Bug Summary

File:nnc/ccv_cnnp_model.c
Warning:line 2468, column 1
Array access (via field 'flags') results in a null pointer dereference

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ccv_cnnp_model.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse2 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -fcoverage-compilation-dir=/home/liu/actions-runner/_work/ccv/ccv/lib/nnc -resource-dir /usr/local/lib/clang/19 -I ../ -I /usr/local/cuda/include -D HAVE_CBLAS -D HAVE_LIBPNG -D HAVE_LIBJPEG -D HAVE_FFTW3 -D HAVE_PTHREAD -D HAVE_LIBLINEAR -D HAVE_TESSERACT -D HAVE_AVCODEC -D HAVE_AVFORMAT -D HAVE_AVUTIL -D HAVE_SWSCALE -D HAVE_SSE2 -D HAVE_GSL -D HAVE_CUDA -D HAVE_CUDNN -D HAVE_NCCL -D USE_SYSTEM_CUB -I /usr/local/include -internal-isystem /usr/local/lib/clang/19/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/12/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -ferror-limit 19 -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/liu/actions-runner/_work/ccv/ccv/_analyze/2025-03-17-111301-58955-1 -x c ccv_cnnp_model.c
1#include "ccv_nnc.h"
2#include "ccv_nnc_easy.h"
3#include "ccv_nnc_internal.h"
4#include "ccv_internal.h"
5#include "_ccv_cnnp_model.h"
6#include "_ccv_nnc_graph.h"
7
8// MARK - Level-5 API
9
10ccv_cnnp_model_io_t ccv_cnnp_model_apply(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t* const inputs, const int input_size)
11{
12 if (!model->io)
13 model->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0);
14 ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s) + sizeof(ccv_nnc_tensor_symbol_t) * model->output_size);
15 model_io->param_ref = 0;
16 model_io->param_sel = 0;
17 model_io->visit = 0;
18 model_io->model = model;
19 model_io->dependencies = 0;
20 model_io->dependents = 0;
21 model_io->outgoings = 0;
22 model_io->outputs = (ccv_nnc_tensor_symbol_t*)(model_io + 1);
23 ccv_array_push(model->io, &model_io);
24 if (input_size > 0)
25 {
26 model_io->incomings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), input_size, 0);
27 ccv_array_resize(model_io->incomings, input_size);
28 int i;
29 memcpy(ccv_array_get(model_io->incomings, 0)((void*)(((char*)((model_io->incomings)->data)) + (size_t
)(model_io->incomings)->rsize * (size_t)(0)))
, inputs, sizeof(ccv_cnnp_model_io_t) * input_size);
30 for (i = 0; i < input_size; i++)
31 {
32 if (!inputs[i]->outgoings)
33 inputs[i]->outgoings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0);
34 ccv_array_push(inputs[i]->outgoings, &model_io);
35 }
36 } else {
37 model_io->incomings = 0;
38 }
39 return model_io;
40}
41
42void ccv_cnnp_model_add_dependencies(ccv_cnnp_model_io_t model_io, const ccv_cnnp_model_io_t* const dependencies, const int dependency_size)
43{
44 assert(dependency_size > 0)((void) sizeof ((dependency_size > 0) ? 1 : 0), __extension__
({ if (dependency_size > 0) ; else __assert_fail ("dependency_size > 0"
, "ccv_cnnp_model.c", 44, __extension__ __PRETTY_FUNCTION__);
}))
;
45 if (!model_io->dependencies)
46 model_io->dependencies = ccv_array_new(sizeof(ccv_cnnp_model_io_t), dependency_size, 0);
47 int i, j;
48 for (i = 0; i < dependency_size; i++)
49 {
50 int flag = 0;
51 // Check if it is already exist or not.
52 for (j = 0; !flag && j < model_io->dependencies->rnum; j++)
53 if (*(ccv_cnnp_model_io_t*)ccv_array_get(model_io->dependencies, j)((void*)(((char*)((model_io->dependencies)->data)) + (size_t
)(model_io->dependencies)->rsize * (size_t)(j)))
== dependencies[i])
54 flag = 1;
55 if (flag)
56 continue;
57 ccv_array_push(model_io->dependencies, dependencies + i);
58 ++dependencies[i]->dependents;
59 }
60}
61
62int ccv_cnnp_model_output_size(const ccv_cnnp_model_t* const model)
63{
64 return model->output_size;
65}
66
67int ccv_cnnp_model_is_trainable(const ccv_cnnp_model_t* const model)
68{
69 // If the model is compiled, it is default to 1 unless it is not.
70 if (model->compiled_data)
71 return model->is_trainable >= 0 ? model->is_trainable : 1;
72 return model->is_trainable;
73}
74
75ccv_cnnp_model_io_t ccv_cnnp_model_parameters(ccv_cnnp_model_t* const model, const int selector, const int index)
76{
77 if (!model->io)
78 model->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0);
79 ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s));
80 model_io->param_ref = index >= 0 ? index + 1 : ALL_PARAMETERS-1;
81 model_io->param_sel = selector >= 0 ? selector + 1 : ALL_PARAMETERS-1;
82 model_io->visit = 0;
83 model_io->model = model;
84 model_io->outputs = 0;
85 model_io->dependencies = 0;
86 model_io->dependents = 0;
87 model_io->incomings = 0;
88 model_io->outgoings = 0;
89 ccv_array_push(model->io, &model_io);
90 return model_io;
91}
92
93void ccv_cnnp_model_notify_hook(ccv_cnnp_model_t* const model, ccv_cnnp_model_notify_f func, void* const context)
94{
95 model->notify_hook.func = func;
96 model->notify_hook.context = context;
97}
98
99void ccv_cnnp_model_notify(const ccv_cnnp_model_t* const model, const int tag, void* const payload)
100{
101 if (model->notify_hook.func)
102 model->notify_hook.func(model, tag, payload, model->notify_hook.context);
103 if (model->isa->notify)
104 model->isa->notify(model, tag, payload);
105}
106
107static int _ccv_nnc_array_dedup_graph_exec_symbols(ccv_nnc_graph_exec_symbol_t* const graph_exec_symbols, int graph_exec_symbol_size)
108{
109 int i, j;
110 for (i = 0; i < graph_exec_symbol_size; i++)
111 {
112 ccv_nnc_graph_exec_symbol_t* const graph_exec_symbol = graph_exec_symbols + i;
113 // Check whether this tensor symbol has any duplicate.
114 for (j = i + 1; j < graph_exec_symbol_size;)
115 {
116 ccv_nnc_graph_exec_symbol_t* const other_symbol = graph_exec_symbols + j;
117 // If there is a same tensor symbol, remove it.
118 if (other_symbol->d == graph_exec_symbol->d && other_symbol->graph == graph_exec_symbol->graph)
119 {
120 if (j + 1 < graph_exec_symbol_size)
121 *other_symbol = graph_exec_symbols[graph_exec_symbol_size - 1];
122 --graph_exec_symbol_size;
123 continue;
124 }
125 ++j;
126 }
127 }
128 return graph_exec_symbol_size;
129}
130
131void ccv_cnnp_model_add_to_array(void* const context, const ccv_nnc_tensor_symbol_t symbol, const int is_trainable)
132{
133 ccv_cnnp_model_add_to_array_context_t* const add_to_array_context = (ccv_cnnp_model_add_to_array_context_t*)context;
134 ccv_cnnp_model_t* const model = add_to_array_context->sequence->model;
135 int i;
136 if (add_to_array_context->add_parameter_indices && !model->parameter_indices)
137 model->parameter_indices = ccv_array_new(sizeof(int), 0, 0);
138 for (i = 0; i < add_to_array_context->symbols->rnum; i++)
139 {
140 const ccv_nnc_tensor_symbol_t other_symbol = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(add_to_array_context->symbols, i)((void*)(((char*)((add_to_array_context->symbols)->data
)) + (size_t)(add_to_array_context->symbols)->rsize * (
size_t)(i)))
;
141 if (other_symbol.d == symbol.d && other_symbol.graph == symbol.graph)
142 {
143 // Only add to parameter_indices if it is trainable.
144 if (add_to_array_context->add_parameter_indices)
145 ccv_array_add_unique_int(model->parameter_indices, i);
146 // Found it, return, don't add it.
147 return;
148 }
149 }
150 // Only add to parameter_indices if it is trainable.
151 if (add_to_array_context->add_parameter_indices)
152 ccv_array_push(model->parameter_indices, &add_to_array_context->symbols->rnum);
153 // This is a new one, no need to add_unique_int, it is unique.
