Bug Summary

File:nnc/ccv_cnnp_model_addons.c
Warning:line 400, column 3
Declared variable-length array (VLA) has negative size

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_cnnp_model_addons.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -fcoverage-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -resource-dir /usr/local/lib/clang/19 -I ../ -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/19/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/12/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -ferror-limit 19 -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/actions-runner/_work/ccv/ccv/_analyze/2025-01-21-104838-177728-1 -x c ccv_cnnp_model_addons.c
1#include "ccv_nnc.h"
2#include "ccv_nnc_easy.h"
3#include "ccv_nnc_internal.h"
4#include "ccv_internal.h"
5#include "_ccv_cnnp_model.h"
6
7// MARK - Add-on Functions
8
9static int _ccv_cnnp_model_clip_grad_norm_reduce_norm2(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context)
10{
11 const int device_id = CCV_TENSOR_GET_DEVICE_ID(inputs[0]->info.type)(((inputs[0]->info.type) & 0xfff00) >> 8);
12 ccv_nnc_tensor_t* const old_norm2 = outputs[1 + device_id * 2];
13 ccv_nnc_tensor_t* const norm2 = outputs[1 + device_id * 2 + 1];
14 const int tensor_count = ccv_nnc_tensor_count(inputs[0]->info);
15 if (tensor_count == 1)
16 ccv_nnc_cmd_exec(CMD_MUL_FORWARD(1)ccv_nnc_cmd(CCV_NNC_MUL_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, hint, flags, TENSOR_LIST(inputs[0], inputs[0])(ccv_nnc_tensor_t* []){inputs[0], inputs[0]}, (1 +1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2)(ccv_nnc_tensor_t* []){norm2}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
17 else {
18 ccv_nnc_cmd_exec(CMD_REDUCE_NORM2_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_NORM2_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
, hint, flags, TENSOR_LIST(inputs[0])(ccv_nnc_tensor_t* []){inputs[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2)(ccv_nnc_tensor_t* []){norm2}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
19 ccv_nnc_cmd_exec(CMD_MUL_FORWARD(1)ccv_nnc_cmd(CCV_NNC_MUL_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, hint, flags, TENSOR_LIST(norm2, norm2)(ccv_nnc_tensor_t* []){norm2, norm2}, (1 +1 +1 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2)(ccv_nnc_tensor_t* []){norm2}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
20 }
21 ccv_nnc_cmd_exec(CMD_ADD_FORWARD(1, 1)ccv_nnc_cmd(CCV_NNC_ADD_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1, 1}}}, 0)
, hint, flags, TENSOR_LIST(old_norm2, norm2)(ccv_nnc_tensor_t* []){old_norm2, norm2}, (1 +1 +1 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(old_norm2)(ccv_nnc_tensor_t* []){old_norm2}, (1 +1 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
22 return CCV_NNC_EXEC_SUCCESS;
23}
24
25static ccv_nnc_cmd_vtab_t clip_grad_norm_reduce_norm2_vtab = {
26 .exec = _ccv_cnnp_model_clip_grad_norm_reduce_norm2
27};
28
29static int _ccv_cnnp_model_clip_grad_norm_scatter_norm2(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context)
30{
31 const int device_id = CCV_TENSOR_GET_DEVICE_ID(inputs[0]->info.type)(((inputs[0]->info.type) & 0xfff00) >> 8);
32 ccv_nnc_tensor_t* const norm2 = inputs[1 + device_id * 2];
33 ccv_nnc_cmd_exec(CMD_MUL_FORWARD(1)ccv_nnc_cmd(CCV_NNC_MUL_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, hint, flags, TENSOR_LIST(inputs[0], norm2)(ccv_nnc_tensor_t* []){inputs[0], norm2}, (1 +1 +1 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(outputs[0])(ccv_nnc_tensor_t* []){outputs[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
34 return CCV_NNC_EXEC_SUCCESS;
35}
36
37static ccv_nnc_cmd_vtab_t clip_grad_norm_scatter_norm2_vtab = {
38 .exec = _ccv_cnnp_model_clip_grad_norm_scatter_norm2
39};
40
41void ccv_cnnp_model_parameters_clip_grad_norm(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, int norm_type, float max_norm, ccv_nnc_stream_context_t* const stream_context)
42{
43 assert(norm_type == 2)((void) sizeof ((norm_type == 2) ? 1 : 0), __extension__ ({ if
(norm_type == 2) ; else __assert_fail ("norm_type == 2", "ccv_cnnp_model_addons.c"
, 43, __extension__ __PRETTY_FUNCTION__); }))
;
44 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
45 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model_addons.c"
, 45, __extension__ __PRETTY_FUNCTION__); }))
;
46 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
47 ccv_nnc_tensor_t* norm2[parallel_count * 2];
48 ccv_nnc_tensor_t* max_normt[parallel_count];
49 const int stream_type = model->compiled_data->stream_type;
50 int i;
51 if (stream_type == CCV_STREAM_CONTEXT_GPU)
52 {
53 for (i = 0; i < parallel_count; i++)
54 {
55 ccv_nnc_tensor_param_t info = {
56 .type = CCV_TENSOR_GPU_MEMORY,
57 .format = CCV_TENSOR_FORMAT_NHWC,
58 .datatype = CCV_32F,
59 .dim = {1},
60 };
61 CCV_TENSOR_SET_DEVICE_ID(info.type, i)(info.type) = (((info.type) & ~0xfff00) | (((i) & 0xfff
) << 8))
;
62 norm2[i * 2] = ccv_nnc_tensor_new(ccv_nnc_xpu_alloc(&compiled_data->xpu_alloc, i, stream_context, ccv_nnc_tensor_data_size(info)), info, 0);
63 norm2[i * 2 + 1] = ccv_nnc_tensor_new(ccv_nnc_xpu_alloc(&compiled_data->xpu_alloc, i, stream_context, ccv_nnc_tensor_data_size(info)), info, 0);
64 max_normt[i] = ccv_nnc_tensor_new(ccv_nnc_xpu_alloc(&compiled_data->xpu_alloc, i, stream_context, ccv_nnc_tensor_data_size(info)), info, 0);
65 }
66 } else {
67 for (i = 0; i < parallel_count; i++)
68 {
69 ccv_nnc_tensor_param_t info = {
70 .type = CCV_TENSOR_CPU_MEMORY,
71 .format = CCV_TENSOR_FORMAT_NHWC,
72 .datatype = CCV_32F,
73 .dim = {1},
74 };
75 norm2[i * 2] = ccv_nnc_tensor_new(0, info, 0);
76 norm2[i * 2 + 1] = ccv_nnc_tensor_new(0, info, 0);
77 max_normt[i] = ccv_nnc_tensor_new(0, info, 0);
78 }
79 }
80 // zero out old norm2.
81 if (parallel_count > 1)
82 {
83 ccv_nnc_stream_context_t* streams[parallel_count];
84 ccv_nnc_stream_signal_t* signal;
85 if (stream_context)
86 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
87 for (i = 0; i < parallel_count; i++)
88 {
89 const int stream_type = CCV_TENSOR_GET_MEMORY(norm2[i * 2]->info.type)((norm2[i * 2]->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
90 const int device_id = CCV_TENSOR_GET_DEVICE_ID(norm2[i * 2]->info.type)(((norm2[i * 2]->info.type) & 0xfff00) >> 8);
91 int type = stream_type;
92 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
93 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(compiled_data, type);
94 // Wait signal to finish.
95 if (stream_context)
96 ccv_nnc_stream_context_wait_signal(stream_0, signal);
97 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(norm2[i * 2])(ccv_nnc_tensor_t* []){norm2[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_0);
98 if (stream_context)
99 {
100 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
101 ccv_nnc_stream_context_wait_signal(stream_context, signal);
102 }
103 streams[i] = stream_0;
104 }
105 // If this should be blocking, blocking it.
106 if (!stream_context)
107 for (i = 0; i < parallel_count; i++)
108 if (streams[i])
109 ccv_nnc_stream_context_wait(streams[i]);
110 } else {
111 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(norm2[0])(ccv_nnc_tensor_t* []){norm2[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
112 }
113 // Gather norm2.
114 ccv_nnc_cmd_t reduce_cmd = {
115 .cmd = CCV_NNC_CUSTOM_FORWARD,
116 .isa = &clip_grad_norm_reduce_norm2_vtab,
117 };
118 ccv_cnnp_model_parameter_gradients_map(model, parameters, reduce_cmd, ccv_nnc_no_hint, 0, 0, 0, norm2, parallel_count * 2, stream_context);
119 // Now compute max(max_norm / norm2, 1.0).
120 if (parallel_count > 1)
121 {
122 ccv_nnc_stream_context_t* streams[parallel_count];
123 ccv_nnc_stream_signal_t* signal;
124 if (stream_context)
125 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
126 for (i = 0; i < parallel_count; i++)
127 {
128 const int stream_type = CCV_TENSOR_GET_MEMORY(norm2[i * 2]->info.type)((norm2[i * 2]->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
129 const int device_id = CCV_TENSOR_GET_DEVICE_ID(norm2[i * 2]->info.type)(((norm2[i * 2]->info.type) & 0xfff00) >> 8);
130 int type = stream_type;
131 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
132 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(compiled_data, type);
133 // Wait signal to finish.
134 if (stream_context)
135 ccv_nnc_stream_context_wait_signal(stream_0, signal);
136 ccv_nnc_cmd_exec(CMD_EWSQRT_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSQRT_FORWARD, 0, ccv_nnc_cmd_auto, 0), ccv_nnc_no_hint, 0, TENSOR_LIST(norm2[i * 2])(ccv_nnc_tensor_t* []){norm2[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2[i * 2])(ccv_nnc_tensor_t* []){norm2[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_0);
137 ccv_nnc_cmd_exec(CMD_SET_FORWARD(max_norm)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={max_norm,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(max_normt[i])(ccv_nnc_tensor_t* []){max_normt[i]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_0);
138 ccv_nnc_cmd_exec(CMD_EWDIV_FORWARD()ccv_nnc_cmd(CCV_NNC_EWDIV_FORWARD, 0, ccv_nnc_cmd_auto, 0), ccv_nnc_no_hint, 0, TENSOR_LIST(max_normt[i], norm2[i * 2])(ccv_nnc_tensor_t* []){max_normt[i], norm2[i * 2]}, (1 +1 +1 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1
)
, TENSOR_LIST(norm2[i * 2])(ccv_nnc_tensor_t* []){norm2[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_0);
139 ccv_nnc_cmd_exec(CMD_CLAMP_FORWARD(NAN, 1)ccv_nnc_cmd(CCV_NNC_CLAMP_FORWARD, 0, (ccv_nnc_cmd_param_t){.
size={.dim={1,1,1}},.clamp={.min=(__builtin_nanf ("")),.max=1
}}, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(norm2[i * 2])(ccv_nnc_tensor_t* []){norm2[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2[i * 2])(ccv_nnc_tensor_t* []){norm2[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_0);
140 if (stream_context)
141 {
142 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
143 ccv_nnc_stream_context_wait_signal(stream_context, signal);
144 }
145 streams[i] = stream_0;
146 }
147 // If this should be blocking, blocking it.
148 if (!stream_context)
149 for (i = 0; i < parallel_count; i++)
150 if (streams[i])
151 ccv_nnc_stream_context_wait(streams[i]);
152 } else {
153 ccv_nnc_cmd_exec(CMD_EWSQRT_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSQRT_FORWARD, 0, ccv_nnc_cmd_auto, 0), ccv_nnc_no_hint, 0, TENSOR_LIST(norm2[0])(ccv_nnc_tensor_t* []){norm2[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2[0])(ccv_nnc_tensor_t* []){norm2[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
154 ccv_nnc_cmd_exec(CMD_SET_FORWARD(max_norm)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={max_norm,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(max_normt[0])(ccv_nnc_tensor_t* []){max_normt[0]}, (1 +1 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
155 ccv_nnc_cmd_exec(CMD_EWDIV_FORWARD()ccv_nnc_cmd(CCV_NNC_EWDIV_FORWARD, 0, ccv_nnc_cmd_auto, 0), ccv_nnc_no_hint, 0, TENSOR_LIST(max_normt[0], norm2[0])(ccv_nnc_tensor_t* []){max_normt[0], norm2[0]}, (1 +1 +1 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2[0])(ccv_nnc_tensor_t* []){norm2[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
156 ccv_nnc_cmd_exec(CMD_CLAMP_FORWARD(NAN, 1)ccv_nnc_cmd(CCV_NNC_CLAMP_FORWARD, 0, (ccv_nnc_cmd_param_t){.
size={.dim={1,1,1}},.clamp={.min=(__builtin_nanf ("")),.max=1
}}, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(norm2[0])(ccv_nnc_tensor_t* []){norm2[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(norm2[0])(ccv_nnc_tensor_t* []){norm2[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
157 }
158 ccv_nnc_cmd_t scatter_cmd = {
159 .cmd = CCV_NNC_CUSTOM_FORWARD,
160 .isa = &clip_grad_norm_scatter_norm2_vtab,
161 };
162 ccv_cnnp_model_parameter_gradients_map(model, parameters, scatter_cmd, ccv_nnc_no_hint, 0, norm2, parallel_count * 2, 0, 0, stream_context);
163 if (stream_type == CCV_STREAM_CONTEXT_GPU)
164 for (i = 0; i < parallel_count; i++)
165 {
166 ccv_nnc_xpu_free(&compiled_data->xpu_alloc, norm2[i * 2]->data.u8);
167 ccv_nnc_xpu_free(&compiled_data->xpu_alloc, norm2[i * 2 + 1]->data.u8);
168 ccv_nnc_xpu_free(&compiled_data->xpu_alloc, max_normt[i]->data.u8);
169 }
170 for (i = 0; i < parallel_count; i++)
171 {
172 ccv_nnc_tensor_free(norm2[i * 2]);
173 ccv_nnc_tensor_free(norm2[i * 2 + 1]);
174 ccv_nnc_tensor_free(max_normt[i]);
175 }
176}
177
178// MARK - Add-on Functions
179
180static int _ccv_cnnp_model_isnan(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context)
181{
182 const int device_id = CCV_TENSOR_GET_DEVICE_ID(inputs[0]->info.type)(((inputs[0]->info.type) & 0xfff00) >> 8);
183 ccv_nnc_tensor_t* const old_isnanr = outputs[1 + device_id * 2];
184 ccv_nnc_tensor_t* const isnanr = outputs[1 + device_id * 2 + 1];
185 ccv_nnc_cmd_t reduce_cmd = CMD_REDUCE_ISNAN_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_ISNAN_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
;
186 reduce_cmd.info.reduce.count = ccv_nnc_tensor_nd(inputs[0]->info.dim);
187 int i;
188 for (i = 0; i < cmd.info.reduce.count; i++)
189 reduce_cmd.info.reduce.axis[i] = i;
190 ccv_nnc_cmd_exec(reduce_cmd, hint, flags, TENSOR_LIST(inputs[0])(ccv_nnc_tensor_t* []){inputs[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(isnanr)(ccv_nnc_tensor_t* []){isnanr}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
191 ccv_nnc_cmd_exec(CMD_EWSUM_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSUM_FORWARD, 0, ccv_nnc_cmd_auto, 0), hint, flags, TENSOR_LIST(old_isnanr, isnanr)(ccv_nnc_tensor_t* []){old_isnanr, isnanr}, (1 +1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(old_isnanr)(ccv_nnc_tensor_t* []){old_isnanr}, (1 +1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
192 return CCV_NNC_EXEC_SUCCESS;
193}
194
195static ccv_nnc_cmd_vtab_t reduce_isnan_vtab = {
196 .exec = _ccv_cnnp_model_isnan
197};
198
199int ccv_cnnp_model_parameter_gradients_isnan(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, ccv_nnc_stream_context_t* const stream_context)
200{
201 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
202 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model_addons.c"
, 202, __extension__ __PRETTY_FUNCTION__); }))
;
203 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
204 ccv_nnc_tensor_t* isnanr[parallel_count * 2];
205 const int stream_type = model->compiled_data->stream_type;
206 int i;
207 if (stream_type == CCV_STREAM_CONTEXT_GPU)
208 {
209 for (i = 0; i < parallel_count; i++)
210 {
211 ccv_nnc_tensor_param_t info = {
212 .type = CCV_TENSOR_GPU_MEMORY,
213 .format = CCV_TENSOR_FORMAT_NHWC,
214 .datatype = CCV_32S,
215 .dim = {1},
216 };
217 CCV_TENSOR_SET_DEVICE_ID(info.type, i)(info.type) = (((info.type) & ~0xfff00) | (((i) & 0xfff
) << 8))
;
218 isnanr[i * 2] = ccv_nnc_tensor_new(ccv_nnc_xpu_alloc(&compiled_data->xpu_alloc, i, stream_context, ccv_nnc_tensor_data_size(info)), info, 0);
219 isnanr[i * 2 + 1] = ccv_nnc_tensor_new(ccv_nnc_xpu_alloc(&compiled_data->xpu_alloc, i, stream_context, ccv_nnc_tensor_data_size(info)), info, 0);
220 }
221 } else {
222 for (i = 0; i < parallel_count; i++)
223 {
224 ccv_nnc_tensor_param_t info = {
225 .type = CCV_TENSOR_CPU_MEMORY,
226 .format = CCV_TENSOR_FORMAT_NHWC,
227 .datatype = CCV_32S,
228 .dim = {1},
229 };
230 isnanr[i * 2] = ccv_nnc_tensor_new(0, info, 0);
231 isnanr[i * 2 + 1] = ccv_nnc_tensor_new(0, info, 0);
232 }
233 }
234 // zero out old isnanr.
235 if (parallel_count > 1)
236 {
237 ccv_nnc_stream_context_t* streams[parallel_count];
238 ccv_nnc_stream_signal_t* signal;
239 if (stream_context)
240 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
241 for (i = 0; i < parallel_count; i++)
242 {
243 const int stream_type = CCV_TENSOR_GET_MEMORY(isnanr[i * 2]->info.type)((isnanr[i * 2]->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
244 const int device_id = CCV_TENSOR_GET_DEVICE_ID(isnanr[i * 2]->info.type)(((isnanr[i * 2]->info.type) & 0xfff00) >> 8);
245 int type = stream_type;
246 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
247 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(compiled_data, type);
248 // Wait signal to finish.
249 if (stream_context)
250 ccv_nnc_stream_context_wait_signal(stream_0, signal);
251 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(isnanr[i * 2])(ccv_nnc_tensor_t* []){isnanr[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_0);
252 if (stream_context)
253 {
254 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
255 ccv_nnc_stream_context_wait_signal(stream_context, signal);
256 }
257 streams[i] = stream_0;
258 }
259 // If this should be blocking, blocking it.
260 if (!stream_context)
261 for (i = 0; i < parallel_count; i++)
262 if (streams[i])
263 ccv_nnc_stream_context_wait(streams[i]);
264 } else
265 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(isnanr[0])(ccv_nnc_tensor_t* []){isnanr[0]}, (1 +1 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
266 // Gather isnanr.
267 ccv_nnc_cmd_t reduce_cmd = {
268 .cmd = CCV_NNC_CUSTOM_FORWARD,
269 .isa = &reduce_isnan_vtab,
270 };
271 ccv_cnnp_model_parameter_gradients_map(model, parameters, reduce_cmd, ccv_nnc_no_hint, 0, 0, 0, isnanr, parallel_count * 2, stream_context);
272 for (i = 0; i < parallel_count; i++)
273 ccv_nnc_tensor_free(isnanr[i * 2 + 1]);
274 int retval = 0;
275 if (stream_type == CCV_TENSOR_GPU_MEMORY)
276 {
277 ccv_nnc_tensor_param_t info = {
278 .type = CCV_TENSOR_CPU_MEMORY,
279 .format = CCV_TENSOR_FORMAT_NHWC,
280 .datatype = CCV_32S,
281 .dim = {1},
282 };
283 ccv_nnc_tensor_t* checknan = ccv_nnc_tensor_new(0, info, 0);
284 for (i = 0; i < parallel_count; i++)
285 {
286 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(isnanr[i * 2])(ccv_nnc_tensor_t* []){isnanr[i * 2]}, (1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(checknan)(ccv_nnc_tensor_t* []){checknan}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
287 if (checknan->data.i32[0] > 0)
288 {
289 retval = 1;
290 break;
291 }
292 }
293 ccv_nnc_tensor_free(checknan);
294 } else {
295 for (i = 0; i < parallel_count; i++)
296 if (isnanr[i * 2]->data.i32[0] > 0)
297 {
298 retval = 1;
299 break;
300 }
301 }
302 for (i = 0; i < parallel_count; i++)
303 ccv_nnc_tensor_free(isnanr[i * 2]);
304 return retval;
305}
306
307// MARK - Core Layers
308
309static void _ccv_cnnp_sum_build(ccv_cnnp_model_t* const self, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
310{
311 PRINT(CCV_CLI_VERBOSE, "[cnnp_sum_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_sum_build] -\n"); fflush(stdout); } } while (
0)
;
312 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 312, __extension__ __PRETTY_FUNCTION__
); }))
;
313 outputs[0] = ccv_nnc_tensor_symbol_new(graph, ccv_nnc_tensor_symbol_params(graph, inputs[0]), 0);
314 ccv_nnc_graph_exec_symbol_new(graph, CMD_EWSUM_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSUM_FORWARD, 0, ccv_nnc_cmd_auto, 0), inputs, input_size, outputs, output_size, 0);
315}
316
317static ccv_cnnp_model_t* _ccv_cnnp_sum_copy(const ccv_cnnp_model_t* const self, void* const context);
318
319static const ccv_cnnp_model_vtab_t ccv_cnnp_sum_isa = {
320 .build = _ccv_cnnp_sum_build,
321 .copy = _ccv_cnnp_sum_copy,
322};
323
324typedef struct {
325 ccv_cnnp_model_t super;
326 ccv_nnc_tensor_symbol_t output;
327} ccv_cnnp_model_sum_t;
328
329ccv_cnnp_model_t* ccv_cnnp_sum(const char* const name)
330{
331 ccv_cnnp_model_sum_t* const model_sum = (ccv_cnnp_model_sum_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_sum_t));
332 model_sum->super.isa = &ccv_cnnp_sum_isa;
333 model_sum->super.input_size = 0;
334 model_sum->super.outputs = &model_sum->output;
335 model_sum->super.output_size = 1;
336 ccv_cnnp_model_copy_name(&model_sum->super, name);
337 return (ccv_cnnp_model_t*)model_sum;
338}
339
340static ccv_cnnp_model_t* _ccv_cnnp_sum_copy(const ccv_cnnp_model_t* const self, void* const context)
341{
342 return ccv_cnnp_sum(self->name);
343}
344
345typedef struct {
346 ccv_cnnp_model_t super;
347 int axis;
348 ccv_nnc_tensor_symbol_t output;
349} ccv_cnnp_model_concat_t;
350
351static void _ccv_cnnp_concat_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
352{
353 const ccv_cnnp_model_concat_t* const self = (const ccv_cnnp_model_concat_t*)super;
354 PRINT(CCV_CLI_VERBOSE, "[cnnp_concat_build] 1. -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_concat_build] 1. -\n"); fflush(stdout); } } while
(0)
;
1
Assuming the condition is false
2
Taking false branch
3
Loop condition is false. Exiting loop
355 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 355, __extension__ __PRETTY_FUNCTION__
); }))
;
4
Assuming 'output_size' is equal to 1
5
Taking true branch
356 ccv_nnc_tensor_param_t output_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
357 int i, j;
358 if (output_params.dim[0] == 0)
6
Assuming the condition is false
7
Taking false branch
359 for (i = 1; i < input_size; i++)
360 {
361 output_params = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
362 if (output_params.dim[0] != 0)
363 break;
364 }
365 const int nd = ccv_nnc_tensor_nd(output_params.dim);
366 const int axis = self->axis;
367 assert(axis < nd)((void) sizeof ((axis < nd) ? 1 : 0), __extension__ ({ if (
axis < nd) ; else __assert_fail ("axis < nd", "ccv_cnnp_model_addons.c"
, 367, __extension__ __PRETTY_FUNCTION__); }))
;
8
Assuming 'axis' is < 'nd'
9
Taking true branch
368 output_params.dim[axis] = 0;
369 int input_is_contiguous = 1;
370 for (i = 0; i < input_size; i++)
10
Assuming 'i' is >= 'input_size'
11
Loop condition is false. Execution continues on line 394
371 {
372 const ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
373 const int input_nd = ccv_nnc_tensor_nd(input_params.dim);
374 if (input_nd == 0)
375 {
376 PRINT(CCV_CLI_VERBOSE, "[cnnp_concat_build] %d. input[%d]: -\n", i + 2, i)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_concat_build] %d. input[%d]: -\n", i + 2, i)
; fflush(stdout); } } while (0)
;
377 input_is_contiguous = 0;
378 continue;
379 }
380 if (CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_VERBOSE)(CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
381 {
382 PRINT(CCV_CLI_VERBOSE, "[cnnp_concat_build] %d. input[%d]: (%d", i + 2, i, input_params.dim[0])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_concat_build] %d. input[%d]: (%d", i + 2, i,
input_params.dim[0]); fflush(stdout); } } while (0)
;
383 int i;
384 for (i = 1; i < CCV_NNC_MAX_DIM_ALLOC(12) && input_params.dim[i] > 0; i++)
385 PRINT(CCV_CLI_VERBOSE, ", %d", input_params.dim[i])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(", %d", input_params.dim[i]); fflush(stdout); } } while
(0)
;
386 PRINT(CCV_CLI_VERBOSE, ")\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(")\n"); fflush(stdout); } } while (0)
;
387 }
388 assert(input_nd == nd)((void) sizeof ((input_nd == nd) ? 1 : 0), __extension__ ({ if
(input_nd == nd) ; else __assert_fail ("input_nd == nd", "ccv_cnnp_model_addons.c"
, 388, __extension__ __PRETTY_FUNCTION__); }))
;
389 for (j = 0; j < nd; j++)
390 if (j != axis)
391 { assert(input_params.dim[j] == output_params.dim[j])((void) sizeof ((input_params.dim[j] == output_params.dim[j])
? 1 : 0), __extension__ ({ if (input_params.dim[j] == output_params
.dim[j]) ; else __assert_fail ("input_params.dim[j] == output_params.dim[j]"
, "ccv_cnnp_model_addons.c", 391, __extension__ __PRETTY_FUNCTION__
); }))
; }
392 output_params.dim[axis] += input_params.dim[axis];
393 }
394 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
395 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
396 int stride[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
397 ccv_nnc_tensor_get_stride(output_params.dim, stride);
398 if (input_is_contiguous
11.1
'input_is_contiguous' is 1
)
12
Taking true branch
399 {
400 ccv_nnc_tensor_symbol_t aliases[input_size];
13
Declared variable-length array (VLA) has negative size
401 for (i = 0; i < input_size; i++)
402 {
403 const ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
404 aliases[i] = ccv_nnc_tensor_symbol_alias_new(graph, outputs[0], ofs, stride, input_params, 0);
405 ofs[axis] += input_params.dim[axis];
406 }
407 // Format transform is more flexible.
408 ccv_nnc_graph_exec_symbol_new(graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, inputs, input_size, aliases, input_size, "concat");
409 } else {
410 ccv_nnc_tensor_symbol_t aliases[input_size];
411 for (i = 0; i < input_size; i++)
412 {
413 const ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
414 if (input_params.dim[0] == 0)
415 {
416 // Create a new alias anyway, but not going to use it, in this way, the alias count will match during absorb.
417 aliases[i] = ccv_nnc_tensor_symbol_alias_new(graph, outputs[0], ofs, stride, input_params, 0);
418 continue;
419 }
420 aliases[i] = ccv_nnc_tensor_symbol_alias_new(graph, outputs[0], ofs, stride, input_params, 0);
421 ofs[axis] += input_params.dim[axis];
422 }
423 // Format transform is more flexible.
424 ccv_nnc_graph_exec_symbol_new(graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, inputs, input_size, aliases, input_size, "concat");
425 }
426}
427
428static ccv_cnnp_model_t* _ccv_cnnp_concat_copy(const ccv_cnnp_model_t* const self, void* const context);
429
430static const ccv_cnnp_model_vtab_t ccv_cnnp_concat_isa = {
431 .build = _ccv_cnnp_concat_build,
432 .copy = _ccv_cnnp_concat_copy,
433};
434
435ccv_cnnp_model_t* ccv_cnnp_concat(const int axis, const char* const name)
436{
437 ccv_cnnp_model_concat_t* const model_concat = (ccv_cnnp_model_concat_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_concat_t));
438 model_concat->super.isa = &ccv_cnnp_concat_isa;
439 model_concat->super.input_size = 0;
440 model_concat->super.outputs = &model_concat->output;
441 model_concat->super.output_size = 1;
442 model_concat->axis = axis;
443 ccv_cnnp_model_copy_name(&model_concat->super, name);
444 return (ccv_cnnp_model_t*)model_concat;
445}
446
447static ccv_cnnp_model_t* _ccv_cnnp_concat_copy(const ccv_cnnp_model_t* const super, void* const context)
448{
449 const ccv_cnnp_model_concat_t* const self = (const ccv_cnnp_model_concat_t*)super;
450 return ccv_cnnp_concat(self->axis, self->super.name);
451}
452
453typedef struct {
454 ccv_cnnp_model_t super;
455 int axis;
456 ccv_nnc_tensor_symbol_t outputs[1];
457} ccv_cnnp_model_chunk_t;
458
459static void _ccv_cnnp_chunk_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
460{
461 const ccv_cnnp_model_concat_t* const self = (const ccv_cnnp_model_concat_t*)super;
462 PRINT(CCV_CLI_VERBOSE, "[cnnp_chunk_build] 1. axis: %d\n", self->axis)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_chunk_build] 1. axis: %d\n", self->axis);
fflush(stdout); } } while (0)
;
463 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 463, __extension__ __PRETTY_FUNCTION__); }))
;
464 const ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
465 if (CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_VERBOSE)(CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
466 {
467 PRINT(CCV_CLI_VERBOSE, "[cnnp_chunk_build] 2. input: (%d", input_params.dim[0])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_chunk_build] 2. input: (%d", input_params.dim
[0]); fflush(stdout); } } while (0)
;
468 int i;
469 for (i = 1; i < CCV_NNC_MAX_DIM_ALLOC(12) && input_params.dim[i] > 0; i++)
470 PRINT(CCV_CLI_VERBOSE, ", %d", input_params.dim[i])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(", %d", input_params.dim[i]); fflush(stdout); } } while
(0)
;
471 PRINT(CCV_CLI_VERBOSE, ")\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(")\n"); fflush(stdout); } } while (0)
;
472 }
473 ccv_nnc_tensor_param_t output_params = input_params;
474 int i;
475 const int nd = ccv_nnc_tensor_nd(output_params.dim);
476 const int axis = self->axis;
477 assert(axis < nd)((void) sizeof ((axis < nd) ? 1 : 0), __extension__ ({ if (
axis < nd) ; else __assert_fail ("axis < nd", "ccv_cnnp_model_addons.c"
, 477, __extension__ __PRETTY_FUNCTION__); }))
;
478 const int n = self->super.output_size;
479 assert(n == output_size)((void) sizeof ((n == output_size) ? 1 : 0), __extension__ ({
if (n == output_size) ; else __assert_fail ("n == output_size"
, "ccv_cnnp_model_addons.c", 479, __extension__ __PRETTY_FUNCTION__
); }))
;
480 assert(output_params.dim[axis] % n == 0)((void) sizeof ((output_params.dim[axis] % n == 0) ? 1 : 0), __extension__
({ if (output_params.dim[axis] % n == 0) ; else __assert_fail
("output_params.dim[axis] % n == 0", "ccv_cnnp_model_addons.c"
, 480, __extension__ __PRETTY_FUNCTION__); }))
;
481 output_params.dim[axis] = output_params.dim[axis] / n;
482 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
483 int stride[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
484 ccv_nnc_tensor_get_stride(input_params.dim, stride);
485 ccv_nnc_tensor_symbol_t to = ccv_nnc_tensor_symbol_alias_to(graph, inputs[0]);
486 if (to.d == CCV_NNC_NO_TENSOR_SYMBOL) // If we are not reshape an alias, it is straightforward.
