((*right1)) = ((*right))
, ((*right)) = ((t))); swap_cnt = 1; right1--; } right--; } if
( left > right ) break; (((t)) = ((*left)), ((*left)) = ((
*right)), ((*right)) = ((t))); swap_cnt = 1; left++; right--;
} if( swap_cnt == 0 ) { left = left0, right = right0; goto insert_sort
; } n = ({ typeof ((int)(left1 - left0)) _a = ((int)(left1 - left0
)); typeof ((int)(left - left1)) _b = ((int)(left - left1)); (
_a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t))
= ((left0[i])), ((left0[i])) = ((left[i-n])), ((left[i-n])) =
((t))); n = ({ typeof ((int)(right0 - right1)) _a = ((int)(right0
- right1)); typeof ((int)(right1 - right)) _b = ((int)(right1
- right)); (_a < _b) ? _a : _b; }); for( i = 0; i < n;
i++ ) (((t)) = ((left[i])), ((left[i])) = ((right0[i-n+1])),
((right0[i-n+1])) = ((t))); n = (int)(left - left1); m = (int
)(right1 - right); if( n > 1 ) { if( m > 1 ) { if( n >
m ) { stack[++sp].lb = left0; stack[sp].ub = left0 + n - 1; left
= right0 - m + 1, right = right0; } else { stack[++sp].lb = right0
- m + 1; stack[sp].ub = right0; left = left0, right = left0 +
n - 1; } } else left = left0, right = left0 + n - 1; } else if
( m > 1 ) left = right0 - m + 1, right = right0; else break
; } } } }
582#undef less_than
583
584static ccv_bbf_gene_t _ccv_bbf_best_gene(ccv_bbf_gene_t* gene, int pnum, int point_min, unsigned char** posdata, int posnum, unsigned char** negdata, int negnum, ccv_size_t size, double* pw, double* nw)
585{
586 int i = 0;
587 unsigned int timer = _ccv_bbf_time_measure();
588#ifdef USE_OPENMP
589#pragma omp parallel for private(i) schedule(dynamic)
590#endif
591 for (i = 0; i < pnum; i++)
592 gene[i].error = _ccv_bbf_error_rate(&gene[i].feature, posdata, posnum, negdata, negnum, size, pw, nw);
593 timer = _ccv_bbf_time_measure() - timer;
594 _ccv_bbf_best_qsort(gene, pnum, 0);
595 int min_id = 0;
596 double min_err = gene[0].error;
597 for (i = 0; i < pnum; i++)
598 if (gene[i].nk + gene[i].pk >= point_min)
599 {
600 min_id = i;
601 min_err = gene[i].error;
602 break;
603 }
604 PRINT(CCV_CLI_INFO, "local best bbf feature with error %f\n|-size: %d\n|-positive point: ", min_err, gene[min_id].feature.size)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("local best bbf feature with error %f\n|-size: %d\n|-positive point: "
, min_err, gene[min_id].feature.size); fflush(stdout); } } while
(0)
;
605 for (i = 0; i < gene[min_id].feature.size; i++)
606 PRINT(CCV_CLI_INFO, "(%d %d %d), ", gene[min_id].feature.px[i], gene[min_id].feature.py[i], gene[min_id].feature.pz[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("(%d %d %d), ", gene[min_id].feature.px[i], gene[min_id].feature
.py[i], gene[min_id].feature.pz[i]); fflush(stdout); } } while
(0)
;
607 PRINT(CCV_CLI_INFO, "\n|-negative point: ")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\n|-negative point: "); fflush(stdout); } } while (0)
;
608 for (i = 0; i < gene[min_id].feature.size; i++)
609 PRINT(CCV_CLI_INFO, "(%d %d %d), ", gene[min_id].feature.nx[i], gene[min_id].feature.ny[i], gene[min_id].feature.nz[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("(%d %d %d), ", gene[min_id].feature.nx[i], gene[min_id].feature
.ny[i], gene[min_id].feature.nz[i]); fflush(stdout); } } while
(0)
;
610 PRINT(CCV_CLI_INFO, "\nthe computation takes %d ms\n", timer / 1000)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("\nthe computation takes %d ms\n", timer / 1000); fflush(stdout
); } } while (0)
;
611 return gene[min_id];
612}
613
614static ccv_bbf_feature_t _ccv_bbf_convex_optimize(unsigned char** posdata, int posnum, unsigned char** negdata, int negnum, ccv_bbf_feature_t* best_feature, ccv_size_t size, double* pw, double* nw)
615{
616 ccv_bbf_gene_t best_gene;
617 /* seed (random method) */
618 gsl_rng_env_setup();
619 gsl_rng* rng = gsl_rng_alloc(gsl_rng_default);
620 union { unsigned long int li; double db; } dbli;
621 dbli.db = pw[0] + nw[0];
622 gsl_rng_set(rng, dbli.li);
623 int i, j, k, q, p, g, t;
624 int rows[] = { size.height, size.height >> 1, size.height >> 2 };
625 int cols[] = { size.width, size.width >> 1, size.width >> 2 };
626 int pnum = rows[0] * cols[0] + rows[1] * cols[1] + rows[2] * cols[2];
627 ccv_bbf_gene_t* gene = (ccv_bbf_gene_t*)ccmallocmalloc((pnum * (CCV_BBF_POINT_MAX(8) * 2 + 1) * 2 + CCV_BBF_POINT_MAX(8) * 2 + 1) * sizeof(ccv_bbf_gene_t));
628 if (best_feature == 0)
629 {
630 /* bootstrapping the best feature, start from two pixels, one for positive, one for negative
631 * the bootstrapping process go like this: first, it will assign a random pixel as positive
632 * and enumerate every possible pixel as negative, and pick the best one. Then, enumerate every
633 * possible pixel as positive, and pick the best one, until it converges */
634 memset(&best_gene, 0, sizeof(ccv_bbf_gene_t));
635 for (i = 0; i < CCV_BBF_POINT_MAX(8); i++)
636 best_gene.feature.pz[i] = best_gene.feature.nz[i] = -1;
637 best_gene.pk = 1;
638 best_gene.nk = 0;
639 best_gene.feature.size = 1;