154 ccv_array_push(add_to_array_context->symbols, &symbol);
155 if (add_to_array_context->trainables)
156 ccv_array_push(add_to_array_context->trainables, &is_trainable);
157 char id[2048];
158 id[0] = add_to_array_context->prefix;
159 id[1] = '-';
160 int total_len = 2;
161 for (i = 0; i < add_to_array_context->sequence->sequences->rnum; i++)
162 {
163 const ccv_cnnp_model_name_t* const name = (ccv_cnnp_model_name_t*)ccv_array_get(add_to_array_context->sequence->sequences, i)((void*)(((char*)((add_to_array_context->sequence->sequences
)->data)) + (size_t)(add_to_array_context->sequence->
sequences)->rsize * (size_t)(i)))
;
164 int len;
165 if (name->name && name->name[0] != '\0')
166 len = snprintf(id + total_len, 2048 - total_len, "%s-%d-", name->name, name->sequence);
167 else
168 len = snprintf(id + total_len, 2048 - total_len, "%d-", name->sequence);
169 total_len += len;
170 if (total_len >= 2047)
171 break;
172 }
173 if (total_len < 2047)
174 total_len += snprintf(id + total_len, 2048 - total_len, "%d", add_to_array_context->sequence->it);
175 assert(total_len < 2048)((void) sizeof ((total_len < 2048) ? 1 : 0), __extension__
({ if (total_len < 2048) ; else __assert_fail ("total_len < 2048"
, "ccv_cnnp_model.c", 175, __extension__ __PRETTY_FUNCTION__)
; }))
;
176 char *heap_id = (char*)ccmallocmalloc(total_len + 1);
177 memcpy(heap_id, id, total_len + 1);
178 ccv_array_push(add_to_array_context->ids, &heap_id);
179 ++add_to_array_context->sequence->it;
180}
181
182static void _ccv_cnnp_compiled_data_init(ccv_cnnp_compiled_data_t* const compiled_data, const int output_size, ccv_array_t* const gradient_checkpoints)
183{
184 compiled_data->f = compiled_data->fits + output_size;
185 compiled_data->xpu_alloc.mp_hdr = -1;
186 compiled_data->xpu_alloc.freed = kh_init(dy_str)kh_init_dy_str();
187 compiled_data->xpu_alloc.allocd = kh_init(dy_alloc)kh_init_dy_alloc();
188 compiled_data->gradient_checkpoints = gradient_checkpoints;
189}
190
191typedef struct {
192 void* old_graph_exec_symbol_new_hook_context;
193 ccv_nnc_graph_exec_symbol_new_hook_f old_graph_exec_symbol_new_hook;
194 ccv_nnc_symbolic_graph_t* graph;
195 ccv_cnnp_model_build_data_t* build_data;
196} ccv_cnnp_model_set_exec_flags_context_t;
197
198static void _ccv_cnnp_model_set_exec_flags(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name)
199{
200 ccv_cnnp_model_set_exec_flags_context_t* flags_context = (ccv_cnnp_model_set_exec_flags_context_t*)context;
201 if (flags_context->build_data->exec_flags)
202 ccv_nnc_graph_exec_symbol_set_flags(flags_context->graph, symbol, flags_context->build_data->exec_flags);
203 if (flags_context->old_graph_exec_symbol_new_hook)
204 flags_context->old_graph_exec_symbol_new_hook(flags_context->old_graph_exec_symbol_new_hook_context, symbol, cmd, inputs, input_size, outputs, output_size, name);
205}
206
207static void _ccv_cnnp_model_compile(ccv_cnnp_model_t* const model, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_cmd_t loss)
208{
209 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 209, __extension__ __PRETTY_FUNCTION__); }))
;
210 model->inputs = ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * input_size);
211 int i;
212 for (i = 0; i < input_size; i++)
213 model->inputs[i] = ccv_nnc_tensor_symbol_new(model->graph, inputs[i], 0);
214 ccv_array_t* const parameters = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
215 ccv_array_t* const parameter_ids = ccv_array_new(sizeof(char*), 0, 0);
216 ccv_array_t* const parameter_trainables = ccv_array_new(sizeof(int), 0, 0);
217 ccv_cnnp_model_sequence_t model_sequence = {
218 .bank = kh_init(ccv_cnnp_model_name_bank)kh_init_ccv_cnnp_model_name_bank()
219 };
220 ccv_cnnp_model_add_to_array_context_t add_to_parameter_context = {
221 .add_parameter_indices = 1,
222 .prefix = 't',
223 .sequence = &model_sequence,
224 .symbols = parameters,
225 .ids = parameter_ids,
226 .trainables = parameter_trainables,
227 };
228 ccv_array_t* const internals = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 0, 0);
229 ccv_array_t* const internal_ids = ccv_array_new(sizeof(char*), 0, 0);
230 ccv_cnnp_model_add_to_array_context_t add_to_output_context = {
231 .add_parameter_indices = 0,
232 .prefix = 'r',
233 .sequence = &model_sequence,
234 .symbols = internals,
235 .ids = internal_ids,
236 .trainables = 0,
237 };
238 ccv_cnnp_model_build_data_t build_data = {
239 .exec_flags = 0,
240 .is_trainable = model->is_trainable >= 0 ? model->is_trainable : 1,
241 .model_sequence = &model_sequence,
242 .add_to_array = ccv_cnnp_model_add_to_array,
243 .parameters = parameters,
244 .context = {
245 .add_to_parameter = &add_to_parameter_context,
246 .add_to_output = &add_to_output_context,
247 },
248 .gradient_checkpoints = 0,
249 };
250 model->data = &build_data;
251 ccv_cnnp_model_set_exec_flags_context_t flags_context = {
252 .graph = model->graph,
253 .build_data = &build_data,
254 .old_graph_exec_symbol_new_hook = 0,
255 .old_graph_exec_symbol_new_hook_context = 0
256 };
257 flags_context.old_graph_exec_symbol_new_hook_context = ccv_nnc_graph_exec_symbol_new_hook(model->graph, _ccv_cnnp_model_set_exec_flags, &flags_context, &flags_context.old_graph_exec_symbol_new_hook);
258 ccv_cnnp_model_build(model, model->graph, model->inputs, input_size, 0, 0);
259 // Reset back to previous hook.
260 ccv_nnc_graph_exec_symbol_new_hook(model->graph, flags_context.old_graph_exec_symbol_new_hook, flags_context.old_graph_exec_symbol_new_hook_context, 0);
261 for (i = 0; i < model->output_size; i++)
262 {
263 const ccv_nnc_tensor_symbol_t output = model->outputs[i];
264 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(model->graph, output);
265 if (alias_to.d == CCV_NNC_NO_TENSOR_SYMBOL)
266 continue;
267 // If output is an alias, insert data transform regardless for result correctness (we cannot bind an alias). You can check ccv_nnc_tensor_bind_symbol method
268 // to see that we can correctly bind a tensor which from it, has aliases, but we cannot bind an alias tensor correctly (this is expected, sort of, to be
269 // honest, because we cannot handle cases of alias is part of the original tensor but bind differently).
270 const ccv_nnc_tensor_param_t output_params = ccv_nnc_tensor_symbol_params(model->graph, output);
271 model->outputs[i] = ccv_nnc_tensor_symbol_new(model->graph, output_params, 0);
272 ccv_nnc_graph_exec_symbol_t make_contiguous = ccv_nnc_graph_exec_symbol_new(model->graph, CMD_FORMAT_TRANSFORM_FORWARD()ccv_nnc_cmd(CCV_NNC_FORMAT_TRANSFORM_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, &output, 1, model->outputs + i, 1, "contiguous");
273 ccv_nnc_graph_exec_symbol_set_flags(model->graph, make_contiguous, CCV_NNC_GRAPH_EXEC_DISABLE_OPT);
274 }
275 model->data = 0;
276 kh_destroy(ccv_cnnp_model_name_bank, model_sequence.bank)kh_destroy_ccv_cnnp_model_name_bank(model_sequence.bank);
277 if (model_sequence.sequences)
278 ccv_array_free(model_sequence.sequences);
279 // Check if there are parameters that are not trainables. If there are, we will allocate uint64 bitmap to record that.
280 int not_trainables = 0;
281 // Assert no parameter is alias.
282 for (i = 0; i < parameters->rnum; i++)
283 {
284 const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(parameters, i)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(i)))
;
285 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(parameter.graph, parameter);
286 assert(alias_to.graph == 0)((void) sizeof ((alias_to.graph == 0) ? 1 : 0), __extension__
({ if (alias_to.graph == 0) ; else __assert_fail ("alias_to.graph == 0"
, "ccv_cnnp_model.c", 286, __extension__ __PRETTY_FUNCTION__)
; }))
; // Cannot find the one alias to.
287 if (*(int*)ccv_array_get(parameter_trainables, i)((void*)(((char*)((parameter_trainables)->data)) + (size_t
)(parameter_trainables)->rsize * (size_t)(i)))
== 0)
288 not_trainables = 1;
289 }
290 assert(parameters->rnum == parameter_trainables->rnum)((void) sizeof ((parameters->rnum == parameter_trainables->
rnum) ? 1 : 0), __extension__ ({ if (parameters->rnum == parameter_trainables
->rnum) ; else __assert_fail ("parameters->rnum == parameter_trainables->rnum"
, "ccv_cnnp_model.c", 290, __extension__ __PRETTY_FUNCTION__)
; }))
;
291 uint64_t* parameter_flags = 0;
292 if (not_trainables)
293 {
294 parameter_flags = (uint64_t*)cccalloccalloc(((parameters->rnum + 63) >> 6), sizeof(uint64_t));
295 for (i = 0; i < parameter_trainables->rnum; i++)
296 if (*(int*)ccv_array_get(parameter_trainables, i)((void*)(((char*)((parameter_trainables)->data)) + (size_t
)(parameter_trainables)->rsize * (size_t)(i)))
)
297 parameter_flags[i >> 6] |= ((uint64_t)1 << (i & 63));
298 }
299 ccv_array_free(parameter_trainables);
300 // Assert no internal is alias.
301 for (i = 0; i < internals->rnum; i++)
302 {
303 const ccv_nnc_tensor_symbol_t internal = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(internals, i)((void*)(((char*)((internals)->data)) + (size_t)(internals
)->rsize * (size_t)(i)))
;
304 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(internal.graph, internal);
305 assert(alias_to.graph == 0)((void) sizeof ((alias_to.graph == 0) ? 1 : 0), __extension__
({ if (alias_to.graph == 0) ; else __assert_fail ("alias_to.graph == 0"
, "ccv_cnnp_model.c", 305, __extension__ __PRETTY_FUNCTION__)
; }))
; // Cannot find the one alias to.