487 {
488 for (i = 0; i < output_size; i++)
489 {
490 outputs[i] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], ofs, stride, output_params, 0);
491 ofs[axis] += output_params.dim[axis];
492 }
493 } else {
494 // Otherwise, we need to check if it is permute. For permute, we cannot do alias directly.
495 // We need to first materialize the permute and then run reshape on top of it, otherwise it will be wrong.
496 int old_stride[CCV_NNC_MAX_DIM_ALLOC(12)];
497 ccv_nnc_tensor_symbol_alias_params(graph, inputs[0], 0, old_stride);
498 // We identify permute by checking if the stride is not in descending order.
499 // This also covered "permute" through reshape, rather than using ccv_cnnp_permute directly.
500 int i, no_permute = 1;
501 for (i = 1; no_permute && i < nd; i++)
502 if (old_stride[i - 1] < old_stride[i])
503 no_permute = 0;
504 if (no_permute)
505 { // Just straightforward reshape if there is no no permute.
506 for (i = 0; i < output_size; i++)
507 {
508 outputs[i] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], ofs, old_stride, output_params, 0);
509 ofs[axis] += output_params.dim[axis];
510 }
511 } else {
512 // Otherwise, we first do format transform to plain tensor and then do reshape.
513 ccv_nnc_tensor_symbol_t permuted = ccv_nnc_tensor_symbol_new(graph, input_params, 0);
514 ccv_nnc_graph_exec_symbol_new(graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(permuted)(const ccv_nnc_tensor_symbol_t []){permuted}, (1 +1 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "reshape");
515 for (i = 0; i < output_size; i++)
516 {
517 outputs[i] = ccv_nnc_tensor_symbol_alias_new(graph, permuted, ofs, stride, output_params, 0);
518 ofs[axis] += output_params.dim[axis];
519 }
520 }
521 }
522}
523
524static ccv_cnnp_model_t* _ccv_cnnp_chunk_copy(const ccv_cnnp_model_t* const self, void* const context);
525
526static const ccv_cnnp_model_vtab_t ccv_cnnp_chunk_isa = {
527 .build = _ccv_cnnp_chunk_build,
528 .copy = _ccv_cnnp_chunk_copy,
529};
530
531ccv_cnnp_model_t* ccv_cnnp_chunk(const int n, const int axis, const char* const name)
532{
533 assert(n >= 1)((void) sizeof ((n >= 1) ? 1 : 0), __extension__ ({ if (n >=
1) ; else __assert_fail ("n >= 1", "ccv_cnnp_model_addons.c"
, 533, __extension__ __PRETTY_FUNCTION__); }))
;
534 ccv_cnnp_model_chunk_t* const model_chunk = (ccv_cnnp_model_chunk_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_chunk_t) + sizeof(ccv_nnc_tensor_symbol_t) * (n - 1));
535 model_chunk->super.isa = &ccv_cnnp_chunk_isa;
536 model_chunk->super.input_size = 1;
537 model_chunk->super.outputs = model_chunk->outputs;
538 model_chunk->super.output_size = n;
539 model_chunk->axis = axis;
540 ccv_cnnp_model_copy_name(&model_chunk->super, name);
541 return (ccv_cnnp_model_t*)model_chunk;
542}
543
544static ccv_cnnp_model_t* _ccv_cnnp_chunk_copy(const ccv_cnnp_model_t* const super, void* const context)
545{
546 const ccv_cnnp_model_chunk_t* const self = (const ccv_cnnp_model_chunk_t*)super;
547 return ccv_cnnp_chunk(self->super.output_size, self->axis, self->super.name);
548}
549
550typedef struct {
551 ccv_cnnp_model_t super;
552 ccv_nnc_tensor_symbol_t output;
553 int format;
554 int dim[CCV_NNC_MAX_DIM_ALLOC(12)];
555 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
556 int stride[CCV_NNC_MAX_DIM_ALLOC(12)];
557} ccv_cnnp_model_reshape_t;
558
559static void _ccv_cnnp_reshape_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
560{
561 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 561, __extension__ __PRETTY_FUNCTION__); }))
;
562 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 562, __extension__ __PRETTY_FUNCTION__
); }))
;
563 ccv_cnnp_model_reshape_t* const self = (ccv_cnnp_model_reshape_t*)super;
564 if (CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_VERBOSE)(CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
565 {
566 PRINT(CCV_CLI_VERBOSE, "[cnnp_reshape_build] 1. dim: (%d", self->dim[0])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reshape_build] 1. dim: (%d", self->dim[0]
); fflush(stdout); } } while (0)
;
567 int i;
568 for (i = 1; i < CCV_NNC_MAX_DIM_ALLOC(12) && self->dim[i] > 0; i++)
569 PRINT(CCV_CLI_VERBOSE, ", %d", self->dim[i])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(", %d", self->dim[i]); fflush(stdout); } } while
(0)
;
570 const int count = i;
571 PRINT(CCV_CLI_VERBOSE, "), ofs: (%d", self->ofs[0])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("), ofs: (%d", self->ofs[0]); fflush(stdout); } }
while (0)
;
572 for (i = 1; i < count; i++)
573 PRINT(CCV_CLI_VERBOSE, ", %d", self->ofs[i])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(", %d", self->ofs[i]); fflush(stdout); } } while
(0)
;
574 PRINT(CCV_CLI_VERBOSE, "), stride: (%d", self->stride[0])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("), stride: (%d", self->stride[0]); fflush(stdout
); } } while (0)
;
575 for (i = 1; i < count; i++)
576 PRINT(CCV_CLI_VERBOSE, ", %d", self->stride[i])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(", %d", self->stride[i]); fflush(stdout); } } while
(0)
;
577 PRINT(CCV_CLI_VERBOSE, ")\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(")\n"); fflush(stdout); } } while (0)
;
578 }
579 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
580 if (CCV_CLI_OUTPUT_LEVEL_IS(CCV_CLI_VERBOSE)(CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
581 {
582 PRINT(CCV_CLI_VERBOSE, "[cnnp_reshape_build] 2. input: (%d", params.dim[0])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reshape_build] 2. input: (%d", params.dim[0]
); fflush(stdout); } } while (0)
;
583 int i;
584 for (i = 1; i < CCV_NNC_MAX_DIM_ALLOC(12) && params.dim[i] > 0; i++)
585 PRINT(CCV_CLI_VERBOSE, ", %d", params.dim[i])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(", %d", params.dim[i]); fflush(stdout); } } while (
0)
;
586 PRINT(CCV_CLI_VERBOSE, ")\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf(")\n"); fflush(stdout); } } while (0)
;
587 }
588 if (self->format > 0)
589 params.format = self->format;
590 assert(ccv_nnc_dimension_count(self->dim) <= ccv_nnc_tensor_count(params))((void) sizeof ((ccv_nnc_dimension_count(self->dim) <= ccv_nnc_tensor_count
(params)) ? 1 : 0), __extension__ ({ if (ccv_nnc_dimension_count
(self->dim) <= ccv_nnc_tensor_count(params)) ; else __assert_fail
("ccv_nnc_dimension_count(self->dim) <= ccv_nnc_tensor_count(params)"
, "ccv_cnnp_model_addons.c", 590, __extension__ __PRETTY_FUNCTION__
); }))
;
591 ccv_nnc_tensor_symbol_t to = ccv_nnc_tensor_symbol_alias_to(graph, inputs[0]);
592 int stride_from_dim[CCV_NNC_MAX_DIM_ALLOC(12)];
593 if (to.d == CCV_NNC_NO_TENSOR_SYMBOL) // If we are not reshape an alias, it is straightforward.
594 {
595 memcpy(params.dim, self->dim, sizeof(params.dim));
596 int* stride;
597 if (self->stride[0] == 0)
598 {
599 ccv_nnc_tensor_get_stride(self->dim, stride_from_dim);
600 stride = stride_from_dim;
601 } else
602 stride = self->stride;
603 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], self->ofs, stride, params, 0);
604 } else {
605 // Otherwise, we need to check if it is permute. For permute, we cannot do alias directly.
606 // We need to first materialize the permute and then run reshape on top of it, otherwise it will be wrong.
607 int old_stride[CCV_NNC_MAX_DIM_ALLOC(12)];
608 ccv_nnc_tensor_symbol_alias_params(graph, inputs[0], 0, old_stride);
609 // We identify permute by checking if the stride is not in descending order.
610 // This also covered "permute" through reshape, rather than using ccv_cnnp_permute directly.
611 const int nd = ccv_nnc_tensor_nd(params.dim);
612 const int new_nd = ccv_nnc_tensor_nd(self->dim);
613 int i, no_permute = 1;
614 // If the new dim has different nd, or we actually have a stride, we need to check if it is no permute or not.
615 if (new_nd != nd || (self->stride[0] != 0 && memcmp(self->stride, old_stride, sizeof(self->stride)) != 0))
616 for (i = 1; no_permute && i < nd; i++)
617 if (old_stride[i - 1] < old_stride[i])
618 no_permute = 0;
619 if (no_permute)
620 { // Just straightforward reshape if there is no no permute.
621 memcpy(params.dim, self->dim, sizeof(params.dim));
622 int* stride;
623 if (self->stride[0] == 0)
624 {
625 if (new_nd != nd) // Cannot use old stride.
626 {
627 ccv_nnc_tensor_get_stride(self->dim, stride_from_dim);
628 stride = stride_from_dim;
629 } else
630 stride = old_stride;
631 } else
632 stride = self->stride;
633 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], self->ofs, stride, params, 0);
634 } else {
635 // Otherwise, we first do format transform to plain tensor and then do reshape.
636 ccv_nnc_tensor_symbol_t permuted = ccv_nnc_tensor_symbol_new(graph, params, 0);
637 ccv_nnc_graph_exec_symbol_new(graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(permuted)(const ccv_nnc_tensor_symbol_t []){permuted}, (1 +1 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "reshape");
638 memcpy(params.dim, self->dim, sizeof(params.dim));
639 int* stride;
640 if (self->stride[0] == 0)
641 {
642 ccv_nnc_tensor_get_stride(self->dim, stride_from_dim);
643 stride = stride_from_dim;
644 } else
645 stride = self->stride;
646 // And then we create alias against the permuted one.
647 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, permuted, self->ofs, stride, params, 0);
648 }
649 }
650}
651
652static ccv_cnnp_model_t* _ccv_cnnp_reshape_copy(const ccv_cnnp_model_t* const super, void* const context);
653
654static const ccv_cnnp_model_vtab_t ccv_cnnp_reshape_isa = {
655 .build = _ccv_cnnp_reshape_build,
656 .copy = _ccv_cnnp_reshape_copy,
657};
658
659ccv_cnnp_model_t* ccv_cnnp_reshape(const int format, const int dim[CCV_NNC_MAX_DIM_ALLOC(12)], const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int stride[CCV_NNC_MAX_DIM_ALLOC(12)], const char* const name)
660{
661 ccv_cnnp_model_reshape_t* const model_reshape = (ccv_cnnp_model_reshape_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_reshape_t));
662 model_reshape->super.isa = &ccv_cnnp_reshape_isa;
663 model_reshape->super.input_size = 1;
664 model_reshape->super.outputs = &model_reshape->output;
665 model_reshape->super.output_size = 1;
666 ccv_cnnp_model_copy_name(&model_reshape->super, name);
667 model_reshape->format = format;
668 memcpy(model_reshape->dim, dim, sizeof(model_reshape->dim));
669 memcpy(model_reshape->ofs, ofs, sizeof(model_reshape->ofs));
670 if (stride[0] != 0)
671 memcpy(model_reshape->stride, stride, sizeof(model_reshape->stride));
672 return (ccv_cnnp_model_t*)model_reshape;
673}
674
675static ccv_cnnp_model_t* _ccv_cnnp_reshape_copy(const ccv_cnnp_model_t* const super, void* const context)
676{
677 const ccv_cnnp_model_reshape_t* const self = (const ccv_cnnp_model_reshape_t*)super;
678 return ccv_cnnp_reshape(self->format, self->dim, self->ofs, self->stride, self->super.name);
679}
680
681typedef struct {
682 ccv_cnnp_model_t super;
683 ccv_nnc_tensor_symbol_t output;
684 int type;
685 int begin[CCV_NNC_MAX_DIM_ALLOC(12)];
686 int end[CCV_NNC_MAX_DIM_ALLOC(12)];
687} ccv_cnnp_model_pad_t;
688
689static void _ccv_cnnp_pad_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
690{
691 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 691, __extension__ __PRETTY_FUNCTION__); }))
;
692 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 692, __extension__ __PRETTY_FUNCTION__
); }))
;
693 ccv_cnnp_model_pad_t* const self = (ccv_cnnp_model_pad_t*)super;
694 PRINT(CCV_CLI_VERBOSE, "[cnnp_pad_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_pad_build] -\n"); fflush(stdout); } } while (
0)
;
695 const ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
696 const int nd = ccv_nnc_tensor_nd(input_params.dim);
697 ccv_nnc_tensor_param_t params = input_params;
698 int i;
699 for (i = 0 ; i < nd; i++)
700 params.dim[i] += self->begin[i] + self->end[i];
701 const ccv_nnc_tensor_symbol_t padded = ccv_nnc_tensor_symbol_new(graph, params, 0);
702 ccv_nnc_cmd_t pad = CMD_PAD_FORWARD(self->type, (), ())ccv_nnc_cmd(CCV_NNC_PAD_FORWARD, 0, ((ccv_nnc_cmd_param_t){.size
={.dim={}},.pad={.type=self->type,.end={}}}), 0)
;
703 memcpy(pad.info.size.dim, self->begin, sizeof(pad.info.size.dim));
704 memcpy(pad.info.pad.end, self->end, sizeof(pad.info.pad.end));
705 ccv_nnc_graph_exec_symbol_new(graph, pad, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(padded)(const ccv_nnc_tensor_symbol_t []){padded}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "pad");
706 outputs[0] = padded;
707}
708
709static ccv_cnnp_model_t* _ccv_cnnp_pad_copy(const ccv_cnnp_model_t* const super, void* const context);
710
711static const ccv_cnnp_model_vtab_t ccv_cnnp_pad_isa = {
712 .build = _ccv_cnnp_pad_build,
713 .copy = _ccv_cnnp_pad_copy,
714};
715
716ccv_cnnp_model_t* ccv_cnnp_pad(const int type, const int begin[CCV_NNC_MAX_DIM_ALLOC(12)], const int end[CCV_NNC_MAX_DIM_ALLOC(12)], const char* const name)
717{
718 ccv_cnnp_model_pad_t* const model_pad = (ccv_cnnp_model_pad_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_pad_t));
719 model_pad->super.isa = &ccv_cnnp_pad_isa;
720 model_pad->super.input_size = 1;
721 model_pad->super.outputs = &model_pad->output;
722 model_pad->super.output_size = 1;
723 ccv_cnnp_model_copy_name(&model_pad->super, name);
724 model_pad->type = type;
725 memcpy(model_pad->begin, begin, sizeof(model_pad->begin));
726 memcpy(model_pad->end, end, sizeof(model_pad->end));
727 return (ccv_cnnp_model_t*)model_pad;
728}
729
730static ccv_cnnp_model_t* _ccv_cnnp_pad_copy(const ccv_cnnp_model_t* const super, void* const context)
731{
732 const ccv_cnnp_model_pad_t* const self = (const ccv_cnnp_model_pad_t*)super;
733 return ccv_cnnp_pad(self->type, self->begin, self->end, self->super.name);
734}
735
736typedef struct {
737 ccv_cnnp_model_t super;
738 ccv_nnc_tensor_symbol_t output;
739} ccv_cnnp_model_identity_t;
740
741static void _ccv_cnnp_identity_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
742{
743 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 743, __extension__ __PRETTY_FUNCTION__); }))
;
744 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 744, __extension__ __PRETTY_FUNCTION__
); }))
;
745 PRINT(CCV_CLI_VERBOSE, "[cnnp_identity_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_identity_build] -\n"); fflush(stdout); } } while
(0)
;
746 outputs[0] = inputs[0];
747}
748
749static ccv_cnnp_model_t* _ccv_cnnp_identity_copy(const ccv_cnnp_model_t* const super, void* const context);
750
751static const ccv_cnnp_model_vtab_t ccv_cnnp_identity_isa = {
752 .build = _ccv_cnnp_identity_build,
753 .copy = _ccv_cnnp_identity_copy,
754};
755
756ccv_cnnp_model_t* ccv_cnnp_identity(const char* const name)
757{
758 ccv_cnnp_model_identity_t* const model_identity = (ccv_cnnp_model_identity_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_identity_t));
759 model_identity->super.isa = &ccv_cnnp_identity_isa;
760 model_identity->super.input_size = 1;
761 model_identity->super.outputs = &model_identity->output;
762 model_identity->super.output_size = 1;
763 ccv_cnnp_model_copy_name(&model_identity->super, name);
764 return (ccv_cnnp_model_t*)model_identity;
765}
766
767static ccv_cnnp_model_t* _ccv_cnnp_identity_copy(const ccv_cnnp_model_t* const super, void* const context)
768{
769 const ccv_cnnp_model_identity_t* const self = (const ccv_cnnp_model_identity_t*)super;
770 return ccv_cnnp_identity(self->super.name);
771}
772
773typedef struct {
774 ccv_cnnp_model_t super;
775 ccv_nnc_tensor_symbol_t output;
776 int index[CCV_NNC_MAX_DIM_ALLOC(12)];
777} ccv_cnnp_model_permute_t;
778
779static void _ccv_cnnp_permute_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
780{
781 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 781, __extension__ __PRETTY_FUNCTION__); }))
;
782 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 782, __extension__ __PRETTY_FUNCTION__
); }))
;
783 ccv_cnnp_model_permute_t* const self = (ccv_cnnp_model_permute_t*)super;
784 PRINT(CCV_CLI_VERBOSE, "[cnnp_permute_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_permute_build] -\n"); fflush(stdout); } } while
(0)
;
785 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
786 ccv_nnc_tensor_symbol_t to = ccv_nnc_tensor_symbol_alias_to(graph, inputs[0]);
787 const int nd = ccv_nnc_tensor_nd(params.dim);
788 int input_dim[CCV_NNC_MAX_DIM_ALLOC(12)];
789 memcpy(input_dim, params.dim, sizeof(params.dim));
790 int input_stride[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
791 int output_stride[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
792 if (to.d == CCV_NNC_NO_TENSOR_SYMBOL) // If it is not an alias. Find stride and permute.
793 {
794 ccv_nnc_tensor_get_stride(input_dim, input_stride);
795 int i;
796 for (i = 0; i < nd; i++)
797 {
798 const int idx = self->index[i];
799 assert(idx >= 0 && idx < nd)((void) sizeof ((idx >= 0 && idx < nd) ? 1 : 0)
, __extension__ ({ if (idx >= 0 && idx < nd) ; else
__assert_fail ("idx >= 0 && idx < nd", "ccv_cnnp_model_addons.c"
, 799, __extension__ __PRETTY_FUNCTION__); }))
;
800 params.dim[i] = input_dim[idx];
801 output_stride[i] = input_stride[idx];
802 }
803 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], ccv_nnc_no_ofs, output_stride, params, 0);
804 } else {
805 // if it is an alias, we can get the stride from it and use that.
806 int input_ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
807 ccv_nnc_tensor_symbol_alias_params(graph, inputs[0], input_ofs, input_stride);
808 assert(input_stride[0] != 0)((void) sizeof ((input_stride[0] != 0) ? 1 : 0), __extension__
({ if (input_stride[0] != 0) ; else __assert_fail ("input_stride[0] != 0"
, "ccv_cnnp_model_addons.c", 808, __extension__ __PRETTY_FUNCTION__
); }))
;
809 int output_ofs[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
810 int i;
811 for (i = 0; i < nd; i++)
812 {
813 const int idx = self->index[i];
814 assert(idx >= 0 && idx < nd)((void) sizeof ((idx >= 0 && idx < nd) ? 1 : 0)
, __extension__ ({ if (idx >= 0 && idx < nd) ; else
__assert_fail ("idx >= 0 && idx < nd", "ccv_cnnp_model_addons.c"
, 814, __extension__ __PRETTY_FUNCTION__); }))
;
815 params.dim[i] = input_dim[idx];
816 output_stride[i] = input_stride[idx];
817 output_ofs[i] = input_ofs[idx];
818 }
819 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], output_ofs, output_stride, params, 0);
820 }
821}
822
823static ccv_cnnp_model_t* _ccv_cnnp_permute_copy(const ccv_cnnp_model_t* const super, void* const context);
824
825static const ccv_cnnp_model_vtab_t ccv_cnnp_permute_isa = {
826 .build = _ccv_cnnp_permute_build,
827 .copy = _ccv_cnnp_permute_copy,
828};
829
830ccv_cnnp_model_t* ccv_cnnp_permute(const int index[CCV_NNC_MAX_DIM_ALLOC(12)], const char* const name)
831{
832 ccv_cnnp_model_permute_t* const model_permute = (ccv_cnnp_model_permute_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_permute_t));
833 model_permute->super.isa = &ccv_cnnp_permute_isa;
834 model_permute->super.input_size = 1;
835 model_permute->super.outputs = &model_permute->output;
836 model_permute->super.output_size = 1;
837 ccv_cnnp_model_copy_name(&model_permute->super, name);
838 memcpy(model_permute->index, index, sizeof(model_permute->index));
839 return (ccv_cnnp_model_t*)model_permute;
840}
841
842static ccv_cnnp_model_t* _ccv_cnnp_permute_copy(const ccv_cnnp_model_t* const super, void* const context)
843{
844 const ccv_cnnp_model_permute_t* const self = (const ccv_cnnp_model_permute_t*)super;
845 return ccv_cnnp_permute(self->index, self->super.name);
846}
847
848typedef struct {
849 ccv_cnnp_model_t super;
850 int index;
851 ccv_nnc_tensor_symbol_t output;
852} ccv_cnnp_model_extract_t;
853
854static void _ccv_cnnp_extract_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
855{
856 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 856, __extension__ __PRETTY_FUNCTION__
); }))
;
857 ccv_cnnp_model_extract_t* const self = (ccv_cnnp_model_extract_t*)super;
858 PRINT(CCV_CLI_VERBOSE, "[cnnp_extract_build] index: %d\n", self->index)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_extract_build] index: %d\n", self->index)
; fflush(stdout); } } while (0)
;
859 outputs[0] = inputs[self->index];
860}
861
862static ccv_cnnp_model_t* _ccv_cnnp_extract_copy(const ccv_cnnp_model_t* const self, void* const context);
863
864static const ccv_cnnp_model_vtab_t ccv_cnnp_extract_isa = {
865 .build = _ccv_cnnp_extract_build,
866 .copy = _ccv_cnnp_extract_copy,
867};
868
869ccv_cnnp_model_t* ccv_cnnp_extract(const int index, const char* const name)
870{
871 ccv_cnnp_model_extract_t* const model_extract = (ccv_cnnp_model_extract_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_extract_t));
872 model_extract->index = index;
873 model_extract->super.isa = &ccv_cnnp_extract_isa;
874 model_extract->super.input_size = 0;
875 model_extract->super.outputs = &model_extract->output;
876 model_extract->super.output_size = 1;
877 ccv_cnnp_model_copy_name(&model_extract->super, name);
878 return (ccv_cnnp_model_t*)model_extract;
879}
880
881static ccv_cnnp_model_t* _ccv_cnnp_extract_copy(const ccv_cnnp_model_t* const super, void* const context)
882{
883 ccv_cnnp_model_extract_t* const self = (ccv_cnnp_model_extract_t*)super;
884 return ccv_cnnp_extract(self->index, self->super.name);
885}
886
887typedef struct {
888 ccv_cnnp_model_t super;
889 ccv_nnc_tensor_symbol_t output;
890} ccv_cnnp_model_flatten_t;
891
892static void _ccv_cnnp_flatten_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
893{
894 PRINT(CCV_CLI_VERBOSE, "[cnnp_flatten_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_flatten_build] -\n"); fflush(stdout); } } while
(0)
;
895 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 895, __extension__ __PRETTY_FUNCTION__); }))
;
896 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 896, __extension__ __PRETTY_FUNCTION__
); }))
;
897 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
898 ccv_nnc_tensor_param_t output_params = params;
899 memset(output_params.dim, 0, sizeof(output_params.dim));
900 output_params.dim[0] = ccv_nnc_tensor_get_n(params);
901 assert(output_params.dim[0] > 0)((void) sizeof ((output_params.dim[0] > 0) ? 1 : 0), __extension__
({ if (output_params.dim[0] > 0) ; else __assert_fail ("output_params.dim[0] > 0"
, "ccv_cnnp_model_addons.c", 901, __extension__ __PRETTY_FUNCTION__
); }))
;
902 output_params.dim[1] = ccv_nnc_tensor_count(params) / output_params.dim[0];
903 int stride[CCV_NNC_MAX_DIM_ALLOC(12)] = {};
904 ccv_nnc_tensor_get_stride(output_params.dim, stride);
905 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], DIM_ALLOC()(int [(12)]){}, stride, output_params, 0);
906}
907
908static ccv_cnnp_model_t* _ccv_cnnp_flatten_copy(const ccv_cnnp_model_t* const self, void* const context);
909
910static const ccv_cnnp_model_vtab_t ccv_cnnp_flatten_isa = {
911 .build = _ccv_cnnp_flatten_build,
912 .copy = _ccv_cnnp_flatten_copy,
913};
914
915ccv_cnnp_model_t* ccv_cnnp_flatten(const char* const name)
916{
917 ccv_cnnp_model_flatten_t* const model_flatten = (ccv_cnnp_model_flatten_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_flatten_t));
918 model_flatten->super.isa = &ccv_cnnp_flatten_isa;
919 model_flatten->super.input_size = 1;
920 model_flatten->super.outputs = &model_flatten->output;
921 model_flatten->super.output_size = 1;
922 ccv_cnnp_model_copy_name(&model_flatten->super, name);
923 return (ccv_cnnp_model_t*)model_flatten;
924}
925
926static ccv_cnnp_model_t* _ccv_cnnp_flatten_copy(const ccv_cnnp_model_t* const self, void* const context)
927{
928 return ccv_cnnp_flatten(self->name);
929}
930
931// MARK - Batch Norm Layer
932
933typedef struct {
934 ccv_cnnp_model_t super;
935 ccv_nnc_tensor_symbol_t output;
936 ccv_nnc_tensor_symbol_t bias;
937 ccv_nnc_tensor_symbol_t scale;
938 ccv_nnc_graph_exec_symbol_t batch_norm;
939 ccv_nnc_cmd_param_t params;
940 ccv_array_t* zero_inits;
941 ccv_array_t* retainables;
942} ccv_cnnp_model_batch_norm_t;
943
944static void _ccv_cnnp_batch_norm_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
945{
946 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 946, __extension__ __PRETTY_FUNCTION__); }))
;
947 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 947, __extension__ __PRETTY_FUNCTION__
); }))
;
948 ccv_cnnp_model_batch_norm_t* const self = (ccv_cnnp_model_batch_norm_t*)super;
949 PRINT(CCV_CLI_VERBOSE, "[cnnp_batch_norm_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_batch_norm_build] -\n"); fflush(stdout); } }
while (0)
;
950 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
951 const int nd = ccv_nnc_tensor_nd(params.dim);
952 ccv_nnc_tensor_param_t bias_params = params;
953 memset(bias_params.dim, 0, sizeof(bias_params.dim));
954 // If the accuracy is not enough, bump it to 32-bit floating point.
955 if (bias_params.datatype != CCV_32F && bias_params.datatype != CCV_64F)
956 bias_params.datatype = CCV_32F;
957 bias_params.dim[0] = nd > 1 ? ccv_nnc_tensor_get_c(params) : params.dim[0];
958 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, params, 0);
959 // Both scale and bias are shared between if this model is reused.
960 if (!self->scale.graph)
961 self->scale = ccv_nnc_tensor_symbol_new(graph, bias_params, "scale");
962 if (!self->bias.graph)
963 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
964 const ccv_nnc_tensor_symbol_t mean = ccv_nnc_tensor_symbol_new(graph, bias_params, "mean");
965 const ccv_nnc_tensor_symbol_t var = ccv_nnc_tensor_symbol_new(graph, bias_params, "var");
966 // Otherwise, notice mean, var, saved_mean, saved_inv_std are not reused.