640 best_gene.feature.pz[0] = gsl_rng_uniform_int(rng, 3);
641 best_gene.feature.px[0] = gsl_rng_uniform_int(rng, cols[best_gene.feature.pz[0]]);
642 best_gene.feature.py[0] = gsl_rng_uniform_int(rng, rows[best_gene.feature.pz[0]]);
643 for (t = 0; ; ++t)
644 {
645 g = 0;
646 if (t % 2 == 0)
647 {
648 for (i = 0; i < 3; i++)
649 for (j = 0; j < cols[i]; j++)
650 for (k = 0; k < rows[i]; k++)
651 if (i != best_gene.feature.pz[0] || j != best_gene.feature.px[0] || k != best_gene.feature.py[0])
652 {
653 gene[g] = best_gene;
654 gene[g].pk = gene[g].nk = 1;
655 gene[g].feature.nz[0] = i;
656 gene[g].feature.nx[0] = j;
657 gene[g].feature.ny[0] = k;
658 g++;
659 }
660 } else {
661 for (i = 0; i < 3; i++)
662 for (j = 0; j < cols[i]; j++)
663 for (k = 0; k < rows[i]; k++)
664 if (i != best_gene.feature.nz[0] || j != best_gene.feature.nx[0] || k != best_gene.feature.ny[0])
665 {
666 gene[g] = best_gene;
667 gene[g].pk = gene[g].nk = 1;
668 gene[g].feature.pz[0] = i;
669 gene[g].feature.px[0] = j;
670 gene[g].feature.py[0] = k;
671 g++;
672 }
673 }
674 PRINT(CCV_CLI_INFO, "bootstrapping round : %d\n", t)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("bootstrapping round : %d\n", t); fflush(stdout); } } while (
0)
;
675 ccv_bbf_gene_t local_gene = _ccv_bbf_best_gene(gene, g, 2, posdata, posnum, negdata, negnum, size, pw, nw);
676 if (local_gene.error >= best_gene.error - 1e-10)
677 break;
678 best_gene = local_gene;
679 }
680 } else {
681 best_gene.feature = *best_feature;
682 best_gene.pk = best_gene.nk = best_gene.feature.size;
683 for (i = 0; i < CCV_BBF_POINT_MAX(8); i++)
684 if (best_feature->pz[i] == -1)
685 {
686 best_gene.pk = i;
687 break;
688 }
689 for (i = 0; i < CCV_BBF_POINT_MAX(8); i++)
690 if (best_feature->nz[i] == -1)
691 {
692 best_gene.nk = i;
693 break;
694 }
695 }
696 /* after bootstrapping, the float search technique will do the following permutations:
697 * a). add a new point to positive or negative
698 * b). remove a point from positive or negative
699 * c). move an existing point in positive or negative to another position
700 * the three rules applied exhaustively, no heuristic used. */
701 for (t = 0; ; ++t)
702 {
703 g = 0;
704 for (i = 0; i < 3; i++)
705 for (j = 0; j < cols[i]; j++)
706 for (k = 0; k < rows[i]; k++)
707 if (!_ccv_bbf_exist_gene_feature(&best_gene, j, k, i))
708 {
709 /* add positive point */
710 if (best_gene.pk < CCV_BBF_POINT_MAX(8) - 1)
711 {
712 gene[g] = best_gene;
713 gene[g].feature.pz[gene[g].pk] = i;
714 gene[g].feature.px[gene[g].pk] = j;
715 gene[g].feature.py[gene[g].pk] = k;
716 gene[g].pk++;
717 gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk)({ typeof (gene[g].pk) _a = (gene[g].pk); typeof (gene[g].nk)
_b = (gene[g].nk); (_a > _b) ? _a : _b; })
;
718 g++;
719 }
720 /* add negative point */
721 if (best_gene.nk < CCV_BBF_POINT_MAX(8) - 1)
722 {
723 gene[g] = best_gene;
724 gene[g].feature.nz[gene[g].nk] = i;
725 gene[g].feature.nx[gene[g].nk] = j;
726 gene[g].feature.ny[gene[g].nk] = k;
727 gene[g].nk++;
728 gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk)({ typeof (gene[g].pk) _a = (gene[g].pk); typeof (gene[g].nk)
_b = (gene[g].nk); (_a > _b) ? _a : _b; })
;
729 g++;
730 }
731 /* refine positive point */
732 for (q = 0; q < best_gene.pk; q++)
733 {
734 gene[g] = best_gene;
735 gene[g].feature.pz[q] = i;
736 gene[g].feature.px[q] = j;
737 gene[g].feature.py[q] = k;
738 g++;
739 }
740 /* add positive point, remove negative point */
741 if (best_gene.pk < CCV_BBF_POINT_MAX(8) - 1 && best_gene.nk > 1)
742 {
743 for (q = 0; q < best_gene.nk; q++)
744 {
745 gene[g] = best_gene;
746 gene[g].feature.pz[gene[g].pk] = i;
747 gene[g].feature.px[gene[g].pk] = j;
748 gene[g].feature.py[gene[g].pk] = k;
749 gene[g].pk++;
750 for (p = q; p < best_gene.nk - 1; p++)
751 {
752 gene[g].feature.nz[p] = gene[g].feature.nz[p + 1];
753 gene[g].feature.nx[p] = gene[g].feature.nx[p + 1];
754 gene[g].feature.ny[p] = gene[g].feature.ny[p + 1];
755 }
756 gene[g].feature.nz[gene[g].nk - 1] = -1;
757 gene[g].nk--;
758 gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk)({ typeof (gene[g].pk) _a = (gene[g].pk); typeof (gene[g].nk)
_b = (gene[g].nk); (_a > _b) ? _a : _b; })
;
759 g++;
760 }
761 }
762 /* refine negative point */
763 for (q = 0; q < best_gene.nk; q++)
764 {
765 gene[g] = best_gene;
766 gene[g].feature.nz[q] = i;
767 gene[g].feature.nx[q] = j;
768 gene[g].feature.ny[q] = k;
769 g++;
770 }
771 /* add negative point, remove positive point */
772 if (best_gene.pk > 1 && best_gene.nk < CCV_BBF_POINT_MAX(8) - 1)
773 {
774 for (q = 0; q < best_gene.pk; q++)
775 {
776 gene[g] = best_gene;
777 gene[g].feature.nz[gene[g].nk] = i;
778 gene[g].feature.nx[gene[g].nk] = j;
779 gene[g].feature.ny[gene[g].nk] = k;
780 gene[g].nk++;
781 for (p = q; p < best_gene.pk - 1; p++)
782 {
783 gene[g].feature.pz[p] = gene[g].feature.pz[p + 1];
784 gene[g].feature.px[p] = gene[g].feature.px[p + 1];
785 gene[g].feature.py[p] = gene[g].feature.py[p + 1];
