Bug Summary

File:nnc/ccv_nnc_micro_interpret.c
Warning:line 186, column 65
The left expression of the compound assignment is an uninitialized value. The computed value will also be garbage

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_nnc_micro_interpret.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -fcoverage-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -resource-dir /usr/local/lib/clang/19 -I ../ -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/19/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/12/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -ferror-limit 19 -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/actions-runner/_work/ccv/ccv/_analyze/2024-12-10-200233-357773-1 -x c ccv_nnc_micro_interpret.c
1#include "ccv_nnc.h"
2#include "ccv_nnc_easy.h"
3#include "ccv_nnc_internal.h"
4#include "ccv_internal.h"
5#include "_ccv_nnc_micro.h"
6
7// MARK - Level-1 API
8
9static int _ccv_nnc_micro_index_interpret(const ccv_nnc_micro_loop_index_term_t index, const int* const loop_counter, const int* const shapes, const ccv_nnc_micro_scalar_t* const values, const int parameter_size)
10{
11 switch (index.type)
12 {
13 case CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL:
14 return index.immediate_value;
15 case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID:
16 switch (index.id.type)
17 {
18 case CCV_NNC_MICRO_AXIS_SIZE_ID:
19 return shapes[index.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + index.id.d];
20 case CCV_NNC_MICRO_LOOP_ID:
21 return loop_counter[index.id.id];
22 case CCV_NNC_MICRO_SCALAR_ID:
23 switch (values[index.id.id].type)
24 {
25 case CCV_8U:
26 return values[index.id.id].u8;
27 case CCV_32S:
28 return values[index.id.id].i32;
29 case CCV_64S:
30 return (int)values[index.id.id].i64;
31 }
32 break;
33 }
34 break;
35 case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: {
36 const int left = _ccv_nnc_micro_index_interpret(index.binary->left, loop_counter, shapes, values, parameter_size);
37 const int right = _ccv_nnc_micro_index_interpret(index.binary->right, loop_counter, shapes, values, parameter_size);
38 switch (index.binary->op)
39 {
40 case CCV_NNC_MICRO_BINARY_OP_PLUS:
41 return left + right;
42 case CCV_NNC_MICRO_BINARY_OP_MINUS:
43 return left - right;
44 case CCV_NNC_MICRO_BINARY_OP_MUL:
45 return left * right;
46 case CCV_NNC_MICRO_BINARY_OP_DIV:
47 return left / right;
48 case CCV_NNC_MICRO_BINARY_OP_MAX:
49 return ccv_max(left, right)({ typeof (left) _a = (left); typeof (right) _b = (right); (_a
> _b) ? _a : _b; })
;
50 case CCV_NNC_MICRO_BINARY_OP_MIN:
51 return ccv_min(left, right)({ typeof (left) _a = (left); typeof (right) _b = (right); (_a
< _b) ? _a : _b; })
;
52 }
53 break;
54 }
55 }
56 return 0;
57}
58
59static float _ccv_nnc_micro_expression_interpret(const ccv_nnc_micro_loop_expression_t* const expression, const int* const loop_counter, const ccv_nnc_micro_scalar_t* const carrieds, const int carried_count, float* const* const vars_mem, const int* const shapes, const ccv_nnc_micro_scalar_t* const values, const int parameter_size, int* const out_of_bound_ref)
60{
61 int i;
62 switch (expression->type)
63 {
64 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID: {
65 assert(expression->id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID)((void) sizeof ((expression->id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID
) ? 1 : 0), __extension__ ({ if (expression->id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID
) ; else __assert_fail ("expression->id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID"
, "ccv_nnc_micro_interpret.c", 65, __extension__ __PRETTY_FUNCTION__
); }))
;
66 return carrieds[expression->id.id].f32;
67 }