967 if (!self->zero_inits)
968 self->zero_inits = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
969 ccv_array_push(self->zero_inits, &mean);
970 ccv_array_push(self->zero_inits, &var);
971 const ccv_nnc_tensor_symbol_t out_mean = ccv_nnc_tensor_symbol_new(graph, bias_params, "out_mean");
972 const ccv_nnc_tensor_symbol_t out_var = ccv_nnc_tensor_symbol_new(graph, bias_params, "out_var");
973 if (!self->retainables)
974 self->retainables = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
975 ccv_array_push(self->retainables, &out_mean);
976 ccv_array_push(self->retainables, &out_var);
977 const ccv_nnc_tensor_symbol_t saved_mean = ccv_nnc_tensor_symbol_new(graph, bias_params, "saved_mean");
978 const ccv_nnc_tensor_symbol_t saved_inv_std = ccv_nnc_tensor_symbol_new(graph, bias_params, "saved_inv_std");
979 const int hw = ccv_nnc_tensor_hw(params, ccv_nnc_tensor_nd(params.dim));
980 ccv_nnc_cmd_param_t batch_norm = self->params;
981 batch_norm.bnorm.count = hw >= 0 ? CCV_NNC_MAX_DIM(2) + 1 : 1;
982 int i;
983 batch_norm.bnorm.axis[0] = (params.format == CCV_TENSOR_FORMAT_CHWN) ? 3 : 0;
984 if (hw >= 0)
985 for (i = 0; i < CCV_NNC_MAX_DIM(2); i++)
986 batch_norm.bnorm.axis[i + 1] = i + hw;
987 self->params = batch_norm;
988 self->batch_norm = ccv_nnc_graph_exec_symbol_new(graph, ccv_nnc_cmd(CCV_NNC_BATCH_NORM_FORWARD, 0, batch_norm, 0), TENSOR_SYMBOL_LIST(inputs[0], self->scale, self->bias, mean, var)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->scale,
self->bias, mean, var}, (1 +1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, out_mean, out_var, saved_mean, saved_inv_std)(const ccv_nnc_tensor_symbol_t []){output, out_mean, out_var,
saved_mean, saved_inv_std}, (1 +1 +1 +1 +1 +1 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "batch_norm");
989 outputs[0] = output;
990}
991
992static void _ccv_cnnp_batch_norm_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
993{
994 ccv_cnnp_model_batch_norm_t* const self = (ccv_cnnp_model_batch_norm_t*)super;
995 if (self->scale.graph)
996 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(0, 1)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={0, 1}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->scale);
997 if (self->bias.graph)
998 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
999 int i;
1000 if (self->zero_inits)
1001 for (i = 0; i < self->zero_inits->rnum; i++)
1002 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, *(ccv_nnc_tensor_symbol_t*)ccv_array_get(self->zero_inits, i)((void*)(((char*)((self->zero_inits)->data)) + (size_t)
(self->zero_inits)->rsize * (size_t)(i)))
);
1003}
1004
1005static void _ccv_cnnp_batch_norm_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
1006{
1007 ccv_cnnp_model_batch_norm_t* const self = (ccv_cnnp_model_batch_norm_t*)super;
1008 if (self->scale.graph)
1009 add_to_array(parameters, self->scale, is_trainable);
1010 if (self->bias.graph)
1011 add_to_array(parameters, self->bias, is_trainable);
1012}
1013
1014static void _ccv_cnnp_batch_norm_add_to_output(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const outputs)
1015{
1016 ccv_cnnp_model_batch_norm_t* const self = (ccv_cnnp_model_batch_norm_t*)super;
1017 int i;
1018 if (self->retainables)
1019 for (i = 0; i < self->retainables->rnum; i++)
1020 {
1021 const ccv_nnc_tensor_symbol_t symbol = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(self->retainables, i)((void*)(((char*)((self->retainables)->data)) + (size_t
)(self->retainables)->rsize * (size_t)(i)))
;
1022 add_to_array(outputs, symbol, 0);
1023 }
1024}
1025
1026static void _ccv_cnnp_batch_norm_set_is_test(ccv_cnnp_model_t* const super, const int is_test, const ccv_cnnp_cmd_updater_f updater, void* const context)
1027{
1028 ccv_cnnp_model_batch_norm_t* const self = (ccv_cnnp_model_batch_norm_t*)super;
1029 if (self->batch_norm.graph)
1030 {
1031 self->params.bnorm.is_test = is_test;
1032 updater(context, self->batch_norm, ccv_nnc_cmd(CCV_NNC_BATCH_NORM_FORWARD, 0, self->params, 0), ccv_nnc_no_hint);
1033 }
1034}
1035
1036static void _ccv_cnnp_batch_norm_deinit(ccv_cnnp_model_t* const super)
1037{
1038 ccv_cnnp_model_batch_norm_t* const self = (ccv_cnnp_model_batch_norm_t*)super;
1039 if (self->zero_inits)
1040 ccv_array_free(self->zero_inits);
1041 if (self->retainables)
1042 ccv_array_free(self->retainables);
1043}
1044
1045static ccv_cnnp_model_t* _ccv_cnnp_batch_norm_copy(const ccv_cnnp_model_t* const super, void* const context);
1046
1047static const ccv_cnnp_model_vtab_t ccv_cnnp_batch_norm_isa = {
1048 .build = _ccv_cnnp_batch_norm_build,
1049 .init_states = _ccv_cnnp_batch_norm_init_states,
1050 .add_to_parameter = _ccv_cnnp_batch_norm_add_to_parameter,
1051 .add_to_output = _ccv_cnnp_batch_norm_add_to_output,
1052 .copy = _ccv_cnnp_batch_norm_copy,
1053 .set_is_test = _ccv_cnnp_batch_norm_set_is_test,
1054 .deinit = _ccv_cnnp_batch_norm_deinit,
1055};
1056
1057ccv_cnnp_model_t* ccv_cnnp_batch_norm(const float momentum, const float epsilon, const int is_trainable, const char* const name)
1058{
1059 ccv_cnnp_model_batch_norm_t* const model_batch_norm = (ccv_cnnp_model_batch_norm_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_batch_norm_t));
1060 model_batch_norm->super.isa = &ccv_cnnp_batch_norm_isa;
1061 model_batch_norm->super.input_size = 1;
1062 model_batch_norm->super.outputs = &model_batch_norm->output;
1063 model_batch_norm->super.output_size = 1;
1064 model_batch_norm->super.is_trainable = is_trainable;
1065 ccv_cnnp_model_copy_name(&model_batch_norm->super, name);
1066 model_batch_norm->scale.d = CCV_NNC_NO_TENSOR_SYMBOL;
1067 model_batch_norm->scale.graph = 0;
1068 model_batch_norm->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
1069 model_batch_norm->bias.graph = 0;
1070 model_batch_norm->params.bnorm.momentum = momentum;
1071 model_batch_norm->params.bnorm.epsilon = epsilon;
1072 return (ccv_cnnp_model_t*)model_batch_norm;
1073}
1074
1075static ccv_cnnp_model_t* _ccv_cnnp_batch_norm_copy(const ccv_cnnp_model_t* const super, void* const context)
1076{
1077 const ccv_cnnp_model_batch_norm_t* const self = (const ccv_cnnp_model_batch_norm_t*)super;
1078 return ccv_cnnp_batch_norm(self->params.bnorm.momentum, self->params.bnorm.epsilon, self->super.is_trainable, self->super.name);
1079}
1080
1081// MARK - Convolution Layer
1082
1083typedef struct {
1084 ccv_cnnp_model_t super;
1085 ccv_nnc_tensor_symbol_t output;
1086 ccv_nnc_tensor_symbol_t weights;
1087 ccv_nnc_tensor_symbol_t bias;
1088 int groups;
1089 int filters;
1090 int kdim[CCV_NNC_MAX_DIM_ALLOC(12)];
1091 int dilation[CCV_NNC_MAX_DIM_ALLOC(12)];
1092 int no_bias;
1093 int format;
1094 ccv_nnc_hint_t hint;
1095} ccv_cnnp_model_convolution_t;
1096
1097static void _ccv_cnnp_convolution_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1098{
1099 ccv_cnnp_model_convolution_t* const self = (ccv_cnnp_model_convolution_t*)super;
1100 PRINT(CCV_CLI_VERBOSE, "[cnnp_convolution_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_convolution_build] -\n"); fflush(stdout); } }
while (0)
;
1101 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1101, __extension__ __PRETTY_FUNCTION__); }))
;
1102 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1102, __extension__ __PRETTY_FUNCTION__
); }))
;
1103 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1104 int i;
1105 const int k_nd = ccv_nnc_tensor_nd(self->kdim);
1106 const int nd = k_nd + 2;
1107 ccv_nnc_tensor_param_t weights_params = params;
1108 if (self->format)
1109 weights_params.format = self->format;
1110 ccv_nnc_tensor_set_n(&weights_params, self->filters);
1111 const int c = ccv_nnc_tensor_get_c(params);
1112 assert(c % self->groups == 0)((void) sizeof ((c % self->groups == 0) ? 1 : 0), __extension__
({ if (c % self->groups == 0) ; else __assert_fail ("c % self->groups == 0"
, "ccv_cnnp_model_addons.c", 1112, __extension__ __PRETTY_FUNCTION__
); }))
;
1113 ccv_nnc_tensor_set_c(&weights_params, nd, c / self->groups);
1114 const int hw = ccv_nnc_tensor_hw(weights_params, nd);
1115 assert(hw >= 0)((void) sizeof ((hw >= 0) ? 1 : 0), __extension__ ({ if (hw
>= 0) ; else __assert_fail ("hw >= 0", "ccv_cnnp_model_addons.c"
, 1115, __extension__ __PRETTY_FUNCTION__); }))
;
1116 for (i = 0; i < k_nd; i++)
1117 weights_params.dim[i + hw] = self->kdim[i];
1118 if (!self->weights.graph)
1119 self->weights = ccv_nnc_tensor_symbol_new(graph, weights_params, "weights");
1120 assert(self->weights.graph == graph)((void) sizeof ((self->weights.graph == graph) ? 1 : 0), __extension__
({ if (self->weights.graph == graph) ; else __assert_fail
("self->weights.graph == graph", "ccv_cnnp_model_addons.c"
, 1120, __extension__ __PRETTY_FUNCTION__); }))
;
1121 ccv_nnc_tensor_param_t bias_params = params;
1122 if (self->format)
1123 bias_params.format = self->format;
1124 memset(bias_params.dim, 0, sizeof(bias_params.dim));
1125 bias_params.dim[0] = self->filters;
1126 ccv_nnc_cmd_t cmd = CMD_CONVOLUTION_FORWARD(self->groups, self->filters)ccv_nnc_cmd(CCV_NNC_CONVOLUTION_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={}},.convolution={.count=self->filters,.groups
=self->groups}}), 0)
;
1127 for (i = 0; i < k_nd; i++)
1128 cmd.info.size.dim[i] = self->kdim[i];
1129 cmd.info.size.dim[k_nd] = c;
1130 memcpy(cmd.info.convolution.dilation, self->dilation, sizeof(self->dilation));
1131 ccv_nnc_tensor_param_t output_params;
1132 // Dilate weight size based on the dilation factor.
1133 for (i = 0; i < k_nd; i++)
1134 weights_params.dim[i + hw] = (self->kdim[i] - 1) * ccv_max(self->dilation[i], 1)({ typeof (self->dilation[i]) _a = (self->dilation[i]);
typeof (1) _b = (1); (_a > _b) ? _a : _b; })
+ 1;
1135 ccv_nnc_hint_tensor_auto(cmd, (ccv_nnc_tensor_param_t []){
1136 params,
1137 weights_params,
1138 bias_params,
1139 }, 3, self->hint, &output_params, 1);
1140 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1141 ccv_nnc_graph_exec_symbol_t convolution;
1142 if (self->no_bias)
1143 convolution = ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], self->weights)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->weights
}, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "convolution");
1144 else {
1145 if (!self->bias.graph)
1146 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
1147 convolution = ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], self->weights, self->bias)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->weights
, self->bias}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "convolution");
1148 }
1149 ccv_nnc_graph_exec_symbol_set_hint(graph, convolution, self->hint);
1150 outputs[0] = output;
1151}
1152
1153static void _ccv_cnnp_convolution_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
1154{
1155 ccv_cnnp_model_convolution_t* const self = (ccv_cnnp_model_convolution_t*)super;
1156 const ccv_nnc_tensor_param_t weight_params = ccv_nnc_tensor_symbol_params(graph, self->weights);
1157 const int n = ccv_max(ccv_nnc_tensor_get_n(weight_params), 1)({ typeof (ccv_nnc_tensor_get_n(weight_params)) _a = (ccv_nnc_tensor_get_n
(weight_params)); typeof (1) _b = (1); (_a > _b) ? _a : _b
; })
;
1158 const int count = ccv_nnc_tensor_count(weight_params);
1159 const float std = sqrtf(2) / sqrtf(count / n);
1160 const float bound = sqrtf(3) * std;
1161 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-bound, bound)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-bound, bound}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
1162 if (self->bias.graph)
1163 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
1164}
1165
1166static void _ccv_cnnp_convolution_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
1167{
1168 ccv_cnnp_model_convolution_t* const self = (ccv_cnnp_model_convolution_t*)super;
1169 add_to_array(parameters, self->weights, is_trainable);
1170 if (self->bias.graph)
1171 add_to_array(parameters, self->bias, is_trainable);
1172}
1173
1174static ccv_cnnp_model_t* _ccv_cnnp_convolution_copy(const ccv_cnnp_model_t* const super, void* const context);
1175
1176static const ccv_cnnp_model_vtab_t ccv_cnnp_convolution_isa = {
1177 .build = _ccv_cnnp_convolution_build,
1178 .init_states = _ccv_cnnp_convolution_init_states,
1179 .add_to_parameter = _ccv_cnnp_convolution_add_to_parameter,
1180 .copy = _ccv_cnnp_convolution_copy,
1181};
1182
1183ccv_cnnp_model_t* ccv_cnnp_convolution(const int groups, const int filters, const int kdim[CCV_NNC_MAX_DIM_ALLOC(12)], const int dilation[CCV_NNC_MAX_DIM_ALLOC(12)], const int no_bias, ccv_nnc_hint_t hint, const int format, const int is_trainable, const char* const name)
1184{
1185 ccv_cnnp_model_convolution_t* const model_convolution = (ccv_cnnp_model_convolution_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_convolution_t));
1186 model_convolution->super.isa = &ccv_cnnp_convolution_isa;
1187 model_convolution->super.input_size = 1;
1188 model_convolution->super.outputs = &model_convolution->output;
1189 model_convolution->super.output_size = 1;
1190 model_convolution->super.is_trainable = is_trainable;
1191 ccv_cnnp_model_copy_name(&model_convolution->super, name);
1192 model_convolution->weights.d = CCV_NNC_NO_TENSOR_SYMBOL;
1193 model_convolution->weights.graph = 0;
1194 model_convolution->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
1195 model_convolution->bias.graph = 0;
1196 model_convolution->groups = groups;
1197 model_convolution->filters = filters;
1198 memcpy(model_convolution->kdim, kdim, sizeof(model_convolution->kdim));
1199 memcpy(model_convolution->dilation, dilation, sizeof(model_convolution->dilation));
1200 model_convolution->no_bias = no_bias;
1201 model_convolution->hint = hint;
1202 model_convolution->format = format;
1203 return (ccv_cnnp_model_t*)model_convolution;
1204}
1205
1206static ccv_cnnp_model_t* _ccv_cnnp_convolution_copy(const ccv_cnnp_model_t* const super, void* const context)
1207{
1208 ccv_cnnp_model_convolution_t* const self = (ccv_cnnp_model_convolution_t*)super;
1209 return ccv_cnnp_convolution(self->groups, self->filters, self->kdim, self->dilation, self->no_bias, self->hint, self->format, self->super.is_trainable, self->super.name);
1210}
1211
1212// MARK - Convolution Transpose Layer
1213
1214typedef struct {
1215 ccv_cnnp_model_t super;
1216 ccv_nnc_tensor_symbol_t output;
1217 ccv_nnc_tensor_symbol_t weights;
1218 ccv_nnc_tensor_symbol_t bias;
1219 int groups;
1220 int filters;
1221 int kdim[CCV_NNC_MAX_DIM_ALLOC(12)];
1222 int dilation[CCV_NNC_MAX_DIM_ALLOC(12)];
1223 int output_padding;
1224 int no_bias;
1225 int format;
1226 ccv_nnc_hint_t hint;
1227} ccv_cnnp_model_convolution_transpose_t;
1228
1229static void _ccv_cnnp_convolution_transpose_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1230{
1231 ccv_cnnp_model_convolution_transpose_t* const self = (ccv_cnnp_model_convolution_transpose_t*)super;
1232 PRINT(CCV_CLI_VERBOSE, "[cnnp_convolution_transpose_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_convolution_transpose_build] -\n"); fflush(stdout
); } } while (0)
;
1233 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1233, __extension__ __PRETTY_FUNCTION__); }))
;
1234 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1234, __extension__ __PRETTY_FUNCTION__
); }))
;
1235 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1236 int i;
1237 const int nd = CCV_NNC_MAX_DIM(2) + 2;
1238 ccv_nnc_tensor_param_t weights_params = params;
1239 if (self->format)
1240 weights_params.format = self->format;
1241 const int c = ccv_nnc_tensor_get_c(params);
1242 ccv_nnc_tensor_set_n(&weights_params, c);
1243 assert(c % self->groups == 0)((void) sizeof ((c % self->groups == 0) ? 1 : 0), __extension__
({ if (c % self->groups == 0) ; else __assert_fail ("c % self->groups == 0"
, "ccv_cnnp_model_addons.c", 1243, __extension__ __PRETTY_FUNCTION__
); }))
;
1244 ccv_nnc_tensor_set_c(&weights_params, nd, self->filters / self->groups);
1245 const int hw = ccv_nnc_tensor_hw(weights_params, nd);
1246 assert(hw >= 0)((void) sizeof ((hw >= 0) ? 1 : 0), __extension__ ({ if (hw
>= 0) ; else __assert_fail ("hw >= 0", "ccv_cnnp_model_addons.c"
, 1246, __extension__ __PRETTY_FUNCTION__); }))
;
1247 for (i = 0; i < CCV_NNC_MAX_DIM(2); i++)
1248 weights_params.dim[i + hw] = self->kdim[i];
1249 if (!self->weights.graph)
1250 self->weights = ccv_nnc_tensor_symbol_new(graph, weights_params, "weights");
1251 assert(self->weights.graph == graph)((void) sizeof ((self->weights.graph == graph) ? 1 : 0), __extension__
({ if (self->weights.graph == graph) ; else __assert_fail
("self->weights.graph == graph", "ccv_cnnp_model_addons.c"
, 1251, __extension__ __PRETTY_FUNCTION__); }))
;
1252 ccv_nnc_tensor_param_t bias_params = params;
1253 if (self->format)
1254 bias_params.format = self->format;
1255 memset(bias_params.dim, 0, sizeof(bias_params.dim));
1256 bias_params.dim[0] = self->filters;
1257 ccv_nnc_cmd_t cmd = CMD_CONVOLUTION_TRANSPOSE_FORWARD(self->groups, self->filters, self->output_padding)ccv_nnc_cmd(CCV_NNC_CONVOLUTION_TRANSPOSE_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={}},.convolution_transpose={.count=self->filters
,.groups=self->groups,.output_padding=self->output_padding
}}), 0)
;
1258 for (i = 0; i < CCV_NNC_MAX_DIM(2); i++)
1259 cmd.info.size.dim[i] = self->kdim[i];
1260 cmd.info.size.dim[CCV_NNC_MAX_DIM(2)] = c;
1261 memcpy(cmd.info.convolution_transpose.dilation, self->dilation, sizeof(self->dilation));
1262 ccv_nnc_tensor_param_t output_params;
1263 // Dilate weight size based on the dilation factor.
1264 for (i = 0; i < CCV_NNC_MAX_DIM(2); i++)
1265 weights_params.dim[i + hw] = (self->kdim[i] - 1) * ccv_max(self->dilation[i], 1)({ typeof (self->dilation[i]) _a = (self->dilation[i]);
typeof (1) _b = (1); (_a > _b) ? _a : _b; })
+ 1;
1266 ccv_nnc_hint_tensor_auto(cmd, (ccv_nnc_tensor_param_t []){
1267 params,
1268 weights_params,
1269 bias_params,
1270 }, 3, self->hint, &output_params, 1);
1271 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1272 ccv_nnc_graph_exec_symbol_t convolution_transpose;
1273 if (self->no_bias)
1274 convolution_transpose = ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], self->weights)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->weights
}, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "convolution_transpose");
1275 else {
1276 if (!self->bias.graph)
1277 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
1278 convolution_transpose = ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], self->weights, self->bias)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->weights
, self->bias}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "convolution_transpose");
1279 }
1280 ccv_nnc_graph_exec_symbol_set_hint(graph, convolution_transpose, self->hint);
1281 outputs[0] = output;
1282}
1283
1284static void _ccv_cnnp_convolution_transpose_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
1285{
1286 ccv_cnnp_model_convolution_transpose_t* const self = (ccv_cnnp_model_convolution_transpose_t*)super;
1287 const ccv_nnc_tensor_param_t weight_params = ccv_nnc_tensor_symbol_params(graph, self->weights);
1288 const int n = ccv_max(ccv_nnc_tensor_get_n(weight_params), 1)({ typeof (ccv_nnc_tensor_get_n(weight_params)) _a = (ccv_nnc_tensor_get_n
(weight_params)); typeof (1) _b = (1); (_a > _b) ? _a : _b
; })
;
1289 const int count = ccv_nnc_tensor_count(weight_params);
1290 const float std = sqrtf(2) / sqrtf(count / n);
1291 const float bound = sqrtf(3) * std;
1292 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-bound, bound)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-bound, bound}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
1293 if (self->bias.graph)
1294 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
1295}
1296
1297static void _ccv_cnnp_convolution_transpose_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
1298{
1299 ccv_cnnp_model_convolution_transpose_t* const self = (ccv_cnnp_model_convolution_transpose_t*)super;
1300 add_to_array(parameters, self->weights, is_trainable);
1301 if (self->bias.graph)
1302 add_to_array(parameters, self->bias, is_trainable);
1303}
1304
1305static ccv_cnnp_model_t* _ccv_cnnp_convolution_transpose_copy(const ccv_cnnp_model_t* const super, void* const context);
1306
1307static const ccv_cnnp_model_vtab_t ccv_cnnp_convolution_transpose_isa = {
1308 .build = _ccv_cnnp_convolution_transpose_build,
1309 .init_states = _ccv_cnnp_convolution_transpose_init_states,
1310 .add_to_parameter = _ccv_cnnp_convolution_transpose_add_to_parameter,
1311 .copy = _ccv_cnnp_convolution_transpose_copy,
1312};
1313
1314ccv_cnnp_model_t* ccv_cnnp_convolution_transpose(const int groups, const int filters, const int kdim[CCV_NNC_MAX_DIM_ALLOC(12)], const int dilation[CCV_NNC_MAX_DIM_ALLOC(12)], const int output_padding, const int no_bias, ccv_nnc_hint_t hint, const int format, const int is_trainable, const char* const name)
1315{
1316 ccv_cnnp_model_convolution_transpose_t* const model_convolution_transpose = (ccv_cnnp_model_convolution_transpose_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_convolution_transpose_t));
1317 model_convolution_transpose->super.isa = &ccv_cnnp_convolution_transpose_isa;
1318 model_convolution_transpose->super.input_size = 1;
1319 model_convolution_transpose->super.outputs = &model_convolution_transpose->output;
1320 model_convolution_transpose->super.output_size = 1;
1321 model_convolution_transpose->super.is_trainable = is_trainable;
1322 ccv_cnnp_model_copy_name(&model_convolution_transpose->super, name);
1323 model_convolution_transpose->weights.d = CCV_NNC_NO_TENSOR_SYMBOL;
1324 model_convolution_transpose->weights.graph = 0;
1325 model_convolution_transpose->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
1326 model_convolution_transpose->bias.graph = 0;
1327 model_convolution_transpose->groups = groups;
1328 model_convolution_transpose->filters = filters;
1329 memcpy(model_convolution_transpose->kdim, kdim, sizeof(model_convolution_transpose->kdim));
1330 memcpy(model_convolution_transpose->dilation, dilation, sizeof(model_convolution_transpose->dilation));
1331 model_convolution_transpose->output_padding = output_padding;
1332 model_convolution_transpose->no_bias = no_bias;
1333 model_convolution_transpose->hint = hint;
1334 model_convolution_transpose->format = format;
1335 return (ccv_cnnp_model_t*)model_convolution_transpose;
1336}
1337
1338static ccv_cnnp_model_t* _ccv_cnnp_convolution_transpose_copy(const ccv_cnnp_model_t* const super, void* const context)
1339{
1340 ccv_cnnp_model_convolution_transpose_t* const self = (ccv_cnnp_model_convolution_transpose_t*)super;
1341 return ccv_cnnp_convolution_transpose(self->groups, self->filters, self->kdim, self->dilation, self->output_padding, self->no_bias, self->hint, self->format, self->super.is_trainable, self->super.name);
1342}
1343
1344// MARK - Dense Layer
1345
1346typedef struct {
1347 ccv_cnnp_model_t super;
1348 ccv_nnc_tensor_symbol_t output;
1349 ccv_nnc_tensor_symbol_t weights;
1350 ccv_nnc_tensor_symbol_t bias;
1351 int count;
1352 int no_bias;
1353 int flags;
1354} ccv_cnnp_model_dense_t;
1355
1356static void _ccv_cnnp_dense_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1357{
1358 ccv_cnnp_model_dense_t* const self = (ccv_cnnp_model_dense_t*)super;
1359 PRINT(CCV_CLI_VERBOSE, "[cnnp_dense_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_dense_build] -\n"); fflush(stdout); } } while
(0)
;
1360 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1360, __extension__ __PRETTY_FUNCTION__); }))
;
1361 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1361, __extension__ __PRETTY_FUNCTION__
); }))
;
1362 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1363 ccv_nnc_tensor_param_t weights_params = params;
1364 memset(weights_params.dim, 0, sizeof(weights_params.dim));
1365 weights_params.dim[0] = self->count;
1366 weights_params.dim[1] = params.dim[ccv_nnc_tensor_nd(params.dim) - 1];
1367 if (!self->weights.graph)
1368 self->weights = ccv_nnc_tensor_symbol_new(graph, weights_params, "weights");
1369 assert(self->weights.graph == graph)((void) sizeof ((self->weights.graph == graph) ? 1 : 0), __extension__
({ if (self->weights.graph == graph) ; else __assert_fail
("self->weights.graph == graph", "ccv_cnnp_model_addons.c"
, 1369, __extension__ __PRETTY_FUNCTION__); }))
;
1370 ccv_nnc_tensor_param_t bias_params = params;
1371 memset(bias_params.dim, 0, sizeof(bias_params.dim));
1372 bias_params.dim[0] = self->count;
1373 ccv_nnc_cmd_t cmd = {0};
1374 cmd.cmd = CCV_NNC_GEMM_FORWARD;
1375 cmd.info.blas.a[0] = 1;
1376 cmd.info.blas.a[1] = 1;
1377 cmd.info.blas.transpose_b[0] = 0;
1378 cmd.info.blas.transpose_b[1] = 1;
1379 cmd.info.blas.flags = self->flags;
1380 ccv_nnc_tensor_param_t output_params;
1381 ccv_nnc_hint_tensor_auto(cmd, (ccv_nnc_tensor_param_t []){
1382 params,
1383 weights_params,
1384 bias_params,
1385 }, 3, ccv_nnc_no_hint, &output_params, 1);
1386 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1387 if (self->no_bias)
1388 ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], self->weights)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->weights
}, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "dense");
1389 else {
1390 if (!self->bias.graph)
1391 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
1392 ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], self->weights, self->bias)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->weights
, self->bias}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "dense");
1393 }
1394 outputs[0] = output;
1395}
1396
1397static void _ccv_cnnp_dense_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
1398{
1399 ccv_cnnp_model_dense_t* const self = (ccv_cnnp_model_dense_t*)super;
1400 const ccv_nnc_tensor_param_t weight_params = ccv_nnc_tensor_symbol_params(graph, self->weights);
1401 const int c = weight_params.dim[1];
1402 const float std = sqrtf(2) / sqrtf(c);
1403 const float bound = sqrtf(3) * std;
1404 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-bound, bound)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-bound, bound}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
1405 if (self->bias.graph)
1406 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
1407}
1408
1409static void _ccv_cnnp_dense_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
1410{
1411 ccv_cnnp_model_dense_t* const self = (ccv_cnnp_model_dense_t*)super;
1412 add_to_array(parameters, self->weights, is_trainable);
1413 if (self->bias.graph)
1414 add_to_array(parameters, self->bias, is_trainable);
1415}
1416
1417static ccv_cnnp_model_t* _ccv_cnnp_dense_copy(const ccv_cnnp_model_t* const super, void* const context);
1418
1419static const ccv_cnnp_model_vtab_t ccv_cnnp_dense_isa = {
1420 .build = _ccv_cnnp_dense_build,
1421 .init_states = _ccv_cnnp_dense_init_states,
1422 .add_to_parameter = _ccv_cnnp_dense_add_to_parameter,
1423 .copy = _ccv_cnnp_dense_copy,
1424};
1425
1426ccv_cnnp_model_t* ccv_cnnp_dense(const int count, const int no_bias, const int flags, const int is_trainable, const char* const name)
1427{
1428 ccv_cnnp_model_dense_t* const model_dense = (ccv_cnnp_model_dense_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_dense_t));
1429 model_dense->super.isa = &ccv_cnnp_dense_isa;
1430 model_dense->super.input_size = 1;
1431 model_dense->super.outputs = &model_dense->output;
1432 model_dense->super.output_size = 1;
1433 model_dense->super.is_trainable = is_trainable;
1434 ccv_cnnp_model_copy_name(&model_dense->super, name);
1435 model_dense->weights.d = CCV_NNC_NO_TENSOR_SYMBOL;
1436 model_dense->weights.graph = 0;
1437 model_dense->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
1438 model_dense->bias.graph = 0;
1439 model_dense->count = count;
1440 model_dense->no_bias = no_bias;
1441 model_dense->flags = flags;
1442 return (ccv_cnnp_model_t*)model_dense;
1443}
1444
1445static ccv_cnnp_model_t* _ccv_cnnp_dense_copy(const ccv_cnnp_model_t* const super, void* const context)
1446{
1447 const ccv_cnnp_model_dense_t* const self = (const ccv_cnnp_model_dense_t*)super;
1448 return ccv_cnnp_dense(self->count, self->no_bias, self->flags, self->super.is_trainable, self->super.name);
1449}
1450
1451// MARK - Pool Layers
1452
1453typedef struct {
1454 ccv_cnnp_model_t super;
1455 ccv_nnc_tensor_symbol_t output;
1456 int kdim[CCV_NNC_MAX_DIM_ALLOC(12)];
1457 ccv_nnc_hint_t hint;
1458} ccv_cnnp_model_pool_t;
1459
1460static void _ccv_cnnp_max_pool_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1461{
1462 ccv_cnnp_model_pool_t* const self = (ccv_cnnp_model_pool_t*)super;
1463 PRINT(CCV_CLI_VERBOSE, "[cnnp_max_pool_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_max_pool_build] -\n"); fflush(stdout); } } while
(0)
;
1464 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1464, __extension__ __PRETTY_FUNCTION__); }))
;
1465 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1465, __extension__ __PRETTY_FUNCTION__
); }))
;
1466 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1467 const int hw = ccv_nnc_tensor_hw(params, ccv_nnc_tensor_nd(params.dim));
1468 ccv_nnc_cmd_t cmd;
1469 if (hw >= 0 && self->kdim[0] == 0 && self->kdim[1] == 0)
1470 cmd = CMD_MAX_POOL_FORWARD(params.dim[hw], params.dim[hw + 1])ccv_nnc_cmd(CCV_NNC_MAX_POOL_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={params.dim[hw], params.dim[hw + 1],1}}}), 0)
;
1471 else
1472 cmd = CMD_MAX_POOL_FORWARD(self->kdim[0], self->kdim[1])ccv_nnc_cmd(CCV_NNC_MAX_POOL_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={self->kdim[0], self->kdim[1],1}}}), 0)
;
1473 ccv_nnc_tensor_param_t output_params;
1474 ccv_nnc_hint_tensor_auto(cmd, &params, 1, self->hint, &output_params, 1);
1475 const ccv_nnc_tensor_symbol_t pool_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1476 const ccv_nnc_graph_exec_symbol_t exec = ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(pool_output)(const ccv_nnc_tensor_symbol_t []){pool_output}, (1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "max_pool");
1477 ccv_nnc_graph_exec_symbol_set_hint(graph, exec, self->hint);
1478 outputs[0] = pool_output;
1479}
1480
1481static ccv_cnnp_model_t* _ccv_cnnp_max_pool_copy(const ccv_cnnp_model_t* const super, void* const context);
1482