786 }
787 gene[g].feature.pz[gene[g].pk - 1] = -1;
788 gene[g].pk--;
789 gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk)({ typeof (gene[g].pk) _a = (gene[g].pk); typeof (gene[g].nk)
_b = (gene[g].nk); (_a > _b) ? _a : _b; })
;
790 g++;
791 }
792 }
793 }
794 if (best_gene.pk > 1)
795 for (q = 0; q < best_gene.pk; q++)
796 {
797 gene[g] = best_gene;
798 for (i = q; i < best_gene.pk - 1; i++)
799 {
800 gene[g].feature.pz[i] = gene[g].feature.pz[i + 1];
801 gene[g].feature.px[i] = gene[g].feature.px[i + 1];
802 gene[g].feature.py[i] = gene[g].feature.py[i + 1];
803 }
804 gene[g].feature.pz[gene[g].pk - 1] = -1;
805 gene[g].pk--;
806 gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk)({ typeof (gene[g].pk) _a = (gene[g].pk); typeof (gene[g].nk)
_b = (gene[g].nk); (_a > _b) ? _a : _b; })
;
807 g++;
808 }
809 if (best_gene.nk > 1)
810 for (q = 0; q < best_gene.nk; q++)
811 {
812 gene[g] = best_gene;
813 for (i = q; i < best_gene.nk - 1; i++)
814 {
815 gene[g].feature.nz[i] = gene[g].feature.nz[i + 1];
816 gene[g].feature.nx[i] = gene[g].feature.nx[i + 1];
817 gene[g].feature.ny[i] = gene[g].feature.ny[i + 1];
818 }
819 gene[g].feature.nz[gene[g].nk - 1] = -1;
820 gene[g].nk--;
821 gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk)({ typeof (gene[g].pk) _a = (gene[g].pk); typeof (gene[g].nk)
_b = (gene[g].nk); (_a > _b) ? _a : _b; })
;
822 g++;
823 }
824 gene[g] = best_gene;
825 g++;
826 PRINT(CCV_CLI_INFO, "float search round : %d\n", t)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("float search round : %d\n", t); fflush(stdout); } } while (
0)
;
827 ccv_bbf_gene_t local_gene = _ccv_bbf_best_gene(gene, g, CCV_BBF_POINT_MIN(3), posdata, posnum, negdata, negnum, size, pw, nw);
828 if (local_gene.error >= best_gene.error - 1e-10)
829 break;
830 best_gene = local_gene;
831 }
832 ccfreefree(gene);
833 gsl_rng_free(rng);
834 return best_gene.feature;
835}
836
837static int _ccv_write_bbf_stage_classifier(const char* file, ccv_bbf_stage_classifier_t* classifier)
838{
839 FILE* w = fopen(file, "wb");
840 if (w == 0) return -1;
841 fprintf(w, "%d\n", classifier->count);
842 union { float fl; int i; } fli;
843 fli.fl = classifier->threshold;
844 fprintf(w, "%d\n", fli.i);
845 int i, j;
846 for (i = 0; i < classifier->count; i++)
847 {
848 fprintf(w, "%d\n", classifier->feature[i].size);
849 for (j = 0; j < classifier->feature[i].size; j++)
850 {
851 fprintf(w, "%d %d %d\n", classifier->feature[i].px[j], classifier->feature[i].py[j], classifier->feature[i].pz[j]);
852 fprintf(w, "%d %d %d\n", classifier->feature[i].nx[j], classifier->feature[i].ny[j], classifier->feature[i].nz[j]);
853 }
854 union { float fl; int i; } flia, flib;
855 flia.fl = classifier->alpha[i * 2];
856 flib.fl = classifier->alpha[i * 2 + 1];
857 fprintf(w, "%d %d\n", flia.i, flib.i);
858 }
859 fclose(w);
860 return 0;
861}
862
863static int _ccv_read_background_data(const char* file, unsigned char** negdata, int* negnum, ccv_size_t size)
864{
865 FILE* r = fopen(file, "rb");
866 if (r == 0) return -1;
867 (void)fread(negnum, sizeof(int), 1, r);
868 int i;
869 int isizs012 = _ccv_width_padding(size.width)(((size.width) + 3) & -4) * size.height +
870 _ccv_width_padding(size.width >> 1)(((size.width >> 1) + 3) & -4) * (size.height >> 1) +
871 _ccv_width_padding(size.width >> 2)(((size.width >> 2) + 3) & -4) * (size.height >> 2);
872 for (i = 0; i < *negnum; i++)
873 {
874 negdata[i] = (unsigned char*)ccmallocmalloc(isizs012);
875 (void)fread(negdata[i], 1, isizs012, r);
876 }
877 fclose(r);
878 return 0;
879}
880
881static int _ccv_write_background_data(const char* file, unsigned char** negdata, int negnum, ccv_size_t size)
882{
883 FILE* w = fopen(file, "w");
884 if (w == 0) return -1;
885 fwrite(&negnum, sizeof(int), 1, w);
886 int i;
887 int isizs012 = _ccv_width_padding(size.width)(((size.width) + 3) & -4) * size.height +
888 _ccv_width_padding(size.width >> 1)(((size.width >> 1) + 3) & -4) * (size.height >> 1) +
889 _ccv_width_padding(size.width >> 2)(((size.width >> 2) + 3) & -4) * (size.height >> 2);
890 for (i = 0; i < negnum; i++)
891 fwrite(negdata[i], 1, isizs012, w);
892 fclose(w);
893 return 0;
894}
895
896static int _ccv_resume_bbf_cascade_training_state(const char* file, int* i, int* k, int* bg, double* pw, double* nw, int posnum, int negnum)
897{
898 FILE* r = fopen(file, "r");
899 if (r == 0) return -1;
900 (void)fscanf(r, "%d %d %d", i, k, bg);
901 int j;
902 union { double db; int i[2]; } dbi;
903 for (j = 0; j < posnum; j++)
904 {
905 (void)fscanf(r, "%d %d", &dbi.i[0], &dbi.i[1]);
906 pw[j] = dbi.db;
907 }
908 for (j = 0; j < negnum; j++)
909 {
910 (void)fscanf(r, "%d %d", &dbi.i[0], &dbi.i[1]);
911 nw[j] = dbi.db;
912 }
913 fclose(r);
914 return 0;
915}
916
917static int _ccv_save_bbf_cacade_training_state(const char* file, int i, int k, int bg, double* pw, double* nw, int posnum, int negnum)
918{
919 FILE* w = fopen(file, "w");
920 if (w == 0) return -1;