306 }
307 const int output_size = model->output_size;
308 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
309 const int parameters_rnum = parameters->rnum;
310 if (input_size > 0)
311 {
312 ccv_array_resize(parameters, parameters_rnum + input_size);
313 memcpy(ccv_array_get(parameters, parameters_rnum)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(parameters_rnum)))
, model->inputs, input_size * sizeof(ccv_nnc_tensor_symbol_t));
314 }
315 ccv_nnc_symbolic_graph_simplify(model->graph,
316 SYMBOLIC_GRAPH_PASSES(CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
317 CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
318 CCV_NNC_SIMPLIFY_OPS_FUSION,(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
319 CCV_NNC_SIMPLIFY_GRAPH_PRUNING)(const int []){CCV_NNC_SIMPLIFY_COMMON_SUBEXPRESSION_ELIMINATION
, CCV_NNC_SIMPLIFY_DATA_TRANSFER_OPT, CCV_NNC_SIMPLIFY_OPS_FUSION
, CCV_NNC_SIMPLIFY_GRAPH_PRUNING}, (1 +1 +1 +1 +1 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
,
320 ccv_array_get(parameters, 0)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(0)))
, parameters_rnum + input_size,
321 model->outputs, output_size,
322 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
323 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
324 // Size it down.
325 parameters->rnum = parameters_rnum;
326 ccv_cnnp_compiled_data_t* compiled_data = model->compiled_data = cccalloccalloc(1, sizeof(ccv_cnnp_compiled_data_t) + sizeof(ccv_nnc_tensor_symbol_t) * (output_size * 2 - 1));
327 _ccv_cnnp_compiled_data_init(compiled_data, output_size, build_data.gradient_checkpoints);
328 const int evaluate_to_size = compiled_data->evaluate.to_size = ccv_nnc_symbolic_graph_destination_size(model->graph);
329 assert(evaluate_to_size > 0)((void) sizeof ((evaluate_to_size > 0) ? 1 : 0), __extension__
({ if (evaluate_to_size > 0) ; else __assert_fail ("evaluate_to_size > 0"
, "ccv_cnnp_model.c", 329, __extension__ __PRETTY_FUNCTION__)
; }))
;
330 compiled_data->evaluate.tos = ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size);
331 memcpy(compiled_data->evaluate.tos, ccv_nnc_symbolic_graph_destinations(model->graph), sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size);
332 compiled_data->loss = loss;
333 if (loss.cmd == CCV_NNC_NOOP)
334 {
335 // If no loss function provided, there is no fits.
336 for (i = 0; i < output_size; i++)
337 {
338 compiled_data->fits[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
339 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(model->graph, model->outputs[i]);
340 if (alias_to.d < 0)
341 compiled_data->f[i] = model->outputs[i];
342 else { // We cannot differentiate against an alias, therefore, we have to verify this output is full, and we can diff against the original.
343 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
344 int inc[CCV_NNC_MAX_DIM_ALLOC(12)];
345 ccv_nnc_tensor_symbol_alias_params(model->graph, model->outputs[i], ofs, inc);
346 int j;
347 for (j = 0; j < CCV_NNC_MAX_DIM_ALLOC(12); j++)
348 { assert(ofs[j] == 0)((void) sizeof ((ofs[j] == 0) ? 1 : 0), __extension__ ({ if (
ofs[j] == 0) ; else __assert_fail ("ofs[j] == 0", "ccv_cnnp_model.c"
, 348, __extension__ __PRETTY_FUNCTION__); }))
; } // There is no ofs.
349 compiled_data->f[i] = alias_to; // Unfortunately, I cannot assert the size yet.
350 }
351 }
352 } else {
353 for (i = 0; i < output_size; i++)
354 {
355 const ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(model->graph, model->outputs[i]);
356 const ccv_nnc_tensor_symbol_t fit = compiled_data->fits[i] = ccv_nnc_tensor_symbol_new(model->graph, info, 0);
357 compiled_data->f[i] = ccv_nnc_tensor_symbol_new(model->graph, ccv_nnc_tensor_auto, 0);
358 ccv_nnc_graph_exec_symbol_new(model->graph, loss, TENSOR_SYMBOL_LIST(model->outputs[i], fit)(const ccv_nnc_tensor_symbol_t []){model->outputs[i], fit}
, (1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 -1)
, TENSOR_SYMBOL_LIST(compiled_data->f[i])(const ccv_nnc_tensor_symbol_t []){compiled_data->f[i]}, (
1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 -1)
, 0);
359 }
360 }
361 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
362 ccv_nnc_symbolic_graph_simplify(model->graph,
363 SYMBOLIC_GRAPH_PASSES(CCV_NNC_SIMPLIFY_OPS_FUSION)(const int []){CCV_NNC_SIMPLIFY_OPS_FUSION}, (1 +1 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, // Only do Ops fusion, in this way, we can fuse the loss function.
364 0, 0, // No need to provide binds at this point.
365 compiled_data->f, model->output_size,
366 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
367 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
368 // If inputs are from GPU, stream type is GPU.
369 compiled_data->parameters = parameters;
370 compiled_data->parameter_flags = parameter_flags;
371 compiled_data->internals = internals;
372 compiled_data->ids.parameters = parameter_ids;
373 compiled_data->ids.internals = internal_ids;
374 ccv_cnnp_model_gradient_checkpoints_cleanup_after_build(compiled_data, model->graph);
375}
376
377static void _ccv_cnnp_graph_push_graph_exec_symbol(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name)
378{
379 ccv_array_t* const stack = (ccv_array_t*)context;
380 ccv_array_push(stack, &symbol.d);
381}
382
383static void _ccv_nnc_tensor_symbol_reinit(const ccv_nnc_symbolic_graph_t* const src_graph, ccv_nnc_symbolic_graph_t* const dest_graph, const int src_index, const int dest_index)
384{
385 const ccv_nnc_tensor_symbol_t src_symbol = {
386 .d = src_index,
387 .graph = src_graph
388 };
389 const ccv_nnc_tensor_symbol_t dest_symbol = {
390 .d = dest_index,
391 .graph = dest_graph
392 };
393 const ccv_nnc_tensor_param_t params = ccv_nnc_tensor_symbol_params(src_graph, src_symbol);
394 ccv_nnc_tensor_symbol_set(dest_graph, dest_symbol, params);
395 int ofs[CCV_NNC_MAX_DIM_ALLOC(12)];
396 int inc[CCV_NNC_MAX_DIM_ALLOC(12)];
397 if (0 == ccv_nnc_tensor_symbol_alias_params(src_graph, src_symbol, ofs, inc))
398 ccv_nnc_tensor_symbol_alias_set(dest_graph, dest_symbol, ofs, inc);
399}
400
401static int _ccv_nnc_tensor_symbol_check_dim(const ccv_nnc_symbolic_graph_t* const src_graph, ccv_nnc_symbolic_graph_t* const dest_graph, const int src_index, const int dest_index)
402{
403 const ccv_nnc_tensor_symbol_t src_symbol = {
404 .d = src_index,
405 .graph = src_graph
406 };
407 const ccv_nnc_tensor_param_t src_params = ccv_nnc_tensor_symbol_params(src_graph, src_symbol);
408 const ccv_nnc_tensor_symbol_t dest_symbol = {
409 .d = dest_index,
410 .graph = dest_graph
411 };
412 const ccv_nnc_tensor_param_t dest_params = ccv_nnc_tensor_symbol_params(dest_graph, dest_symbol);
413 return memcmp(src_params.dim, dest_params.dim, sizeof(src_params.dim)) == 0;
414}
415
416static void _ccv_cnnp_model_gradient_init(ccv_cnnp_model_t* const model, const int gradient_mode, const uint64_t disable_outgrad, ccv_nnc_tensor_t* const* const fits, const int fit_size);
417static void _ccv_cnnp_compiled_data_graph_free(ccv_cnnp_compiled_data_t* const compiled_data);
418
419typedef struct {
420 int parallel_count;
421 ccv_nnc_symbolic_graph_t* graph;
422 ccv_nnc_graph_exec_arena_t* graph_exec_arena;
423} ccv_nnc_graph_exec_update_t;
424
425static void _ccv_cnnp_cmd_update_for_execs(void* const context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint)
426{
427 ccv_nnc_graph_exec_update_t* const graph_exec_update = (ccv_nnc_graph_exec_update_t*)context;
428 ccv_nnc_graph_exec_arena_t* const graph_exec_arena = graph_exec_update->graph_exec_arena;
429 ccv_nnc_graph_exec_t graph_exec = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, symbol);
430 ccv_nnc_graph_exec_set(graph_exec.graph, graph_exec, cmd);
431 ccv_nnc_graph_exec_set_hint(graph_exec.graph, graph_exec, hint);
432 const ccv_nnc_symbolic_graph_t* const graph = graph_exec_update->graph;
433 const int parallel_count = graph_exec_update->parallel_count;
434 int i;
435 for (i = 1; i < parallel_count; i++)
436 {
437 const ccv_nnc_graph_exec_t copy = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, ccv_nnc_graph_exec_symbol_copy(graph, symbol, i));
438 if (!CCV_NO_GRAPH_EXEC(copy)((copy).graph == 0))
439 {
440 ccv_nnc_graph_exec_set(copy.graph, copy, cmd);
441 ccv_nnc_graph_exec_set_hint(copy.graph, copy, hint);
442 }
443 }
444}
445
446void ccv_cnnp_model_absorb(ccv_cnnp_model_t* const model, ccv_cnnp_model_t* const init, const ccv_nnc_tensor_param_t* const inputs, const int input_size)
447{
448 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 448, __extension__ __PRETTY_FUNCTION__); }))
;
449 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 449, __extension__ __PRETTY_FUNCTION__)
; }))
;
450 assert(!init->graph)((void) sizeof ((!init->graph) ? 1 : 0), __extension__ ({ if
(!init->graph) ; else __assert_fail ("!init->graph", "ccv_cnnp_model.c"
, 450, __extension__ __PRETTY_FUNCTION__); }))
;
451 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
452 init->graph = ccv_nnc_symbolic_graph_new();
453 ccv_array_t* const stack = ccv_array_new(sizeof(int), 0, 0);
454 ccv_nnc_graph_exec_symbol_new_hook(init->graph, _ccv_cnnp_graph_push_graph_exec_symbol, stack, 0);
455 _ccv_cnnp_model_compile(init, inputs, input_size, compiled_data->loss);
456 init->parallel_count = model->parallel_count;
457 init->memory_compression = model->memory_compression;
458 init->memory_reduction = model->memory_reduction;
459 init->gradient_checkpointing = model->gradient_checkpointing;
460 init->compiled_data->stream_type = model->compiled_data->stream_type;
461 init->compiled_data->minimize.minimizer = model->compiled_data->minimize.minimizer;
462 init->compiled_data->minimize.max_saved_aux_size = model->compiled_data->minimize.max_saved_aux_size;
463 if (model->compiled_data->gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
464 _ccv_cnnp_model_gradient_init(init, model->compiled_data->gradient_mode, model->compiled_data->disable_outgrad, 0, 0);
465 ccv_nnc_graph_exec_symbol_new_hook(init->graph, 0, 0, 0);
466 ccv_nnc_symbolic_graph_tensor_auto(init->graph, TRAVERSE_FULL0,0,0,0);
467 int i, j;
468 // Verify parameters, internals and saved_aux in both graph has the same dimensionality.