1483static const ccv_cnnp_model_vtab_t ccv_cnnp_max_pool_isa = {
1484 .build = _ccv_cnnp_max_pool_build,
1485 .copy = _ccv_cnnp_max_pool_copy,
1486};
1487
1488ccv_cnnp_model_t* ccv_cnnp_max_pool(const int kdim[CCV_NNC_MAX_DIM_ALLOC(12)], const ccv_nnc_hint_t hint, const char* const name)
1489{
1490 ccv_cnnp_model_pool_t* const model_pool = (ccv_cnnp_model_pool_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_pool_t));
1491 model_pool->super.isa = &ccv_cnnp_max_pool_isa;
1492 model_pool->super.input_size = 1;
1493 model_pool->super.outputs = &model_pool->output;
1494 model_pool->super.output_size = 1;
1495 ccv_cnnp_model_copy_name(&model_pool->super, name);
1496 memcpy(model_pool->kdim, kdim, sizeof(model_pool->kdim));
1497 model_pool->hint = hint;
1498 return (ccv_cnnp_model_t*)model_pool;
1499}
1500
1501static ccv_cnnp_model_t* _ccv_cnnp_max_pool_copy(const ccv_cnnp_model_t* const super, void* const context)
1502{
1503 const ccv_cnnp_model_pool_t* const self = (const ccv_cnnp_model_pool_t*)super;
1504 return ccv_cnnp_max_pool(self->kdim, self->hint, self->super.name);
1505}
1506
1507static void _ccv_cnnp_average_pool_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1508{
1509 ccv_cnnp_model_pool_t* const self = (ccv_cnnp_model_pool_t*)super;
1510 PRINT(CCV_CLI_VERBOSE, "[cnnp_average_pool_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_average_pool_build] -\n"); fflush(stdout); }
} while (0)
;
1511 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1511, __extension__ __PRETTY_FUNCTION__); }))
;
1512 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1512, __extension__ __PRETTY_FUNCTION__
); }))
;
1513 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1514 const int hw = ccv_nnc_tensor_hw(params, ccv_nnc_tensor_nd(params.dim));
1515 ccv_nnc_cmd_t cmd;
1516 if (hw >= 0 && self->kdim[0] == 0 && self->kdim[1] == 0)
1517 cmd = CMD_AVERAGE_POOL_FORWARD(params.dim[hw], params.dim[hw + 1])ccv_nnc_cmd(CCV_NNC_AVERAGE_POOL_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={params.dim[hw], params.dim[hw + 1],1}}}), 0)
;
1518 else
1519 cmd = CMD_AVERAGE_POOL_FORWARD(self->kdim[0], self->kdim[1])ccv_nnc_cmd(CCV_NNC_AVERAGE_POOL_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={self->kdim[0], self->kdim[1],1}}}), 0)
;
1520 ccv_nnc_tensor_param_t output_params;
1521 ccv_nnc_hint_tensor_auto(cmd, &params, 1, self->hint, &output_params, 1);
1522 const ccv_nnc_tensor_symbol_t pool_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1523 const ccv_nnc_graph_exec_symbol_t exec = ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(pool_output)(const ccv_nnc_tensor_symbol_t []){pool_output}, (1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "average_pool");
1524 ccv_nnc_graph_exec_symbol_set_hint(graph, exec, self->hint);
1525 outputs[0] = pool_output;
1526}
1527
1528static ccv_cnnp_model_t* _ccv_cnnp_average_pool_copy(const ccv_cnnp_model_t* const super, void* const context);
1529
1530static const ccv_cnnp_model_vtab_t ccv_cnnp_average_pool_isa = {
1531 .build = _ccv_cnnp_average_pool_build,
1532 .copy = _ccv_cnnp_average_pool_copy,
1533};
1534
1535ccv_cnnp_model_t* ccv_cnnp_average_pool(const int kdim[CCV_NNC_MAX_DIM_ALLOC(12)], const ccv_nnc_hint_t hint, const char* const name)
1536{
1537 ccv_cnnp_model_pool_t* const model_pool = (ccv_cnnp_model_pool_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_pool_t));
1538 model_pool->super.isa = &ccv_cnnp_average_pool_isa;
1539 model_pool->super.input_size = 1;
1540 model_pool->super.outputs = &model_pool->output;
1541 model_pool->super.output_size = 1;
1542 ccv_cnnp_model_copy_name(&model_pool->super, name);
1543 memcpy(model_pool->kdim, kdim, sizeof(model_pool->kdim));
1544 model_pool->hint = hint;
1545 return (ccv_cnnp_model_t*)model_pool;
1546}
1547
1548static ccv_cnnp_model_t* _ccv_cnnp_average_pool_copy(const ccv_cnnp_model_t* const super, void* const context)
1549{
1550 const ccv_cnnp_model_pool_t* const self = (const ccv_cnnp_model_pool_t*)super;
1551 return ccv_cnnp_average_pool(self->kdim, self->hint, self->super.name);
1552}
1553
1554// MARK - RELU Layer
1555
1556typedef struct {
1557 ccv_cnnp_model_t super;
1558 ccv_nnc_tensor_symbol_t output;
1559} ccv_cnnp_model_relu_t;
1560
1561static void _ccv_cnnp_relu_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1562{
1563 PRINT(CCV_CLI_VERBOSE, "[cnnp_relu_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_relu_build] -\n"); fflush(stdout); } } while
(0)
;
1564 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1564, __extension__ __PRETTY_FUNCTION__); }))
;
1565 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1565, __extension__ __PRETTY_FUNCTION__
); }))
;
1566 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1567 ccv_nnc_tensor_param_t output_params;
1568 const ccv_nnc_cmd_t relu = CMD_RELU_FORWARD()ccv_nnc_cmd(CCV_NNC_RELU_FORWARD, 0, ccv_nnc_cmd_auto, 0);
1569 ccv_nnc_hint_tensor_auto(relu, (ccv_nnc_tensor_param_t []){
1570 params,
1571 }, 1, ccv_nnc_no_hint, &output_params, 1);
1572 const ccv_nnc_tensor_symbol_t relu_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1573 ccv_nnc_graph_exec_symbol_new(graph, relu, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(relu_output)(const ccv_nnc_tensor_symbol_t []){relu_output}, (1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "relu");
1574 outputs[0] = relu_output;
1575}
1576
1577static ccv_cnnp_model_t* _ccv_cnnp_relu_copy(const ccv_cnnp_model_t* const self, void* const context);
1578
1579static const ccv_cnnp_model_vtab_t ccv_cnnp_relu_isa = {
1580 .build = _ccv_cnnp_relu_build,
1581 .copy = _ccv_cnnp_relu_copy,
1582};
1583
1584ccv_cnnp_model_t* ccv_cnnp_relu(const char* const name)
1585{
1586 ccv_cnnp_model_relu_t* const model_relu = (ccv_cnnp_model_relu_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_relu_t));
1587 model_relu->super.isa = &ccv_cnnp_relu_isa;
1588 model_relu->super.input_size = 1;
1589 model_relu->super.outputs = &model_relu->output;
1590 model_relu->super.output_size = 1;
1591 ccv_cnnp_model_copy_name(&model_relu->super, name);
1592 return (ccv_cnnp_model_t*)model_relu;
1593}
1594
1595static ccv_cnnp_model_t* _ccv_cnnp_relu_copy(const ccv_cnnp_model_t* const self, void* const context)
1596{
1597 return ccv_cnnp_relu(self->name);
1598}
1599
1600// MARK - Sigmoid Layer
1601
1602typedef struct {
1603 ccv_cnnp_model_t super;
1604 ccv_nnc_tensor_symbol_t output;
1605} ccv_cnnp_model_sigmoid_t;
1606
1607static void _ccv_cnnp_sigmoid_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1608{
1609 PRINT(CCV_CLI_VERBOSE, "[cnnp_sigmoid_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_sigmoid_build] -\n"); fflush(stdout); } } while
(0)
;
1610 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1610, __extension__ __PRETTY_FUNCTION__); }))
;
1611 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1611, __extension__ __PRETTY_FUNCTION__
); }))
;
1612 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1613 ccv_nnc_tensor_param_t output_params;
1614 const ccv_nnc_cmd_t sigmoid = CMD_SIGMOID_FORWARD()ccv_nnc_cmd(CCV_NNC_SIGMOID_FORWARD, 0, ccv_nnc_cmd_auto, 0);
1615 ccv_nnc_hint_tensor_auto(sigmoid, (ccv_nnc_tensor_param_t []){
1616 params,
1617 }, 1, ccv_nnc_no_hint, &output_params, 1);
1618 const ccv_nnc_tensor_symbol_t sigmoid_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1619 ccv_nnc_graph_exec_symbol_new(graph, sigmoid, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(sigmoid_output)(const ccv_nnc_tensor_symbol_t []){sigmoid_output}, (1 +1 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1
)
, "sigmoid");
1620 outputs[0] = sigmoid_output;
1621}
1622
1623static ccv_cnnp_model_t* _ccv_cnnp_sigmoid_copy(const ccv_cnnp_model_t* const self, void* const context);
1624
1625static const ccv_cnnp_model_vtab_t ccv_cnnp_sigmoid_isa = {
1626 .build = _ccv_cnnp_sigmoid_build,
1627 .copy = _ccv_cnnp_sigmoid_copy,
1628};
1629
1630ccv_cnnp_model_t* ccv_cnnp_sigmoid(const char* const name)
1631{
1632 ccv_cnnp_model_sigmoid_t* const model_sigmoid = (ccv_cnnp_model_sigmoid_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_sigmoid_t));
1633 model_sigmoid->super.isa = &ccv_cnnp_sigmoid_isa;
1634 model_sigmoid->super.input_size = 1;
1635 model_sigmoid->super.outputs = &model_sigmoid->output;
1636 model_sigmoid->super.output_size = 1;
1637 ccv_cnnp_model_copy_name(&model_sigmoid->super, name);
1638 return (ccv_cnnp_model_t*)model_sigmoid;
1639}
1640
1641static ccv_cnnp_model_t* _ccv_cnnp_sigmoid_copy(const ccv_cnnp_model_t* const self, void* const context)
1642{
1643 return ccv_cnnp_sigmoid(self->name);
1644}
1645
1646// MARK - Tanh Layer
1647
1648typedef struct {
1649 ccv_cnnp_model_t super;
1650 ccv_nnc_tensor_symbol_t output;
1651} ccv_cnnp_model_tanh_t;
1652
1653static void _ccv_cnnp_tanh_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1654{
1655 PRINT(CCV_CLI_VERBOSE, "[cnnp_tanh_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_tanh_build] -\n"); fflush(stdout); } } while
(0)
;
1656 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1656, __extension__ __PRETTY_FUNCTION__); }))
;
1657 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1657, __extension__ __PRETTY_FUNCTION__
); }))
;
1658 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1659 ccv_nnc_tensor_param_t output_params;
1660 const ccv_nnc_cmd_t tanh = CMD_TANH_FORWARD()ccv_nnc_cmd(CCV_NNC_TANH_FORWARD, 0, ccv_nnc_cmd_auto, 0);
1661 ccv_nnc_hint_tensor_auto(tanh, (ccv_nnc_tensor_param_t []){
1662 params,
1663 }, 1, ccv_nnc_no_hint, &output_params, 1);
1664 const ccv_nnc_tensor_symbol_t tanh_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1665 ccv_nnc_graph_exec_symbol_new(graph, tanh, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(tanh_output)(const ccv_nnc_tensor_symbol_t []){tanh_output}, (1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "tanh");
1666 outputs[0] = tanh_output;
1667}
1668
1669static ccv_cnnp_model_t* _ccv_cnnp_tanh_copy(const ccv_cnnp_model_t* const self, void* const context);
1670
1671static const ccv_cnnp_model_vtab_t ccv_cnnp_tanh_isa = {
1672 .build = _ccv_cnnp_tanh_build,
1673 .copy = _ccv_cnnp_tanh_copy,
1674};
1675
1676ccv_cnnp_model_t* ccv_cnnp_tanh(const char* const name)
1677{
1678 ccv_cnnp_model_tanh_t* const model_tanh = (ccv_cnnp_model_tanh_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_tanh_t));
1679 model_tanh->super.isa = &ccv_cnnp_tanh_isa;
1680 model_tanh->super.input_size = 1;
1681 model_tanh->super.outputs = &model_tanh->output;
1682 model_tanh->super.output_size = 1;
1683 ccv_cnnp_model_copy_name(&model_tanh->super, name);
1684 return (ccv_cnnp_model_t*)model_tanh;
1685}
1686
1687static ccv_cnnp_model_t* _ccv_cnnp_tanh_copy(const ccv_cnnp_model_t* const self, void* const context)
1688{
1689 return ccv_cnnp_tanh(self->name);
1690}
1691
1692// MARK - Swish Layer
1693
1694typedef struct {
1695 ccv_cnnp_model_t super;
1696 ccv_nnc_tensor_symbol_t output;
1697} ccv_cnnp_model_swish_t;
1698
1699static void _ccv_cnnp_swish_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1700{
1701 PRINT(CCV_CLI_VERBOSE, "[cnnp_swish_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_swish_build] -\n"); fflush(stdout); } } while
(0)
;
1702 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1702, __extension__ __PRETTY_FUNCTION__); }))
;
1703 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1703, __extension__ __PRETTY_FUNCTION__
); }))
;
1704 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1705 ccv_nnc_tensor_param_t output_params;
1706 const ccv_nnc_cmd_t swish = CMD_SWISH_FORWARD()ccv_nnc_cmd(CCV_NNC_SWISH_FORWARD, 0, ccv_nnc_cmd_auto, 0);
1707 ccv_nnc_hint_tensor_auto(swish, (ccv_nnc_tensor_param_t []){
1708 params,
1709 }, 1, ccv_nnc_no_hint, &output_params, 1);
1710 const ccv_nnc_tensor_symbol_t swish_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1711 ccv_nnc_graph_exec_symbol_new(graph, swish, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(swish_output)(const ccv_nnc_tensor_symbol_t []){swish_output}, (1 +1 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "swish");
1712 outputs[0] = swish_output;
1713}
1714
1715static ccv_cnnp_model_t* _ccv_cnnp_swish_copy(const ccv_cnnp_model_t* const self, void* const context);
1716
1717static const ccv_cnnp_model_vtab_t ccv_cnnp_swish_isa = {
1718 .build = _ccv_cnnp_swish_build,
1719 .copy = _ccv_cnnp_swish_copy,
1720};
1721
1722ccv_cnnp_model_t* ccv_cnnp_swish(const char* const name)
1723{
1724 ccv_cnnp_model_swish_t* const model_swish = (ccv_cnnp_model_swish_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_swish_t));
1725 model_swish->super.isa = &ccv_cnnp_swish_isa;
1726 model_swish->super.input_size = 1;
1727 model_swish->super.outputs = &model_swish->output;
1728 model_swish->super.output_size = 1;
1729 ccv_cnnp_model_copy_name(&model_swish->super, name);
1730 return (ccv_cnnp_model_t*)model_swish;
1731}
1732
1733static ccv_cnnp_model_t* _ccv_cnnp_swish_copy(const ccv_cnnp_model_t* const self, void* const context)
1734{
1735 return ccv_cnnp_swish(self->name);
1736}
1737
1738// MARK - GELU Layer
1739
1740typedef struct {
1741 ccv_cnnp_model_t super;
1742 ccv_nnc_tensor_symbol_t output;
1743 int tanh;
1744} ccv_cnnp_model_gelu_t;
1745
1746static void _ccv_cnnp_gelu_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1747{
1748 PRINT(CCV_CLI_VERBOSE, "[cnnp_gelu_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_gelu_build] -\n"); fflush(stdout); } } while
(0)
;
1749 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1749, __extension__ __PRETTY_FUNCTION__); }))
;
1750 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1750, __extension__ __PRETTY_FUNCTION__
); }))
;
1751 ccv_cnnp_model_gelu_t* const self = (ccv_cnnp_model_gelu_t*)super;
1752 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1753 ccv_nnc_tensor_param_t output_params;
1754 const ccv_nnc_cmd_t gelu = CMD_GELU_FORWARD(self->tanh)ccv_nnc_cmd(CCV_NNC_GELU_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.gelu={.tanh=self->tanh}}, 0)
;
1755 ccv_nnc_hint_tensor_auto(gelu, (ccv_nnc_tensor_param_t []){
1756 params,
1757 }, 1, ccv_nnc_no_hint, &output_params, 1);
1758 const ccv_nnc_tensor_symbol_t gelu_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1759 ccv_nnc_graph_exec_symbol_new(graph, gelu, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(gelu_output)(const ccv_nnc_tensor_symbol_t []){gelu_output}, (1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "gelu");
1760 outputs[0] = gelu_output;
1761}
1762
1763static ccv_cnnp_model_t* _ccv_cnnp_gelu_copy(const ccv_cnnp_model_t* const self, void* const context);
1764
1765static const ccv_cnnp_model_vtab_t ccv_cnnp_gelu_isa = {
1766 .build = _ccv_cnnp_gelu_build,
1767 .copy = _ccv_cnnp_gelu_copy,
1768};
1769
1770ccv_cnnp_model_t* ccv_cnnp_gelu(const int tanh, const char* const name)
1771{
1772 ccv_cnnp_model_gelu_t* const model_gelu = (ccv_cnnp_model_gelu_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_gelu_t));
1773 model_gelu->super.isa = &ccv_cnnp_gelu_isa;
1774 model_gelu->super.input_size = 1;
1775 model_gelu->super.outputs = &model_gelu->output;
1776 model_gelu->super.output_size = 1;
1777 model_gelu->tanh = tanh;
1778 ccv_cnnp_model_copy_name(&model_gelu->super, name);
1779 return (ccv_cnnp_model_t*)model_gelu;
1780}
1781
1782static ccv_cnnp_model_t* _ccv_cnnp_gelu_copy(const ccv_cnnp_model_t* const super, void* const context)
1783{
1784 ccv_cnnp_model_gelu_t* const self = (ccv_cnnp_model_gelu_t*)super;
1785 return ccv_cnnp_gelu(self->tanh, self->super.name);
1786}
1787
1788// MARK - Leaky ReLU Layer
1789
1790typedef struct {
1791 ccv_cnnp_model_t super;
1792 ccv_nnc_tensor_symbol_t output;
1793 float negative_slope;
1794} ccv_cnnp_model_leaky_relu_t;
1795
1796static void _ccv_cnnp_leaky_relu_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1797{
1798 PRINT(CCV_CLI_VERBOSE, "[cnnp_leaky_relu_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_leaky_relu_build] -\n"); fflush(stdout); } }
while (0)
;
1799 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1799, __extension__ __PRETTY_FUNCTION__); }))
;
1800 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1800, __extension__ __PRETTY_FUNCTION__
); }))
;
1801 ccv_cnnp_model_leaky_relu_t* const self = (ccv_cnnp_model_leaky_relu_t*)super;
1802 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1803 ccv_nnc_tensor_param_t output_params;
1804 const ccv_nnc_cmd_t leaky_relu = CMD_LEAKY_RELU_FORWARD(self->negative_slope)ccv_nnc_cmd(CCV_NNC_LEAKY_RELU_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.leaky_relu={.negative_slope=self->
negative_slope}}, 0)
;
1805 ccv_nnc_hint_tensor_auto(leaky_relu, (ccv_nnc_tensor_param_t []){
1806 params,
1807 }, 1, ccv_nnc_no_hint, &output_params, 1);
1808 const ccv_nnc_tensor_symbol_t leaky_relu_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1809 ccv_nnc_graph_exec_symbol_new(graph, leaky_relu, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(leaky_relu_output)(const ccv_nnc_tensor_symbol_t []){leaky_relu_output}, (1 +1 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
-1)
, "leaky_relu");
1810 outputs[0] = leaky_relu_output;
1811}
1812
1813static ccv_cnnp_model_t* _ccv_cnnp_leaky_relu_copy(const ccv_cnnp_model_t* const self, void* const context);
1814
1815static const ccv_cnnp_model_vtab_t ccv_cnnp_leaky_relu_isa = {
1816 .build = _ccv_cnnp_leaky_relu_build,
1817 .copy = _ccv_cnnp_leaky_relu_copy,
1818};
1819
1820ccv_cnnp_model_t* ccv_cnnp_leaky_relu(const float negative_slope, const char* const name)
1821{
1822 ccv_cnnp_model_leaky_relu_t* const model_leaky_relu = (ccv_cnnp_model_leaky_relu_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_leaky_relu_t));
1823 model_leaky_relu->super.isa = &ccv_cnnp_leaky_relu_isa;
1824 model_leaky_relu->super.input_size = 1;
1825 model_leaky_relu->super.outputs = &model_leaky_relu->output;
1826 model_leaky_relu->super.output_size = 1;
1827 model_leaky_relu->negative_slope = negative_slope;
1828 ccv_cnnp_model_copy_name(&model_leaky_relu->super, name);
1829 return (ccv_cnnp_model_t*)model_leaky_relu;
1830}
1831
1832static ccv_cnnp_model_t* _ccv_cnnp_leaky_relu_copy(const ccv_cnnp_model_t* const super, void* const context)
1833{
1834 ccv_cnnp_model_leaky_relu_t* const self = (ccv_cnnp_model_leaky_relu_t*)super;
1835 return ccv_cnnp_leaky_relu(self->negative_slope, self->super.name);
1836}
1837
1838// MARK - Softmax Layer
1839
1840typedef struct {
1841 ccv_cnnp_model_t super;
1842 ccv_nnc_tensor_symbol_t output;
1843} ccv_cnnp_model_softmax_t;
1844
1845static void _ccv_cnnp_softmax_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1846{
1847 PRINT(CCV_CLI_VERBOSE, "[cnnp_softmax_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_softmax_build] -\n"); fflush(stdout); } } while
(0)
;
1848 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1848, __extension__ __PRETTY_FUNCTION__); }))
;
1849 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1849, __extension__ __PRETTY_FUNCTION__
); }))
;
1850 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
1851 ccv_nnc_tensor_param_t output_params;
1852 const ccv_nnc_cmd_t softmax = CMD_SOFTMAX_FORWARD()ccv_nnc_cmd(CCV_NNC_SOFTMAX_FORWARD, 0, ccv_nnc_cmd_auto, 0);
1853 ccv_nnc_hint_tensor_auto(softmax, (ccv_nnc_tensor_param_t []){
1854 params,
1855 }, 1, ccv_nnc_no_hint, &output_params, 1);
1856 const ccv_nnc_tensor_symbol_t softmax_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1857 ccv_nnc_graph_exec_symbol_new(graph, softmax, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(softmax_output)(const ccv_nnc_tensor_symbol_t []){softmax_output}, (1 +1 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1
)
, "softmax");
1858 outputs[0] = softmax_output;
1859}
1860
1861static ccv_cnnp_model_t* _ccv_cnnp_softmax_copy(const ccv_cnnp_model_t* const self, void* const context);
1862
1863static const ccv_cnnp_model_vtab_t ccv_cnnp_softmax_isa = {
1864 .build = _ccv_cnnp_softmax_build,
1865 .copy = _ccv_cnnp_softmax_copy,
1866};
1867
1868ccv_cnnp_model_t* ccv_cnnp_softmax(const char* const name)
1869{
1870 ccv_cnnp_model_softmax_t* const model_softmax = (ccv_cnnp_model_softmax_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_softmax_t));
1871 model_softmax->super.isa = &ccv_cnnp_softmax_isa;
1872 model_softmax->super.input_size = 1;
1873 model_softmax->super.outputs = &model_softmax->output;
1874 model_softmax->super.output_size = 1;
1875 ccv_cnnp_model_copy_name(&model_softmax->super, name);
1876 return (ccv_cnnp_model_t*)model_softmax;
1877}
1878
1879static ccv_cnnp_model_t* _ccv_cnnp_softmax_copy(const ccv_cnnp_model_t* const self, void* const context)
1880{
1881 return ccv_cnnp_softmax(self->name);
1882}
1883
1884// MARK - Add Layer
1885
1886typedef struct {
1887 ccv_cnnp_model_t super;
1888 float p;
1889 float q;
1890 ccv_nnc_tensor_symbol_t output;
1891} ccv_cnnp_model_add_t;
1892
1893static void _ccv_cnnp_add_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1894{
1895 PRINT(CCV_CLI_VERBOSE, "[cnnp_add_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_add_build] -\n"); fflush(stdout); } } while (
0)
;
1896 const ccv_cnnp_model_add_t* const self = (const ccv_cnnp_model_add_t*)super;
1897 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 1897, __extension__ __PRETTY_FUNCTION__); }))
;
1898 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1898, __extension__ __PRETTY_FUNCTION__
); }))
;
1899 ccv_nnc_tensor_param_t input_params[2];
1900 int i;
1901 for (i = 0; i < 2; i++)
1902 input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
1903 ccv_nnc_tensor_param_t output_params;
1904 const ccv_nnc_cmd_t add = CMD_ADD_FORWARD(self->p, self->q)ccv_nnc_cmd(CCV_NNC_ADD_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={self->p, self->q}}}, 0)
;
1905 ccv_nnc_hint_tensor_auto(add, input_params, 2, ccv_nnc_no_hint, &output_params, 1);
1906 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1907 ccv_nnc_graph_exec_symbol_new(graph, add, inputs, input_size, outputs, output_size, "add");
1908}
1909
1910static ccv_cnnp_model_t* _ccv_cnnp_add_copy(const ccv_cnnp_model_t* const self, void* const context);
1911
1912static const ccv_cnnp_model_vtab_t ccv_cnnp_add_isa = {
1913 .build = _ccv_cnnp_add_build,
1914 .copy = _ccv_cnnp_add_copy,
1915};
1916
1917ccv_cnnp_model_t* ccv_cnnp_add(const float p, const float q, const char* const name)
1918{
1919 ccv_cnnp_model_add_t* const model_add = (ccv_cnnp_model_add_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_add_t));
1920 model_add->super.isa = &ccv_cnnp_add_isa;
1921 model_add->super.input_size = 2;
1922 model_add->super.outputs = &model_add->output;
1923 model_add->super.output_size = 1;
1924 model_add->p = p;
1925 model_add->q = q;
1926 ccv_cnnp_model_copy_name(&model_add->super, name);
1927 return (ccv_cnnp_model_t*)model_add;
1928}
1929
1930static ccv_cnnp_model_t* _ccv_cnnp_add_copy(const ccv_cnnp_model_t* const super, void* const context)
1931{
1932 const ccv_cnnp_model_add_t* const self = (const ccv_cnnp_model_add_t*)super;
1933 return ccv_cnnp_add(self->p, self->q, self->super.name);
1934}
1935
1936// MARK - Mul Layer
1937
1938typedef struct {
1939 ccv_cnnp_model_t super;
1940 ccv_nnc_tensor_symbol_t output;
1941 float p;
1942} ccv_cnnp_model_mul_t;
1943
1944static void _ccv_cnnp_mul_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1945{
1946 PRINT(CCV_CLI_VERBOSE, "[cnnp_mul_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_mul_build] -\n"); fflush(stdout); } } while (
0)
;
1947 const ccv_cnnp_model_mul_t* const self = (const ccv_cnnp_model_mul_t*)super;
1948 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 1948, __extension__ __PRETTY_FUNCTION__); }))
;
1949 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1949, __extension__ __PRETTY_FUNCTION__
); }))
;
1950 ccv_nnc_tensor_param_t input_params[2];
1951 int i;
1952 for (i = 0; i < 2; i++)
1953 input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
1954 ccv_nnc_tensor_param_t output_params;
1955 const ccv_nnc_cmd_t mul = CMD_MUL_FORWARD(self->p)ccv_nnc_cmd(CCV_NNC_MUL_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={self->p,}}}, 0)
;
1956 ccv_nnc_hint_tensor_auto(mul, input_params, 2, ccv_nnc_no_hint, &output_params, 1);
1957 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
1958 ccv_nnc_graph_exec_symbol_new(graph, mul, inputs, input_size, outputs, output_size, "mul");
1959}
1960
1961static ccv_cnnp_model_t* _ccv_cnnp_mul_copy(const ccv_cnnp_model_t* const self, void* const context);
1962
1963static const ccv_cnnp_model_vtab_t ccv_cnnp_mul_isa = {
1964 .build = _ccv_cnnp_mul_build,
1965 .copy = _ccv_cnnp_mul_copy,
1966};
1967
1968ccv_cnnp_model_t* ccv_cnnp_mul(const float p, const char* const name)
1969{
1970 ccv_cnnp_model_mul_t* const model_mul = (ccv_cnnp_model_mul_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_mul_t));
1971 model_mul->super.isa = &ccv_cnnp_mul_isa;
1972 model_mul->super.input_size = 2;
1973 model_mul->super.outputs = &model_mul->output;
1974 model_mul->super.output_size = 1;
1975 model_mul->p = p;
1976 ccv_cnnp_model_copy_name(&model_mul->super, name);
1977 return (ccv_cnnp_model_t*)model_mul;
1978}
1979
1980static ccv_cnnp_model_t* _ccv_cnnp_mul_copy(const ccv_cnnp_model_t* const super, void* const context)
1981{
1982 const ccv_cnnp_model_mul_t* const self = (const ccv_cnnp_model_mul_t*)super;
1983 return ccv_cnnp_mul(self->p, self->super.name);
1984}
1985
1986// MARK - Scalar Mul Layer
1987
1988typedef struct {
1989 ccv_cnnp_model_t super;
1990 ccv_nnc_tensor_symbol_t output;
1991 float a;
1992} ccv_cnnp_model_scalar_mul_t;
1993
1994static void _ccv_cnnp_scalar_mul_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
1995{
1996 PRINT(CCV_CLI_VERBOSE, "[cnnp_scalar_mul_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_scalar_mul_build] -\n"); fflush(stdout); } }
while (0)
;
1997 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 1997, __extension__ __PRETTY_FUNCTION__); }))
;
1998 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 1998, __extension__ __PRETTY_FUNCTION__
); }))
;
1999 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2000 ccv_nnc_tensor_param_t output_params;
2001 ccv_cnnp_model_scalar_mul_t* const self = (ccv_cnnp_model_scalar_mul_t*)super;
2002 const ccv_nnc_cmd_t scalar_mul = CMD_SCALAR_MUL_FORWARD(self->a)ccv_nnc_cmd(CCV_NNC_SCALAR_MUL_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={self->a,}}}, 0)
;
2003 ccv_nnc_hint_tensor_auto(scalar_mul, (ccv_nnc_tensor_param_t []){
2004 params,
2005 }, 1, ccv_nnc_no_hint, &output_params, 1);
2006 const ccv_nnc_tensor_symbol_t scalar_mul_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2007 ccv_nnc_graph_exec_symbol_new(graph, scalar_mul, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(scalar_mul_output)(const ccv_nnc_tensor_symbol_t []){scalar_mul_output}, (1 +1 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
-1)
, "scalar_mul");
2008 outputs[0] = scalar_mul_output;
2009}
2010
2011static ccv_cnnp_model_t* _ccv_cnnp_scalar_mul_copy(const ccv_cnnp_model_t* const super, void* const context);
2012
2013static const ccv_cnnp_model_vtab_t ccv_cnnp_scalar_mul_isa = {
2014 .build = _ccv_cnnp_scalar_mul_build,
2015 .copy = _ccv_cnnp_scalar_mul_copy,
2016};
2017
2018ccv_cnnp_model_t* ccv_cnnp_scalar_mul(const float a, const char* const name)
2019{
2020 ccv_cnnp_model_scalar_mul_t* const model_scalar_mul = (ccv_cnnp_model_scalar_mul_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_scalar_mul_t));
2021 model_scalar_mul->super.isa = &ccv_cnnp_scalar_mul_isa;
2022 model_scalar_mul->super.input_size = 1;
2023 model_scalar_mul->super.outputs = &model_scalar_mul->output;
2024 model_scalar_mul->super.output_size = 1;
2025 model_scalar_mul->a = a;
2026 ccv_cnnp_model_copy_name(&model_scalar_mul->super, name);
2027 return (ccv_cnnp_model_t*)model_scalar_mul;
2028}
2029
2030static ccv_cnnp_model_t* _ccv_cnnp_scalar_mul_copy(const ccv_cnnp_model_t* const super, void* const context)
2031{
2032 const ccv_cnnp_model_scalar_mul_t* const self = (const ccv_cnnp_model_scalar_mul_t*)super;
2033 return ccv_cnnp_scalar_mul(self->a, self->super.name);
2034}
2035
2036// MARK - Div Layer
2037
2038typedef struct {
2039 ccv_cnnp_model_t super;
2040 ccv_nnc_tensor_symbol_t output;
2041 int reciprocal;
2042} ccv_cnnp_model_div_t;
2043
2044static void _ccv_cnnp_div_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2045{
2046 const ccv_cnnp_model_div_t* const self = (const ccv_cnnp_model_div_t*)super;
2047 PRINT(CCV_CLI_VERBOSE, "[cnnp_div_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_div_build] -\n"); fflush(stdout); } } while (
0)
;
2048 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2048, __extension__ __PRETTY_FUNCTION__
); }))
;
2049 ccv_nnc_tensor_param_t input_params[2];
2050 int i;
2051 ccv_nnc_tensor_param_t output_params;
2052 const ccv_nnc_cmd_t div = CMD_EWDIV_FORWARD()ccv_nnc_cmd(CCV_NNC_EWDIV_FORWARD, 0, ccv_nnc_cmd_auto, 0);
2053 if (self->reciprocal)
2054 {
2055 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2055, __extension__ __PRETTY_FUNCTION__); }))
;
2056 input_params[0] = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2057 input_params[1] = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2058 ccv_nnc_hint_tensor_auto(div, input_params, 2, ccv_nnc_no_hint, &output_params, 1);
2059 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2060 ccv_nnc_graph_exec_symbol_new(graph, div, TENSOR_SYMBOL_LIST(NO_TENSOR_SYMBOL, inputs[0])(const ccv_nnc_tensor_symbol_t []){(const ccv_nnc_tensor_symbol_t
){.d = CCV_NNC_NO_TENSOR_SYMBOL}, inputs[0]}, (1 +1 +1 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, outputs, output_size, "div");
2061 } else {
2062 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 2062, __extension__ __PRETTY_FUNCTION__); }))
;
2063 for (i = 0; i < 2; i++)
2064 input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
2065 ccv_nnc_hint_tensor_auto(div, input_params, input_size, ccv_nnc_no_hint, &output_params, 1);
2066 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2067 ccv_nnc_graph_exec_symbol_new(graph, div, inputs, input_size, outputs, output_size, "div");
2068 }
2069}
2070
2071static ccv_cnnp_model_t* _ccv_cnnp_div_copy(const ccv_cnnp_model_t* const self, void* const context);
2072