921 fprintf(w, "%d %d %d\n", i, k, bg);
922 int j;
923 union { double db; int i[2]; } dbi;
924 for (j = 0; j < posnum; ++j)
925 {
926 dbi.db = pw[j];
927 fprintf(w, "%d %d ", dbi.i[0], dbi.i[1]);
928 }
929 fprintf(w, "\n");
930 for (j = 0; j < negnum; ++j)
931 {
932 dbi.db = nw[j];
933 fprintf(w, "%d %d ", dbi.i[0], dbi.i[1]);
934 }
935 fprintf(w, "\n");
936 fclose(w);
937 return 0;
938}
939
940void ccv_bbf_classifier_cascade_new(ccv_dense_matrix_t** posimg, int posnum, char** bgfiles, int bgnum, int negnum, ccv_size_t size, const char* dir, ccv_bbf_new_param_t params)
941{
942 int i, j, k;
943 /* allocate memory for usage */
944 ccv_bbf_classifier_cascade_t* cascade = (ccv_bbf_classifier_cascade_t*)ccmallocmalloc(sizeof(ccv_bbf_classifier_cascade_t));
945 cascade->count = 0;
946 cascade->size = size;
947 cascade->stage_classifier = (ccv_bbf_stage_classifier_t*)ccmallocmalloc(sizeof(ccv_bbf_stage_classifier_t));
948 unsigned char** posdata = (unsigned char**)ccmallocmalloc(posnum * sizeof(unsigned char*));
949 unsigned char** negdata = (unsigned char**)ccmallocmalloc(negnum * sizeof(unsigned char*));
950 double* pw = (double*)ccmallocmalloc(posnum * sizeof(double));
951 double* nw = (double*)ccmallocmalloc(negnum * sizeof(double));
952 float* peval = (float*)ccmallocmalloc(posnum * sizeof(float));
953 float* neval = (float*)ccmallocmalloc(negnum * sizeof(float));
954 double inv_balance_k = 1. / params.balance_k;
955 /* balance factor k, and weighted with 0.01 */
956 params.balance_k *= 0.01;
957 inv_balance_k *= 0.01;
958
959 int steps[] = { _ccv_width_padding(cascade->size.width)(((cascade->size.width) + 3) & -4),
960 _ccv_width_padding(cascade->size.width >> 1)(((cascade->size.width >> 1) + 3) & -4),
961 _ccv_width_padding(cascade->size.width >> 2)(((cascade->size.width >> 2) + 3) & -4) };
962 int isizs0 = steps[0] * cascade->size.height;
963 int isizs01 = isizs0 + steps[1] * (cascade->size.height >> 1);
964
965 i = 0;
966 k = 0;
967 int bg = 0;
968 int cacheK = 10;
969 /* state resume code */
970 char buf[1024];
971 sprintf(buf, "%s/stat.txt", dir);
972 _ccv_resume_bbf_cascade_training_state(buf, &i, &k, &bg, pw, nw, posnum, negnum);
973 if (i > 0)
974 {
975 cascade->count = i;
976 ccfreefree(cascade->stage_classifier);
977 cascade->stage_classifier = (ccv_bbf_stage_classifier_t*)ccmallocmalloc(i * sizeof(ccv_bbf_stage_classifier_t));
978 for (j = 0; j < i; j++)
979 {
980 sprintf(buf, "%s/stage-%d.txt", dir, j);
981 _ccv_read_bbf_stage_classifier(buf, &cascade->stage_classifier[j]);
982 }
983 }
984 if (k > 0)
985 cacheK = k;
986 int rpos, rneg = 0;
987 if (bg)
988 {
989 sprintf(buf, "%s/negs.txt", dir);
990 _ccv_read_background_data(buf, negdata, &rneg, cascade->size);
991 }
992
993 for (; i < params.layer; i++)
994 {
995 if (!bg)
996 {
997 rneg = _ccv_prepare_background_data(cascade, bgfiles, bgnum, negdata, negnum);
998 /* save state of background data */
999 sprintf(buf, "%s/negs.txt", dir);
1000 _ccv_write_background_data(buf, negdata, rneg, cascade->size);
1001 bg = 1;
1002 }
1003 double totalw;
1004 /* save state of cascade : level, weight etc. */
1005 sprintf(buf, "%s/stat.txt", dir);
1006 _ccv_save_bbf_cacade_training_state(buf, i, k, bg, pw, nw, posnum, negnum);
1007 ccv_bbf_stage_classifier_t classifier;
1008 if (k > 0)
1009 {
1010 /* resume state of classifier */
1011 sprintf( buf, "%s/stage-%d.txt", dir, i );
1012 _ccv_read_bbf_stage_classifier(buf, &classifier);
1013 } else {
1014 /* initialize classifier */
1015 for (j = 0; j < posnum; j++)
1016 pw[j] = params.balance_k;
1017 for (j = 0; j < rneg; j++)
1018 nw[j] = inv_balance_k;
1019 classifier.count = k;
1020 classifier.threshold = 0;
1021 classifier.feature = (ccv_bbf_feature_t*)ccmallocmalloc(cacheK * sizeof(ccv_bbf_feature_t));
1022 classifier.alpha = (float*)ccmallocmalloc(cacheK * 2 * sizeof(float));
1023 }
1024 _ccv_prepare_positive_data(posimg, posdata, cascade->size, posnum);
1025 rpos = _ccv_prune_positive_data(cascade, posdata, posnum, cascade->size);
1026 PRINT(CCV_CLI_INFO, "%d postivie data and %d negative data in training\n", rpos, rneg)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("%d postivie data and %d negative data in training\n", rpos,
rneg); fflush(stdout); } } while (0)
;
1027 /* reweight to 1.00 */
1028 totalw = 0;
1029 for (j = 0; j < rpos; j++)
1030 totalw += pw[j];
1031 for (j = 0; j < rneg; j++)
1032 totalw += nw[j];
1033 for (j = 0; j < rpos; j++)
1034 pw[j] = pw[j] / totalw;
1035 for (j = 0; j < rneg; j++)
1036 nw[j] = nw[j] / totalw;
1037 for (; ; k++)
1038 {
1039 /* get overall true-positive, false-positive rate and threshold */
1040 double tp = 0, fp = 0, etp = 0, efp = 0;
1041 _ccv_bbf_eval_data(&classifier, posdata, rpos, negdata, rneg, cascade->size, peval, neval);
1042 _ccv_sort_32f(peval, rpos, 0);
1043 classifier.threshold = peval[(int)((1. - params.pos_crit) * rpos)] - 1e-6;
1044 for (j = 0; j < rpos; j++)
1045 {
1046 if (peval[j] >= 0)
1047 ++tp;