68 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAL: {
69 return expression->immediate_value.f32;
70 }
71 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR: {
72 const ccv_nnc_micro_loop_variable_t variable = expression->variable;
73 assert(variable.id.type == CCV_NNC_MICRO_TENSOR_ID)((void) sizeof ((variable.id.type == CCV_NNC_MICRO_TENSOR_ID)
? 1 : 0), __extension__ ({ if (variable.id.type == CCV_NNC_MICRO_TENSOR_ID
) ; else __assert_fail ("variable.id.type == CCV_NNC_MICRO_TENSOR_ID"
, "ccv_nnc_micro_interpret.c", 73, __extension__ __PRETTY_FUNCTION__
); }))
;
74 float* ptr = vars_mem[variable.id.id];
75 size_t size = 1;
76 int out_of_bound = 0;
77 for (i = variable.index_count - 1; !out_of_bound && i >= 0; i--)
78 {
79 const int index = _ccv_nnc_micro_index_interpret(variable.index[i], loop_counter, shapes, values, parameter_size);
80 if (!variable.no_check_bound[i] &&
81 (index < 0 || index >= shapes[variable.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + i]))
82 out_of_bound = 1;
83 ptr += index * size;
84 size *= shapes[variable.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + i];
85 }
86 if (out_of_bound)
87 {
88 *out_of_bound_ref = 1;
89 return 0;
90 }
91 return ptr[0];
92 }
93 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_UNARY: {
94 const float left = _ccv_nnc_micro_expression_interpret(expression->unary.x, loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size, out_of_bound_ref);
95 if (*out_of_bound_ref)
96 return 0;
97 switch (expression->unary.unary_op)
98 {
99 case CCV_NNC_MICRO_UNARY_OP_EXP:
100 return exp(left);
101 case CCV_NNC_MICRO_UNARY_OP_LOG:
102 return log(left);
103 }
104 break;
105 }
106 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY: {
107 const float left = _ccv_nnc_micro_expression_interpret(expression->binary.left, loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size, out_of_bound_ref);
108 if (*out_of_bound_ref)
109 return 0;
110 const float right = _ccv_nnc_micro_expression_interpret(expression->binary.right, loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size, out_of_bound_ref);
111 if (*out_of_bound_ref)
112 return 0;
113 switch (expression->binary.binary_op)
114 {
115 case CCV_NNC_MICRO_BINARY_OP_PLUS:
116 return left + right;
117 case CCV_NNC_MICRO_BINARY_OP_MINUS:
118 return left - right;
119 case CCV_NNC_MICRO_BINARY_OP_MUL:
120 return left * right;
121 case CCV_NNC_MICRO_BINARY_OP_DIV:
122 return left / right;
123 case CCV_NNC_MICRO_BINARY_OP_MAX:
124 return ccv_max(left, right)({ typeof (left) _a = (left); typeof (right) _b = (right); (_a
> _b) ? _a : _b; })
;
125 case CCV_NNC_MICRO_BINARY_OP_MIN:
126 return ccv_min(left, right)({ typeof (left) _a = (left); typeof (right) _b = (right); (_a
< _b) ? _a : _b; })
;
127 }
128 break;
129 }
130 }
131 return 0;
61
'Default' branch taken. Execution continues on line 131
62
Returning without writing to '*out_of_bound_ref', which participates in a condition later
132}
133
134static void _ccv_nnc_micro_statement_interpret(const ccv_nnc_micro_loop_statement_t statement, const int* const loop_counter, ccv_nnc_micro_scalar_t* const carrieds, const int carried_count, float* const* const vars_mem, const int* const shapes, const ccv_nnc_micro_scalar_t* const values, const int parameter_size)
135{
136 int i;
137 switch (statement.type)
59
Control jumps to 'case CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT:' at line 162
138 {
139 case CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_ASSIGNMENT: {
140 assert(statement.assignment.lvalue.id.type == CCV_NNC_MICRO_TENSOR_ID)((void) sizeof ((statement.assignment.lvalue.id.type == CCV_NNC_MICRO_TENSOR_ID
) ? 1 : 0), __extension__ ({ if (statement.assignment.lvalue.