2073static const ccv_cnnp_model_vtab_t ccv_cnnp_div_isa = {
2074 .build = _ccv_cnnp_div_build,
2075 .copy = _ccv_cnnp_div_copy,
2076};
2077
2078ccv_cnnp_model_t* ccv_cnnp_div(const int reciprocal, const char* const name)
2079{
2080 ccv_cnnp_model_div_t* const model_div = (ccv_cnnp_model_div_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_div_t));
2081 model_div->super.isa = &ccv_cnnp_div_isa;
2082 model_div->super.input_size = reciprocal ? 1 : 2;
2083 model_div->super.outputs = &model_div->output;
2084 model_div->super.output_size = 1;
2085 model_div->reciprocal = reciprocal;
2086 ccv_cnnp_model_copy_name(&model_div->super, name);
2087 return (ccv_cnnp_model_t*)model_div;
2088}
2089
2090static ccv_cnnp_model_t* _ccv_cnnp_div_copy(const ccv_cnnp_model_t* const super, void* const context)
2091{
2092 const ccv_cnnp_model_div_t* const self = (const ccv_cnnp_model_div_t*)super;
2093 return ccv_cnnp_div(self->reciprocal, self->super.name);
2094}
2095
2096// MARK - Sqrt Layer
2097
2098typedef struct {
2099 ccv_cnnp_model_t super;
2100 ccv_nnc_tensor_symbol_t output;
2101} ccv_cnnp_model_sqrt_t;
2102
2103static void _ccv_cnnp_sqrt_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2104{
2105 PRINT(CCV_CLI_VERBOSE, "[cnnp_sqrt_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_sqrt_build] -\n"); fflush(stdout); } } while
(0)
;
2106 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2106, __extension__ __PRETTY_FUNCTION__
); }))
;
2107 ccv_nnc_tensor_param_t input_params[1];
2108 ccv_nnc_tensor_param_t output_params;
2109 const ccv_nnc_cmd_t sqrt = CMD_EWSQRT_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSQRT_FORWARD, 0, ccv_nnc_cmd_auto, 0);
2110 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2110, __extension__ __PRETTY_FUNCTION__); }))
;
2111 input_params[0] = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2112 ccv_nnc_hint_tensor_auto(sqrt, input_params, 1, ccv_nnc_no_hint, &output_params, 1);
2113 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2114 ccv_nnc_graph_exec_symbol_new(graph, sqrt, inputs, 1, outputs, output_size, "sqrt");
2115}
2116
2117static ccv_cnnp_model_t* _ccv_cnnp_sqrt_copy(const ccv_cnnp_model_t* const self, void* const context);
2118
2119static const ccv_cnnp_model_vtab_t ccv_cnnp_sqrt_isa = {
2120 .build = _ccv_cnnp_sqrt_build,
2121 .copy = _ccv_cnnp_sqrt_copy,
2122};
2123
2124ccv_cnnp_model_t* ccv_cnnp_sqrt(const char* const name)
2125{
2126 ccv_cnnp_model_sqrt_t* const model_sqrt = (ccv_cnnp_model_sqrt_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_sqrt_t));
2127 model_sqrt->super.isa = &ccv_cnnp_sqrt_isa;
2128 model_sqrt->super.input_size = 1;
2129 model_sqrt->super.outputs = &model_sqrt->output;
2130 model_sqrt->super.output_size = 1;
2131 ccv_cnnp_model_copy_name(&model_sqrt->super, name);
2132 return (ccv_cnnp_model_t*)model_sqrt;
2133}
2134
2135static ccv_cnnp_model_t* _ccv_cnnp_sqrt_copy(const ccv_cnnp_model_t* const super, void* const context)
2136{
2137 const ccv_cnnp_model_sqrt_t* const self = (const ccv_cnnp_model_sqrt_t*)super;
2138 return ccv_cnnp_sqrt(self->super.name);
2139}
2140
2141// MARK - Cmul Layer
2142
2143typedef struct {
2144 ccv_cnnp_model_t super;
2145 ccv_nnc_tensor_symbol_t output;
2146} ccv_cnnp_model_cmul_t;
2147
2148static void _ccv_cnnp_cmul_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2149{
2150 PRINT(CCV_CLI_VERBOSE, "[cnnp_cmul_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_cmul_build] -\n"); fflush(stdout); } } while
(0)
;
2151 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 2151, __extension__ __PRETTY_FUNCTION__); }))
;
2152 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2152, __extension__ __PRETTY_FUNCTION__
); }))
;
2153 ccv_nnc_tensor_param_t input_params[2];
2154 int i;
2155 for (i = 0; i < 2; i++)
2156 input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
2157 ccv_nnc_tensor_param_t output_params;
2158 const ccv_nnc_cmd_t mul = CMD_CMUL_FORWARD()ccv_nnc_cmd(CCV_NNC_CMUL_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}}}, 0)
;
2159 ccv_nnc_hint_tensor_auto(mul, input_params, 2, ccv_nnc_no_hint, &output_params, 1);
2160 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2161 ccv_nnc_graph_exec_symbol_new(graph, mul, inputs, input_size, outputs, output_size, "cmul");
2162}
2163
2164static ccv_cnnp_model_t* _ccv_cnnp_cmul_copy(const ccv_cnnp_model_t* const self, void* const context);
2165
2166static const ccv_cnnp_model_vtab_t ccv_cnnp_cmul_isa = {
2167 .build = _ccv_cnnp_cmul_build,
2168 .copy = _ccv_cnnp_cmul_copy,
2169};
2170
2171ccv_cnnp_model_t* ccv_cnnp_cmul(const char* const name)
2172{
2173 ccv_cnnp_model_cmul_t* const model_cmul = (ccv_cnnp_model_cmul_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_cmul_t));
2174 model_cmul->super.isa = &ccv_cnnp_cmul_isa;
2175 model_cmul->super.input_size = 2;
2176 model_cmul->super.outputs = &model_cmul->output;
2177 model_cmul->super.output_size = 1;
2178 ccv_cnnp_model_copy_name(&model_cmul->super, name);
2179 return (ccv_cnnp_model_t*)model_cmul;
2180}
2181
2182static ccv_cnnp_model_t* _ccv_cnnp_cmul_copy(const ccv_cnnp_model_t* const super, void* const context)
2183{
2184 return ccv_cnnp_cmul(super->name);
2185}
2186
2187// MARK - Transpose Layer
2188
2189typedef struct {
2190 ccv_cnnp_model_t super;
2191 ccv_nnc_tensor_symbol_t output;
2192 int transpose[2];
2193} ccv_cnnp_model_transpose_t;
2194
2195static void _ccv_cnnp_transpose_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2196{
2197 ccv_cnnp_model_transpose_t* const self = (ccv_cnnp_model_transpose_t*)super;
2198 PRINT(CCV_CLI_VERBOSE, "[cnnp_transpose_build] (%d, %d)\n", self->transpose[0], self->transpose[1])do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_transpose_build] (%d, %d)\n", self->transpose
[0], self->transpose[1]); fflush(stdout); } } while (0)
;
2199 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2199, __extension__ __PRETTY_FUNCTION__); }))
;
2200 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2200, __extension__ __PRETTY_FUNCTION__
); }))
;
2201 if (self->transpose[0] == self->transpose[1])
2202 {
2203 outputs[0] = inputs[0];
2204 return;
2205 }
2206 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2207 ccv_nnc_tensor_param_t output_params;
2208 const ccv_nnc_cmd_t transpose = CMD_TRANSPOSE_FORWARD(self->transpose[0], self->transpose[1])ccv_nnc_cmd(CCV_NNC_TRANSPOSE_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.transpose={.axis={self->transpose[
0], self->transpose[1]}}}), 0)
;
2209 ccv_nnc_hint_tensor_auto(transpose, (ccv_nnc_tensor_param_t []){
2210 params,
2211 }, 1, ccv_nnc_no_hint, &output_params, 1);
2212 const ccv_nnc_tensor_symbol_t transpose_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2213 ccv_nnc_graph_exec_symbol_new(graph, transpose, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(transpose_output)(const ccv_nnc_tensor_symbol_t []){transpose_output}, (1 +1 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
-1)
, "transpose");
2214 outputs[0] = transpose_output;
2215}
2216
2217static ccv_cnnp_model_t* _ccv_cnnp_transpose_copy(const ccv_cnnp_model_t* const super, void* const context);
2218
2219static const ccv_cnnp_model_vtab_t ccv_cnnp_transpose_isa = {
2220 .build = _ccv_cnnp_transpose_build,
2221 .copy = _ccv_cnnp_transpose_copy,
2222};
2223
2224ccv_cnnp_model_t* ccv_cnnp_transpose(const int axis_a, const int axis_b, const char* const name)
2225{
2226 ccv_cnnp_model_transpose_t* const model_transpose = (ccv_cnnp_model_transpose_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_transpose_t));
2227 model_transpose->super.isa = &ccv_cnnp_transpose_isa;
2228 model_transpose->super.input_size = 1;
2229 model_transpose->super.outputs = &model_transpose->output;
2230 model_transpose->super.output_size = 1;
2231 model_transpose->transpose[0] = axis_a;
2232 model_transpose->transpose[1] = axis_b;
2233 ccv_cnnp_model_copy_name(&model_transpose->super, name);
2234 return (ccv_cnnp_model_t*)model_transpose;
2235}
2236
2237static ccv_cnnp_model_t* _ccv_cnnp_transpose_copy(const ccv_cnnp_model_t* const super, void* const context)
2238{
2239 const ccv_cnnp_model_transpose_t* const self = (const ccv_cnnp_model_transpose_t*)super;
2240 return ccv_cnnp_transpose(self->transpose[0], self->transpose[1], self->super.name);
2241}
2242
2243// MARK - Layer Norm Layer
2244
2245typedef struct {
2246 ccv_cnnp_model_t super;
2247 ccv_nnc_tensor_symbol_t output;
2248 ccv_nnc_tensor_symbol_t bias;
2249 ccv_nnc_tensor_symbol_t scale;
2250 ccv_nnc_cmd_param_t params;
2251} ccv_cnnp_model_layer_norm_t;
2252
2253static void _ccv_cnnp_layer_norm_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2254{
2255 PRINT(CCV_CLI_VERBOSE, "[cnnp_layer_norm_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_layer_norm_build] -\n"); fflush(stdout); } }
while (0)
;
2256 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2256, __extension__ __PRETTY_FUNCTION__); }))
;
2257 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2257, __extension__ __PRETTY_FUNCTION__
); }))
;
2258 ccv_cnnp_model_layer_norm_t* const self = (ccv_cnnp_model_layer_norm_t*)super;
2259 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2260 ccv_nnc_tensor_param_t bias_params = params;
2261 const int nd = ccv_nnc_tensor_nd(params.dim);
2262 int i;
2263 for (i = 0; i < nd; i++)
2264 bias_params.dim[i] = 1;
2265 for (i = 0; i < self->params.lnorm.count; i++)
2266 bias_params.dim[self->params.lnorm.axis[i]] = params.dim[self->params.lnorm.axis[i]];
2267 if (self->params.lnorm.elementwise_affine)
2268 {
2269 // Both scale and bias are shared between if this model is reused.
2270 if (!self->scale.graph)
2271 self->scale = ccv_nnc_tensor_symbol_new(graph, bias_params, "scale");
2272 if (!self->bias.graph)
2273 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
2274 }
2275 const ccv_nnc_cmd_t layer_norm = ccv_nnc_cmd(CCV_NNC_LAYER_NORM_FORWARD, 0, self->params, 0);
2276 ccv_nnc_tensor_param_t output_params[3];
2277 if (self->params.lnorm.elementwise_affine)
2278 ccv_nnc_hint_tensor_auto(layer_norm, (ccv_nnc_tensor_param_t []){
2279 params,
2280 bias_params,
2281 bias_params,
2282 }, 3, ccv_nnc_no_hint, output_params, 3);
2283 else
2284 ccv_nnc_hint_tensor_auto(layer_norm, (ccv_nnc_tensor_param_t []){
2285 params,
2286 }, 1, ccv_nnc_no_hint, output_params, 3);
2287 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
2288 const ccv_nnc_tensor_symbol_t saved_mean = ccv_nnc_tensor_symbol_new(graph, output_params[1], "saved_mean");
2289 const ccv_nnc_tensor_symbol_t saved_inv_std = ccv_nnc_tensor_symbol_new(graph, output_params[2], "saved_inv_std");
2290 if (self->params.lnorm.elementwise_affine)
2291 ccv_nnc_graph_exec_symbol_new(graph, layer_norm, TENSOR_SYMBOL_LIST(inputs[0], self->scale, self->bias)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->scale,
self->bias}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, saved_mean, saved_inv_std)(const ccv_nnc_tensor_symbol_t []){output, saved_mean, saved_inv_std
}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, "layer_norm");
2292 else
2293 ccv_nnc_graph_exec_symbol_new(graph, layer_norm, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, saved_mean, saved_inv_std)(const ccv_nnc_tensor_symbol_t []){output, saved_mean, saved_inv_std
}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, "layer_norm");
2294 outputs[0] = output;
2295}
2296
2297static void _ccv_cnnp_layer_norm_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
2298{
2299 ccv_cnnp_model_layer_norm_t* const self = (ccv_cnnp_model_layer_norm_t*)super;
2300 if (self->scale.graph)
2301 initializer(context, CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->scale);
2302 if (self->bias.graph)
2303 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
2304}
2305
2306static void _ccv_cnnp_layer_norm_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
2307{
2308 ccv_cnnp_model_layer_norm_t* const self = (ccv_cnnp_model_layer_norm_t*)super;
2309 if (self->scale.graph)
2310 add_to_array(parameters, self->scale, is_trainable);
2311 if (self->bias.graph)
2312 add_to_array(parameters, self->bias, is_trainable);
2313}
2314
2315static ccv_cnnp_model_t* _ccv_cnnp_layer_norm_copy(const ccv_cnnp_model_t* const super, void* const context);
2316
2317static const ccv_cnnp_model_vtab_t ccv_cnnp_layer_norm_isa = {
2318 .build = _ccv_cnnp_layer_norm_build,
2319 .init_states = _ccv_cnnp_layer_norm_init_states,
2320 .add_to_parameter = _ccv_cnnp_layer_norm_add_to_parameter,
2321 .copy = _ccv_cnnp_layer_norm_copy,
2322};
2323
2324ccv_cnnp_model_t* ccv_cnnp_layer_norm(const float epsilon, const int axis[CCV_NNC_MAX_DIM_ALLOC(12)], const int axis_count, const int elementwise_affine, const int is_trainable, const char* const name)
2325{
2326 ccv_cnnp_model_layer_norm_t* const model_layer_norm = (ccv_cnnp_model_layer_norm_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_layer_norm_t));
2327 model_layer_norm->super.isa = &ccv_cnnp_layer_norm_isa;
2328 model_layer_norm->super.input_size = 1;
2329 model_layer_norm->super.outputs = &model_layer_norm->output;
2330 model_layer_norm->super.output_size = 1;
2331 model_layer_norm->super.is_trainable = is_trainable;
2332 ccv_cnnp_model_copy_name(&model_layer_norm->super, name);
2333 model_layer_norm->scale.d = CCV_NNC_NO_TENSOR_SYMBOL;
2334 model_layer_norm->scale.graph = 0;
2335 model_layer_norm->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
2336 model_layer_norm->bias.graph = 0;
2337 model_layer_norm->params.lnorm.epsilon = epsilon;
2338 model_layer_norm->params.lnorm.count = axis_count;
2339 model_layer_norm->params.lnorm.elementwise_affine = elementwise_affine;
2340 memcpy(model_layer_norm->params.lnorm.axis, axis, sizeof(int) * axis_count);
2341 return (ccv_cnnp_model_t*)model_layer_norm;
2342}
2343
2344static ccv_cnnp_model_t* _ccv_cnnp_layer_norm_copy(const ccv_cnnp_model_t* const super, void* const context)
2345{
2346 const ccv_cnnp_model_layer_norm_t* const self = (const ccv_cnnp_model_layer_norm_t*)super;
2347 return ccv_cnnp_layer_norm(self->params.lnorm.epsilon, self->params.lnorm.axis, self->params.lnorm.count, self->params.lnorm.elementwise_affine, self->super.is_trainable, self->super.name);
2348}
2349
2350// MARK - Group Norm Layer
2351
2352typedef struct {
2353 ccv_cnnp_model_t super;
2354 ccv_nnc_tensor_symbol_t output;
2355 ccv_nnc_tensor_symbol_t bias;
2356 ccv_nnc_tensor_symbol_t scale;
2357 ccv_nnc_cmd_param_t params;
2358} ccv_cnnp_model_group_norm_t;
2359
2360static void _ccv_cnnp_group_norm_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2361{
2362 PRINT(CCV_CLI_VERBOSE, "[cnnp_group_norm_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_group_norm_build] -\n"); fflush(stdout); } }
while (0)
;
2363 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2363, __extension__ __PRETTY_FUNCTION__); }))
;
2364 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2364, __extension__ __PRETTY_FUNCTION__
); }))
;
2365 ccv_cnnp_model_group_norm_t* const self = (ccv_cnnp_model_group_norm_t*)super;
2366 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2367 ccv_nnc_tensor_param_t bias_params = params;
2368 const int nd = ccv_nnc_tensor_nd(params.dim);
2369 int i;
2370 for (i = 0; i < nd; i++)
2371 bias_params.dim[i] = 1;
2372 bias_params.dim[self->params.gnorm.group_axis] = params.dim[self->params.gnorm.group_axis];
2373 if (self->params.gnorm.elementwise_affine)
2374 {
2375 // Both scale and bias are shared between if this model is reused.
2376 if (!self->scale.graph)
2377 self->scale = ccv_nnc_tensor_symbol_new(graph, bias_params, "scale");
2378 if (!self->bias.graph)
2379 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
2380 }
2381 const ccv_nnc_cmd_t group_norm = ccv_nnc_cmd(CCV_NNC_GROUP_NORM_FORWARD, 0, self->params, 0);
2382 ccv_nnc_tensor_param_t output_params[3];
2383 if (self->params.gnorm.elementwise_affine)
2384 ccv_nnc_hint_tensor_auto(group_norm, (ccv_nnc_tensor_param_t []){
2385 params,
2386 bias_params,
2387 bias_params,
2388 }, 3, ccv_nnc_no_hint, output_params, 3);
2389 else
2390 ccv_nnc_hint_tensor_auto(group_norm, (ccv_nnc_tensor_param_t []){
2391 params,
2392 }, 1, ccv_nnc_no_hint, output_params, 3);
2393 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
2394 const ccv_nnc_tensor_symbol_t saved_mean = ccv_nnc_tensor_symbol_new(graph, output_params[1], "saved_mean");
2395 const ccv_nnc_tensor_symbol_t saved_inv_std = ccv_nnc_tensor_symbol_new(graph, output_params[2], "saved_inv_std");
2396 if (self->params.gnorm.elementwise_affine)
2397 ccv_nnc_graph_exec_symbol_new(graph, group_norm, TENSOR_SYMBOL_LIST(inputs[0], self->scale, self->bias)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->scale,
self->bias}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, saved_mean, saved_inv_std)(const ccv_nnc_tensor_symbol_t []){output, saved_mean, saved_inv_std
}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, "group_norm");
2398 else
2399 ccv_nnc_graph_exec_symbol_new(graph, group_norm, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, saved_mean, saved_inv_std)(const ccv_nnc_tensor_symbol_t []){output, saved_mean, saved_inv_std
}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 -1)
, "group_norm");
2400 outputs[0] = output;
2401}
2402
2403static void _ccv_cnnp_group_norm_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
2404{
2405 ccv_cnnp_model_group_norm_t* const self = (ccv_cnnp_model_group_norm_t*)super;
2406 if (self->scale.graph)
2407 initializer(context, CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->scale);
2408 if (self->bias.graph)
2409 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
2410}
2411
2412static void _ccv_cnnp_group_norm_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
2413{
2414 ccv_cnnp_model_group_norm_t* const self = (ccv_cnnp_model_group_norm_t*)super;
2415 if (self->scale.graph)
2416 add_to_array(parameters, self->scale, is_trainable);
2417 if (self->bias.graph)
2418 add_to_array(parameters, self->bias, is_trainable);
2419}
2420
2421static ccv_cnnp_model_t* _ccv_cnnp_group_norm_copy(const ccv_cnnp_model_t* const super, void* const context);
2422
2423static const ccv_cnnp_model_vtab_t ccv_cnnp_group_norm_isa = {
2424 .build = _ccv_cnnp_group_norm_build,
2425 .init_states = _ccv_cnnp_group_norm_init_states,
2426 .add_to_parameter = _ccv_cnnp_group_norm_add_to_parameter,
2427 .copy = _ccv_cnnp_group_norm_copy,
2428};
2429
2430ccv_cnnp_model_t* ccv_cnnp_group_norm(const int group_axis, const int groups, const float epsilon, const int reduce_axis[CCV_NNC_MAX_DIM_ALLOC(12)], const int axis_count, const int elementwise_affine, const int is_trainable, const char* const name)
2431{
2432 ccv_cnnp_model_group_norm_t* const model_group_norm = (ccv_cnnp_model_group_norm_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_group_norm_t));
2433 model_group_norm->super.isa = &ccv_cnnp_group_norm_isa;
2434 model_group_norm->super.input_size = 1;
2435 model_group_norm->super.outputs = &model_group_norm->output;
2436 model_group_norm->super.output_size = 1;
2437 model_group_norm->super.is_trainable = is_trainable;
2438 ccv_cnnp_model_copy_name(&model_group_norm->super, name);
2439 model_group_norm->scale.d = CCV_NNC_NO_TENSOR_SYMBOL;
2440 model_group_norm->scale.graph = 0;
2441 model_group_norm->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
2442 model_group_norm->bias.graph = 0;
2443 model_group_norm->params.gnorm.group_axis = group_axis;
2444 model_group_norm->params.gnorm.groups = groups;
2445 model_group_norm->params.gnorm.epsilon = epsilon;
2446 model_group_norm->params.gnorm.reduce_count = axis_count;
2447 model_group_norm->params.gnorm.elementwise_affine = elementwise_affine;
2448 memcpy(model_group_norm->params.gnorm.reduce_axis, reduce_axis, sizeof(int) * axis_count);
2449 return (ccv_cnnp_model_t*)model_group_norm;
2450}
2451
2452static ccv_cnnp_model_t* _ccv_cnnp_group_norm_copy(const ccv_cnnp_model_t* const super, void* const context)
2453{
2454 const ccv_cnnp_model_group_norm_t* const self = (const ccv_cnnp_model_group_norm_t*)super;
2455 return ccv_cnnp_group_norm(self->params.gnorm.group_axis, self->params.gnorm.groups, self->params.gnorm.epsilon, self->params.gnorm.reduce_axis, self->params.gnorm.reduce_count, self->params.gnorm.elementwise_affine, self->super.is_trainable, self->super.name);
2456}
2457
2458// MARK - RMSNorm Layer
2459
2460typedef struct {
2461 ccv_cnnp_model_t super;
2462 ccv_nnc_tensor_symbol_t output;
2463 ccv_nnc_tensor_symbol_t scale;
2464 ccv_nnc_cmd_param_t params;
2465} ccv_cnnp_model_rmsnorm_t;
2466
2467static void _ccv_cnnp_rmsnorm_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2468{
2469 PRINT(CCV_CLI_VERBOSE, "[cnnp_rmsnorm_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_rmsnorm_build] -\n"); fflush(stdout); } } while
(0)
;
2470 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2470, __extension__ __PRETTY_FUNCTION__); }))
;
2471 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2471, __extension__ __PRETTY_FUNCTION__
); }))
;
2472 ccv_cnnp_model_rmsnorm_t* const self = (ccv_cnnp_model_rmsnorm_t*)super;
2473 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2474 ccv_nnc_tensor_param_t scale_params = params;
2475 const int nd = ccv_nnc_tensor_nd(params.dim);
2476 int i;
2477 for (i = 0; i < nd; i++)
2478 scale_params.dim[i] = 1;
2479 for (i = 0; i < self->params.rmsnorm.count; i++)
2480 scale_params.dim[self->params.rmsnorm.axis[i]] = params.dim[self->params.rmsnorm.axis[i]];
2481 // Both scale and bias are shared between if this model is reused.
2482 if (!self->scale.graph)
2483 self->scale = ccv_nnc_tensor_symbol_new(graph, scale_params, "scale");
2484 const ccv_nnc_cmd_t rmsnorm = ccv_nnc_cmd(CCV_NNC_RMSNORM_FORWARD, 0, self->params, 0);
2485 ccv_nnc_tensor_param_t output_params[2];
2486 ccv_nnc_hint_tensor_auto(rmsnorm, (ccv_nnc_tensor_param_t []){
2487 params,
2488 scale_params,
2489 }, 2, ccv_nnc_no_hint, output_params, 2);
2490 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
2491 const ccv_nnc_tensor_symbol_t saved_inv_std = ccv_nnc_tensor_symbol_new(graph, output_params[1], "saved_inv_std");
2492 ccv_nnc_graph_exec_symbol_new(graph, rmsnorm, TENSOR_SYMBOL_LIST(inputs[0], self->scale)(const ccv_nnc_tensor_symbol_t []){inputs[0], self->scale}
, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, saved_inv_std)(const ccv_nnc_tensor_symbol_t []){output, saved_inv_std}, (1
+1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 -1)
, "rmsnorm");
2493 outputs[0] = output;
2494}
2495
2496static void _ccv_cnnp_rmsnorm_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
2497{
2498 ccv_cnnp_model_rmsnorm_t* const self = (ccv_cnnp_model_rmsnorm_t*)super;
2499 if (self->scale.graph)
2500 initializer(context, CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->scale);
2501}
2502
2503static void _ccv_cnnp_rmsnorm_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
2504{
2505 ccv_cnnp_model_rmsnorm_t* const self = (ccv_cnnp_model_rmsnorm_t*)super;
2506 if (self->scale.graph)
2507 add_to_array(parameters, self->scale, is_trainable);
2508}
2509
2510static ccv_cnnp_model_t* _ccv_cnnp_rmsnorm_copy(const ccv_cnnp_model_t* const super, void* const context);
2511
2512static const ccv_cnnp_model_vtab_t ccv_cnnp_rmsnorm_isa = {
2513 .build = _ccv_cnnp_rmsnorm_build,
2514 .init_states = _ccv_cnnp_rmsnorm_init_states,
2515 .add_to_parameter = _ccv_cnnp_rmsnorm_add_to_parameter,
2516 .copy = _ccv_cnnp_rmsnorm_copy,
2517};
2518
2519ccv_cnnp_model_t* ccv_cnnp_rmsnorm(const float epsilon, const int axis[CCV_NNC_MAX_DIM_ALLOC(12)], const int axis_count, const int is_trainable, const char* const name)
2520{
2521 ccv_cnnp_model_rmsnorm_t* const model_rmsnorm = (ccv_cnnp_model_rmsnorm_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_rmsnorm_t));
2522 model_rmsnorm->super.isa = &ccv_cnnp_rmsnorm_isa;
2523 model_rmsnorm->super.input_size = 1;
2524 model_rmsnorm->super.outputs = &model_rmsnorm->output;
2525 model_rmsnorm->super.output_size = 1;
2526 model_rmsnorm->super.is_trainable = is_trainable;
2527 ccv_cnnp_model_copy_name(&model_rmsnorm->super, name);
2528 model_rmsnorm->scale.d = CCV_NNC_NO_TENSOR_SYMBOL;
2529 model_rmsnorm->scale.graph = 0;
2530 model_rmsnorm->params.rmsnorm.epsilon = epsilon;
2531 model_rmsnorm->params.rmsnorm.count = axis_count;
2532 memcpy(model_rmsnorm->params.lnorm.axis, axis, sizeof(int) * axis_count);
2533 return (ccv_cnnp_model_t*)model_rmsnorm;
2534}
2535
2536static ccv_cnnp_model_t* _ccv_cnnp_rmsnorm_copy(const ccv_cnnp_model_t* const super, void* const context)
2537{
2538 const ccv_cnnp_model_rmsnorm_t* const self = (const ccv_cnnp_model_rmsnorm_t*)super;
2539 return ccv_cnnp_rmsnorm(self->params.rmsnorm.epsilon, self->params.rmsnorm.axis, self->params.rmsnorm.count, self->super.is_trainable, self->super.name);
2540}
2541
2542// MARK - Batched Matrix Mul Layer
2543
2544typedef struct {
2545 ccv_cnnp_model_t super;
2546 ccv_nnc_tensor_symbol_t output;
2547 int transpose_a[2];
2548 int transpose_b[2];
2549 int flags;
2550} ccv_cnnp_model_matmul_t;
2551
2552static void _ccv_cnnp_matmul_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2553{
2554 PRINT(CCV_CLI_VERBOSE, "[cnnp_matmul_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_matmul_build] -\n"); fflush(stdout); } } while
(0)
;
2555 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 2555, __extension__ __PRETTY_FUNCTION__); }))
;
2556 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2556, __extension__ __PRETTY_FUNCTION__
); }))
;
2557 ccv_cnnp_model_matmul_t* const self = (ccv_cnnp_model_matmul_t*)super;
2558 ccv_nnc_tensor_param_t a_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2559 ccv_nnc_tensor_param_t b_params = ccv_nnc_tensor_symbol_params(graph, inputs[1]);
2560 ccv_nnc_tensor_param_t output_params;
2561 ccv_nnc_cmd_t matmul = CMD_GEMM_FORWARD(self->transpose_a, self->transpose_b)ccv_nnc_cmd(CCV_NNC_GEMM_FORWARD, 0, ((ccv_nnc_cmd_param_t){.
size={.dim={1,1,1}},.blas={.a={1,1},.transpose_a={self->transpose_a
[0],self->transpose_a[1]},.transpose_b={self->transpose_b
[0],self->transpose_b[1]},}}), 0)
;
2562 matmul.info.blas.flags = self->flags;
2563 ccv_nnc_hint_tensor_auto(matmul, (ccv_nnc_tensor_param_t []){
2564 a_params,
2565 b_params,
2566 }, 2, ccv_nnc_no_hint, &output_params, 1);
2567 const ccv_nnc_tensor_symbol_t matmul_output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2568 ccv_nnc_graph_exec_symbol_new(graph, matmul, inputs, input_size, TENSOR_SYMBOL_LIST(matmul_output)(const ccv_nnc_tensor_symbol_t []){matmul_output}, (1 +1 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1
)
, "matmul");
2569 outputs[0] = matmul_output;
2570}
2571
2572static ccv_cnnp_model_t* _ccv_cnnp_matmul_copy(const ccv_cnnp_model_t* const super, void* const context);
2573
2574static const ccv_cnnp_model_vtab_t ccv_cnnp_matmul_isa = {
2575 .build = _ccv_cnnp_matmul_build,
2576 .copy = _ccv_cnnp_matmul_copy,
2577};
2578
2579ccv_cnnp_model_t* ccv_cnnp_matmul(const int transpose_a[2], const int transpose_b[2], const int flags, const char* const name)
2580{
2581 ccv_cnnp_model_matmul_t* const model_matmul = (ccv_cnnp_model_matmul_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_matmul_t));
2582 model_matmul->super.isa = &ccv_cnnp_matmul_isa;
2583 model_matmul->super.input_size = 2;
2584 model_matmul->super.outputs = &model_matmul->output;
2585 model_matmul->super.output_size = 1;
2586 model_matmul->transpose_a[0] = transpose_a[0];
2587 model_matmul->transpose_a[1] = transpose_a[1];
2588 model_matmul->transpose_b[0] = transpose_b[0];
2589 model_matmul->transpose_b[1] = transpose_b[1];
2590 model_matmul->flags = flags;
2591 ccv_cnnp_model_copy_name(&model_matmul->super, name);
2592 return (ccv_cnnp_model_t*)model_matmul;
2593}
2594
2595static ccv_cnnp_model_t* _ccv_cnnp_matmul_copy(const ccv_cnnp_model_t* const super, void* const context)
2596{
2597 const ccv_cnnp_model_matmul_t* const self = (const ccv_cnnp_model_matmul_t*)super;
2598 return ccv_cnnp_matmul(self->transpose_a, self->transpose_b, self->flags, self->super.name);
2599}
2600
2601// MARK - Dropout Layer
2602
2603typedef struct {
2604 ccv_cnnp_model_t super;
2605 ccv_nnc_tensor_symbol_t output;
2606 ccv_nnc_graph_exec_symbol_t dropout;
2607 float p;
2608 int entirety;
2609} ccv_cnnp_model_dropout_t;
2610
2611static void _ccv_cnnp_dropout_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2612{
2613 PRINT(CCV_CLI_VERBOSE, "[cnnp_dropout_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_dropout_build] -\n"); fflush(stdout); } } while
(0)
;
2614 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2614, __extension__ __PRETTY_FUNCTION__); }))
;
2615 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2615, __extension__ __PRETTY_FUNCTION__
); }))
;
2616 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2617 ccv_nnc_tensor_param_t output_params[2];
2618 ccv_cnnp_model_dropout_t* const self = (ccv_cnnp_model_dropout_t*)super;
2619 const ccv_nnc_cmd_t dropout = CMD_DROPOUT_FORWARD(self->p, self->entirety)ccv_nnc_cmd(CCV_NNC_DROPOUT_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.dropout={.p=self->p,.entirety=self
->entirety}}), 0)
;
2620 ccv_nnc_hint_tensor_auto(dropout, (ccv_nnc_tensor_param_t []){
2621 params,
2622 }, 1, ccv_nnc_no_hint, output_params, 2);
2623 const ccv_nnc_tensor_symbol_t dropout_output = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
2624 const ccv_nnc_tensor_symbol_t mask = ccv_nnc_tensor_symbol_new(graph, output_params[1], "mask");
2625 self->dropout = ccv_nnc_graph_exec_symbol_new(graph, dropout, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(dropout_output, mask)(const ccv_nnc_tensor_symbol_t []){dropout_output, mask}, (1 +
1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 -1)
, "dropout");
2626 outputs[0] = dropout_output;
2627}
2628
2629static void _ccv_cnnp_dropout_set_is_test(ccv_cnnp_model_t* const super, const int is_test, const ccv_cnnp_cmd_updater_f updater, void* const context)
2630{
2631 ccv_cnnp_model_dropout_t* const self = (ccv_cnnp_model_dropout_t*)super;
2632 if (self->dropout.graph)
2633 {
2634 if (is_test)
2635 // During test, the dropout is not applied. Data transfer is perfect because if these are the same tensor, it will skip.