1048 if (peval[j] >= classifier.threshold)
1049 ++etp;
1050 }
1051 tp /= rpos; etp /= rpos;
1052 for (j = 0; j < rneg; j++)
1053 {
1054 if (neval[j] >= 0)
1055 ++fp;
1056 if (neval[j] >= classifier.threshold)
1057 ++efp;
1058 }
1059 fp /= rneg; efp /= rneg;
1060 PRINT(CCV_CLI_INFO, "stage classifier real TP rate : %f, FP rate : %f\n", tp, fp)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("stage classifier real TP rate : %f, FP rate : %f\n", tp, fp
); fflush(stdout); } } while (0)
;
1061 PRINT(CCV_CLI_INFO, "stage classifier TP rate : %f, FP rate : %f at threshold : %f\n", etp, efp, classifier.threshold)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("stage classifier TP rate : %f, FP rate : %f at threshold : %f\n"
, etp, efp, classifier.threshold); fflush(stdout); } } while (
0)
;
1062 if (k > 0)
1063 {
1064 /* save classifier state */
1065 sprintf(buf, "%s/stage-%d.txt", dir, i);
1066 _ccv_write_bbf_stage_classifier(buf, &classifier);
1067 sprintf(buf, "%s/stat.txt", dir);
1068 _ccv_save_bbf_cacade_training_state(buf, i, k, bg, pw, nw, posnum, negnum);
1069 }
1070 if (etp > params.pos_crit && efp < params.neg_crit)
1071 break;
1072 /* TODO: more post-process is needed in here */
1073
1074 /* select the best feature in current distribution through genetic algorithm optimization */
1075 ccv_bbf_feature_t best;
1076 if (params.optimizer == CCV_BBF_GENETIC_OPT)
1077 {
1078 best = _ccv_bbf_genetic_optimize(posdata, rpos, negdata, rneg, params.feature_number, cascade->size, pw, nw);
1079 } else if (params.optimizer == CCV_BBF_FLOAT_OPT) {
1080 best = _ccv_bbf_convex_optimize(posdata, rpos, negdata, rneg, 0, cascade->size, pw, nw);
1081 } else {
1082 best = _ccv_bbf_genetic_optimize(posdata, rpos, negdata, rneg, params.feature_number, cascade->size, pw, nw);
1083 best = _ccv_bbf_convex_optimize(posdata, rpos, negdata, rneg, &best, cascade->size, pw, nw);
1084 }
1085 double err = _ccv_bbf_error_rate(&best, posdata, rpos, negdata, rneg, cascade->size, pw, nw);
1086 double rw = (1 - err) / err;
1087 totalw = 0;
1088 /* reweight */
1089 for (j = 0; j < rpos; j++)
1090 {
1091 unsigned char* u8[] = { posdata[j], posdata[j] + isizs0, posdata[j] + isizs01 };
1092 if (!_ccv_run_bbf_feature(&best, steps, u8))
1093 pw[j] *= rw;
1094 pw[j] *= params.balance_k;
1095 totalw += pw[j];
1096 }
1097 for (j = 0; j < rneg; j++)
1098 {
1099 unsigned char* u8[] = { negdata[j], negdata[j] + isizs0, negdata[j] + isizs01 };
1100 if (_ccv_run_bbf_feature(&best, steps, u8))
1101 nw[j] *= rw;
1102 nw[j] *= inv_balance_k;
1103 totalw += nw[j];
1104 }
1105 for (j = 0; j < rpos; j++)
1106 pw[j] = pw[j] / totalw;
1107 for (j = 0; j < rneg; j++)
1108 nw[j] = nw[j] / totalw;
1109 double c = log(rw);
1110 PRINT(CCV_CLI_INFO, "coefficient of feature %d: %f\n", k + 1, c)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf
("coefficient of feature %d: %f\n", k + 1, c); fflush(stdout)
; } } while (0)
;
1111 classifier.count = k + 1;
1112 /* resizing classifier */
1113 if (k >= cacheK)
1114 {
1115 ccv_bbf_feature_t* feature = (ccv_bbf_feature_t*)ccmallocmalloc(cacheK * 2 * sizeof(ccv_bbf_feature_t));
1116 memcpy(feature, classifier.feature, cacheK * sizeof(ccv_bbf_feature_t));
1117 ccfreefree(classifier.feature);
1118 float* alpha = (float*)ccmallocmalloc(cacheK * 4 * sizeof(float));
1119 memcpy(alpha, classifier.alpha, cacheK * 2 * sizeof(float));
1120 ccfreefree(classifier.alpha);
1121 classifier.feature = feature;
1122 classifier.alpha = alpha;
1123 cacheK *= 2;
1124 }
1125 /* setup new feature */
1126 classifier.feature[k] = best;
1127 classifier.alpha[k * 2] = -c;
1128 classifier.alpha[k * 2 + 1] = c;
1129 }
1130 cascade->count = i + 1;
1131 ccv_bbf_stage_classifier_t* stage_classifier = (ccv_bbf_stage_classifier_t*)ccmallocmalloc(cascade->count * sizeof(ccv_bbf_stage_classifier_t));
1132 memcpy(stage_classifier, cascade->stage_classifier, i * sizeof(ccv_bbf_stage_classifier_t));
1133 ccfreefree(cascade->stage_classifier);
1134 stage_classifier[i] = classifier;
1135 cascade->stage_classifier = stage_classifier;
1136 k = 0;
1137 bg = 0;
1138 for (j = 0; j < rpos; j++)
1139 ccfreefree(posdata[j]);
1140 for (j = 0; j < rneg; j++)
1141 ccfreefree(negdata[j]);
1142 }
1143
1144 ccfreefree(neval);
1145 ccfreefree(peval);
1146 ccfreefree(nw);
1147 ccfreefree(pw);
1148 ccfreefree(negdata);
1149 ccfreefree(posdata);
1150 ccfreefree(cascade);
1151}
1152#else
1153void ccv_bbf_classifier_cascade_new(ccv_dense_matrix_t** posimg, int posnum, char** bgfiles, int bgnum, int negnum, ccv_size_t size, const char* dir, ccv_bbf_new_param_t params)
1154{
1155 fprintf(stderrstderr, " ccv_bbf_classifier_cascade_new requires libgsl support, please compile ccv with libgsl.\n");
1156}
1157#endif
1158
1159static int _ccv_is_equal(const void* _r1, const void* _r2, void* data)
1160{
1161 const ccv_comp_t* r1 = (const ccv_comp_t*)_r1;
1162 const ccv_comp_t* r2 = (const ccv_comp_t*)_r2;
1163 int distance = (int)(r1->rect.width * 0.25 + 0.5);
1164