id.type == CCV_NNC_MICRO_TENSOR_ID) ; else __assert_fail ("statement.assignment.lvalue.id.type == CCV_NNC_MICRO_TENSOR_ID"
, "ccv_nnc_micro_interpret.c", 140, __extension__ __PRETTY_FUNCTION__
); }))
;
141 const ccv_nnc_micro_loop_variable_t variable = statement.assignment.lvalue;
142 float* ptr = vars_mem[variable.id.id];
143 size_t size = 1;
144 int out_of_bound = 0;
145 for (i = variable.index_count - 1; !out_of_bound && i >= 0; i--)
146 {
147 const int index = _ccv_nnc_micro_index_interpret(variable.index[i], loop_counter, shapes, values, parameter_size);
148 if (!variable.no_check_bound[i] &&
149 (index < 0 || index >= shapes[variable.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + i]))
150 out_of_bound = 1;
151 ptr += index * size;
152 size *= shapes[variable.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + i];
153 }
154 if (out_of_bound)
155 return;
156 const float val = _ccv_nnc_micro_expression_interpret(&statement.assignment.rvalue, loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size, &out_of_bound);
157 if (out_of_bound)
158 return;
159 ptr[0] = val;
160 break;
161 }
162 case CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT: {
163 int out_of_bound = 0;
164 const float rvalue = _ccv_nnc_micro_expression_interpret(&statement.compound_assignment.rvalue, loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size, &out_of_bound);
60
Calling '_ccv_nnc_micro_expression_interpret'
63
Returning from '_ccv_nnc_micro_expression_interpret'
165 if (out_of_bound
63.1
'out_of_bound' is 0
)
64
Taking false branch
166 return;
167 switch (statement.compound_assignment.lvalue.type)
65
Control jumps to 'case CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID:' at line 169
168 {
169 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID: {
170 assert(statement.compound_assignment.lvalue.id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID)((void) sizeof ((statement.compound_assignment.lvalue.id.type
== CCV_NNC_MICRO_LOOP_CARRIED_ID) ? 1 : 0), __extension__ ({
if (statement.compound_assignment.lvalue.id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID
) ; else __assert_fail ("statement.compound_assignment.lvalue.id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID"
, "ccv_nnc_micro_interpret.c", 170, __extension__ __PRETTY_FUNCTION__
); }))
;
66
Assuming field 'type' is equal to CCV_NNC_MICRO_LOOP_CARRIED_ID
67
Taking true branch
171 switch (statement.compound_assignment.lvalue.id.d)
68
Control jumps to 'case CCV_NNC_MICRO_REDUCE_OP_MEAN:' at line 185
172 {
173 case CCV_NNC_MICRO_REDUCE_OP_MAX:
174 carrieds[statement.compound_assignment.lvalue.id.id].f32 = ccv_max(carrieds[statement.compound_assignment.lvalue.id.id].f32, rvalue)({ typeof (carrieds[statement.compound_assignment.lvalue.id.id
].f32) _a = (carrieds[statement.compound_assignment.lvalue.id
.id].f32); typeof (rvalue) _b = (rvalue); (_a > _b) ? _a :
_b; })
;
175 break;
176 case CCV_NNC_MICRO_REDUCE_OP_MIN:
177 carrieds[statement.compound_assignment.lvalue.id.id].f32 = ccv_min(carrieds[statement.compound_assignment.lvalue.id.id].f32, rvalue)({ typeof (carrieds[statement.compound_assignment.lvalue.id.id