2636 updater(context, self->dropout, CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint);
2637 else
2638 updater(context, self->dropout, CMD_DROPOUT_FORWARD(self->p, self->entirety)ccv_nnc_cmd(CCV_NNC_DROPOUT_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.dropout={.p=self->p,.entirety=self
->entirety}}), 0)
, ccv_nnc_no_hint);
2639 }
2640}
2641
2642static ccv_cnnp_model_t* _ccv_cnnp_dropout_copy(const ccv_cnnp_model_t* const super, void* const context);
2643
2644static const ccv_cnnp_model_vtab_t ccv_cnnp_dropout_isa = {
2645 .build = _ccv_cnnp_dropout_build,
2646 .set_is_test = _ccv_cnnp_dropout_set_is_test,
2647 .copy = _ccv_cnnp_dropout_copy,
2648};
2649
2650ccv_cnnp_model_t* ccv_cnnp_dropout(const float p, const int entirety, const char* const name)
2651{
2652 ccv_cnnp_model_dropout_t* const model_dropout = (ccv_cnnp_model_dropout_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_dropout_t));
2653 model_dropout->super.isa = &ccv_cnnp_dropout_isa;
2654 model_dropout->super.input_size = 1;
2655 model_dropout->super.outputs = &model_dropout->output;
2656 model_dropout->super.output_size = 1;
2657 model_dropout->p = p;
2658 model_dropout->entirety = entirety;
2659 ccv_cnnp_model_copy_name(&model_dropout->super, name);
2660 return (ccv_cnnp_model_t*)model_dropout;
2661}
2662
2663static ccv_cnnp_model_t* _ccv_cnnp_dropout_copy(const ccv_cnnp_model_t* const super, void* const context)
2664{
2665 const ccv_cnnp_model_dropout_t* const self = (const ccv_cnnp_model_dropout_t*)super;
2666 return ccv_cnnp_dropout(self->p, self->entirety, self->super.name);
2667}
2668
2669// MARK - Masked Fill Layer
2670
2671typedef struct {
2672 ccv_cnnp_model_t super;
2673 ccv_nnc_tensor_symbol_t output;
2674 float eq;
2675 float fill;
2676} ccv_cnnp_model_masked_fill_t;
2677
2678static void _ccv_cnnp_masked_fill_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2679{
2680 PRINT(CCV_CLI_VERBOSE, "[cnnp_masked_fill_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_masked_fill_build] -\n"); fflush(stdout); } }
while (0)
;
2681 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 2681, __extension__ __PRETTY_FUNCTION__); }))
;
2682 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2682, __extension__ __PRETTY_FUNCTION__
); }))
;
2683 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2684 ccv_cnnp_model_masked_fill_t* const self = (ccv_cnnp_model_masked_fill_t*)super;
2685 const ccv_nnc_tensor_symbol_t masked_fill_output = ccv_nnc_tensor_symbol_new(graph, params, 0);
2686 ccv_nnc_graph_exec_symbol_new(graph, CMD_MASKED_FILL_FORWARD(self->eq, self->fill)ccv_nnc_cmd(CCV_NNC_MASKED_FILL_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={self->eq, self->fill}
}}, 0)
, TENSOR_SYMBOL_LIST(inputs[0], inputs[1])(const ccv_nnc_tensor_symbol_t []){inputs[0], inputs[1]}, (1 +
1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 -1)
, TENSOR_SYMBOL_LIST(masked_fill_output)(const ccv_nnc_tensor_symbol_t []){masked_fill_output}, (1 +1
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 -1)
, "masked_fill");
2687 outputs[0] = masked_fill_output;
2688}
2689
2690static ccv_cnnp_model_t* _ccv_cnnp_masked_fill_copy(const ccv_cnnp_model_t* const super, void* const context);
2691
2692static const ccv_cnnp_model_vtab_t ccv_cnnp_masked_fill_isa = {
2693 .build = _ccv_cnnp_masked_fill_build,
2694 .copy = _ccv_cnnp_masked_fill_copy,
2695};
2696
2697ccv_cnnp_model_t* ccv_cnnp_masked_fill(const float eq, const float fill, const char* const name)
2698{
2699 ccv_cnnp_model_masked_fill_t* const model_masked_fill = (ccv_cnnp_model_masked_fill_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_masked_fill_t));
2700 model_masked_fill->super.isa = &ccv_cnnp_masked_fill_isa;
2701 model_masked_fill->super.input_size = 2;
2702 model_masked_fill->super.outputs = &model_masked_fill->output;
2703 model_masked_fill->super.output_size = 1;
2704 model_masked_fill->eq = eq;
2705 model_masked_fill->fill = fill;
2706 ccv_cnnp_model_copy_name(&model_masked_fill->super, name);
2707 return (ccv_cnnp_model_t*)model_masked_fill;
2708}
2709
2710static ccv_cnnp_model_t* _ccv_cnnp_masked_fill_copy(const ccv_cnnp_model_t* const super, void* const context)
2711{
2712 const ccv_cnnp_model_masked_fill_t* const self = (const ccv_cnnp_model_masked_fill_t*)super;
2713 return ccv_cnnp_masked_fill(self->eq, self->fill, self->super.name);
2714}
2715
2716// MARK - Index Select Layer
2717
2718typedef struct {
2719 ccv_cnnp_model_t super;
2720 ccv_nnc_tensor_symbol_t output;
2721} ccv_cnnp_model_index_select_t;
2722
2723static void _ccv_cnnp_index_select_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2724{
2725 PRINT(CCV_CLI_VERBOSE, "[cnnp_index_select_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_index_select_build] -\n"); fflush(stdout); }
} while (0)
;
2726 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 2726, __extension__ __PRETTY_FUNCTION__); }))
;
2727 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2727, __extension__ __PRETTY_FUNCTION__
); }))
;
2728 const ccv_nnc_tensor_param_t vocab_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2729 const ccv_nnc_tensor_param_t index_params = ccv_nnc_tensor_symbol_params(graph, inputs[1]);
2730 ccv_nnc_tensor_param_t output_params;
2731 const ccv_nnc_cmd_t index_select = CMD_INDEX_SELECT_FORWARD()ccv_nnc_cmd(CCV_NNC_INDEX_SELECT_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
;
2732 ccv_nnc_hint_tensor_auto(index_select, (ccv_nnc_tensor_param_t []){
2733 vocab_params,
2734 index_params,
2735 }, 2, ccv_nnc_no_hint, &output_params, 1);
2736 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2737 ccv_nnc_graph_exec_symbol_new(graph, index_select, TENSOR_SYMBOL_LIST(inputs[0], inputs[1])(const ccv_nnc_tensor_symbol_t []){inputs[0], inputs[1]}, (1 +
1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "index_select");
2738 outputs[0] = output;
2739}
2740
2741static ccv_cnnp_model_t* _ccv_cnnp_index_select_copy(const ccv_cnnp_model_t* const super, void* const context);
2742
2743static const ccv_cnnp_model_vtab_t ccv_cnnp_index_select_isa = {
2744 .build = _ccv_cnnp_index_select_build,
2745 .copy = _ccv_cnnp_index_select_copy,
2746};
2747
2748ccv_cnnp_model_t* ccv_cnnp_index_select(const char* const name)
2749{
2750 ccv_cnnp_model_index_select_t* const model_index_select = (ccv_cnnp_model_index_select_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_index_select_t));
2751 model_index_select->super.isa = &ccv_cnnp_index_select_isa;
2752 model_index_select->super.input_size = 2;
2753 model_index_select->super.outputs = &model_index_select->output;
2754 model_index_select->super.output_size = 1;
2755 ccv_cnnp_model_copy_name(&model_index_select->super, name);
2756 return (ccv_cnnp_model_t*)model_index_select;
2757}
2758
2759static ccv_cnnp_model_t* _ccv_cnnp_index_select_copy(const ccv_cnnp_model_t* const super, void* const context)
2760{
2761 ccv_cnnp_model_index_select_t* const self = (ccv_cnnp_model_index_select_t*)super;
2762 return ccv_cnnp_index_select(self->super.name);
2763}
2764
2765// MARK - Embedding Layer
2766
2767typedef struct {
2768 ccv_cnnp_model_t super;
2769 ccv_nnc_tensor_symbol_t output;
2770 ccv_nnc_tensor_symbol_t vocab;
2771 int datatype;
2772 int vocab_size;
2773 int embed_size;
2774} ccv_cnnp_model_embedding_t;
2775
2776static void _ccv_cnnp_embedding_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2777{
2778 ccv_cnnp_model_embedding_t* const self = (ccv_cnnp_model_embedding_t*)super;
2779 PRINT(CCV_CLI_VERBOSE, "[cnnp_embedding_build] vocab_size: %d, embed_size: %d\n", self->vocab_size, self->embed_size)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_embedding_build] vocab_size: %d, embed_size: %d\n"
, self->vocab_size, self->embed_size); fflush(stdout); }
} while (0)
;
2780 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2780, __extension__ __PRETTY_FUNCTION__); }))
;
2781 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2781, __extension__ __PRETTY_FUNCTION__
); }))
;
2782 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2783 ccv_nnc_tensor_param_t vocab_params = params;
2784 memset(vocab_params.dim, 0, sizeof(vocab_params.dim));
2785 vocab_params.datatype = self->datatype;
2786 vocab_params.dim[0] = self->vocab_size;
2787 vocab_params.dim[1] = self->embed_size;
2788 if (!self->vocab.graph)
2789 self->vocab = ccv_nnc_tensor_symbol_new(graph, vocab_params, "vocab");
2790 assert(self->vocab.graph == graph)((void) sizeof ((self->vocab.graph == graph) ? 1 : 0), __extension__
({ if (self->vocab.graph == graph) ; else __assert_fail (
"self->vocab.graph == graph", "ccv_cnnp_model_addons.c", 2790
, __extension__ __PRETTY_FUNCTION__); }))
;
2791 ccv_nnc_tensor_param_t output_params;
2792 const ccv_nnc_cmd_t embedding = CMD_INDEX_SELECT_FORWARD()ccv_nnc_cmd(CCV_NNC_INDEX_SELECT_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
;
2793 ccv_nnc_hint_tensor_auto(embedding, (ccv_nnc_tensor_param_t []){
2794 vocab_params,
2795 params,
2796 }, 2, ccv_nnc_no_hint, &output_params, 1);
2797 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2798 ccv_nnc_graph_exec_symbol_new(graph, embedding, TENSOR_SYMBOL_LIST(self->vocab, inputs[0])(const ccv_nnc_tensor_symbol_t []){self->vocab, inputs[0]}
, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "embedding");
2799 outputs[0] = output;
2800}
2801
2802static void _ccv_cnnp_embedding_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
2803{
2804 ccv_cnnp_model_embedding_t* const self = (ccv_cnnp_model_embedding_t*)super;
2805 const float std = sqrtf(2) / sqrtf(self->vocab_size + self->embed_size);
2806 const float bound = sqrtf(3) * std;
2807 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-bound, bound)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-bound, bound}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->vocab);
2808}
2809
2810static void _ccv_cnnp_embedding_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
2811{
2812 ccv_cnnp_model_embedding_t* const self = (ccv_cnnp_model_embedding_t*)super;
2813 add_to_array(parameters, self->vocab, is_trainable);
2814}
2815
2816static ccv_cnnp_model_t* _ccv_cnnp_embedding_copy(const ccv_cnnp_model_t* const super, void* const context);
2817
2818static const ccv_cnnp_model_vtab_t ccv_cnnp_embedding_isa = {
2819 .build = _ccv_cnnp_embedding_build,
2820 .init_states = _ccv_cnnp_embedding_init_states,
2821 .add_to_parameter = _ccv_cnnp_embedding_add_to_parameter,
2822 .copy = _ccv_cnnp_embedding_copy,
2823};
2824
2825ccv_cnnp_model_t* ccv_cnnp_embedding(const int datatype, const int vocab_size, const int embed_size, const int is_trainable, const char* const name)
2826{
2827 ccv_cnnp_model_embedding_t* const model_embedding = (ccv_cnnp_model_embedding_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_embedding_t));
2828 model_embedding->super.isa = &ccv_cnnp_embedding_isa;
2829 model_embedding->super.input_size = 1;
2830 model_embedding->super.outputs = &model_embedding->output;
2831 model_embedding->super.output_size = 1;
2832 model_embedding->super.is_trainable = is_trainable;
2833 ccv_cnnp_model_copy_name(&model_embedding->super, name);
2834 model_embedding->vocab.d = CCV_NNC_NO_TENSOR_SYMBOL;
2835 model_embedding->vocab.graph = 0;
2836 assert(datatype == CCV_32F || datatype == CCV_16F)((void) sizeof ((datatype == CCV_32F || datatype == CCV_16F) ?
1 : 0), __extension__ ({ if (datatype == CCV_32F || datatype
== CCV_16F) ; else __assert_fail ("datatype == CCV_32F || datatype == CCV_16F"
, "ccv_cnnp_model_addons.c", 2836, __extension__ __PRETTY_FUNCTION__
); }))
;
2837 model_embedding->datatype = datatype;
2838 assert(vocab_size > 0)((void) sizeof ((vocab_size > 0) ? 1 : 0), __extension__ (
{ if (vocab_size > 0) ; else __assert_fail ("vocab_size > 0"
, "ccv_cnnp_model_addons.c", 2838, __extension__ __PRETTY_FUNCTION__
); }))
;
2839 model_embedding->vocab_size = vocab_size;
2840 assert(embed_size > 0)((void) sizeof ((embed_size > 0) ? 1 : 0), __extension__ (
{ if (embed_size > 0) ; else __assert_fail ("embed_size > 0"
, "ccv_cnnp_model_addons.c", 2840, __extension__ __PRETTY_FUNCTION__
); }))
;
2841 model_embedding->embed_size = embed_size;
2842 return (ccv_cnnp_model_t*)model_embedding;
2843}
2844
2845static ccv_cnnp_model_t* _ccv_cnnp_embedding_copy(const ccv_cnnp_model_t* const super, void* const context)
2846{
2847 ccv_cnnp_model_embedding_t* const self = (ccv_cnnp_model_embedding_t*)super;
2848 return ccv_cnnp_embedding(self->datatype, self->vocab_size, self->embed_size, self->super.is_trainable, self->super.name);
2849}
2850
2851// MARK - Pool Layers
2852
2853typedef struct {
2854 ccv_cnnp_model_t super;
2855 ccv_nnc_tensor_symbol_t output;
2856 int type;
2857 float width_scale;
2858 float height_scale;
2859 int align_corners;
2860} ccv_cnnp_model_upsample_t;
2861
2862static void _ccv_cnnp_upsample_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2863{
2864 PRINT(CCV_CLI_VERBOSE, "[cnnp_upsample_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_upsample_build] -\n"); fflush(stdout); } } while
(0)
;
2865 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2865, __extension__ __PRETTY_FUNCTION__); }))
;
2866 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2866, __extension__ __PRETTY_FUNCTION__
); }))
;
2867 ccv_cnnp_model_upsample_t* const self = (ccv_cnnp_model_upsample_t*)super;
2868 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2869 ccv_nnc_cmd_t cmd = CMD_UPSAMPLE_FORWARD(self->type, self->width_scale, self->height_scale, self->align_corners)ccv_nnc_cmd(CCV_NNC_UPSAMPLE_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.upsample={.type=self->type,.width_scale
=self->width_scale,.height_scale=self->height_scale,.align_corners
=self->align_corners}}), 0)
;
2870 ccv_nnc_tensor_param_t output_params;
2871 ccv_nnc_hint_tensor_auto(cmd, &params, 1, ccv_nnc_no_hint, &output_params, 1);
2872 const ccv_nnc_tensor_symbol_t output = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2873 ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0])(const ccv_nnc_tensor_symbol_t []){inputs[0]}, (1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output)(const ccv_nnc_tensor_symbol_t []){output}, (1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, "upsample");
2874 outputs[0] = output;
2875}
2876
2877static ccv_cnnp_model_t* _ccv_cnnp_upsample_copy(const ccv_cnnp_model_t* const super, void* const context);
2878
2879static const ccv_cnnp_model_vtab_t ccv_cnnp_upsample_isa = {
2880 .build = _ccv_cnnp_upsample_build,
2881 .copy = _ccv_cnnp_upsample_copy,
2882};
2883
2884ccv_cnnp_model_t* ccv_cnnp_upsample(const int type, const float width_scale, const float height_scale, const int align_corners, const char* const name)
2885{
2886 ccv_cnnp_model_upsample_t* const model_upsample = (ccv_cnnp_model_upsample_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_upsample_t));
2887 model_upsample->super.isa = &ccv_cnnp_upsample_isa;
2888 model_upsample->super.input_size = 1;
2889 model_upsample->super.outputs = &model_upsample->output;
2890 model_upsample->super.output_size = 1;
2891 ccv_cnnp_model_copy_name(&model_upsample->super, name);
2892 assert(type == CCV_NNC_UPSAMPLE_NEAREST || type == CCV_NNC_UPSAMPLE_BILINEAR)((void) sizeof ((type == CCV_NNC_UPSAMPLE_NEAREST || type == CCV_NNC_UPSAMPLE_BILINEAR
) ? 1 : 0), __extension__ ({ if (type == CCV_NNC_UPSAMPLE_NEAREST
|| type == CCV_NNC_UPSAMPLE_BILINEAR) ; else __assert_fail (
"type == CCV_NNC_UPSAMPLE_NEAREST || type == CCV_NNC_UPSAMPLE_BILINEAR"
, "ccv_cnnp_model_addons.c", 2892, __extension__ __PRETTY_FUNCTION__
); }))
;
2893 model_upsample->type = type;
2894 model_upsample->width_scale = width_scale;
2895 model_upsample->height_scale = height_scale;
2896 model_upsample->align_corners = align_corners;
2897 return (ccv_cnnp_model_t*)model_upsample;
2898}
2899
2900static ccv_cnnp_model_t* _ccv_cnnp_upsample_copy(const ccv_cnnp_model_t* const super, void* const context)
2901{
2902 const ccv_cnnp_model_upsample_t* const self = (const ccv_cnnp_model_upsample_t*)super;
2903 return ccv_cnnp_upsample(self->type, self->width_scale, self->height_scale, self->align_corners, self->super.name);
2904}
2905
2906// MARK - Reduce Sum Layer
2907
2908typedef struct {
2909 ccv_cnnp_model_t super;
2910 int axis[CCV_NNC_MAX_DIM_ALLOC(12)];
2911 int count;
2912 ccv_nnc_tensor_symbol_t output;
2913} ccv_cnnp_model_reduce_sum_t;
2914
2915static void _ccv_cnnp_reduce_sum_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2916{
2917 PRINT(CCV_CLI_VERBOSE, "[cnnp_reduce_sum_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reduce_sum_build] -\n"); fflush(stdout); } }
while (0)
;
2918 const ccv_cnnp_model_reduce_sum_t* const self = (const ccv_cnnp_model_reduce_sum_t*)super;
2919 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2919, __extension__ __PRETTY_FUNCTION__); }))
;
2920 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2920, __extension__ __PRETTY_FUNCTION__
); }))
;
2921 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2922 ccv_nnc_tensor_param_t output_params;
2923 ccv_nnc_cmd_t reduce_sum = CMD_REDUCE_SUM_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_SUM_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
;
2924 int i;
2925 for (i = 0; i < self->count; i++)
2926 reduce_sum.info.reduce.axis[i] = self->axis[i];
2927 reduce_sum.info.reduce.count = self->count;
2928 ccv_nnc_hint_tensor_auto(reduce_sum, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
2929 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2930 ccv_nnc_graph_exec_symbol_new(graph, reduce_sum, inputs, input_size, outputs, output_size, "reduce_sum");
2931}
2932
2933static ccv_cnnp_model_t* _ccv_cnnp_reduce_sum_copy(const ccv_cnnp_model_t* const self, void* const context);
2934
2935static const ccv_cnnp_model_vtab_t ccv_cnnp_reduce_sum_isa = {
2936 .build = _ccv_cnnp_reduce_sum_build,
2937 .copy = _ccv_cnnp_reduce_sum_copy,
2938};
2939
2940ccv_cnnp_model_t* ccv_cnnp_reduce_sum(const int* const axis, const int axis_count, const char* const name)
2941{
2942 ccv_cnnp_model_reduce_sum_t* const model_reduce_sum = (ccv_cnnp_model_reduce_sum_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_reduce_sum_t));
2943 model_reduce_sum->super.isa = &ccv_cnnp_reduce_sum_isa;
2944 model_reduce_sum->super.input_size = 1;
2945 model_reduce_sum->super.outputs = &model_reduce_sum->output;
2946 model_reduce_sum->super.output_size = 1;
2947 ccv_cnnp_model_copy_name(&model_reduce_sum->super, name);
2948 assert(axis_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis_count <= (12)) ? 1 : 0), __extension__
({ if (axis_count <= (12)) ; else __assert_fail ("axis_count <= CCV_NNC_MAX_DIM_ALLOC"
, "ccv_cnnp_model_addons.c", 2948, __extension__ __PRETTY_FUNCTION__
); }))
;
2949 int i;
2950 for (i = 0; i < axis_count; i++)
2951 model_reduce_sum->axis[i] = axis[i];
2952 model_reduce_sum->count = axis_count;
2953 return (ccv_cnnp_model_t*)model_reduce_sum;
2954}
2955
2956static ccv_cnnp_model_t* _ccv_cnnp_reduce_sum_copy(const ccv_cnnp_model_t* const super, void* const context)
2957{
2958 const ccv_cnnp_model_reduce_sum_t* const self = (const ccv_cnnp_model_reduce_sum_t*)super;
2959 return ccv_cnnp_reduce_sum(self->axis, self->count, self->super.name);
2960}
2961
2962// MARK - Reduce Mean Layer
2963
2964typedef struct {
2965 ccv_cnnp_model_t super;
2966 int axis[CCV_NNC_MAX_DIM_ALLOC(12)];
2967 int count;
2968 ccv_nnc_tensor_symbol_t output;
2969} ccv_cnnp_model_reduce_mean_t;
2970
2971static void _ccv_cnnp_reduce_mean_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
2972{
2973 PRINT(CCV_CLI_VERBOSE, "[cnnp_reduce_mean_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reduce_mean_build] -\n"); fflush(stdout); } }
while (0)
;
2974 const ccv_cnnp_model_reduce_mean_t* const self = (const ccv_cnnp_model_reduce_mean_t*)super;
2975 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 2975, __extension__ __PRETTY_FUNCTION__); }))
;
2976 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 2976, __extension__ __PRETTY_FUNCTION__
); }))
;
2977 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
2978 ccv_nnc_tensor_param_t output_params;
2979 ccv_nnc_cmd_t reduce_mean = CMD_REDUCE_MEAN_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_MEAN_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
;
2980 int i;
2981 for (i = 0; i < self->count; i++)
2982 reduce_mean.info.reduce.axis[i] = self->axis[i];
2983 reduce_mean.info.reduce.count = self->count;
2984 ccv_nnc_hint_tensor_auto(reduce_mean, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
2985 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
2986 ccv_nnc_graph_exec_symbol_new(graph, reduce_mean, inputs, input_size, outputs, output_size, "reduce_mean");
2987}
2988
2989static ccv_cnnp_model_t* _ccv_cnnp_reduce_mean_copy(const ccv_cnnp_model_t* const self, void* const context);
2990
2991static const ccv_cnnp_model_vtab_t ccv_cnnp_reduce_mean_isa = {
2992 .build = _ccv_cnnp_reduce_mean_build,
2993 .copy = _ccv_cnnp_reduce_mean_copy,
2994};
2995
2996ccv_cnnp_model_t* ccv_cnnp_reduce_mean(const int* const axis, const int axis_count, const char* const name)
2997{
2998 ccv_cnnp_model_reduce_mean_t* const model_reduce_mean = (ccv_cnnp_model_reduce_mean_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_reduce_mean_t));
2999 model_reduce_mean->super.isa = &ccv_cnnp_reduce_mean_isa;
3000 model_reduce_mean->super.input_size = 1;
3001 model_reduce_mean->super.outputs = &model_reduce_mean->output;
3002 model_reduce_mean->super.output_size = 1;
3003 ccv_cnnp_model_copy_name(&model_reduce_mean->super, name);
3004 assert(axis_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis_count <= (12)) ? 1 : 0), __extension__
({ if (axis_count <= (12)) ; else __assert_fail ("axis_count <= CCV_NNC_MAX_DIM_ALLOC"
, "ccv_cnnp_model_addons.c", 3004, __extension__ __PRETTY_FUNCTION__
); }))
;
3005 int i;
3006 for (i = 0; i < axis_count; i++)
3007 model_reduce_mean->axis[i] = axis[i];
3008 model_reduce_mean->count = axis_count;
3009 return (ccv_cnnp_model_t*)model_reduce_mean;
3010}
3011
3012static ccv_cnnp_model_t* _ccv_cnnp_reduce_mean_copy(const ccv_cnnp_model_t* const super, void* const context)
3013{
3014 const ccv_cnnp_model_reduce_mean_t* const self = (const ccv_cnnp_model_reduce_mean_t*)super;
3015 return ccv_cnnp_reduce_mean(self->axis, self->count, self->super.name);
3016}
3017
3018// MARK - Reduce Max Layer
3019
3020typedef struct {
3021 ccv_cnnp_model_t super;
3022 int axis[CCV_NNC_MAX_DIM_ALLOC(12)];
3023 int count;
3024 ccv_nnc_tensor_symbol_t output;
3025} ccv_cnnp_model_reduce_max_t;
3026
3027static void _ccv_cnnp_reduce_max_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3028{
3029 PRINT(CCV_CLI_VERBOSE, "[cnnp_reduce_max_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reduce_max_build] -\n"); fflush(stdout); } }
while (0)
;
3030 const ccv_cnnp_model_reduce_max_t* const self = (const ccv_cnnp_model_reduce_max_t*)super;
3031 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 3031, __extension__ __PRETTY_FUNCTION__); }))
;
3032 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3032, __extension__ __PRETTY_FUNCTION__
); }))
;
3033 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3034 ccv_nnc_tensor_param_t output_params;
3035 ccv_nnc_cmd_t reduce_max = CMD_REDUCE_MAX_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_MAX_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
;
3036 int i;
3037 for (i = 0; i < self->count; i++)
3038 reduce_max.info.reduce.axis[i] = self->axis[i];
3039 reduce_max.info.reduce.count = self->count;
3040 ccv_nnc_hint_tensor_auto(reduce_max, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
3041 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3042 ccv_nnc_graph_exec_symbol_new(graph, reduce_max, inputs, input_size, outputs, output_size, "reduce_max");
3043}
3044
3045static ccv_cnnp_model_t* _ccv_cnnp_reduce_max_copy(const ccv_cnnp_model_t* const self, void* const context);
3046
3047static const ccv_cnnp_model_vtab_t ccv_cnnp_reduce_max_isa = {
3048 .build = _ccv_cnnp_reduce_max_build,
3049 .copy = _ccv_cnnp_reduce_max_copy,
3050};
3051
3052ccv_cnnp_model_t* ccv_cnnp_reduce_max(const int* const axis, const int axis_count, const char* const name)
3053{
3054 ccv_cnnp_model_reduce_max_t* const model_reduce_max = (ccv_cnnp_model_reduce_max_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_reduce_max_t));
3055 model_reduce_max->super.isa = &ccv_cnnp_reduce_max_isa;
3056 model_reduce_max->super.input_size = 1;
3057 model_reduce_max->super.outputs = &model_reduce_max->output;
3058 model_reduce_max->super.output_size = 1;
3059 ccv_cnnp_model_copy_name(&model_reduce_max->super, name);
3060 assert(axis_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis_count <= (12)) ? 1 : 0), __extension__
({ if (axis_count <= (12)) ; else __assert_fail ("axis_count <= CCV_NNC_MAX_DIM_ALLOC"
, "ccv_cnnp_model_addons.c", 3060, __extension__ __PRETTY_FUNCTION__
); }))
;
3061 int i;
3062 for (i = 0; i < axis_count; i++)
3063 model_reduce_max->axis[i] = axis[i];
3064 model_reduce_max->count = axis_count;
3065 return (ccv_cnnp_model_t*)model_reduce_max;
3066}
3067
3068static ccv_cnnp_model_t* _ccv_cnnp_reduce_max_copy(const ccv_cnnp_model_t* const super, void* const context)
3069{
3070 const ccv_cnnp_model_reduce_max_t* const self = (const ccv_cnnp_model_reduce_max_t*)super;
3071 return ccv_cnnp_reduce_max(self->axis, self->count, self->super.name);
3072}
3073
3074// MARK - Reduce Min Layer
3075
3076typedef struct {
3077 ccv_cnnp_model_t super;
3078 int axis[CCV_NNC_MAX_DIM_ALLOC(12)];