469 for (i = 0; i < compiled_data->parameters->rnum; i++)
470 {
471 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
)->d;
472 assert(_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d))((void) sizeof ((_ccv_nnc_tensor_symbol_check_dim(model->graph
, init->graph, d, d)) ? 1 : 0), __extension__ ({ if (_ccv_nnc_tensor_symbol_check_dim
(model->graph, init->graph, d, d)) ; else __assert_fail
("_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d)"
, "ccv_cnnp_model.c", 472, __extension__ __PRETTY_FUNCTION__)
; }))
;
473 }
474 for (i = 0; i < compiled_data->internals->rnum; i++)
475 {
476 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(i))
)
)->d;
477 assert(_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d))((void) sizeof ((_ccv_nnc_tensor_symbol_check_dim(model->graph
, init->graph, d, d)) ? 1 : 0), __extension__ ({ if (_ccv_nnc_tensor_symbol_check_dim
(model->graph, init->graph, d, d)) ; else __assert_fail
("_ccv_nnc_tensor_symbol_check_dim(model->graph, init->graph, d, d)"
, "ccv_cnnp_model.c", 477, __extension__ __PRETTY_FUNCTION__)
; }))
;
478 }
479 // Update inputs.
480 assert(model->input_size == init->input_size)((void) sizeof ((model->input_size == init->input_size)
? 1 : 0), __extension__ ({ if (model->input_size == init->
input_size) ; else __assert_fail ("model->input_size == init->input_size"
, "ccv_cnnp_model.c", 480, __extension__ __PRETTY_FUNCTION__)
; }))
;
481 for (i = 0; i < model->input_size; i++)
482 if (model->inputs[i].d >= 0)
483 {
484 assert(init->inputs[i].d >= 0)((void) sizeof ((init->inputs[i].d >= 0) ? 1 : 0), __extension__
({ if (init->inputs[i].d >= 0) ; else __assert_fail ("init->inputs[i].d >= 0"
, "ccv_cnnp_model.c", 484, __extension__ __PRETTY_FUNCTION__)
; }))
;
485 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->inputs[i].d, model->inputs[i].d);
486 }
487 // Update outputs.
488 assert(model->output_size == init->output_size)((void) sizeof ((model->output_size == init->output_size
) ? 1 : 0), __extension__ ({ if (model->output_size == init
->output_size) ; else __assert_fail ("model->output_size == init->output_size"
, "ccv_cnnp_model.c", 488, __extension__ __PRETTY_FUNCTION__)
; }))
;
489 for (i = 0; i < model->output_size; i++)
490 {
491 if (model->outputs[i].d >= 0)
492 {
493 assert(init->outputs[i].d >= 0)((void) sizeof ((init->outputs[i].d >= 0) ? 1 : 0), __extension__
({ if (init->outputs[i].d >= 0) ; else __assert_fail (
"init->outputs[i].d >= 0", "ccv_cnnp_model.c", 493, __extension__
__PRETTY_FUNCTION__); }))
;
494 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->outputs[i].d, model->outputs[i].d);
495 }
496 if (model->outputs[i].d != model->compiled_data->f[i].d)
497 {
498 assert(init->outputs[i].d != init->compiled_data->f[i].d)((void) sizeof ((init->outputs[i].d != init->compiled_data
->f[i].d) ? 1 : 0), __extension__ ({ if (init->outputs[
i].d != init->compiled_data->f[i].d) ; else __assert_fail
("init->outputs[i].d != init->compiled_data->f[i].d"
, "ccv_cnnp_model.c", 498, __extension__ __PRETTY_FUNCTION__)
; }))
;
499 if (model->compiled_data->f[i].d >= 0)
500 {
501 assert(init->compiled_data->f[i].d >= 0)((void) sizeof ((init->compiled_data->f[i].d >= 0) ?
1 : 0), __extension__ ({ if (init->compiled_data->f[i]
.d >= 0) ; else __assert_fail ("init->compiled_data->f[i].d >= 0"
, "ccv_cnnp_model.c", 501, __extension__ __PRETTY_FUNCTION__)
; }))
;
502 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, init->compiled_data->f[i].d, model->compiled_data->f[i].d);
503 }
504 }
505 }
506 // Go through the graph to set tensor on matching symbols
507 for (i = 0; i < stack->rnum; i++)
508 {
509 const int d = *(int*)ccv_array_get(stack, i)((void*)(((char*)((stack)->data)) + (size_t)(stack)->rsize
* (size_t)(i)))
;
510 // If exceed range, skip.
511 if (d >= ccv_nnc_graph_exec_symbol_count(init->graph) ||
512 d >= ccv_nnc_graph_exec_symbol_count(model->graph))
513 continue;
514 const ccv_nnc_graph_exec_symbol_t src_symbol = {
515 .d = d,
516 .graph = init->graph
517 };
518 const ccv_nnc_graph_exec_symbol_t dest_symbol = {
519 .d = d,
520 .graph = model->graph
521 };
522 const ccv_nnc_cmd_t src_cmd = ccv_nnc_graph_exec_symbol_cmd(init->graph, src_symbol);
523 const ccv_nnc_cmd_t dest_cmd = ccv_nnc_graph_exec_symbol_cmd(model->graph, dest_symbol);
524 // If the name doesn't match, skip.
525 if (dest_cmd.cmd != src_cmd.cmd && src_cmd.cmd != CCV_NNC_NOOP)
526 continue;
527 // Now get all the inputs and outputs, if matches, set them.
528 const int* src_inputs;
529 int src_input_size;
530 const int* src_outputs;
531 int src_output_size;
532 ccv_nnc_graph_exec_symbol_io(init->graph, src_symbol, &src_inputs, &src_input_size, &src_outputs, &src_output_size);
533 const int* dest_inputs;
534 int dest_input_size;
535 const int* dest_outputs;
536 int dest_output_size;
537 ccv_nnc_graph_exec_symbol_io(model->graph, dest_symbol, &dest_inputs, &dest_input_size, &dest_outputs, &dest_output_size);
538 // We may have unmatched input / output size because this is the minimizer and it has
539 // different saved_aux (for example, when we shrunk with CMD_NOOP).
540 if (src_input_size != dest_input_size)
541 continue;
542 if (src_output_size != dest_output_size)
543 continue;
544 ccv_nnc_graph_exec_symbol_set(model->graph, dest_symbol, src_cmd);
545 // There may be mismatches of the source tensor symbols and destination tensor symbols. The reason is because
546 // we may later passed-in the minimizer, therefore, we may allocate tensors for minimizer later in the original
547 // graph whereas in the newly created graph, it is streamlined (the minimizer exists from the beginning). That
548 // will make the order of tensor symbols creation different, therefore, exact which tensor is which wrong as
549 // well. However, set a new minimizer won't change the exec symbol ordering, because we never create new exec
550 // symbols after gradient init step. Changing a new minimizer just updated that exec symbols setting, it is not
551 // a new exec symbol.
552 for (j = 0; j < src_input_size; j++)
553 if (src_inputs[j] >= 0)
554 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, src_inputs[j], dest_inputs[j]);
555 for (j = 0; j < src_output_size; j++)
556 if (src_outputs[j] >= 0)
557 _ccv_nnc_tensor_symbol_reinit(init->graph, model->graph, src_outputs[j], dest_outputs[j]);
558 }
559 ccv_array_free(stack);
560 // After this, we get all tensors in the model graph resolved through tensor_auto.
561 ccv_nnc_symbolic_graph_tensor_auto(model->graph, TRAVERSE_FULL0,0,0,0);
562 // Verify symbols we get matches.
563 const int parameter_size = compiled_data->parameters->rnum;
564 for (i = 0; i < parameter_size; i++)
565 { assert(((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->parameters, i))->d)((void) sizeof ((((ccv_nnc_tensor_symbol_t*)((void*)(((char*)
((compiled_data->parameters)->data)) + (size_t)(compiled_data
->parameters)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((init->compiled_data->parameters)->
data)) + (size_t)(init->compiled_data->parameters)->
rsize * (size_t)(i))))->d) ? 1 : 0), __extension__ ({ if (
((ccv_nnc_tensor_symbol_t*)((void*)(((char*)((compiled_data->
parameters)->data)) + (size_t)(compiled_data->parameters
)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((init->compiled_data->parameters)->
data)) + (size_t)(init->compiled_data->parameters)->
rsize * (size_t)(i))))->d) ; else __assert_fail ("((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->parameters, i))->d"
, "ccv_cnnp_model.c", 565, __extension__ __PRETTY_FUNCTION__)
; }))
; }
566 const int internal_size = compiled_data->internals->rnum;
567 for (i = 0; i < internal_size; i++)
568 { assert(((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->internals, i))->d)((void) sizeof ((((ccv_nnc_tensor_symbol_t*)((void*)(((char*)
((compiled_data->internals)->data)) + (size_t)(compiled_data
->internals)->rsize * (size_t)(i))))->d == ((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((init->compiled_data->internals)->
data)) + (size_t)(init->compiled_data->internals)->rsize
* (size_t)(i))))->d) ? 1 : 0), __extension__ ({ if (((ccv_nnc_tensor_symbol_t
*)((void*)(((char*)((compiled_data->internals)->data)) +
(size_t)(compiled_data->internals)->rsize * (size_t)(i
))))->d == ((ccv_nnc_tensor_symbol_t*)((void*)(((char*)((init
->compiled_data->internals)->data)) + (size_t)(init->
compiled_data->internals)->rsize * (size_t)(i))))->d
) ; else __assert_fail ("((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i))->d == ((ccv_nnc_tensor_symbol_t*)ccv_array_get(init->compiled_data->internals, i))->d"
, "ccv_cnnp_model.c", 568, __extension__ __PRETTY_FUNCTION__)
; }))
; }
569 // Go through compiled data.