].f32) _a = (carrieds[statement.compound_assignment.lvalue.id
.id].f32); typeof (rvalue) _b = (rvalue); (_a < _b) ? _a :
_b; })
;
178 break;
179 case CCV_NNC_MICRO_REDUCE_OP_ARGMAX:
180 assert(0)((void) sizeof ((0) ? 1 : 0), __extension__ ({ if (0) ; else __assert_fail
("0", "ccv_nnc_micro_interpret.c", 180, __extension__ __PRETTY_FUNCTION__
); }))
;
181 break;
182 case CCV_NNC_MICRO_REDUCE_OP_ARGMIN:
183 assert(0)((void) sizeof ((0) ? 1 : 0), __extension__ ({ if (0) ; else __assert_fail
("0", "ccv_nnc_micro_interpret.c", 183, __extension__ __PRETTY_FUNCTION__
); }))
;
184 break;
185 case CCV_NNC_MICRO_REDUCE_OP_MEAN:
186 carrieds[statement.compound_assignment.lvalue.id.id].f32 += rvalue;
69
The left expression of the compound assignment is an uninitialized value. The computed value will also be garbage
187 break;
188 case CCV_NNC_MICRO_REDUCE_OP_SUM:
189 carrieds[statement.compound_assignment.lvalue.id.id].f32 += rvalue;
190 break;
191 case CCV_NNC_MICRO_REDUCE_OP_PROD:
192 carrieds[statement.compound_assignment.lvalue.id.id].f32 *= rvalue;
193 break;
194 }
195 break;
196 }
197 case CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR: {
198 assert(statement.compound_assignment.lvalue.id.type == CCV_NNC_MICRO_TENSOR_ID)((void) sizeof ((statement.compound_assignment.lvalue.id.type
== CCV_NNC_MICRO_TENSOR_ID) ? 1 : 0), __extension__ ({ if (statement
.compound_assignment.lvalue.id.type == CCV_NNC_MICRO_TENSOR_ID
) ; else __assert_fail ("statement.compound_assignment.lvalue.id.type == CCV_NNC_MICRO_TENSOR_ID"
, "ccv_nnc_micro_interpret.c", 198, __extension__ __PRETTY_FUNCTION__
); }))
;
199 const ccv_nnc_micro_loop_variable_t variable = statement.compound_assignment.lvalue.variable;
200 float* ptr = vars_mem[variable.id.id];
201 size_t size = 1;
202 for (i = variable.index_count - 1; !out_of_bound && i >= 0; i--)
203 {
204 const int index = _ccv_nnc_micro_index_interpret(variable.index[i], loop_counter, shapes, values, parameter_size);
205 if (!variable.no_check_bound[i] &&
206 (index < 0 || index >= shapes[variable.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + i]))
207 out_of_bound = 1;
208 ptr += index * size;
209 size *= shapes[variable.id.id * CCV_NNC_MAX_DIM_ALLOC(12) + i];
210 }
211 if (out_of_bound)
212 return;
213 ptr[0] += rvalue;
214 break;
215 }
216 }
217 break;
218 }
219 }
220}
221
222static void _ccv_nnc_micro_loop_interpret(const ccv_nnc_micro_loop_t* const loops, const int loop_count, const int index, int* const loop_counter, ccv_nnc_micro_scalar_t* const carrieds, const int carried_count, float* const* const vars_mem, const int* const shapes, const ccv_nnc_micro_scalar_t* const values, const int parameter_size)
223{
224 if (index >= loop_count)
44
Assuming 'index' is < 'loop_count'
45
Taking false branch
51
Assuming 'index' is < 'loop_count'
52
Taking false branch
225 return;
226 const int start_index = _ccv_nnc_micro_index_interpret(loops[index].start_index, loop_counter, shapes, values, parameter_size);
227 const int end_index = _ccv_nnc_micro_index_interpret(loops[index].end_index, loop_counter, shapes, values, parameter_size);