3079 int count;
3080 ccv_nnc_tensor_symbol_t output;
3081} ccv_cnnp_model_reduce_min_t;
3082
3083static void _ccv_cnnp_reduce_min_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3084{
3085 PRINT(CCV_CLI_VERBOSE, "[cnnp_reduce_min_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reduce_min_build] -\n"); fflush(stdout); } }
while (0)
;
3086 const ccv_cnnp_model_reduce_min_t* const self = (const ccv_cnnp_model_reduce_min_t*)super;
3087 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 3087, __extension__ __PRETTY_FUNCTION__); }))
;
3088 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3088, __extension__ __PRETTY_FUNCTION__
); }))
;
3089 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3090 ccv_nnc_tensor_param_t output_params;
3091 ccv_nnc_cmd_t reduce_min = CMD_REDUCE_MIN_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_MIN_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
;
3092 int i;
3093 for (i = 0; i < self->count; i++)
3094 reduce_min.info.reduce.axis[i] = self->axis[i];
3095 reduce_min.info.reduce.count = self->count;
3096 ccv_nnc_hint_tensor_auto(reduce_min, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
3097 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3098 ccv_nnc_graph_exec_symbol_new(graph, reduce_min, inputs, input_size, outputs, output_size, "reduce_min");
3099}
3100
3101static ccv_cnnp_model_t* _ccv_cnnp_reduce_min_copy(const ccv_cnnp_model_t* const self, void* const context);
3102
3103static const ccv_cnnp_model_vtab_t ccv_cnnp_reduce_min_isa = {
3104 .build = _ccv_cnnp_reduce_min_build,
3105 .copy = _ccv_cnnp_reduce_min_copy,
3106};
3107
3108ccv_cnnp_model_t* ccv_cnnp_reduce_min(const int* const axis, const int axis_count, const char* const name)
3109{
3110 ccv_cnnp_model_reduce_min_t* const model_reduce_min = (ccv_cnnp_model_reduce_min_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_reduce_min_t));
3111 model_reduce_min->super.isa = &ccv_cnnp_reduce_min_isa;
3112 model_reduce_min->super.input_size = 1;
3113 model_reduce_min->super.outputs = &model_reduce_min->output;
3114 model_reduce_min->super.output_size = 1;
3115 ccv_cnnp_model_copy_name(&model_reduce_min->super, name);
3116 assert(axis_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis_count <= (12)) ? 1 : 0), __extension__
({ if (axis_count <= (12)) ; else __assert_fail ("axis_count <= CCV_NNC_MAX_DIM_ALLOC"
, "ccv_cnnp_model_addons.c", 3116, __extension__ __PRETTY_FUNCTION__
); }))
;
3117 int i;
3118 for (i = 0; i < axis_count; i++)
3119 model_reduce_min->axis[i] = axis[i];
3120 model_reduce_min->count = axis_count;
3121 return (ccv_cnnp_model_t*)model_reduce_min;
3122}
3123
3124static ccv_cnnp_model_t* _ccv_cnnp_reduce_min_copy(const ccv_cnnp_model_t* const super, void* const context)
3125{
3126 const ccv_cnnp_model_reduce_min_t* const self = (const ccv_cnnp_model_reduce_min_t*)super;
3127 return ccv_cnnp_reduce_min(self->axis, self->count, self->super.name);
3128}
3129
3130// MARK - Reduce Norm2 Layer
3131
3132typedef struct {
3133 ccv_cnnp_model_t super;
3134 int axis[CCV_NNC_MAX_DIM_ALLOC(12)];
3135 int count;
3136 ccv_nnc_tensor_symbol_t output;
3137} ccv_cnnp_model_reduce_norm2_t;
3138
3139static void _ccv_cnnp_reduce_norm2_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3140{
3141 const ccv_cnnp_model_reduce_norm2_t* const self = (const ccv_cnnp_model_reduce_norm2_t*)super;
3142 PRINT(CCV_CLI_VERBOSE, "[cnnp_reduce_norm2_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_reduce_norm2_build] -\n"); fflush(stdout); }
} while (0)
;
3143 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 3143, __extension__ __PRETTY_FUNCTION__); }))
;
3144 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3144, __extension__ __PRETTY_FUNCTION__
); }))
;
3145 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3146 ccv_nnc_tensor_param_t output_params;
3147 ccv_nnc_cmd_t reduce_norm2 = CMD_REDUCE_NORM2_FORWARD()ccv_nnc_cmd(CCV_NNC_REDUCE_NORM2_FORWARD, 0, ((ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}}
), 0)
;
3148 int i;
3149 for (i = 0; i < self->count; i++)
3150 reduce_norm2.info.reduce.axis[i] = self->axis[i];
3151 reduce_norm2.info.reduce.count = self->count;
3152 ccv_nnc_hint_tensor_auto(reduce_norm2, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
3153 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3154 ccv_nnc_graph_exec_symbol_new(graph, reduce_norm2, inputs, input_size, outputs, output_size, "reduce_norm2");
3155}
3156
3157static ccv_cnnp_model_t* _ccv_cnnp_reduce_norm2_copy(const ccv_cnnp_model_t* const self, void* const context);
3158
3159static const ccv_cnnp_model_vtab_t ccv_cnnp_reduce_norm2_isa = {
3160 .build = _ccv_cnnp_reduce_norm2_build,
3161 .copy = _ccv_cnnp_reduce_norm2_copy,
3162};
3163
3164ccv_cnnp_model_t* ccv_cnnp_reduce_norm2(const int* const axis, const int axis_count, const char* const name)
3165{
3166 ccv_cnnp_model_reduce_norm2_t* const model_reduce_norm2 = (ccv_cnnp_model_reduce_norm2_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_reduce_norm2_t));
3167 model_reduce_norm2->super.isa = &ccv_cnnp_reduce_norm2_isa;
3168 model_reduce_norm2->super.input_size = 1;
3169 model_reduce_norm2->super.outputs = &model_reduce_norm2->output;
3170 model_reduce_norm2->super.output_size = 1;
3171 ccv_cnnp_model_copy_name(&model_reduce_norm2->super, name);
3172 assert(axis_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis_count <= (12)) ? 1 : 0), __extension__
({ if (axis_count <= (12)) ; else __assert_fail ("axis_count <= CCV_NNC_MAX_DIM_ALLOC"
, "ccv_cnnp_model_addons.c", 3172, __extension__ __PRETTY_FUNCTION__
); }))
;
3173 int i;
3174 for (i = 0; i < axis_count; i++)
3175 model_reduce_norm2->axis[i] = axis[i];
3176 model_reduce_norm2->count = axis_count;
3177 return (ccv_cnnp_model_t*)model_reduce_norm2;
3178}
3179
3180static ccv_cnnp_model_t* _ccv_cnnp_reduce_norm2_copy(const ccv_cnnp_model_t* const super, void* const context)
3181{
3182 const ccv_cnnp_model_reduce_norm2_t* const self = (const ccv_cnnp_model_reduce_norm2_t*)super;
3183 return ccv_cnnp_reduce_norm2(self->axis, self->count, self->super.name);
3184}
3185
3186// MARK - Argmax Layer
3187
3188typedef struct {
3189 ccv_cnnp_model_t super;
3190 int axis;
3191 ccv_nnc_tensor_symbol_t output;
3192} ccv_cnnp_model_argmax_t;
3193
3194static void _ccv_cnnp_argmax_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3195{
3196 const ccv_cnnp_model_argmax_t* const self = (const ccv_cnnp_model_argmax_t*)super;
3197 PRINT(CCV_CLI_VERBOSE, "[cnnp_argmax_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_argmax_build] -\n"); fflush(stdout); } } while
(0)
;
3198 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 3198, __extension__ __PRETTY_FUNCTION__); }))
;
3199 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3199, __extension__ __PRETTY_FUNCTION__
); }))
;
3200 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3201 ccv_nnc_tensor_param_t output_params;
3202 ccv_nnc_cmd_t argmax = CMD_ARGMAX_FORWARD()ccv_nnc_cmd(CCV_NNC_ARGMAX_FORWARD, 0, ((ccv_nnc_cmd_param_t)
{.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}})
, 0)
;
3203 argmax.info.reduce.axis[0] = self->axis;
3204 argmax.info.reduce.count = 1;
3205 ccv_nnc_hint_tensor_auto(argmax, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
3206 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3207 ccv_nnc_graph_exec_symbol_new(graph, argmax, inputs, input_size, outputs, output_size, "argmax");
3208}
3209
3210static ccv_cnnp_model_t* _ccv_cnnp_argmax_copy(const ccv_cnnp_model_t* const self, void* const context);
3211
3212static const ccv_cnnp_model_vtab_t ccv_cnnp_argmax_isa = {
3213 .build = _ccv_cnnp_argmax_build,
3214 .copy = _ccv_cnnp_argmax_copy,
3215};
3216
3217ccv_cnnp_model_t* ccv_cnnp_argmax(const int axis, const char* const name)
3218{
3219 ccv_cnnp_model_argmax_t* const model_argmax = (ccv_cnnp_model_argmax_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_argmax_t));
3220 model_argmax->super.isa = &ccv_cnnp_argmax_isa;
3221 model_argmax->super.input_size = 1;
3222 model_argmax->super.outputs = &model_argmax->output;
3223 model_argmax->super.output_size = 1;
3224 ccv_cnnp_model_copy_name(&model_argmax->super, name);
3225 model_argmax->axis = axis;
3226 return (ccv_cnnp_model_t*)model_argmax;
3227}
3228
3229static ccv_cnnp_model_t* _ccv_cnnp_argmax_copy(const ccv_cnnp_model_t* const super, void* const context)
3230{
3231 const ccv_cnnp_model_argmax_t* const self = (const ccv_cnnp_model_argmax_t*)super;
3232 return ccv_cnnp_argmax(self->axis, self->super.name);
3233}
3234
3235// MARK - Argmin Layer
3236
3237typedef struct {
3238 ccv_cnnp_model_t super;
3239 int axis;
3240 ccv_nnc_tensor_symbol_t output;
3241} ccv_cnnp_model_argmin_t;
3242
3243static void _ccv_cnnp_argmin_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3244{
3245 const ccv_cnnp_model_argmin_t* const self = (const ccv_cnnp_model_argmin_t*)super;
3246 PRINT(CCV_CLI_VERBOSE, "[cnnp_argmin_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_argmin_build] -\n"); fflush(stdout); } } while
(0)
;
3247 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 3247, __extension__ __PRETTY_FUNCTION__); }))
;
3248 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3248, __extension__ __PRETTY_FUNCTION__
); }))
;
3249 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3250 ccv_nnc_tensor_param_t output_params;
3251 ccv_nnc_cmd_t argmin = CMD_ARGMIN_FORWARD()ccv_nnc_cmd(CCV_NNC_ARGMIN_FORWARD, 0, ((ccv_nnc_cmd_param_t)
{.size={.dim={1,1,1}},.reduce={.count=(1 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1),.axis={}}})
, 0)
;
3252 argmin.info.reduce.axis[0] = self->axis;
3253 argmin.info.reduce.count = 1;
3254 ccv_nnc_hint_tensor_auto(argmin, &input_params, 1, ccv_nnc_no_hint, &output_params, 1);
3255 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3256 ccv_nnc_graph_exec_symbol_new(graph, argmin, inputs, input_size, outputs, output_size, "argmin");
3257}
3258
3259static ccv_cnnp_model_t* _ccv_cnnp_argmin_copy(const ccv_cnnp_model_t* const self, void* const context);
3260
3261static const ccv_cnnp_model_vtab_t ccv_cnnp_argmin_isa = {
3262 .build = _ccv_cnnp_argmin_build,
3263 .copy = _ccv_cnnp_argmin_copy,
3264};
3265
3266ccv_cnnp_model_t* ccv_cnnp_argmin(const int axis, const char* const name)
3267{
3268 ccv_cnnp_model_argmin_t* const model_argmin = (ccv_cnnp_model_argmin_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_argmin_t));
3269 model_argmin->super.isa = &ccv_cnnp_argmin_isa;
3270 model_argmin->super.input_size = 1;
3271 model_argmin->super.outputs = &model_argmin->output;
3272 model_argmin->super.output_size = 1;
3273 ccv_cnnp_model_copy_name(&model_argmin->super, name);
3274 model_argmin->axis = axis;
3275 return (ccv_cnnp_model_t*)model_argmin;
3276}
3277
3278static ccv_cnnp_model_t* _ccv_cnnp_argmin_copy(const ccv_cnnp_model_t* const super, void* const context)
3279{
3280 const ccv_cnnp_model_argmin_t* const self = (const ccv_cnnp_model_argmin_t*)super;
3281 return ccv_cnnp_argmin(self->axis, self->super.name);
3282}
3283
3284// MARK - Min Layer
3285
3286typedef struct {
3287 ccv_cnnp_model_t super;
3288 ccv_nnc_tensor_symbol_t output;
3289} ccv_cnnp_model_min_t;
3290
3291static void _ccv_cnnp_min_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3292{
3293 PRINT(CCV_CLI_VERBOSE, "[cnnp_min_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_min_build] -\n"); fflush(stdout); } } while (
0)
;
3294 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 3294, __extension__ __PRETTY_FUNCTION__); }))
;
3295 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3295, __extension__ __PRETTY_FUNCTION__
); }))
;
3296 ccv_nnc_tensor_param_t input_params[2];
3297 int i;
3298 for (i = 0; i < 2; i++)
3299 input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
3300 ccv_nnc_tensor_param_t output_params;
3301 const ccv_nnc_cmd_t min = CMD_MIN_FORWARD()ccv_nnc_cmd(CCV_NNC_MIN_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}}}, 0)
;
3302 ccv_nnc_hint_tensor_auto(min, input_params, 2, ccv_nnc_no_hint, &output_params, 1);
3303 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3304 ccv_nnc_graph_exec_symbol_new(graph, min, inputs, input_size, outputs, output_size, "min");
3305}
3306
3307static ccv_cnnp_model_t* _ccv_cnnp_min_copy(const ccv_cnnp_model_t* const self, void* const context);
3308
3309static const ccv_cnnp_model_vtab_t ccv_cnnp_min_isa = {
3310 .build = _ccv_cnnp_min_build,
3311 .copy = _ccv_cnnp_min_copy,
3312};
3313
3314ccv_cnnp_model_t* ccv_cnnp_min(const char* const name)
3315{
3316 ccv_cnnp_model_min_t* const model_min = (ccv_cnnp_model_min_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_min_t));
3317 model_min->super.isa = &ccv_cnnp_min_isa;
3318 model_min->super.input_size = 2;
3319 model_min->super.outputs = &model_min->output;
3320 model_min->super.output_size = 1;
3321 ccv_cnnp_model_copy_name(&model_min->super, name);
3322 return (ccv_cnnp_model_t*)model_min;
3323}
3324
3325static ccv_cnnp_model_t* _ccv_cnnp_min_copy(const ccv_cnnp_model_t* const super, void* const context)
3326{
3327 const ccv_cnnp_model_min_t* const self = (const ccv_cnnp_model_min_t*)super;
3328 return ccv_cnnp_min(self->super.name);
3329}
3330
3331// MARK - Max Layer
3332
3333typedef struct {
3334 ccv_cnnp_model_t super;
3335 ccv_nnc_tensor_symbol_t output;
3336} ccv_cnnp_model_max_t;
3337
3338static void _ccv_cnnp_max_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3339{
3340 PRINT(CCV_CLI_VERBOSE, "[cnnp_max_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_max_build] -\n"); fflush(stdout); } } while (
0)
;
3341 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 3341, __extension__ __PRETTY_FUNCTION__); }))
;
3342 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3342, __extension__ __PRETTY_FUNCTION__
); }))
;
3343 ccv_nnc_tensor_param_t input_params[2];
3344 int i;
3345 for (i = 0; i < 2; i++)
3346 input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]);
3347 ccv_nnc_tensor_param_t output_params;
3348 const ccv_nnc_cmd_t max = CMD_MAX_FORWARD()ccv_nnc_cmd(CCV_NNC_MAX_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}}}, 0)
;
3349 ccv_nnc_hint_tensor_auto(max, input_params, 2, ccv_nnc_no_hint, &output_params, 1);
3350 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params, 0);
3351 ccv_nnc_graph_exec_symbol_new(graph, max, inputs, input_size, outputs, output_size, "max");
3352}
3353
3354static ccv_cnnp_model_t* _ccv_cnnp_max_copy(const ccv_cnnp_model_t* const self, void* const context);
3355
3356static const ccv_cnnp_model_vtab_t ccv_cnnp_max_isa = {
3357 .build = _ccv_cnnp_max_build,
3358 .copy = _ccv_cnnp_max_copy,
3359};
3360
3361ccv_cnnp_model_t* ccv_cnnp_max(const char* const name)
3362{
3363 ccv_cnnp_model_max_t* const model_max = (ccv_cnnp_model_max_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_max_t));
3364 model_max->super.isa = &ccv_cnnp_max_isa;
3365 model_max->super.input_size = 2;
3366 model_max->super.outputs = &model_max->output;
3367 model_max->super.output_size = 1;
3368 ccv_cnnp_model_copy_name(&model_max->super, name);
3369 return (ccv_cnnp_model_t*)model_max;
3370}
3371
3372static ccv_cnnp_model_t* _ccv_cnnp_max_copy(const ccv_cnnp_model_t* const super, void* const context)
3373{
3374 const ccv_cnnp_model_max_t* const self = (const ccv_cnnp_model_max_t*)super;
3375 return ccv_cnnp_max(self->super.name);
3376}
3377
3378// MARK - LSTM Layer
3379
3380typedef struct {
3381 ccv_cnnp_model_t super;
3382 int masked;
3383 ccv_nnc_tensor_symbol_t output;
3384 ccv_nnc_tensor_symbol_t weights;
3385 ccv_nnc_tensor_symbol_t reserves;
3386 ccv_nnc_cmd_param_t params;
3387 ccv_nnc_graph_exec_symbol_t lstm;
3388} ccv_cnnp_model_lstm_t;
3389
3390static int _ccv_cnnp_lstm_weight_dim(int bidirectional, int num_layers, int input_size, int hidden_size, int proj_size, int bias)
3391{
3392 const int D = !!bidirectional + 1;
3393 if (hidden_size == proj_size)
3394 return (num_layers * (bias ? 8 : 0) + (num_layers - 1) * (hidden_size * 4 * D + hidden_size * 4) + input_size * 4 + hidden_size * 4) * D;
3395 else
3396 return (num_layers * (bias ? 8 : 0) + (num_layers - 1) * (proj_size * 4 * D + proj_size * 4) + (proj_size * 4 + input_size * 4) + num_layers * proj_size) * D;
3397}
3398
3399static void _ccv_cnnp_lstm_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3400{
3401 ccv_cnnp_model_lstm_t* const self = (ccv_cnnp_model_lstm_t*)super;
3402 PRINT(CCV_CLI_VERBOSE, "[cnnp_lstm_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_lstm_build] -\n"); fflush(stdout); } } while
(0)
;
3403 assert(input_size == self->super.input_size)((void) sizeof ((input_size == self->super.input_size) ? 1
: 0), __extension__ ({ if (input_size == self->super.input_size
) ; else __assert_fail ("input_size == self->super.input_size"
, "ccv_cnnp_model_addons.c", 3403, __extension__ __PRETTY_FUNCTION__
); }))
;
3404 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3404, __extension__ __PRETTY_FUNCTION__
); }))
;
3405 const int proj_size = self->params.rnn.proj_size == 0 ? self->params.rnn.hidden_size : self->params.rnn.proj_size;
3406 ccv_nnc_tensor_param_t input_params[5];
3407 input_params[0]= ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3408 if (input_size == 2)
3409 input_params[1] = ccv_nnc_tensor_symbol_params(graph, inputs[1]);
3410 input_params[4] = input_params[0];
3411 memset(input_params[4].dim, 0, sizeof(input_params[4].dim));
3412 const int x_nd = ccv_nnc_tensor_nd(input_params[0].dim);
3413 const int feature_count = input_params[0].dim[x_nd - 1];
3414 input_params[4].dim[0] = _ccv_cnnp_lstm_weight_dim(self->params.rnn.bidirectional, self->params.rnn.num_layers, feature_count, self->params.rnn.hidden_size, proj_size, self->params.rnn.bias);
3415 input_params[4].dim[1] = self->params.rnn.hidden_size;
3416 const ccv_nnc_cmd_t lstm = ccv_nnc_cmd(CCV_NNC_LSTM_FORWARD, 0, self->params, 0);
3417 ccv_nnc_tensor_param_t output_params[4];
3418 ccv_nnc_hint_tensor_auto(lstm, input_params, 5, ccv_nnc_no_hint, output_params, 4);
3419 outputs[0] = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
3420 if (!self->weights.graph)
3421 self->weights = ccv_nnc_tensor_symbol_new(graph, input_params[4], "weights");
3422 if (!self->reserves.graph)
3423 self->reserves = ccv_nnc_tensor_symbol_new(graph, output_params[3], "reserves");
3424 const ccv_nnc_tensor_symbol_t mask = input_size == 2 ? inputs[1] : NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
3425 self->lstm = ccv_nnc_graph_exec_symbol_new(graph, lstm, TENSOR_SYMBOL_LIST(inputs[0], mask, NO_TENSOR_SYMBOL, NO_TENSOR_SYMBOL, self->weights)(const ccv_nnc_tensor_symbol_t []){inputs[0], mask, (const ccv_nnc_tensor_symbol_t
){.d = CCV_NNC_NO_TENSOR_SYMBOL}, (const ccv_nnc_tensor_symbol_t
){.d = CCV_NNC_NO_TENSOR_SYMBOL}, self->weights}, (1 +1 +1
+1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -
1)
, TENSOR_SYMBOL_LIST(outputs[0], NO_TENSOR_SYMBOL, NO_TENSOR_SYMBOL, self->reserves)(const ccv_nnc_tensor_symbol_t []){outputs[0], (const ccv_nnc_tensor_symbol_t
){.d = CCV_NNC_NO_TENSOR_SYMBOL}, (const ccv_nnc_tensor_symbol_t
){.d = CCV_NNC_NO_TENSOR_SYMBOL}, self->reserves}, (1 +1 +
1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
-1)
, "lstm");
3426}
3427
3428static void _ccv_cnnp_lstm_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
3429{
3430 ccv_cnnp_model_lstm_t* const self = (ccv_cnnp_model_lstm_t*)super;
3431 if (self->weights.graph)
3432 {
3433 const float stdv = 1.0 / sqrt(self->params.rnn.hidden_size);
3434 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-stdv, stdv)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-stdv, stdv}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
3435 }
3436}
3437
3438static void _ccv_cnnp_lstm_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
3439{
3440 ccv_cnnp_model_lstm_t* const self = (ccv_cnnp_model_lstm_t*)super;
3441 if (self->weights.graph)
3442 add_to_array(parameters, self->weights, is_trainable);
3443}
3444
3445static void _ccv_cnnp_lstm_set_is_test(ccv_cnnp_model_t* const super, const int is_test, const ccv_cnnp_cmd_updater_f updater, void* const context)
3446{
3447 ccv_cnnp_model_lstm_t* const self = (ccv_cnnp_model_lstm_t*)super;
3448 if (self->lstm.graph)
3449 {
3450 self->params.rnn.is_test = is_test;
3451 updater(context, self->lstm, ccv_nnc_cmd(CCV_NNC_LSTM_FORWARD, 0, self->params, 0), ccv_nnc_no_hint);
3452 }
3453}
3454
3455static ccv_cnnp_model_t* _ccv_cnnp_lstm_copy(const ccv_cnnp_model_t* const self, void* const context);
3456
3457static const ccv_cnnp_model_vtab_t ccv_cnnp_lstm_isa = {
3458 .build = _ccv_cnnp_lstm_build,
3459 .init_states = _ccv_cnnp_lstm_init_states,
3460 .add_to_parameter = _ccv_cnnp_lstm_add_to_parameter,
3461 .copy = _ccv_cnnp_lstm_copy,
3462 .set_is_test = _ccv_cnnp_lstm_set_is_test,
3463};
3464
3465ccv_cnnp_model_t* ccv_cnnp_lstm(const int masked, const int hidden_size, const int proj_size, const int num_layers, const int bias, const int batch_first, const int bidirectional, const float dropout, const int is_trainable, const char* const name)
3466{
3467 ccv_cnnp_model_lstm_t* const model_lstm = (ccv_cnnp_model_lstm_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_lstm_t));
3468 model_lstm->super.isa = &ccv_cnnp_lstm_isa;
3469 model_lstm->super.input_size = masked ? 2 : 1;
3470 model_lstm->super.outputs = &model_lstm->output;
3471 model_lstm->super.output_size = 1;
3472 model_lstm->super.is_trainable = is_trainable;
3473 ccv_cnnp_model_copy_name(&model_lstm->super, name);
3474 model_lstm->masked = masked;
3475 model_lstm->weights.d = CCV_NNC_NO_TENSOR_SYMBOL;
3476 model_lstm->weights.graph = 0;
3477 model_lstm->params.rnn.hidden_size = hidden_size;
3478 model_lstm->params.rnn.proj_size = proj_size;
3479 model_lstm->params.rnn.num_layers = num_layers;
3480 model_lstm->params.rnn.bias = bias;
3481 model_lstm->params.rnn.batch_first = batch_first;
3482 model_lstm->params.rnn.bidirectional = bidirectional;
3483 model_lstm->params.rnn.dropout = dropout;
3484 return (ccv_cnnp_model_t*)model_lstm;
3485}
3486
3487static ccv_cnnp_model_t* _ccv_cnnp_lstm_copy(const ccv_cnnp_model_t* const super, void* const context)
3488{
3489 const ccv_cnnp_model_lstm_t* const self = (const ccv_cnnp_model_lstm_t*)super;
3490 return ccv_cnnp_lstm(self->masked, self->params.rnn.hidden_size, self->params.rnn.proj_size, self->params.rnn.num_layers, self->params.rnn.bias, self->params.rnn.batch_first, self->params.rnn.bidirectional, self->params.rnn.dropout, self->super.is_trainable, self->super.name);
3491}
3492
3493/// MARK - Datatype conversion layer.
3494
3495typedef struct {
3496 ccv_cnnp_model_t super;
3497 ccv_nnc_tensor_symbol_t output;
3498 int datatype;
3499 int ref_to_last;
3500} ccv_cnnp_model_datatype_conversion_t;
3501
3502static void _ccv_cnnp_datatype_conversion_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3503{
3504 ccv_cnnp_model_datatype_conversion_t* const self = (ccv_cnnp_model_datatype_conversion_t*)super;
3505 PRINT(CCV_CLI_VERBOSE, "[cnnp_datatype_conversion_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_datatype_conversion_build] -\n"); fflush(stdout
); } } while (0)
;
3506 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3507 if (self->ref_to_last)
3508 {
3509 assert(input_size > 1)((void) sizeof ((input_size > 1) ? 1 : 0), __extension__ (
{ if (input_size > 1) ; else __assert_fail ("input_size > 1"
, "ccv_cnnp_model_addons.c", 3509, __extension__ __PRETTY_FUNCTION__
); }))
;
3510 const ccv_nnc_tensor_param_t last_params = ccv_nnc_tensor_symbol_params(graph, inputs[input_size - 1]);
3511 params.datatype = last_params.datatype;
3512 } else
3513 params.datatype = self->datatype;
3514 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3514, __extension__ __PRETTY_FUNCTION__
); }))
;
3515 outputs[0] = ccv_nnc_tensor_symbol_new(graph, params, 0);
3516 ccv_nnc_graph_exec_symbol_new(graph, CMD_DATATYPE_CONVERSION_FORWARD()ccv_nnc_cmd(CCV_NNC_DATATYPE_CONVERSION_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, inputs, output_size, outputs, output_size, 0);
3517}
3518
3519static ccv_cnnp_model_t* _ccv_cnnp_datatype_conversion_copy(const ccv_cnnp_model_t* const self, void* const context);
3520
3521static const ccv_cnnp_model_vtab_t ccv_cnnp_datatype_conversion_isa = {
3522 .build = _ccv_cnnp_datatype_conversion_build,
3523 .copy = _ccv_cnnp_datatype_conversion_copy,
3524};
3525
3526ccv_cnnp_model_t* ccv_cnnp_datatype_conversion(const int datatype, const int ref_to_last, const char* const name)
3527{
3528 ccv_cnnp_model_datatype_conversion_t* const model_datatype_conversion = (ccv_cnnp_model_datatype_conversion_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_datatype_conversion_t));
3529 model_datatype_conversion->super.isa = &ccv_cnnp_datatype_conversion_isa;
3530 model_datatype_conversion->super.input_size = 0;
3531 model_datatype_conversion->super.outputs = &model_datatype_conversion->output;
3532 model_datatype_conversion->super.output_size = 1;
3533 model_datatype_conversion->datatype = datatype;
3534 model_datatype_conversion->ref_to_last = ref_to_last;
3535 ccv_cnnp_model_copy_name(&model_datatype_conversion->super, name);
3536 return (ccv_cnnp_model_t*)model_datatype_conversion;
3537}
3538
3539static ccv_cnnp_model_t* _ccv_cnnp_datatype_conversion_copy(const ccv_cnnp_model_t* const super, void* const context)
3540{
3541 ccv_cnnp_model_datatype_conversion_t* const self = (ccv_cnnp_model_datatype_conversion_t*)super;
3542 return ccv_cnnp_datatype_conversion(self->datatype, self->ref_to_last, self->super.name);
3543}
3544
3545/// MARK - Clamp layer.