1165 return r2->rect.x <= r1->rect.x + distance &&
1166 r2->rect.x >= r1->rect.x - distance &&
1167 r2->rect.y <= r1->rect.y + distance &&
1168 r2->rect.y >= r1->rect.y - distance &&
1169 r2->rect.width <= (int)(r1->rect.width * 1.5 + 0.5) &&
1170 (int)(r2->rect.width * 1.5 + 0.5) >= r1->rect.width;
1171}
1172
1173static int _ccv_is_equal_same_class(const void* _r1, const void* _r2, void* data)
1174{
1175 const ccv_comp_t* r1 = (const ccv_comp_t*)_r1;
1176 const ccv_comp_t* r2 = (const ccv_comp_t*)_r2;
1177 int distance = (int)(r1->rect.width * 0.25 + 0.5);
1178
1179 return r2->classification.id == r1->classification.id &&
1180 r2->rect.x <= r1->rect.x + distance &&
1181 r2->rect.x >= r1->rect.x - distance &&
1182 r2->rect.y <= r1->rect.y + distance &&
1183 r2->rect.y >= r1->rect.y - distance &&
1184 r2->rect.width <= (int)(r1->rect.width * 1.5 + 0.5) &&
1185 (int)(r2->rect.width * 1.5 + 0.5) >= r1->rect.width;
1186}
1187
1188ccv_array_t* ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** _cascade, int count, ccv_bbf_param_t params)
1189{
1190 int hr = a->rows / params.size.height;
1191 int wr = a->cols / params.size.width;
1192 double scale = pow(2., 1. / (params.interval + 1.));
1193 int next = params.interval + 1;
1194 int scale_upto = (int)(log((double)ccv_min(hr, wr)({ typeof (hr) _a = (hr); typeof (wr) _b = (wr); (_a < _b)
? _a : _b; })
) / log(scale));
1195 ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca((scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*))__builtin_alloca ((scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t
*))
;
1196 memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*));
1197 if (params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)
1198 ccv_resample(a, &pyr[0], 0, (double)(a->rows * _cascade[0]->size.height / params.size.height) / (double)a->rows, (double)(a->cols * _cascade[0]->size.width / params.size.width) / (double)a->cols, CCV_INTER_AREA);
1199 else
1200 pyr[0] = a;
1201 int i, j, k, t, x, y, q;
1202 for (i = 1; i < ccv_min(params.interval + 1, scale_upto + next * 2)({ typeof (params.interval + 1) _a = (params.interval + 1); typeof
(scale_upto + next * 2) _b = (scale_upto + next * 2); (_a <
_b) ? _a : _b; })
; i++)
1203 ccv_resample(pyr[0], &pyr[i * 4], 0, (double)(int)(pyr[0]->rows / pow(scale, i)) / (double)pyr[0]->rows, (double)(int)(pyr[0]->cols / pow(scale, i)) / (double)pyr[0]->cols, CCV_INTER_AREA);
1204 for (i = next; i < scale_upto + next * 2; i++)
1205 ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0);
1206 if (params.accurate)
1207 for (i = next * 2; i < scale_upto + next * 2; i++)
1208 {
1209 ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0);
1210 ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1);
1211 ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1);
1212 }
1213 ccv_array_t* idx_seq;
1214 ccv_array_t* seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
1215 ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
1216 ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
1217 /* detect in multi scale */
1218 for (t = 0; t < count; t++)
1219 {
1220 ccv_bbf_classifier_cascade_t* cascade = _cascade[t];
1221 float scale_x = (float) params.size.width / (float) cascade->size.width;
1222 float scale_y = (float) params.size.height / (float) cascade->size.height;
1223 ccv_array_clear(seq);
1224 for (i = 0; i < scale_upto; i++)
1225 {
1226 int dx[] = {0, 1, 0, 1};
1227 int dy[] = {0, 0, 1, 1};
1228 int i_rows = pyr[i * 4 + next * 8]->rows - (cascade->size.height >> 2);
1229 int steps[] = { pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step };
1230 int i_cols = pyr[i * 4 + next * 8]->cols - (cascade->size.width >> 2);
1231 int paddings[] = { pyr[i * 4]->step * 4 - i_cols * 4,
1232 pyr[i * 4 + next * 4]->step * 2 - i_cols * 2,
1233 pyr[i * 4 + next * 8]->step - i_cols };
1234 for (q = 0; q < (params.accurate ? 4 : 1); q++)
1235 {
1236 unsigned char* u8[] = { pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8 };
1237 for (y = 0; y < i_rows; y++)
1238 {
1239 for (x = 0; x < i_cols; x++)
1240 {
1241 float sum;
1242 int flag = 1;
1243 ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier;
1244 for (j = 0; j < cascade->count; ++j, ++classifier)
1245 {
1246 sum = 0;
1247 float* alpha = classifier->alpha;
1248 ccv_bbf_feature_t* feature = classifier->feature;
1249 for (k = 0; k < classifier->count; ++k, alpha += 2, ++feature)
1250 sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
1251 if (sum < classifier->threshold)
1252 {
1253 flag = 0;
1254 break;
1255 }
1256 }
1257 if (flag)
1258 {
1259 ccv_comp_t comp;
1260 comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5));
1261 comp.neighbors = 1;
1262 comp.classification.id = t;
1263 comp.classification.confidence = sum;
1264 ccv_array_push(seq, &comp);
1265 }
1266 u8[0] += 4;
1267 u8[1] += 2;
1268 u8[2] += 1;
1269 }
1270 u8[0] += paddings[0];
1271 u8[1] += paddings[1];
1272 u8[2] += paddings[2];
1273 }
1274 }