228 int i, j;
229 const ccv_nnc_micro_loop_statement_t* const statements = loops[index].statements;
230 const int statement_count = loops[index].statement_count;
231 const ccv_nnc_micro_loop_carried_t* const carried_refs = loops[index].carrieds;
232 const int carried_ref_count = loops[index].carried_count;
233 for (i = start_index; i < end_index; i++)
46
Assuming 'i' is < 'end_index'
47
Loop condition is true. Entering loop body
53
Assuming 'i' is >= 'end_index'
54
Loop condition is false. Execution continues on line 233
234 {
235 loop_counter[loops[index].id.id] = i;
236 for (j = 0; j < carried_ref_count; j++)
48
Assuming 'j' is >= 'carried_ref_count'
49
Loop condition is false. Execution continues on line 265
237 {
238 assert(carried_refs[j].id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID)((void) sizeof ((carried_refs[j].id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID
) ? 1 : 0), __extension__ ({ if (carried_refs[j].id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID
) ; else __assert_fail ("carried_refs[j].id.type == CCV_NNC_MICRO_LOOP_CARRIED_ID"
, "ccv_nnc_micro_interpret.c", 238, __extension__ __PRETTY_FUNCTION__
); }))
;
239 assert(carried_refs[j].id.id < carried_count)((void) sizeof ((carried_refs[j].id.id < carried_count) ? 1
: 0), __extension__ ({ if (carried_refs[j].id.id < carried_count
) ; else __assert_fail ("carried_refs[j].id.id < carried_count"
, "ccv_nnc_micro_interpret.c", 239, __extension__ __PRETTY_FUNCTION__
); }))
;
240 switch (carried_refs[j].id.d)
241 {
242 case CCV_NNC_MICRO_REDUCE_OP_MAX:
243 carrieds[carried_refs[j].id.id].f32 = -FLT_MAX3.40282347e+38F;
244 break;
245 case CCV_NNC_MICRO_REDUCE_OP_MIN:
246 carrieds[carried_refs[j].id.id].f32 = FLT_MAX3.40282347e+38F;
247 break;
248 case CCV_NNC_MICRO_REDUCE_OP_ARGMAX:
249 carrieds[carried_refs[j].id.id].i32 = -1;
250 break;
251 case CCV_NNC_MICRO_REDUCE_OP_ARGMIN:
252 carrieds[carried_refs[j].id.id].i32 = -1;
253 break;
254 case CCV_NNC_MICRO_REDUCE_OP_MEAN:
255 carrieds[carried_refs[j].id.id].f32 = 0;
256 break;
257 case CCV_NNC_MICRO_REDUCE_OP_SUM:
258 carrieds[carried_refs[j].id.id].f32 = 0;
259 break;
260 case CCV_NNC_MICRO_REDUCE_OP_PROD:
261 carrieds[carried_refs[j].id.id].f32 = 1;
262 break;
263 }
264 }
265 _ccv_nnc_micro_loop_interpret(loops, loop_count, index + 1, loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size);
50
Calling '_ccv_nnc_micro_loop_interpret'
55
Returning from '_ccv_nnc_micro_loop_interpret'
266 for (j = 0; j < statement_count; j++)
56
Assuming 'j' is < 'statement_count'
57
Loop condition is true. Entering loop body
267 _ccv_nnc_micro_statement_interpret(statements[j], loop_counter, carrieds, carried_count, vars_mem, shapes, values, parameter_size);
58
Calling '_ccv_nnc_micro_statement_interpret'
268 }
269}
270
271void ccv_nnc_micro_combine_interpret(ccv_nnc_micro_combine_t* const combine, const uint32_t cmd, ccv_nnc_tensor_t* const* const inputs, const int input_size, const ccv_nnc_micro_scalar_t* const values, const int parameter_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
272{
273 // We haven't optimized for emit_grad at the moment yet.