3546
3547typedef struct {
3548 ccv_cnnp_model_t super;
3549 ccv_nnc_tensor_symbol_t output;
3550 float min;
3551 float max;
3552} ccv_cnnp_model_clamp_t;
3553
3554static void _ccv_cnnp_clamp_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3555{
3556 ccv_cnnp_model_clamp_t* const self = (ccv_cnnp_model_clamp_t*)super;
3557 PRINT(CCV_CLI_VERBOSE, "[cnnp_clamp_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_clamp_build] -\n"); fflush(stdout); } } while
(0)
;
3558 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3559 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3559, __extension__ __PRETTY_FUNCTION__
); }))
;
3560 outputs[0] = ccv_nnc_tensor_symbol_new(graph, params, 0);
3561 ccv_nnc_graph_exec_symbol_new(graph, CMD_CLAMP_FORWARD(self->min, self->max)ccv_nnc_cmd(CCV_NNC_CLAMP_FORWARD, 0, (ccv_nnc_cmd_param_t){.
size={.dim={1,1,1}},.clamp={.min=self->min,.max=self->max
}}, 0)
, inputs, output_size, outputs, output_size, 0);
3562}
3563
3564static ccv_cnnp_model_t* _ccv_cnnp_clamp_copy(const ccv_cnnp_model_t* const self, void* const context);
3565
3566static const ccv_cnnp_model_vtab_t ccv_cnnp_clamp_isa = {
3567 .build = _ccv_cnnp_clamp_build,
3568 .copy = _ccv_cnnp_clamp_copy,
3569};
3570
3571ccv_cnnp_model_t* ccv_cnnp_clamp(const float min, const float max, const char* const name)
3572{
3573 ccv_cnnp_model_clamp_t* const model_clamp = (ccv_cnnp_model_clamp_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_clamp_t));
3574 model_clamp->super.isa = &ccv_cnnp_clamp_isa;
3575 model_clamp->super.input_size = 0;
3576 model_clamp->super.outputs = &model_clamp->output;
3577 model_clamp->super.output_size = 1;
3578 model_clamp->min = min;
3579 model_clamp->max = max;
3580 ccv_cnnp_model_copy_name(&model_clamp->super, name);
3581 return (ccv_cnnp_model_t*)model_clamp;
3582}
3583
3584static ccv_cnnp_model_t* _ccv_cnnp_clamp_copy(const ccv_cnnp_model_t* const super, void* const context)
3585{
3586 ccv_cnnp_model_clamp_t* const self = (ccv_cnnp_model_clamp_t*)super;
3587 return ccv_cnnp_clamp(self->min, self->max, self->super.name);
3588}
3589
3590// MARK - Parameter Layer
3591
3592typedef struct {
3593 ccv_cnnp_model_t super;
3594 float init_bound;
3595 ccv_nnc_tensor_symbol_t weights;
3596 ccv_nnc_tensor_param_t weights_params;
3597 ccv_nnc_tensor_symbol_t output;
3598} ccv_cnnp_model_parameter_t;
3599
3600static void _ccv_cnnp_parameter_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3601{
3602 PRINT(CCV_CLI_VERBOSE, "[cnnp_parameter_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_parameter_build] -\n"); fflush(stdout); } } while
(0)
;
3603 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3603, __extension__ __PRETTY_FUNCTION__
); }))
;
3604 ccv_cnnp_model_parameter_t* const self = (ccv_cnnp_model_parameter_t*)super;
3605 if (!self->weights.graph)
3606 self->weights = ccv_nnc_tensor_symbol_new(graph, self->weights_params, "weights");
3607 assert(self->weights.graph == graph)((void) sizeof ((self->weights.graph == graph) ? 1 : 0), __extension__
({ if (self->weights.graph == graph) ; else __assert_fail
("self->weights.graph == graph", "ccv_cnnp_model_addons.c"
, 3607, __extension__ __PRETTY_FUNCTION__); }))
;
3608 outputs[0] = self->weights;
3609}
3610
3611static void _ccv_cnnp_parameter_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
3612{
3613 ccv_cnnp_model_parameter_t* const self = (ccv_cnnp_model_parameter_t*)super;
3614 if (self->init_bound > 0)
3615 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-self->init_bound, self->init_bound)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-self->init_bound, self->
init_bound}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
3616 else
3617 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
3618}
3619
3620static void _ccv_cnnp_parameter_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
3621{
3622 ccv_cnnp_model_parameter_t* const self = (ccv_cnnp_model_parameter_t*)super;
3623 add_to_array(parameters, self->weights, is_trainable);
3624}
3625
3626static ccv_cnnp_model_t* _ccv_cnnp_parameter_copy(const ccv_cnnp_model_t* const super, void* const context);
3627
3628static const ccv_cnnp_model_vtab_t ccv_cnnp_parameter_isa = {
3629 .build = _ccv_cnnp_parameter_build,
3630 .init_states = _ccv_cnnp_parameter_init_states,
3631 .add_to_parameter = _ccv_cnnp_parameter_add_to_parameter,
3632 .copy = _ccv_cnnp_parameter_copy,
3633};
3634
3635ccv_cnnp_model_t* ccv_cnnp_parameter(const ccv_nnc_tensor_param_t params, const float init_bound, const int is_trainable, const char* const name)
3636{
3637 ccv_cnnp_model_parameter_t* const model_parameter = (ccv_cnnp_model_parameter_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_parameter_t));
3638 model_parameter->super.isa = &ccv_cnnp_parameter_isa;
3639 model_parameter->super.input_size = 0;
3640 model_parameter->super.outputs = &model_parameter->output;
3641 model_parameter->super.output_size = 1;
3642 model_parameter->super.is_trainable = is_trainable;
3643 ccv_cnnp_model_copy_name(&model_parameter->super, name);
3644 model_parameter->weights.d = CCV_NNC_NO_TENSOR_SYMBOL;
3645 model_parameter->weights.graph = 0;
3646 model_parameter->weights_params = params;
3647 return (ccv_cnnp_model_t*)model_parameter;
3648}
3649
3650static ccv_cnnp_model_t* _ccv_cnnp_parameter_copy(const ccv_cnnp_model_t* const super, void* const context)
3651{
3652 const ccv_cnnp_model_parameter_t* const self = (const ccv_cnnp_model_parameter_t*)super;
3653 return ccv_cnnp_parameter(self->weights_params, self->init_bound, self->super.is_trainable, self->super.name);
3654}
3655
3656// MARK - Scalar Layer
3657
3658typedef struct {
3659 ccv_cnnp_model_t super;
3660 int type;
3661 int format;
3662 int datatype;
3663 float value;
3664 ccv_nnc_tensor_symbol_t output;
3665} ccv_cnnp_model_scalar_t;
3666
3667static void _ccv_cnnp_scalar_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3668{
3669 PRINT(CCV_CLI_VERBOSE, "[cnnp_scalar_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_scalar_build] -\n"); fflush(stdout); } } while
(0)
;
3670 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3670, __extension__ __PRETTY_FUNCTION__
); }))
;
3671 ccv_cnnp_model_scalar_t* const self = (ccv_cnnp_model_scalar_t*)super;
3672 ccv_nnc_tensor_param_t params = {
3673 .type = self->type,
3674 .format = self->format,
3675 .datatype = self->datatype,
3676 .dim = {
3677 1
3678 }
3679 };
3680 if (input_size > 0)
3681 {
3682 ccv_nnc_tensor_param_t input_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3683 params.type = input_params.type;
3684 params.format = input_params.format;
3685 params.datatype = input_params.datatype;
3686 }
3687 outputs[0] = ccv_nnc_tensor_symbol_new(graph, params, 0);
3688 ccv_nnc_graph_exec_symbol_new(graph, CMD_SET_FORWARD(self->value)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={self->value,}}}, 0)
, 0, 0, outputs, 1, 0);
3689}
3690
3691static ccv_cnnp_model_t* _ccv_cnnp_scalar_copy(const ccv_cnnp_model_t* const super, void* const context);
3692
3693static const ccv_cnnp_model_vtab_t ccv_cnnp_scalar_isa = {
3694 .build = _ccv_cnnp_scalar_build,
3695 .copy = _ccv_cnnp_scalar_copy,
3696};
3697
3698ccv_cnnp_model_t* ccv_cnnp_scalar(const int type, const int format, const int datatype, const float value, const char* const name)
3699{
3700 ccv_cnnp_model_scalar_t* const model_scalar = (ccv_cnnp_model_scalar_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_scalar_t));
3701 model_scalar->super.isa = &ccv_cnnp_scalar_isa;
3702 model_scalar->super.input_size = 0;
3703 model_scalar->super.outputs = &model_scalar->output;
3704 model_scalar->super.output_size = 1;
3705 ccv_cnnp_model_copy_name(&model_scalar->super, name);
3706 model_scalar->type = type;
3707 model_scalar->format = format;
3708 model_scalar->datatype = datatype;
3709 model_scalar->value = value;
3710 return (ccv_cnnp_model_t*)model_scalar;
3711}
3712
3713static ccv_cnnp_model_t* _ccv_cnnp_scalar_copy(const ccv_cnnp_model_t* const super, void* const context)
3714{
3715 const ccv_cnnp_model_scalar_t* const self = (const ccv_cnnp_model_scalar_t*)super;
3716 return ccv_cnnp_scalar(self->type, self->format, self->datatype, self->value, self->super.name);
3717}
3718
3719// MARK - Variable Layer
3720
3721typedef struct {
3722 ccv_cnnp_model_t super;
3723 ccv_nnc_tensor_param_t params;
3724 ccv_nnc_tensor_symbol_t output;
3725} ccv_cnnp_model_variable_t;
3726
3727static void _ccv_cnnp_variable_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3728{
3729 PRINT(CCV_CLI_VERBOSE, "[cnnp_variable_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_variable_build] -\n"); fflush(stdout); } } while
(0)
;
3730 assert(input_size == 0)((void) sizeof ((input_size == 0) ? 1 : 0), __extension__ ({ if
(input_size == 0) ; else __assert_fail ("input_size == 0", "ccv_cnnp_model_addons.c"
, 3730, __extension__ __PRETTY_FUNCTION__); }))
;
3731 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3731, __extension__ __PRETTY_FUNCTION__
); }))
;
3732 ccv_cnnp_model_variable_t* const self = (ccv_cnnp_model_variable_t*)super;
3733 outputs[0] = ccv_nnc_tensor_symbol_new(graph, self->params, 0);
3734}
3735
3736static ccv_cnnp_model_t* _ccv_cnnp_variable_copy(const ccv_cnnp_model_t* const super, void* const context);
3737
3738static const ccv_cnnp_model_vtab_t ccv_cnnp_variable_isa = {
3739 .build = _ccv_cnnp_variable_build,
3740 .copy = _ccv_cnnp_variable_copy,
3741};
3742
3743ccv_cnnp_model_t* ccv_cnnp_variable(const ccv_nnc_tensor_param_t params, const char* const name)
3744{
3745 ccv_cnnp_model_variable_t* const model_variable = (ccv_cnnp_model_variable_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_variable_t));
3746 model_variable->super.isa = &ccv_cnnp_variable_isa;
3747 model_variable->super.input_size = 0;
3748 model_variable->super.outputs = &model_variable->output;
3749 model_variable->super.output_size = 1;
3750 ccv_cnnp_model_copy_name(&model_variable->super, name);
3751 model_variable->params = params;
3752 return (ccv_cnnp_model_t*)model_variable;
3753}
3754
3755static ccv_cnnp_model_t* _ccv_cnnp_variable_copy(const ccv_cnnp_model_t* const super, void* const context)
3756{
3757 const ccv_cnnp_model_variable_t* const self = (const ccv_cnnp_model_variable_t*)super;
3758 return ccv_cnnp_variable(self->params, self->super.name);
3759}
3760
3761// MARK - Move Layer
3762
3763typedef struct {
3764 ccv_cnnp_model_t super;
3765 ccv_nnc_tensor_symbol_t output;
3766} ccv_cnnp_model_move_t;
3767
3768static void _ccv_cnnp_move_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3769{
3770 PRINT(CCV_CLI_VERBOSE, "[cnnp_move_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_move_build] -\n"); fflush(stdout); } } while
(0)
;
3771 assert(input_size == 2)((void) sizeof ((input_size == 2) ? 1 : 0), __extension__ ({ if
(input_size == 2) ; else __assert_fail ("input_size == 2", "ccv_cnnp_model_addons.c"
, 3771, __extension__ __PRETTY_FUNCTION__); }))
;
3772 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3772, __extension__ __PRETTY_FUNCTION__
); }))
;
3773 outputs[0] = inputs[1];
3774 ccv_nnc_graph_exec_symbol_new(graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, inputs, 1, outputs, 1, "move");
3775}
3776
3777static ccv_cnnp_model_t* _ccv_cnnp_move_copy(const ccv_cnnp_model_t* const super, void* const context);
3778
3779static const ccv_cnnp_model_vtab_t ccv_cnnp_move_isa = {
3780 .build = _ccv_cnnp_move_build,
3781 .copy = _ccv_cnnp_move_copy,
3782};
3783
3784ccv_cnnp_model_t* ccv_cnnp_move(const char* const name)
3785{
3786 ccv_cnnp_model_move_t* const model_move = (ccv_cnnp_model_move_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_move_t));
3787 model_move->super.isa = &ccv_cnnp_move_isa;
3788 model_move->super.input_size = 2;
3789 model_move->super.outputs = &model_move->output;
3790 model_move->super.output_size = 1;
3791 ccv_cnnp_model_copy_name(&model_move->super, name);
3792 return (ccv_cnnp_model_t*)model_move;
3793}
3794
3795static ccv_cnnp_model_t* _ccv_cnnp_move_copy(const ccv_cnnp_model_t* const super, void* const context)
3796{
3797 const ccv_cnnp_model_move_t* const self = (const ccv_cnnp_model_move_t*)super;
3798 return ccv_cnnp_move(self->super.name);
3799}
3800
3801// MARK - "Making" Contiguous Layer
3802
3803typedef struct {
3804 ccv_cnnp_model_t super;
3805 ccv_nnc_tensor_symbol_t output;
3806} ccv_cnnp_model_contiguous_t;
3807
3808static void _ccv_cnnp_contiguous_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3809{
3810 PRINT(CCV_CLI_VERBOSE, "[cnnp_contiguous_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_contiguous_build] -\n"); fflush(stdout); } }
while (0)
;
3811 assert(input_size == 1)((void) sizeof ((input_size == 1) ? 1 : 0), __extension__ ({ if
(input_size == 1) ; else __assert_fail ("input_size == 1", "ccv_cnnp_model_addons.c"
, 3811, __extension__ __PRETTY_FUNCTION__); }))
;
3812 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3812, __extension__ __PRETTY_FUNCTION__
); }))
;
3813 ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3814 ccv_nnc_tensor_symbol_t to = ccv_nnc_tensor_symbol_alias_to(graph, inputs[0]);
3815 if (to.d == CCV_NNC_NO_TENSOR_SYMBOL) // If we are not reshape an alias, it is straightforward.
3816 {
3817 outputs[0] = inputs[0];
3818 return;
3819 }
3820 // Otherwise, we need to check its stride to know if it is contiguous.
3821 int old_stride[CCV_NNC_MAX_DIM_ALLOC(12)];
3822 ccv_nnc_tensor_symbol_alias_params(graph, inputs[0], 0, old_stride);
3823 // We identify permute by checking if the stride is not in descending order.
3824 // This also covered "permute" through reshape, rather than using ccv_cnnp_permute directly.
3825 if (ccv_nnc_is_tensor_stride_packed(old_stride, params.dim))
3826 {
3827 outputs[0] = inputs[0];
3828 return;
3829 }
3830 outputs[0] = ccv_nnc_tensor_symbol_new(graph, params, 0);
3831 ccv_nnc_graph_exec_symbol_t make_contiguous = ccv_nnc_graph_exec_symbol_new(graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, inputs, 1, outputs, 1, "contiguous");
3832 ccv_nnc_graph_exec_symbol_set_flags(graph, make_contiguous, CCV_NNC_GRAPH_EXEC_DISABLE_OPT);
3833}
3834
3835static ccv_cnnp_model_t* _ccv_cnnp_contiguous_copy(const ccv_cnnp_model_t* const super, void* const context);
3836
3837static const ccv_cnnp_model_vtab_t ccv_cnnp_contiguous_isa = {
3838 .build = _ccv_cnnp_contiguous_build,
3839 .copy = _ccv_cnnp_contiguous_copy,
3840};
3841
3842ccv_cnnp_model_t* ccv_cnnp_contiguous(const char* const name)
3843{
3844 ccv_cnnp_model_contiguous_t* const model_contiguous = (ccv_cnnp_model_contiguous_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_contiguous_t));
3845 model_contiguous->super.isa = &ccv_cnnp_contiguous_isa;
3846 model_contiguous->super.input_size = 1;
3847 model_contiguous->super.outputs = &model_contiguous->output;
3848 model_contiguous->super.output_size = 1;
3849 ccv_cnnp_model_copy_name(&model_contiguous->super, name);
3850 return (ccv_cnnp_model_t*)model_contiguous;
3851}
3852
3853static ccv_cnnp_model_t* _ccv_cnnp_contiguous_copy(const ccv_cnnp_model_t* const super, void* const context)
3854{
3855 const ccv_cnnp_model_contiguous_t* const self = (const ccv_cnnp_model_contiguous_t*)super;
3856 return ccv_cnnp_contiguous(self->super.name);
3857}
3858
3859// MARK - Scaled-Dot Product Attention Layer
3860
3861typedef struct {
3862 ccv_cnnp_model_t super;
3863 ccv_nnc_tensor_symbol_t output;
3864 ccv_nnc_tensor_symbol_t weights;
3865 ccv_nnc_tensor_symbol_t bias;
3866 float scale;
3867 int is_causal;
3868 int has_attn_mask;
3869 int flags;
3870 int fused_unify_head_weights;
3871 int no_bias;
3872} ccv_cnnp_model_scaled_dot_product_attention_t;
3873
3874static void _ccv_cnnp_scaled_dot_product_attention_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
3875{
3876 PRINT(CCV_CLI_VERBOSE, "[cnnp_scaled_dot_product_attention_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_scaled_dot_product_attention_build] -\n"); fflush
(stdout); } } while (0)
;
3877 assert(input_size == 3 || input_size == 4)((void) sizeof ((input_size == 3 || input_size == 4) ? 1 : 0)
, __extension__ ({ if (input_size == 3 || input_size == 4) ; else
__assert_fail ("input_size == 3 || input_size == 4", "ccv_cnnp_model_addons.c"
, 3877, __extension__ __PRETTY_FUNCTION__); }))
;
3878 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 3878, __extension__ __PRETTY_FUNCTION__
); }))
;
3879 ccv_cnnp_model_scaled_dot_product_attention_t* const self = (ccv_cnnp_model_scaled_dot_product_attention_t*)super;
3880 const ccv_nnc_tensor_param_t q_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
3881 const ccv_nnc_tensor_param_t k_params = ccv_nnc_tensor_symbol_params(graph, inputs[1]);
3882 const ccv_nnc_tensor_param_t v_params = ccv_nnc_tensor_symbol_params(graph, inputs[2]);
3883 const int v_nd = ccv_nnc_tensor_nd(v_params.dim);
3884 assert(v_nd == 3 || v_nd == 4)((void) sizeof ((v_nd == 3 || v_nd == 4) ? 1 : 0), __extension__
({ if (v_nd == 3 || v_nd == 4) ; else __assert_fail ("v_nd == 3 || v_nd == 4"
, "ccv_cnnp_model_addons.c", 3884, __extension__ __PRETTY_FUNCTION__
); }))
;
3885 const int hEv = (v_nd == 3 ? 1 : v_params.dim[2]) * v_params.dim[v_nd - 1];
3886 ccv_nnc_tensor_param_t weights_params = q_params;
3887 memset(weights_params.dim, 0, sizeof(weights_params.dim));
3888 weights_params.dim[0] = hEv;
3889 weights_params.dim[1] = hEv;
3890 ccv_nnc_tensor_param_t bias_params = q_params;
3891 memset(bias_params.dim, 0, sizeof(bias_params.dim));
3892 bias_params.dim[0] = hEv;
3893 ccv_nnc_cmd_t cmd = {0};
3894 cmd.cmd = CCV_NNC_SCALED_DOT_PRODUCT_ATTENTION_FORWARD;
3895 cmd.info.scaled_dot_product_attention.scale = self->scale;
3896 cmd.info.scaled_dot_product_attention.is_causal = self->is_causal;
3897 cmd.info.scaled_dot_product_attention.flags = self->flags;
3898 ccv_nnc_tensor_param_t output_params[3];
3899 ccv_nnc_tensor_symbol_t output;
3900 ccv_nnc_tensor_symbol_t saved_softmax_lse;
3901 ccv_nnc_tensor_symbol_t saved_v_proj = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
3902 ccv_nnc_tensor_symbol_t attn_mask = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
3903 ccv_nnc_tensor_symbol_t weights = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
3904 ccv_nnc_tensor_symbol_t bias = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
3905 if (self->has_attn_mask)
3906 attn_mask = inputs[3];
3907 if (self->fused_unify_head_weights)
3908 {
3909 if (!self->weights.graph)
3910 self->weights = ccv_nnc_tensor_symbol_new(graph, weights_params, "weights");
3911 weights = self->weights;
3912 if (!self->no_bias)
3913 {
3914 if (!self->bias.graph)
3915 self->bias = ccv_nnc_tensor_symbol_new(graph, bias_params, "bias");
3916 bias = self->bias;
3917 }
3918 ccv_nnc_hint_tensor_auto(cmd, (ccv_nnc_tensor_param_t []){
3919 q_params,
3920 k_params,
3921 v_params,
3922 (ccv_nnc_tensor_param_t){},
3923 weights_params,
3924 bias_params,
3925 }, 6, ccv_nnc_no_hint, output_params, 3);
3926 output = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
3927 saved_softmax_lse = ccv_nnc_tensor_symbol_new(graph, output_params[1], 0);
3928 saved_v_proj = ccv_nnc_tensor_symbol_new(graph, output_params[2], 0);
3929 } else {
3930 ccv_nnc_hint_tensor_auto(cmd, (ccv_nnc_tensor_param_t []){
3931 q_params,
3932 k_params,
3933 v_params,
3934 }, 3, ccv_nnc_no_hint, output_params, 2);
3935 output = ccv_nnc_tensor_symbol_new(graph, output_params[0], 0);
3936 saved_softmax_lse = ccv_nnc_tensor_symbol_new(graph, output_params[1], 0);
3937 }
3938 ccv_nnc_graph_exec_symbol_new(graph, cmd, TENSOR_SYMBOL_LIST(inputs[0], inputs[1], inputs[2], attn_mask, weights, bias)(const ccv_nnc_tensor_symbol_t []){inputs[0], inputs[1], inputs
[2], attn_mask, weights, bias}, (1 +1 +1 +1 +1 +1 +1 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(output, saved_softmax_lse, saved_v_proj)(const ccv_nnc_tensor_symbol_t []){output, saved_softmax_lse,
saved_v_proj}, (1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 -1)
, "scaled_dot_product_attention");
3939 outputs[0] = output;
3940}
3941
3942static void _ccv_cnnp_scaled_dot_product_attention_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context)
3943{
3944 ccv_cnnp_model_scaled_dot_product_attention_t* const self = (ccv_cnnp_model_scaled_dot_product_attention_t*)super;
3945 if (self->weights.graph)
3946 {
3947 assert(self->fused_unify_head_weights)((void) sizeof ((self->fused_unify_head_weights) ? 1 : 0),
__extension__ ({ if (self->fused_unify_head_weights) ; else
__assert_fail ("self->fused_unify_head_weights", "ccv_cnnp_model_addons.c"
, 3947, __extension__ __PRETTY_FUNCTION__); }))
;
3948 const ccv_nnc_tensor_param_t weight_params = ccv_nnc_tensor_symbol_params(graph, self->weights);
3949 const int c = weight_params.dim[1];
3950 const float std = sqrtf(2) / sqrtf(c);
3951 const float bound = sqrtf(3) * std;
3952 initializer(context, CMD_RANDOM_UNIFORM_FORWARD(-bound, bound)ccv_nnc_cmd(CCV_NNC_RANDOM_UNIFORM_FORWARD, 0, (ccv_nnc_cmd_param_t
){.size={.dim={1,1,1}},.blas={.a={-bound, bound}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->weights);
3953 if (self->bias.graph)
3954 initializer(context, CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, self->bias);
3955 }
3956}
3957
3958static void _ccv_cnnp_scaled_dot_product_attention_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable)
3959{
3960 ccv_cnnp_model_scaled_dot_product_attention_t* const self = (ccv_cnnp_model_scaled_dot_product_attention_t*)super;
3961 if (self->weights.graph)
3962 {
3963 assert(self->fused_unify_head_weights)((void) sizeof ((self->fused_unify_head_weights) ? 1 : 0),
__extension__ ({ if (self->fused_unify_head_weights) ; else
__assert_fail ("self->fused_unify_head_weights", "ccv_cnnp_model_addons.c"
, 3963, __extension__ __PRETTY_FUNCTION__); }))
;
3964 add_to_array(parameters, self->weights, is_trainable);
3965 if (self->bias.graph)
3966 add_to_array(parameters, self->bias, is_trainable);
3967 }
3968}
3969
3970static ccv_cnnp_model_t* _ccv_cnnp_scaled_dot_product_attention_copy(const ccv_cnnp_model_t* const super, void* const context);
3971
3972static const ccv_cnnp_model_vtab_t ccv_cnnp_scaled_dot_product_attention_isa = {
3973 .build = _ccv_cnnp_scaled_dot_product_attention_build,
3974 .copy = _ccv_cnnp_scaled_dot_product_attention_copy,
3975};
3976
3977static const ccv_cnnp_model_vtab_t ccv_cnnp_scaled_dot_product_attention_fused_isa = {
3978 .build = _ccv_cnnp_scaled_dot_product_attention_build,
3979 .init_states = _ccv_cnnp_scaled_dot_product_attention_init_states,
3980 .add_to_parameter = _ccv_cnnp_scaled_dot_product_attention_add_to_parameter,
3981 .copy = _ccv_cnnp_scaled_dot_product_attention_copy,
3982};
3983
3984ccv_cnnp_model_t* ccv_cnnp_scaled_dot_product_attention(const float scale, const int is_causal, const int has_attn_mask, const int flags, const int fused_unify_head_weights, const int no_bias, const int is_trainable, const char* const name)
3985{
3986 ccv_cnnp_model_scaled_dot_product_attention_t* const model_scaled_dot_product_attention = (ccv_cnnp_model_scaled_dot_product_attention_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_scaled_dot_product_attention_t));
3987 model_scaled_dot_product_attention->super.isa = fused_unify_head_weights ? &ccv_cnnp_scaled_dot_product_attention_fused_isa : &ccv_cnnp_scaled_dot_product_attention_isa;
3988 model_scaled_dot_product_attention->super.input_size = has_attn_mask ? 4 : 3;
3989 model_scaled_dot_product_attention->super.outputs = &model_scaled_dot_product_attention->output;
3990 model_scaled_dot_product_attention->super.output_size = 1;
3991 model_scaled_dot_product_attention->super.is_trainable = is_trainable;
3992 ccv_cnnp_model_copy_name(&model_scaled_dot_product_attention->super, name);
3993 model_scaled_dot_product_attention->weights.d = CCV_NNC_NO_TENSOR_SYMBOL;
3994 model_scaled_dot_product_attention->weights.graph = 0;
3995 model_scaled_dot_product_attention->bias.d = CCV_NNC_NO_TENSOR_SYMBOL;
3996 model_scaled_dot_product_attention->bias.graph = 0;
3997 model_scaled_dot_product_attention->scale = scale;
3998 model_scaled_dot_product_attention->is_causal = is_causal;
3999 model_scaled_dot_product_attention->has_attn_mask = has_attn_mask;
4000 model_scaled_dot_product_attention->flags = flags;
4001 model_scaled_dot_product_attention->fused_unify_head_weights = fused_unify_head_weights;
4002 model_scaled_dot_product_attention->no_bias = no_bias;
4003 return (ccv_cnnp_model_t*)model_scaled_dot_product_attention;
4004}
4005
4006static ccv_cnnp_model_t* _ccv_cnnp_scaled_dot_product_attention_copy(const ccv_cnnp_model_t* const super, void* const context)
4007{
4008 const ccv_cnnp_model_scaled_dot_product_attention_t* const self = (const ccv_cnnp_model_scaled_dot_product_attention_t*)super;
4009 return ccv_cnnp_scaled_dot_product_attention(self->scale, self->is_causal, self->has_attn_mask, self->flags, self->fused_unify_head_weights, self->no_bias, self->super.is_trainable, self->super.name);
4010}
4011
4012// MARK - Debug Layer
4013
4014typedef struct {
4015 ccv_cnnp_model_t super;
4016 ccv_nnc_tensor_symbol_t output;
4017 ccv_cnnp_model_debug_f debugger;
4018 ccv_cnnp_model_debug_context_deinit_f debug_deinit;
4019 ccv_cnnp_model_debug_context_copy_f debug_copy;
4020 void* debug_context;
4021} ccv_cnnp_model_debug_t;
4022
4023static int _ccv_cnnp_debug_exec(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context)
4024{
4025 if (cmd.cmd == CCV_NNC_CUSTOM_BACKWARD)
4026 {
4027 assert(0 && "don't support debug backward pass yet")((void) sizeof ((0 && "don't support debug backward pass yet"
) ? 1 : 0), __extension__ ({ if (0 && "don't support debug backward pass yet"
) ; else __assert_fail ("0 && \"don't support debug backward pass yet\""
, "ccv_cnnp_model_addons.c", 4027, __extension__ __PRETTY_FUNCTION__
); }))
;
4028 }
4029 ccv_cnnp_model_debug_t* const self = (ccv_cnnp_model_debug_t*)cmd.data;
4030 self->debugger(inputs, input_size, stream_context, self->debug_context);
4031 return CCV_NNC_EXEC_SUCCESS;
4032}
4033
4034static ccv_nnc_cmd_vtab_t ccv_cnnp_debug_exec_isa = {
4035 .exec = _ccv_cnnp_debug_exec
4036};
4037
4038static void _ccv_cnnp_debug_build(ccv_cnnp_model_t* const self, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size)
4039{
4040 PRINT(CCV_CLI_VERBOSE, "[cnnp_debug_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels()))
{ printf("[cnnp_debug_build] -\n"); fflush(stdout); } } while
(0)
;
4041 assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ (
{ if (input_size >= 1) ; else __assert_fail ("input_size >= 1"
, "ccv_cnnp_model_addons.c", 4041, __extension__ __PRETTY_FUNCTION__
); }))
;
4042 assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({
if (output_size == 1) ; else __assert_fail ("output_size == 1"
, "ccv_cnnp_model_addons.c", 4042, __extension__ __PRETTY_FUNCTION__
); }))
;
4043 ccv_nnc_tensor_symbol_t to = ccv_nnc_tensor_symbol_alias_to(graph, inputs[0]);
4044 ccv_nnc_tensor_param_t output_params = ccv_nnc_tensor_symbol_params(graph, inputs[0]);
4045 if (to.d == CCV_NNC_NO_TENSOR_SYMBOL) // If we are not reshape an alias, it is straightforward.
4046 {
4047 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)] = {0};
4048 int stride[CCV_NNC_MAX_DIM_ALLOC(12)];
4049 ccv_nnc_tensor_get_stride(output_params.dim, stride);
4050 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, inputs[0], ofs, stride, output_params, 0);
4051 } else {
4052 int old_ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
4053 int old_stride[CCV_NNC_MAX_DIM_ALLOC(12)];
4054 ccv_nnc_tensor_symbol_alias_params(graph, inputs[0], old_ofs, old_stride);
4055 outputs[0] = ccv_nnc_tensor_symbol_alias_new(graph, to, old_ofs, old_stride, output_params, 0);
4056 }
4057 ccv_nnc_cmd_t cmd = ccv_nnc_cmd(CCV_NNC_CUSTOM_FORWARD, (ccv_nnc_cmd_vtab_t*)&ccv_cnnp_debug_exec_isa, (ccv_nnc_cmd_param_t){}, 0);
4058 cmd.data = self;
4059 ccv_nnc_graph_exec_symbol_t make_debug = ccv_nnc_graph_exec_symbol_new(graph, cmd, inputs, input_size, outputs, 1, "debug");
4060 // Disable any optimizations.
4061 ccv_nnc_graph_exec_symbol_set_flags(graph, make_debug, CCV_NNC_GRAPH_EXEC_DISABLE_OPT);
4062}
4063
4064static void _ccv_cnnp_debug_deinit(ccv_cnnp_model_t* const super)
4065{
4066 const ccv_cnnp_model_debug_t* const self = (const ccv_cnnp_model_debug_t*)super;
4067 if (self->debug_deinit && self->debug_context)
4068 self->debug_deinit(self->debug_context);
4069}
4070
4071static ccv_cnnp_model_t* _ccv_cnnp_debug_copy(const ccv_cnnp_model_t* const super, void* const context);
4072
4073static const ccv_cnnp_model_vtab_t ccv_cnnp_debug_isa = {
4074 .build = _ccv_cnnp_debug_build,
4075 .deinit = _ccv_cnnp_debug_deinit,
4076 .copy = _ccv_cnnp_debug_copy,
4077};
4078
4079ccv_cnnp_model_t* ccv_cnnp_debug(ccv_cnnp_model_debug_f func, void* const context, ccv_cnnp_model_debug_context_deinit_f deinit, ccv_cnnp_model_debug_context_copy_f copy, const char* const name)
4080{
4081 ccv_cnnp_model_debug_t* const model_debug = (ccv_cnnp_model_debug_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_debug_t));
4082 model_debug->super.isa = &ccv_cnnp_debug_isa;
4083 model_debug->super.input_size = 0;
4084 model_debug->super.outputs = &model_debug->output;
4085 model_debug->super.output_size = 1;
4086 model_debug->debugger = func;
4087 model_debug->debug_context = context;
4088 model_debug->debug_deinit = deinit;
4089 model_debug->debug_copy = copy;
4090 ccv_cnnp_model_copy_name(&model_debug->super, name);
4091 return (ccv_cnnp_model_t*)model_debug;
4092}
4093
4094static ccv_cnnp_model_t* _ccv_cnnp_debug_copy(const ccv_cnnp_model_t* const super, void* const context)
4095{
4096 const ccv_cnnp_model_debug_t* const self = (const ccv_cnnp_model_debug_t*)super;
4097 void* debug_context = self->debug_context;
4098 if (self->debug_copy && self->debug_context)
4099 debug_context = self->debug_copy(self->debug_context);
4100 return ccv_cnnp_debug(self->debugger, debug_context, self->debug_deinit, self->debug_copy, self->super.name);
4101}