1275 scale_x *= scale;
1276 scale_y *= scale;
1277 }
1278
1279 /* the following code from OpenCV's haar feature implementation */
1280 if(params.min_neighbors == 0)
1281 {
1282 for (i = 0; i < seq->rnum; i++)
1283 {
1284 ccv_comp_t* comp = (ccv_comp_t*)ccv_array_get(seq, i)((void*)(((char*)((seq)->data)) + (size_t)(seq)->rsize *
(size_t)(i)))
;
1285 ccv_array_push(result_seq, comp);
1286 }
1287 } else {
1288 idx_seq = 0;
1289 ccv_array_clear(seq2);
1290 // group retrieved rectangles in order to filter out noise
1291 int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0);
1292 ccv_comp_t* comps = (ccv_comp_t*)ccmallocmalloc((ncomp + 1) * sizeof(ccv_comp_t));
1293 memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));
1294
1295 // count number of neighbors
1296 for(i = 0; i < seq->rnum; i++)
1297 {
1298 ccv_comp_t r1 = *(ccv_comp_t*)ccv_array_get(seq, i)((void*)(((char*)((seq)->data)) + (size_t)(seq)->rsize *
(size_t)(i)))
;
1299 int idx = *(int*)ccv_array_get(idx_seq, i)((void*)(((char*)((idx_seq)->data)) + (size_t)(idx_seq)->
rsize * (size_t)(i)))
;
1300
1301 if (comps[idx].neighbors == 0)
1302 comps[idx].classification.confidence = r1.classification.confidence;
1303
1304 ++comps[idx].neighbors;
1305
1306 comps[idx].rect.x += r1.rect.x;
1307 comps[idx].rect.y += r1.rect.y;
1308 comps[idx].rect.width += r1.rect.width;
1309 comps[idx].rect.height += r1.rect.height;
1310 comps[idx].classification.id = r1.classification.id;
1311 comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence)({ typeof (comps[idx].classification.confidence) _a = (comps[
idx].classification.confidence); typeof (r1.classification.confidence
) _b = (r1.classification.confidence); (_a > _b) ? _a : _b
; })
;
1312 }
1313
1314 // calculate average bounding box
1315 for(i = 0; i < ncomp; i++)
1316 {
1317 int n = comps[i].neighbors;
1318 if(n >= params.min_neighbors)
1319 {
1320 ccv_comp_t comp;
1321 comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n);
1322 comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n);
1323 comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n);
1324 comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n);
1325 comp.neighbors = comps[i].neighbors;
1326 comp.classification.id = comps[i].classification.id;
1327 comp.classification.confidence = comps[i].classification.confidence;
1328 ccv_array_push(seq2, &comp);
1329 }
1330 }
1331
1332 // filter out small face rectangles inside large face rectangles
1333 for(i = 0; i < seq2->rnum; i++)
1334 {
1335 ccv_comp_t r1 = *(ccv_comp_t*)ccv_array_get(seq2, i)((void*)(((char*)((seq2)->data)) + (size_t)(seq2)->rsize
* (size_t)(i)))
;
1336 int flag = 1;
1337
1338 for(j = 0; j < seq2->rnum; j++)
1339 {
1340 ccv_comp_t r2 = *(ccv_comp_t*)ccv_array_get(seq2, j)((void*)(((char*)((seq2)->data)) + (size_t)(seq2)->rsize
* (size_t)(j)))
;
1341 int distance = (int)(r2.rect.width * 0.25 + 0.5);
1342
1343 if(i != j &&
1344 r1.classification.id == r2.classification.id &&
1345 r1.rect.x >= r2.rect.x - distance &&
1346 r1.rect.y >= r2.rect.y - distance &&
1347 r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
1348 r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
1349 (r2.neighbors > ccv_max(3, r1.neighbors)({ typeof (3) _a = (3); typeof (r1.neighbors) _b = (r1.neighbors
); (_a > _b) ? _a : _b; })
|| r1.neighbors < 3))
1350 {
1351 flag = 0;
1352 break;
1353 }
1354 }
1355
1356 if(flag)
1357 ccv_array_push(result_seq, &r1);
1358 }
1359 ccv_array_free(idx_seq);
1360 ccfreefree(comps);
1361 }
1362 }
1363
1364 ccv_array_free(seq);
1365 ccv_array_free(seq2);
1366
1367 ccv_array_t* result_seq2;
1368 /* the following code from OpenCV's haar feature implementation */
1369 if (params.flags & CCV_BBF_NO_NESTED)
1370 {
1371 result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
1372 idx_seq = 0;
1373 // group retrieved rectangles in order to filter out noise
1374 int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0);
1375 ccv_comp_t* comps = (ccv_comp_t*)ccmallocmalloc((ncomp + 1) * sizeof(ccv_comp_t));
1376 memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));
1377
1378 // count number of neighbors
1379 for(i = 0; i < result_seq->rnum; i++)
1380 {
1381 ccv_comp_t r1 = *(ccv_comp_t*)ccv_array_get(result_seq, i)((void*)(((char*)((result_seq)->data)) + (size_t)(result_seq
)->rsize * (size_t)(i)))
;
1382 int idx = *(int*)ccv_array_get(idx_seq, i)((void*)(((char*)((idx_seq)->data)) + (size_t)(idx_seq)->
rsize * (size_t)(i)))
;
1383
1384 if (comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence)
1385 {
1386 comps[idx].classification.confidence = r1.classification.confidence;
1387 comps[idx].neighbors = 1;
1388 comps[idx].rect = r1.rect;
1389 comps[idx].classification.id = r1.classification.id;
1390 }
1391 }
1392
1393 // calculate average bounding box
1394 for(i = 0; i < ncomp; i++)
1395 if(comps[i].neighbors)
1396 ccv_array_push(result_seq2, &comps[i]);
1397
1398 ccv_array_free(result_seq);
1399 ccfreefree(comps);