274 assert(cmd == CCV_NNC_CUSTOM_FORWARD || cmd == CCV_NNC_CUSTOM_BACKWARD)((void) sizeof ((cmd == CCV_NNC_CUSTOM_FORWARD || cmd == CCV_NNC_CUSTOM_BACKWARD
) ? 1 : 0), __extension__ ({ if (cmd == CCV_NNC_CUSTOM_FORWARD
|| cmd == CCV_NNC_CUSTOM_BACKWARD) ; else __assert_fail ("cmd == CCV_NNC_CUSTOM_FORWARD || cmd == CCV_NNC_CUSTOM_BACKWARD"
, "ccv_nnc_micro_interpret.c", 274, __extension__ __PRETTY_FUNCTION__
); }))
;
1
Assuming 'cmd' is not equal to CCV_NNC_CUSTOM_FORWARD
2
Assuming 'cmd' is equal to CCV_NNC_CUSTOM_BACKWARD
3
Taking true branch
275 int i, j;
276 const ccv_nnc_micro_program_t* const program = cmd
3.1
'cmd' is not equal to CCV_NNC_CUSTOM_FORWARD
== CCV_NNC_CUSTOM_FORWARD ? &combine->forward : &combine->backward;
4
'?' condition is false
277 const int var_count = program->var_count;
278 assert(input_size == program->input_size)((void) sizeof ((input_size == program->input_size) ? 1 : 0
), __extension__ ({ if (input_size == program->input_size)
; else __assert_fail ("input_size == program->input_size"
, "ccv_nnc_micro_interpret.c", 278, __extension__ __PRETTY_FUNCTION__
); }))
;
5
Assuming 'input_size' is equal to field 'input_size'
6
Taking true branch
279 assert(output_size == program->output_size)((void) sizeof ((output_size == program->output_size) ? 1 :
0), __extension__ ({ if (output_size == program->output_size
) ; else __assert_fail ("output_size == program->output_size"
, "ccv_nnc_micro_interpret.c", 279, __extension__ __PRETTY_FUNCTION__
); }))
;
7
Assuming 'output_size' is equal to field 'output_size'
8
Taking true branch
280 assert(parameter_size == combine->parameter_size)((void) sizeof ((parameter_size == combine->parameter_size
) ? 1 : 0), __extension__ ({ if (parameter_size == combine->
parameter_size) ; else __assert_fail ("parameter_size == combine->parameter_size"
, "ccv_nnc_micro_interpret.c", 280, __extension__ __PRETTY_FUNCTION__
); }))
;
9
Assuming 'parameter_size' is equal to field 'parameter_size'
10
Taking true branch
281 int* const shapes = (int*)cccalloccalloc(var_count, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12));
282 ccv_nnc_micro_tensor_t* const vars = program->vars;
283 for (i = 0; i < input_size; i++)
11
Assuming 'i' is >= 'input_size'
12
Loop condition is false. Execution continues on line 285
284 memcpy(shapes + program->inputs[i] * CCV_NNC_MAX_DIM_ALLOC(12), &inputs[i]->info.dim, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12));
285 int loop_counter[CCV_NNC_MAX_DIM_ALLOC(12)];
286 for (i = 0; i < var_count; i++)
13
Assuming 'i' is >= 'var_count'
14
Loop condition is false. Execution continues on line 300
287 {
288 int flag = 0;
289 for (j = 0; !flag && j < input_size; j++)
290 flag = (program->inputs[j] == i);
291 if (flag)
292 continue;
293 if (vars[i].shape)
294 {
295 for (j = 0; j < vars[i].dimensions; j++)
296 shapes[i * CCV_NNC_MAX_DIM_ALLOC(12) + j] = _ccv_nnc_micro_index_interpret(vars[i].shape[j], loop_counter, shapes, values, parameter_size);
297 } else
298 memcpy(shapes + i * CCV_NNC_MAX_DIM_ALLOC(12), shapes + vars[i].input * CCV_NNC_MAX_DIM_ALLOC(12), sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12));