570 if (compiled_data->tensor_arena)
571 {
572 const int flag = ccv_nnc_tensor_arena_reinit(compiled_data->tensor_arena, model->graph);
573 if (flag == 0 && compiled_data->graph_exec_arena)
574 {
575 ccv_nnc_graph_exec_reinit(compiled_data->graph_exec_arena, compiled_data->graph, model->graph);
576 // Since we will reinit, if we previously set is_test, we need to set it again.
577 if (compiled_data->is_test)
578 {
579 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
580 ccv_nnc_graph_exec_update_t update = {
581 .parallel_count = parallel_count,
582 .graph = model->graph,
583 .graph_exec_arena = compiled_data->graph_exec_arena,
584 };
585 ccv_cnnp_model_set_is_test(model, 1, _ccv_cnnp_cmd_update_for_execs, &update);
586 }
587 } else
588 // Free-up tensor arena & graph exec arena.
589 _ccv_cnnp_compiled_data_graph_free(compiled_data);
590 }
591 // There are other compiled graphs, for accum and apply gradients.
592 // However, the main conclusion is, these absorb operations shouldn't impact parameters.
593 // Thus, it won't impact the shape of gradients (only outgrad). Since for outgrad, we
594 // don't allocate ourselves, it is not a concern. For normal gradients, the shape cannot
595 // be changed otherwise parameters' shape will be meaningless. The same goes to internals.
596 // That is why we don't update these compiled graphs at all this point.
597 // Free the model, we've already "absorbed" it.
598 ccv_cnnp_model_free(init);
599}
600
601void ccv_cnnp_model_compile(ccv_cnnp_model_t* const model, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_cmd_t minimizer, const ccv_nnc_cmd_t loss)
602{
603 assert(input_size == model->input_size || model->input_size == 0)((void) sizeof ((input_size == model->input_size || model->
input_size == 0) ? 1 : 0), __extension__ ({ if (input_size ==
model->input_size || model->input_size == 0) ; else __assert_fail
("input_size == model->input_size || model->input_size == 0"
, "ccv_cnnp_model.c", 603, __extension__ __PRETTY_FUNCTION__)
; }))
;
604 if (model->input_size == 0)
605 model->input_size = input_size;
606 if (!model->graph) // The graph is not compiled yet.
607 {
608 model->graph = ccv_nnc_symbolic_graph_new();
609 _ccv_cnnp_model_compile(model, inputs, input_size, loss);
610 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 610, __extension__ __PRETTY_FUNCTION__)
; }))
;
611 int i, flag = 0;
612 for (i = 0; !flag && i < input_size; i++)
613 flag = (CCV_TENSOR_GET_MEMORY(inputs[i].type)((inputs[i].type) & 0x3) == CCV_TENSOR_GPU_MEMORY);
614 // If inputs are from GPU, stream type is GPU.
615 model->compiled_data->stream_type = flag ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
616 model->compiled_data->minimize.minimizer = minimizer;
617 model->compiled_data->minimize.max_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(minimizer);
618 } else {
619 // Now, finally fill in this part. If the graph is already compiled, we make a copy of the model.
620 // And then absorb the "new model" to the old one.
621 ccv_cnnp_model_t* const init = ccv_cnnp_model_copy(model, model->is_trainable);
622 ccv_cnnp_model_absorb(model, init, inputs, input_size);
623 // Reset minimizer.
624 ccv_cnnp_model_set_minimizer(model, minimizer, 1, 0, 0);
625 }
626}
627
628ccv_cnnp_model_t* ccv_cnnp_model_copy(const ccv_cnnp_model_t* const model, const int is_trainable)
629{
630 ccv_cnnp_model_t* const new_model = _ccv_cnnp_model_copy(model, 0);
631 new_model->is_trainable = is_trainable;
632 return new_model;
633}
634
635void ccv_cnnp_model_tensor_auto(ccv_cnnp_model_t* const model, ccv_nnc_tensor_param_t* const outputs, const int output_size)
636{
637 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 637, __extension__ __PRETTY_FUNCTION__); }))
;
638 assert(output_size == model->output_size)((void) sizeof ((output_size == model->output_size) ? 1 : 0
), __extension__ ({ if (output_size == model->output_size)
; else __assert_fail ("output_size == model->output_size"
, "ccv_cnnp_model.c", 638, __extension__ __PRETTY_FUNCTION__)
; }))
;
639 ccv_nnc_symbolic_graph_t* const graph = model->graph;
640 ccv_nnc_symbolic_graph_tensor_auto(graph, TRAVERSE_FULL0,0,0,0);
641 int i;
642 for (i = 0; i < output_size; i++)
643 {
644 assert(model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL)((void) sizeof ((model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL
) ? 1 : 0), __extension__ ({ if (model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL
) ; else __assert_fail ("model->outputs[i].d != CCV_NNC_NO_TENSOR_SYMBOL"
, "ccv_cnnp_model.c", 644, __extension__ __PRETTY_FUNCTION__)
; }))
;
645 outputs[i] = ccv_nnc_tensor_symbol_params(graph, model->outputs[i]);
646 }
647}
648
649void ccv_cnnp_model_set_workspace_size(ccv_cnnp_model_t* const model, size_t workspace_size)
650{
651 if (workspace_size == model->workspace_size)
652 return;
653 model->workspace_size = workspace_size;
654 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
655 if (compiled_data && compiled_data->graph)
656 ccv_nnc_graph_autotune(compiled_data->graph, workspace_size, 0, TRAVERSE_FULL0,0,0,0);
657}
658
659size_t ccv_cnnp_model_workspace_size(ccv_cnnp_model_t* const model)
660{
661 return model->workspace_size;
662}
663
664void ccv_cnnp_model_set_data_parallel(ccv_cnnp_model_t* const model, const int parallel)
665{
666 if (parallel == 0)
667 model->parallel_count = ccv_nnc_device_count(CCV_STREAM_CONTEXT_GPU);
668 else
669 model->parallel_count = parallel;
670 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
671 if (compiled_data)
672 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 672, __extension__ __PRETTY_FUNCTION__)
; }))
; }
673}
674
675void ccv_cnnp_model_set_max_concurrency(ccv_cnnp_model_t* const model, const int max_stream_count)
676{
677 model->max_stream_count = max_stream_count;
678 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
679 if (compiled_data)
680 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 680, __extension__ __PRETTY_FUNCTION__)
; }))
; }
681}
682
683void ccv_cnnp_model_set_memory_compression(ccv_cnnp_model_t* const model, const int memory_compression)
684{
685 model->memory_compression = memory_compression;
686 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
687 if (compiled_data)
688 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 688, __extension__ __PRETTY_FUNCTION__)
; }))
; }
689}
690
691void ccv_cnnp_model_set_memory_reduction(ccv_cnnp_model_t* const model, const int memory_reduction)
692{
693 model->memory_reduction = memory_reduction;
694 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
695 if (compiled_data)
696 { assert(!compiled_data->graph)((void) sizeof ((!compiled_data->graph) ? 1 : 0), __extension__
({ if (!compiled_data->graph) ; else __assert_fail ("!compiled_data->graph"
, "ccv_cnnp_model.c", 696, __extension__ __PRETTY_FUNCTION__)
; }))
; }
697}
698
699void ccv_cnnp_model_set_gradient_checkpointing(ccv_cnnp_model_t* const model, const int gradient_checkpointing)
700{
701 model->gradient_checkpointing = gradient_checkpointing;
702}
703
704int ccv_cnnp_model_gradient_checkpointing(ccv_cnnp_model_t* const model)
705{
706 return model->gradient_checkpointing;
707}
708
709typedef struct {
710 int parallel_count;
711 ccv_nnc_symbolic_graph_t* graph;
712 ccv_cnnp_compiled_data_t* compiled_data;
713 ccv_nnc_tensor_arena_t* tensor_arena;
714} ccv_nnc_tensor_init_states_t;
715
716static int _ccv_cnnp_any_to_init(const ccv_cnnp_compiled_data_t* const compiled_data)
717{
718 int i;
719 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
720 for (i = 0; i < compiled_data->parameters->rnum; i++)
721 {
722 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
)->d;
723 if (!(init_v[d >> 5] & (1u << (d & 0x1f))))
724 return 1;
725 }
726 for (i = 0; i < compiled_data->internals->rnum; i++)
727 {
728 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(i))
)
)->d;
729 if (!(init_v[d >> 5] & (1u << (d & 0x1f))))
730 return 1;
731 }
732 return 0;
733}
734
735static void _ccv_cnnp_init_states_for_tensors(void* const context, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const input, const ccv_nnc_tensor_symbol_t output_symbol)
736{
737 ccv_nnc_tensor_init_states_t* const tensor_init_states = (ccv_nnc_tensor_init_states_t*)context;
738 ccv_nnc_tensor_arena_t* const tensor_arena = tensor_init_states->tensor_arena;
739 ccv_nnc_tensor_t* const output_tensor = ccv_nnc_tensor_from_symbol(tensor_arena, output_symbol);
740 if (!output_tensor)
741 return;
742 const int d = output_symbol.d;
743 assert(d < tensor_init_states->compiled_data->tensors_init.size)((void) sizeof ((d < tensor_init_states->compiled_data->
tensors_init.size) ? 1 : 0), __extension__ ({ if (d < tensor_init_states
->compiled_data->tensors_init.size) ; else __assert_fail
("d < tensor_init_states->compiled_data->tensors_init.size"
, "ccv_cnnp_model.c", 743, __extension__ __PRETTY_FUNCTION__)
; }))
;
744 uint32_t* const init_v = CCV_NNC_INIT_V(tensor_init_states->compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(tensor_init_states->compiled_data
->tensors_init.v) & ~(uintptr_t)1))
;
745 if (init_v[d >> 5] & (1u << (d & 0x1f)))
746 return;
747 init_v[d >> 5] |= (1u << (d & 0x1f));
748 ccv_nnc_cmd_exec(cmd, hint, flags, &input, input ? 1 : 0, &output_tensor, 1, 0);
749 const ccv_nnc_symbolic_graph_t* const graph = tensor_init_states->graph;
750 const int parallel_count = tensor_init_states->parallel_count;
751 int i;
752 for (i = 1; i < parallel_count; i++)
753 {
754 ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(tensor_arena, ccv_nnc_tensor_symbol_copy(graph, output_symbol, i));
755 if (copy)
756 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, &output_tensor, 1, &copy, 1, 0);
757 }
758}
759
760// This method can only handle cases we added new tensors and exec, never delete. This invariant is true because
761// we setup everything (including calling simplify method) in ccv_cnnp_model_compile method, before this rewind setup.