1400 } else {
1401 result_seq2 = result_seq;
1402 }
1403
1404 for (i = 1; i < scale_upto + next * 2; i++)
1405 ccv_matrix_free(pyr[i * 4]);
1406 if (params.accurate)
1407 for (i = next * 2; i < scale_upto + next * 2; i++)
1408 {
1409 ccv_matrix_free(pyr[i * 4 + 1]);
1410 ccv_matrix_free(pyr[i * 4 + 2]);
1411 ccv_matrix_free(pyr[i * 4 + 3]);
1412 }
1413 if (params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)
1414 ccv_matrix_free(pyr[0]);
1415
1416 return result_seq2;
1417}
1418
1419ccv_bbf_classifier_cascade_t* ccv_bbf_read_classifier_cascade(const char* directory)
1420{
1421 char buf[1024];
1422 sprintf(buf, "%s/cascade.txt", directory);
1423 int s, i;
1424 FILE* r = fopen(buf, "r");
1425 if (r
0.1
'r' is not equal to null
== 0)
1
Taking false branch
1426 return 0;
1427 ccv_bbf_classifier_cascade_t* cascade = (ccv_bbf_classifier_cascade_t*)ccmallocmalloc(sizeof(ccv_bbf_classifier_cascade_t));
1428 s = fscanf(r, "%d %d %d", &cascade->count, &cascade->size.width, &cascade->size.height);
1429 assert(s > 0)((void) sizeof ((s > 0) ? 1 : 0), __extension__ ({ if (s >
0) ; else __assert_fail ("s > 0", "ccv_bbf.c", 1429, __extension__
__PRETTY_FUNCTION__); }))
;
2
Assuming 's' is > 0
3
Taking true branch
1430 cascade->stage_classifier = (ccv_bbf_stage_classifier_t*)ccmallocmalloc(cascade->count * sizeof(ccv_bbf_stage_classifier_t));
1431 for (i = 0; i < cascade->count; i++)
4
Assuming 'i' is < field 'count'
5
Loop condition is true. Entering loop body
1432 {
1433 sprintf(buf, "%s/stage-%d.txt", directory, i);
1434 if (_ccv_read_bbf_stage_classifier(buf, &cascade->stage_classifier[i]) < 0)
6
Calling '_ccv_read_bbf_stage_classifier'
1435 {
1436 cascade->count = i;
1437 break;
1438 }
1439 }
1440 fclose(r);
1441 return cascade;
1442}
1443
1444ccv_bbf_classifier_cascade_t* ccv_bbf_classifier_cascade_read_binary(char* s)
1445{
1446 int i;
1447 ccv_bbf_classifier_cascade_t* cascade = (ccv_bbf_classifier_cascade_t*)ccmallocmalloc(sizeof(ccv_bbf_classifier_cascade_t));
1448 memcpy(&cascade->count, s, sizeof(cascade->count)); s += sizeof(cascade->count);
1449 memcpy(&cascade->size.width, s, sizeof(cascade->size.width)); s += sizeof(cascade->size.width);
1450 memcpy(&cascade->size.height, s, sizeof(cascade->size.height)); s += sizeof(cascade->size.height);
1451 ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier = (ccv_bbf_stage_classifier_t*)ccmallocmalloc(cascade->count * sizeof(ccv_bbf_stage_classifier_t));
1452 for (i = 0; i < cascade->count; i++, classifier++)
1453 {
1454 memcpy(&classifier->count, s, sizeof(classifier->count)); s += sizeof(classifier->count);
1455 memcpy(&classifier->threshold, s, sizeof(classifier->threshold)); s += sizeof(classifier->threshold);
1456 classifier->feature = (ccv_bbf_feature_t*)ccmallocmalloc(classifier->count * sizeof(ccv_bbf_feature_t));
1457 classifier->alpha = (float*)ccmallocmalloc(classifier->count * 2 * sizeof(float));
1458 memcpy(classifier->feature, s, classifier->count * sizeof(ccv_bbf_feature_t)); s += classifier->count * sizeof(ccv_bbf_feature_t);
1459 memcpy(classifier->alpha, s, classifier->count * 2 * sizeof(float)); s += classifier->count * 2 * sizeof(float);
1460 }
1461 return cascade;
1462
1463}
1464
1465int ccv_bbf_classifier_cascade_write_binary(ccv_bbf_classifier_cascade_t* cascade, char* s, int slen)
1466{
1467 int i;
1468 int len = sizeof(cascade->count) + sizeof(cascade->size.width) + sizeof(cascade->size.height);
1469 ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier;
1470 for (i = 0; i < cascade->count; i++, classifier++)
1471 len += sizeof(classifier->count) + sizeof(classifier->threshold) + classifier->count * sizeof(ccv_bbf_feature_t) + classifier->count * 2 * sizeof(float);
1472 if (slen >= len)
1473 {
1474 memcpy(s, &cascade->count, sizeof(cascade->count)); s += sizeof(cascade->count);
1475 memcpy(s, &cascade->size.width, sizeof(cascade->size.width)); s += sizeof(cascade->size.width);
1476 memcpy(s, &cascade->size.height, sizeof(cascade->size.height)); s += sizeof(cascade->size.height);
1477 classifier = cascade->stage_classifier;
1478 for (i = 0; i < cascade->count; i++, classifier++)
1479 {
1480 memcpy(s, &classifier->count, sizeof(classifier->count)); s += sizeof(classifier->count);
1481 memcpy(s, &classifier->threshold, sizeof(classifier->threshold)); s += sizeof(classifier->threshold);
1482 memcpy(s, classifier->feature, classifier->count * sizeof(ccv_bbf_feature_t)); s += classifier->count * sizeof(ccv_bbf_feature_t);
1483 memcpy(s, classifier->alpha, classifier->count * 2 * sizeof(float)); s += classifier->count * 2 * sizeof(float);
1484 }
1485 }
1486 return len;
1487}
1488
1489void ccv_bbf_classifier_cascade_free(ccv_bbf_classifier_cascade_t* cascade)
1490{
1491 int i;
1492 for (i = 0; i < cascade->count; ++i)
1493 {
1494 ccfreefree(cascade->stage_classifier[i].feature);
1495 ccfreefree(cascade->stage_classifier[i].alpha);
1496 }
1497 ccfreefree(cascade->stage_classifier);
1498 ccfreefree(cascade);
1499}