299 }
300 const ccv_array_t* const equal_assertions = combine->equal_assertions;
301 for (i = 0; i < equal_assertions->rnum; i++)
15
Assuming 'i' is >= field 'rnum'
16
Loop condition is false. Execution continues on line 306
302 {
303 ccv_nnc_micro_id_equal_assertion_t* const equal_assertion = ccv_array_get(equal_assertions, i)((void*)(((char*)((equal_assertions)->data)) + (size_t)(equal_assertions
)->rsize * (size_t)(i)))
;
304 assert(shapes[equal_assertion->left.id * CCV_NNC_MAX_DIM_ALLOC + equal_assertion->left.d] == shapes[equal_assertion->right.id * CCV_NNC_MAX_DIM_ALLOC + equal_assertion->right.d])((void) sizeof ((shapes[equal_assertion->left.id * (12) + equal_assertion
->left.d] == shapes[equal_assertion->right.id * (12) + equal_assertion
->right.d]) ? 1 : 0), __extension__ ({ if (shapes[equal_assertion
->left.id * (12) + equal_assertion->left.d] == shapes[equal_assertion
->right.id * (12) + equal_assertion->right.d]) ; else __assert_fail
("shapes[equal_assertion->left.id * CCV_NNC_MAX_DIM_ALLOC + equal_assertion->left.d] == shapes[equal_assertion->right.id * CCV_NNC_MAX_DIM_ALLOC + equal_assertion->right.d]"
, "ccv_nnc_micro_interpret.c", 304, __extension__ __PRETTY_FUNCTION__
); }))
;
305 }
306 size_t total_size = 0;
307 for (i = 0; i
16.1
'i' is >= 'var_count'
< var_count; i++)
17
Loop condition is false. Execution continues on line 324
308 {
309 int flag = 0;
310 for (j = 0; !flag && j < input_size; j++)
311 flag = (program->inputs[j] == i);
312 for (j = 0; !flag && j < output_size; j++)
313 flag = (program->outputs[j] == i);
314 if (flag)
315 continue;
316 if (vars[i].no_alloc) // This is skipped.
317 continue;
318 // allocating memory for these.
319 size_t size = 1;
320 for (j = 0; j < vars[i].dimensions; j++)
321 size *= shapes[i * CCV_NNC_MAX_DIM_ALLOC(12) + j];
322 total_size += size;
323 }
324 float** const vars_mem = (float**)ccmallocmalloc(sizeof(float*) * var_count + sizeof(float) * total_size);
325 float* ptr = (float*)(vars_mem + var_count);
326 // Assuming these are not tensor_view_t.
327 for (i = 0; i < output_size; i++)
18
Assuming 'i' is >= 'output_size'
19
Loop condition is false. Execution continues on line 332
328 {
329 assert(CCV_IS_TENSOR_CONTIGUOUS(outputs[i]))((void) sizeof (((!((*(int*)(outputs[i])) & CCV_TENSOR_VIEW
) || (((ccv_nnc_tensor_view_t*)outputs[i])->contiguous == 1
))) ? 1 : 0), __extension__ ({ if ((!((*(int*)(outputs[i])) &
CCV_TENSOR_VIEW) || (((ccv_nnc_tensor_view_t*)outputs[i])->
contiguous == 1))) ; else __assert_fail ("CCV_IS_TENSOR_CONTIGUOUS(outputs[i])"
, "ccv_nnc_micro_interpret.c", 329, __extension__ __PRETTY_FUNCTION__
); }))
;
330 vars_mem[program->outputs[i]] = outputs[i]->data.f32;
331 }
332 for (i = 0; i
19.1
'i' is >= 'var_count'
< var_count; i++)
20
Loop condition is false. Execution continues on line 353
333 {
334 int flag = 0;
335 for (j = 0; !flag && j < input_size; j++)
336 flag = (program->inputs[j] == i);
337 for (j = 0; !flag && j < output_size; j++)
338 flag = (program->outputs[j] == i);
339 if (flag)
340 continue;
341 if (vars[i].no_alloc) // This is skipped.