762static void _ccv_cnnp_model_rewind_graph(ccv_cnnp_model_t* const model)
763{
764 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 764, __extension__ __PRETTY_FUNCTION__); }))
;
765 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 765, __extension__ __PRETTY_FUNCTION__)
; }))
;
766 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
767 assert(compiled_data->rewindables)((void) sizeof ((compiled_data->rewindables) ? 1 : 0), __extension__
({ if (compiled_data->rewindables) ; else __assert_fail (
"compiled_data->rewindables", "ccv_cnnp_model.c", 767, __extension__
__PRETTY_FUNCTION__); }))
;
768 int i;
769 for (i = 0; i < compiled_data->rewindables->rnum; i++)
770 {
771 const ccv_cnnp_rewind_symbol_t* const rewind_symbol = (ccv_cnnp_rewind_symbol_t*)ccv_array_get(compiled_data->rewindables, i)((void*)(((char*)((compiled_data->rewindables)->data)) +
(size_t)(compiled_data->rewindables)->rsize * (size_t)
(i)))
;
772 if (rewind_symbol->type == CCV_CNNP_REWIND_GRAPH_EXEC)
773 ccv_nnc_graph_exec_symbol_free(model->graph, rewind_symbol->graph_exec);
774 else if (rewind_symbol->type == CCV_CNNP_REWIND_TENSOR)
775 ccv_nnc_tensor_symbol_free(model->graph, rewind_symbol->tensor);
776 }
777 ccv_array_clear(compiled_data->rewindables);
778 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
779}
780
781static void _ccv_cnnp_model_tensor_symbol_new_hook(void* context, const ccv_nnc_tensor_symbol_t symbol, const ccv_nnc_tensor_param_t info, const char* const name)
782{
783 const ccv_cnnp_rewind_symbol_t rewind_symbol = {
784 .type = CCV_CNNP_REWIND_TENSOR,
785 .tensor = symbol
786 };
787 ccv_array_t* const rewind_symbols = (ccv_array_t*)context;
788 ccv_array_push(rewind_symbols, &rewind_symbol);
789}
790
791static void _ccv_cnnp_model_tensor_symbol_alias_new_hook(void* context, const ccv_nnc_tensor_symbol_t symbol, const ccv_nnc_tensor_symbol_t from_symbol, const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int inc[CCV_NNC_MAX_DIM_ALLOC(12)], const ccv_nnc_tensor_param_t info, const char* const name)
792{
793 const ccv_cnnp_rewind_symbol_t rewind_symbol = {
794 .type = CCV_CNNP_REWIND_TENSOR,
795 .tensor = symbol
796 };
797 ccv_array_t* const rewind_symbols = (ccv_array_t*)context;
798 ccv_array_push(rewind_symbols, &rewind_symbol);
799}
800
801static void _ccv_cnnp_model_graph_exec_symbol_new_hook(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name)
802{
803 const ccv_cnnp_rewind_symbol_t rewind_symbol = {
804 .type = CCV_CNNP_REWIND_GRAPH_EXEC,
805 .graph_exec = symbol
806 };
807 ccv_array_t* const rewind_symbols = (ccv_array_t*)context;
808 ccv_array_push(rewind_symbols, &rewind_symbol);
809}
810
811static void _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(const ccv_nnc_graph_exec_arena_t* const graph_exec_arena, const int parallel_count, const ccv_nnc_graph_exec_symbol_t exec_symbol, const ccv_nnc_cmd_t cmd, ccv_nnc_symbolic_graph_t* const symbolic_graph)
812{
813 ccv_nnc_graph_exec_t const update_exec = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, exec_symbol);
814 if (!CCV_NO_GRAPH_EXEC(update_exec)((update_exec).graph == 0))
815 ccv_nnc_graph_exec_set(update_exec.graph, update_exec, cmd);
816 int i;
817 for (i = 1; i < parallel_count; i++)
818 {
819 ccv_nnc_graph_exec_symbol_t copy_symbol = ccv_nnc_graph_exec_symbol_copy(symbolic_graph, exec_symbol, i);
820 const ccv_nnc_graph_exec_t copy = ccv_nnc_graph_exec_from_symbol(graph_exec_arena, copy_symbol);
821 if (!CCV_NO_GRAPH_EXEC(copy)((copy).graph == 0))
822 ccv_nnc_graph_exec_set(copy.graph, copy, cmd);
823 }
824}
825
826static void _ccv_cnnp_model_graph_exec_symbol_set(ccv_nnc_symbolic_graph_t* const symbolic_graph, ccv_cnnp_compiled_data_t* const compiled_data, const int parallel_count, const ccv_nnc_graph_exec_symbol_t exec_symbol, const ccv_nnc_cmd_t cmd)
827{
828 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 828, __extension__ __PRETTY_FUNCTION__); }))
;
829 assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if
(symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c"
, 829, __extension__ __PRETTY_FUNCTION__); }))
;
830 ccv_nnc_graph_exec_symbol_set(symbolic_graph, exec_symbol, cmd);
831 int i;
832 for (i = 1; i < parallel_count; i++)
833 {
834 ccv_nnc_graph_exec_symbol_t copy_symbol = ccv_nnc_graph_exec_symbol_copy(symbolic_graph, exec_symbol, i);
835 if (copy_symbol.graph)
836 ccv_nnc_graph_exec_symbol_set(symbolic_graph, copy_symbol, cmd);
837 }
838 ccv_nnc_graph_exec_arena_t* const graph_exec_arena = compiled_data->graph_exec_arena;
839 if (graph_exec_arena)
840 _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(graph_exec_arena, parallel_count, exec_symbol, cmd, symbolic_graph);
841 // Skip backward graph exec arena because it is for a specific accum symbolic graph, not the main graph (model->graph)
842 ccv_nnc_graph_exec_arena_t* const gradient_graph_exec_arena = compiled_data->apply_gradients.graph_exec_arena;
843 if (gradient_graph_exec_arena)
844 _ccv_cnnp_model_graph_symbol_exec_set_for_graph_exec_arena(gradient_graph_exec_arena, parallel_count, exec_symbol, cmd, symbolic_graph);
845}
846
847static int _ccv_cnnp_set_minimizer_for_parameter(ccv_nnc_symbolic_graph_t* const graph, ccv_cnnp_compiled_data_t* const compiled_data, ccv_nnc_graph_exec_symbol_t* const update_nodes, ccv_nnc_tensor_symbol_t* const updated_parameters, ccv_nnc_tensor_symbol_map_t* const saved_aux, const int parallel_count, const ccv_nnc_cmd_t minimizer, const int saved_aux_size, const int max_saved_aux_size, const int parameter_indice)
848{
849 int this_parameter_flag = 0;
850 if (update_nodes[parameter_indice].d == CCV_NNC_NO_TENSOR_SYMBOL)
851 return this_parameter_flag;
852 const ccv_nnc_cmd_t old_minimizer = ccv_nnc_graph_exec_symbol_cmd(graph, update_nodes[parameter_indice]);
853 int j, k;
854 // For no-op, we can preserve previous saved_aux_size.
855 if (old_minimizer.cmd != minimizer.cmd && minimizer.cmd != CCV_NNC_NOOP)
856 {
857 // If the old minimizer is a noop, then the old_saved_aux_size should be whatever its previous
858 // saved_aux_size is, otherwise we will reinit the saved_aux repeatedly if you switch between
859 // noop and a minimizer. We don't want that because we do that in high-level frameworks to
860 // make sure some model parameters don't update if we don't want them to.
861 int old_saved_aux_size;
862 if (old_minimizer.cmd == CCV_NNC_NOOP)
863 {
864 int input_size;
865 ccv_nnc_graph_exec_symbol_io(graph, update_nodes[parameter_indice], 0, &input_size, 0, 0);
866 if (input_size < 2) // This is not legit.
867 old_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(old_minimizer);
868 else // See ccv_nnc_minimizer_saved_aux_size, the saved_aux is inputs excluding gradients and parameters.
869 old_saved_aux_size = input_size - 2;
870 } else
871 old_saved_aux_size = ccv_nnc_minimizer_saved_aux_size(old_minimizer);
872 if (old_saved_aux_size != saved_aux_size)
873 {
874 this_parameter_flag = 1;
875 if (saved_aux_size > old_saved_aux_size)
876 {
877 // Allocate new tensor symbols.
878 const ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(graph, updated_parameters[parameter_indice]);
879 for (j = old_saved_aux_size; j < saved_aux_size; j++)
880 {
881 saved_aux[parameter_indice * max_saved_aux_size + j].source = ccv_nnc_tensor_symbol_new(graph, info, 0);
882 saved_aux[parameter_indice * max_saved_aux_size + j].destination = ccv_nnc_tensor_symbol_new(graph, info, 0);
883 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
884 for (k = 1; k < parallel_count; k++)
885 {
886 ccv_nnc_tensor_param_t dev_info = info;
887 if (k != device_id)
888 CCV_TENSOR_SET_DEVICE_ID(dev_info.type, k)(dev_info.type) = (((dev_info.type) & ~0xfff00) | (((k) &
0xfff) << 8))
;
889 else
890 CCV_TENSOR_SET_DEVICE_ID(dev_info.type, 0)(dev_info.type) = (((dev_info.type) & ~0xfff00) | (((0) &
0xfff) << 8))
;
891 const ccv_nnc_tensor_symbol_t src_copy = ccv_nnc_tensor_symbol_new(graph, dev_info, 0);
892 const ccv_nnc_tensor_symbol_t dest_copy = ccv_nnc_tensor_symbol_new(graph, dev_info, 0);
893 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k, src_copy);
894 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k, dest_copy);
895 }
896 }
897 } else {
898 for (j = saved_aux_size; j < old_saved_aux_size; j++)
899 {
900 for (k = 1; k < parallel_count; k++)
901 {
902 const ccv_nnc_tensor_symbol_t src_copy = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k);
903 if (src_copy.d >= 0)
904 {
905 ccv_nnc_tensor_symbol_free(graph, src_copy);
906 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k, NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
907 }
908 const ccv_nnc_tensor_symbol_t dest_copy = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k);
909 if (dest_copy.d >= 0)
910 {
911 ccv_nnc_tensor_symbol_free(graph, dest_copy);
912 ccv_nnc_tensor_symbol_set_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k, NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
);
913 }
914 }
915 ccv_nnc_tensor_symbol_free(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source);
916 ccv_nnc_tensor_symbol_free(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination);
917 saved_aux[parameter_indice * max_saved_aux_size + j].source = saved_aux[parameter_indice * max_saved_aux_size + j].destination = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
918 }
919 }
920 }
921 }
922 _ccv_cnnp_model_graph_exec_symbol_set(graph, compiled_data, parallel_count, update_nodes[parameter_indice], minimizer);
923 if (this_parameter_flag)
924 {
925 ccv_nnc_tensor_symbol_t update_inputs[saved_aux_size + 2];
926 ccv_nnc_tensor_symbol_t update_outputs[saved_aux_size + 1];
927 const int* inputs = 0;
928 int input_size = 0;
929 ccv_nnc_graph_exec_symbol_io(graph, update_nodes[parameter_indice], &inputs, &input_size, 0, 0);
930 assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ (
{ if (input_size >= 1) ; else __assert_fail ("input_size >= 1"
, "ccv_cnnp_model.c", 930, __extension__ __PRETTY_FUNCTION__)
; }))
;
931 update_inputs[0].d = inputs[0];
932 update_inputs[0].graph = graph;
933 update_inputs[1].d = inputs[1];
934 update_inputs[1].graph = graph;
935 update_outputs[0] = updated_parameters[parameter_indice];
936 for (j = 0; j < saved_aux_size; j++)
937 {
938 update_inputs[j + 2] = saved_aux[parameter_indice * max_saved_aux_size + j].source;
939 update_outputs[j + 1] = saved_aux[parameter_indice * max_saved_aux_size + j].destination;
940 }
941 ccv_nnc_graph_exec_symbol_set_io(graph, update_nodes[parameter_indice], update_inputs, saved_aux_size + 2, update_outputs, saved_aux_size + 1);
942 for (k = 1; k < parallel_count; k++)
943 {
944 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(graph, update_nodes[parameter_indice], k);
945 assert(copy.d >= 0)((void) sizeof ((copy.d >= 0) ? 1 : 0), __extension__ ({ if
(copy.d >= 0) ; else __assert_fail ("copy.d >= 0", "ccv_cnnp_model.c"
, 945, __extension__ __PRETTY_FUNCTION__); }))
;
946 ccv_nnc_graph_exec_symbol_io(graph, copy, &inputs, &input_size, 0, 0);
947 assert(input_size >= 1)((void) sizeof ((input_size >= 1) ? 1 : 0), __extension__ (
{ if (input_size >= 1) ; else __assert_fail ("input_size >= 1"
, "ccv_cnnp_model.c", 947, __extension__ __PRETTY_FUNCTION__)
; }))
;
948 update_inputs[0].d = inputs[0];
949 update_inputs[0].graph = graph;
950 update_inputs[1].d = inputs[1];
951 update_inputs[1].graph = graph;
952 update_outputs[0] = ccv_nnc_tensor_symbol_copy(graph, updated_parameters[parameter_indice], k);
953 for (j = 0; j < saved_aux_size; j++)
954 {
955 update_inputs[j + 2] = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].source, k);
956 update_outputs[j + 1] = ccv_nnc_tensor_symbol_copy(graph, saved_aux[parameter_indice * max_saved_aux_size + j].destination, k);
957 }
958 ccv_nnc_graph_exec_symbol_set_io(graph, copy, update_inputs, saved_aux_size + 2, update_outputs, saved_aux_size + 1);
959 }
960 }
961 return this_parameter_flag;
962}
963
964typedef struct {
965 int parameter_size;
966 ccv_nnc_cmd_t minimizer;
967 ccv_cnnp_model_io_t parameters[1];
968} ccv_cnnp_set_minimizer_for_parameter_t;
969
970static int _ccv_cnnp_apply_parameters_with_minimizer(ccv_cnnp_model_t* const model)
971{
972 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
973 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 973, __extension__ __PRETTY_FUNCTION__); }))
;
974 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
975 // We update all parameters, at this point, we have one minimizer.
976 const int parameter_size = compiled_data->parameters->rnum;
977 ccv_nnc_graph_exec_symbol_t* const update_nodes = compiled_data->update_nodes;
978 ccv_nnc_symbolic_graph_t* const symbolic_graph = model->graph;
979 assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if
(symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c"
, 979, __extension__ __PRETTY_FUNCTION__); }))
;
980 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
981 ccv_array_t* const parameters = compiled_data->minimize.parameters;
982 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
983 int i, j, flag = 0;
984 for (i = 0; i < parameters->rnum; i++)
985 {
986 ccv_cnnp_set_minimizer_for_parameter_t* const set_minimizer_for_parameter = *(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(parameters, i)((void*)(((char*)((parameters)->data)) + (size_t)(parameters
)->rsize * (size_t)(i)))
;
987 for (j = 0; j < set_minimizer_for_parameter->parameter_size; j++)
988 {
989 const int param_sel = set_minimizer_for_parameter->parameters[j]->param_sel > 0 ? set_minimizer_for_parameter->parameters[j]->param_sel - 1 : set_minimizer_for_parameter->parameters[j]->param_sel;
990 assert(set_minimizer_for_parameter->parameters[j]->param_sel != 0)((void) sizeof ((set_minimizer_for_parameter->parameters[j
]->param_sel != 0) ? 1 : 0), __extension__ ({ if (set_minimizer_for_parameter
->parameters[j]->param_sel != 0) ; else __assert_fail (
"set_minimizer_for_parameter->parameters[j]->param_sel != 0"
, "ccv_cnnp_model.c", 990, __extension__ __PRETTY_FUNCTION__)
; }))
;
991 const int old_rnum = parameter_indices->rnum;
992 ccv_cnnp_model_add_to_parameter_indices(set_minimizer_for_parameter->parameters[j]->model, param_sel, parameter_indices);
993 const int param_ref = set_minimizer_for_parameter->parameters[j]->param_ref > 0 ? set_minimizer_for_parameter->parameters[j]->param_ref - 1 : set_minimizer_for_parameter->parameters[j]->param_ref;
994 assert(set_minimizer_for_parameter->parameters[j]->param_ref != 0)((void) sizeof ((set_minimizer_for_parameter->parameters[j
]->param_ref != 0) ? 1 : 0), __extension__ ({ if (set_minimizer_for_parameter
->parameters[j]->param_ref != 0) ; else __assert_fail (
"set_minimizer_for_parameter->parameters[j]->param_ref != 0"
, "ccv_cnnp_model.c", 994, __extension__ __PRETTY_FUNCTION__)
; }))
;
995 if (param_ref >= 0)
996 {
997 assert(param_ref + old_rnum < parameter_indices->rnum)((void) sizeof ((param_ref + old_rnum < parameter_indices->
rnum) ? 1 : 0), __extension__ ({ if (param_ref + old_rnum <
parameter_indices->rnum) ; else __assert_fail ("param_ref + old_rnum < parameter_indices->rnum"
, "ccv_cnnp_model.c", 997, __extension__ __PRETTY_FUNCTION__)
; }))
;
998 *(int*)ccv_array_get(parameter_indices, old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(old_rnum)))
= *(int*)ccv_array_get(parameter_indices, param_ref + old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref + old_rnum)))
;
999 parameter_indices->rnum = old_rnum + 1;
1000 }
1001 }
1002 const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(set_minimizer_for_parameter->minimizer);
1003 // We may have duplicated indices, but that is OK, we will set it twice.
1004 for (j = 0; j < parameter_indices->rnum; j++)
1005 {
1006 const int d = *(int*)ccv_array_get(parameter_indices, j)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(j)))
;
1007 assert(d <= parameter_size)((void) sizeof ((d <= parameter_size) ? 1 : 0), __extension__
({ if (d <= parameter_size) ; else __assert_fail ("d <= parameter_size"
, "ccv_cnnp_model.c", 1007, __extension__ __PRETTY_FUNCTION__
); }))
;
1008 if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, set_minimizer_for_parameter->minimizer, saved_aux_size, max_saved_aux_size, d))
1009 flag = 1;
1010 }
1011 ccv_array_clear(parameter_indices);
1012 }
1013 ccv_array_free(parameter_indices);
1014 return flag;
1015}
1016
1017static void _ccv_cnnp_scatter_saved_aux(ccv_nnc_tensor_symbol_map_t* const saved_aux, const int parameter_size, const int old_saved_aux_size, const int new_saved_aux_size)
1018{
1019 if (new_saved_aux_size == old_saved_aux_size)
1020 return;
1021 assert(new_saved_aux_size > old_saved_aux_size)((void) sizeof ((new_saved_aux_size > old_saved_aux_size) ?