342 {
343 vars_mem[i] = 0;
344 continue;
345 }
346 // allocating memory for these.
347 size_t size = 1;
348 for (j = 0; j < vars[i].dimensions; j++)
349 size *= shapes[i * CCV_NNC_MAX_DIM_ALLOC(12) + j];
350 vars_mem[i] = ptr;
351 ptr += size;
352 }
353 for (i = 0; i
20.1
'i' is >= 'input_size'
< input_size; i++)
21
Loop condition is false. Execution continues on line 358
354 {
355 assert(CCV_IS_TENSOR_CONTIGUOUS(inputs[i]))((void) sizeof (((!((*(int*)(inputs[i])) & CCV_TENSOR_VIEW
) || (((ccv_nnc_tensor_view_t*)inputs[i])->contiguous == 1
))) ? 1 : 0), __extension__ ({ if ((!((*(int*)(inputs[i])) &
CCV_TENSOR_VIEW) || (((ccv_nnc_tensor_view_t*)inputs[i])->
contiguous == 1))) ; else __assert_fail ("CCV_IS_TENSOR_CONTIGUOUS(inputs[i])"
, "ccv_nnc_micro_interpret.c", 355, __extension__ __PRETTY_FUNCTION__
); }))
;
356 vars_mem[program->inputs[i]] = inputs[i]->data.f32;
357 }
358 ccv_nnc_micro_function_t* const functions = program->functions;
359 const int function_count = program->function_count;
360 int max_carried_count = 0;
361 for (i = 0; i < function_count; i++)
22
Assuming 'i' is < 'function_count'
23
Loop condition is true. Entering loop body
35
Assuming 'i' is >= 'function_count'
362 {
363 const int block_count = functions[i].block_count;
364 ccv_nnc_micro_loop_block_t* const blocks = block_count == 1 ? &functions[i].one_block : functions[i].blocks;
24
Assuming 'block_count' is not equal to 1
25
'?' condition is false
365 for (j = 0; j
29.1
'j' is < 'block_count'
< block_count
; j++)
26
Assuming 'j' is < 'block_count'
27
Loop condition is true. Entering loop body
30
Loop condition is true. Entering loop body
33
Assuming 'j' is >= 'block_count'
34
Loop condition is false. Execution continues on line 361
366 max_carried_count = ccv_max(max_carried_count, blocks[j].carried_count)({ typeof (max_carried_count) _a = (max_carried_count); typeof
(blocks[j].carried_count) _b = (blocks[j].carried_count); (_a
> _b) ? _a : _b; })
;
28
Assuming '_a' is <= '_b'
29
'?' condition is false
31
Assuming '_a' is > '_b'
32
'?' condition is true
367 }
368 ccv_nnc_micro_scalar_t* const carrieds = max_carried_count > 0 ? (ccv_nnc_micro_scalar_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_scalar_t) * max_carried_count) : 0;
36
Loop condition is false. Execution continues on line 368
37
Assuming 'max_carried_count' is > 0
38
'?' condition is true
39
Uninitialized value stored to field 'f32'
369 for (i = 0; i < function_count; i++)
40
Loop condition is true. Entering loop body
370 {
371 const int block_count = functions[i].block_count;
372 ccv_nnc_micro_loop_block_t* const blocks = block_count
40.1
'block_count' is not equal to 1
== 1 ? &functions[i].one_block : functions[i].blocks;
41
'?' condition is false
373 for (j = 0; j < block_count; j++)
42
Loop condition is true. Entering loop body
374 _ccv_nnc_micro_loop_interpret(blocks[j].loops, blocks[j].loop_count, 0, loop_counter, carrieds, blocks[j].carried_count, vars_mem, shapes, values, parameter_size);
43
Calling '_ccv_nnc_micro_loop_interpret'
375 }
376 if (carrieds)
377 ccfreefree(carrieds);
378 ccfreefree(vars_mem);
379 ccfreefree(shapes);
380}