1 : 0), __extension__ ({ if (new_saved_aux_size > old_saved_aux_size
) ; else __assert_fail ("new_saved_aux_size > old_saved_aux_size"
, "ccv_cnnp_model.c", 1021, __extension__ __PRETTY_FUNCTION__
); }))
;
1022 int i, j;
1023 for (i = parameter_size - 1; i >= 0; i--)
1024 {
1025 for (j = new_saved_aux_size - 1; j >= old_saved_aux_size; j--)
1026 saved_aux[i * new_saved_aux_size + j].source = saved_aux[i * new_saved_aux_size + j].destination = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1027 for (j = old_saved_aux_size - 1; j >= 0; j--)
1028 saved_aux[i * new_saved_aux_size + j] = saved_aux[i * old_saved_aux_size + j];
1029 }
1030}
1031
1032static void _ccv_cnnp_model_set_rewindables(ccv_cnnp_model_t* const model)
1033{
1034 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1035 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1035, __extension__ __PRETTY_FUNCTION__); }))
;
1036 if (!compiled_data->rewindables)
1037 compiled_data->rewindables = ccv_array_new(sizeof(ccv_cnnp_rewind_symbol_t), 0, 0);
1038 ccv_nnc_tensor_symbol_new_hook(model->graph, _ccv_cnnp_model_tensor_symbol_new_hook, compiled_data->rewindables, 0);
1039 ccv_nnc_tensor_symbol_alias_new_hook(model->graph, _ccv_cnnp_model_tensor_symbol_alias_new_hook, compiled_data->rewindables, 0);
1040 ccv_nnc_graph_exec_symbol_new_hook(model->graph, _ccv_cnnp_model_graph_exec_symbol_new_hook, compiled_data->rewindables, 0);
1041}
1042
1043static void _ccv_cnnp_model_gradient_init(ccv_cnnp_model_t* const model, const int gradient_mode, const uint64_t disable_outgrad, ccv_nnc_tensor_t* const* const fits, const int fit_size)
1044{
1045 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1046 assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_NONE) ; else __assert_fail
("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE"
, "ccv_cnnp_model.c", 1046, __extension__ __PRETTY_FUNCTION__
); }))
;
1047 assert(gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)((void) sizeof ((gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE
) ? 1 : 0), __extension__ ({ if (gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE
) ; else __assert_fail ("gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_NONE"
, "ccv_cnnp_model.c", 1047, __extension__ __PRETTY_FUNCTION__
); }))
;
1048 const int evaluate_to_size = compiled_data->evaluate.to_size;
1049 assert(evaluate_to_size > 0)((void) sizeof ((evaluate_to_size > 0) ? 1 : 0), __extension__
({ if (evaluate_to_size > 0) ; else __assert_fail ("evaluate_to_size > 0"
, "ccv_cnnp_model.c", 1049, __extension__ __PRETTY_FUNCTION__
); }))
;
1050 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1051 compiled_data->evaluate.tos = ccreallocrealloc(compiled_data->evaluate.tos, sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size * parallel_count + sizeof(ccv_nnc_graph_exec_t) * evaluate_to_size * parallel_count);
1052 compiled_data->evaluate.to_ops = (ccv_nnc_graph_exec_t*)(compiled_data->evaluate.tos + evaluate_to_size * parallel_count);
1053 int i, j;
1054 const int output_size = model->output_size;
1055 assert(!fits || fit_size == output_size * parallel_count)((void) sizeof ((!fits || fit_size == output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (!fits || fit_size == output_size
* parallel_count) ; else __assert_fail ("!fits || fit_size == output_size * parallel_count"
, "ccv_cnnp_model.c", 1055, __extension__ __PRETTY_FUNCTION__
); }))
;
1056 if (fits)
1057 for (i = 0; i < output_size; i++)
1058 ccv_nnc_tensor_symbol_set(model->graph, compiled_data->fits[i], fits[i]->info);
1059 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
1060 const int parameter_size = compiled_data->parameters->rnum;
1061 compiled_data->updated_parameters = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size + sizeof(ccv_nnc_tensor_symbol_map_t) * max_saved_aux_size * parameter_size);
1062 compiled_data->update_nodes = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->updated_parameters + parameter_size);
1063 compiled_data->saved_aux = (ccv_nnc_tensor_symbol_map_t*)(compiled_data->update_nodes + parameter_size);
1064 int parameter_size_maybe_more = parameter_size;
1065 compiled_data->disable_outgrad = disable_outgrad;
1066 int outgrad_size;
1067 if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || model->input_size == 0)
1068 outgrad_size = 0;
1069 else if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) // Compute minimize with gradients including inputs.
1070 outgrad_size = model->input_size;
1071 else {
1072 assert(disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL)((void) sizeof ((disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ? 1 : 0), __extension__ ({ if (disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ; else __assert_fail ("disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL"
, "ccv_cnnp_model.c", 1072, __extension__ __PRETTY_FUNCTION__
); }))
; // If it is disable all, gradient mode won't be this.
1073 outgrad_size = 0;
1074 for (i = 0; i < model->input_size; i++)
1075 if (!(disable_outgrad & ((uint64_t)1 << i)))
1076 ++outgrad_size;
1077 }
1078 compiled_data->outgrad_size = outgrad_size;
1079 parameter_size_maybe_more += outgrad_size;
1080 compiled_data->gradients = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size_maybe_more + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size_maybe_more * parallel_count);
1081 compiled_data->outgrads = parameter_size_maybe_more > parameter_size ? compiled_data->gradients + parameter_size : 0;
1082 compiled_data->backward.tos = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->gradients + parameter_size_maybe_more);
1083 compiled_data->backward.to_size = parameter_size_maybe_more;
1084 ccv_nnc_tensor_symbol_t* parameters = (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
;
1085 if (compiled_data->parameter_flags)
1086 {
1087 parameters = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size);
1088 for (i = 0; i < parameter_size; i++)
1089 if (compiled_data->parameter_flags[i >> 6] & ((uint64_t)1 << (i & 63)))
1090 parameters[i] = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
;
1091 else
1092 parameters[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1093 }
1094 if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || model->input_size == 0)
1095 ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes);
1096 else if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE) // Compute minimize with gradients including inputs.
1097 ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, model->inputs, model->input_size, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes);
1098 else { // Compute minimize with gradients including selected inputs.
1099 assert(model->input_size > 0)((void) sizeof ((model->input_size > 0) ? 1 : 0), __extension__
({ if (model->input_size > 0) ; else __assert_fail ("model->input_size > 0"
, "ccv_cnnp_model.c", 1099, __extension__ __PRETTY_FUNCTION__
); }))
;
1100 assert(disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL)((void) sizeof ((disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ? 1 : 0), __extension__ ({ if (disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL
) ; else __assert_fail ("disable_outgrad != CCV_CNNP_DISABLE_OUTGRAD_ALL"
, "ccv_cnnp_model.c", 1100, __extension__ __PRETTY_FUNCTION__
); }))
; // If it is disable all, gradient mode won't be this.
1101 assert(outgrad_size > 0)((void) sizeof ((outgrad_size > 0) ? 1 : 0), __extension__
({ if (outgrad_size > 0) ; else __assert_fail ("outgrad_size > 0"
, "ccv_cnnp_model.c", 1101, __extension__ __PRETTY_FUNCTION__
); }))
;
1102 ccv_nnc_tensor_symbol_t outgrads[outgrad_size];
1103 j = 0;
1104 for (i = 0; i < model->input_size; i++)
1105 if (!(disable_outgrad & ((uint64_t)1 << i)))
1106 outgrads[j++] = model->inputs[i];
1107 ccv_nnc_symbolic_graph_minimize(model->graph, compiled_data->minimize.minimizer, compiled_data->f, output_size, parameters, parameter_size, outgrads, outgrad_size, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, compiled_data->gradients, compiled_data->updated_parameters, compiled_data->saved_aux, compiled_data->update_nodes);
1108 }
1109 if (compiled_data->parameter_flags)
1110 ccfreefree(parameters);
1111 _ccv_cnnp_scatter_saved_aux(compiled_data->saved_aux, parameter_size, ccv_nnc_minimizer_saved_aux_size(compiled_data->minimize.minimizer), compiled_data->minimize.max_saved_aux_size);
1112 if (compiled_data->minimize.parameters)
1113 _ccv_cnnp_apply_parameters_with_minimizer(model);
1114 // Go through gradient checkpoints to generate tensor inputs for backward pass just before executing the backward pass.
1115 ccv_cnnp_model_apply_gradient_checkpoints(compiled_data, model->graph);
1116 for (i = 0; i < output_size; i++)
1117 {
1118 const ccv_nnc_tensor_symbol_t df = ccv_nnc_tensor_symbol_for_backward(model->graph, compiled_data->f[i]);
1119 // Init this to 1 so we can backprop.
1120 ccv_nnc_tensor_symbol_set_flags(model->graph, df, CCV_NNC_TENSOR_SYMBOL_INIT_ONES);
1121 }
1122 compiled_data->backward.to_size = 0;
1123 for (i = 0; i < parameter_size_maybe_more; i++)
1124 if (compiled_data->gradients[i].d != CCV_NNC_NO_TENSOR_SYMBOL)
1125 compiled_data->backward.tos[compiled_data->backward.to_size++] = ccv_nnc_graph_exec_symbol_for_backward(model->graph, compiled_data->gradients[i]);
1126 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS);
1127 ccv_nnc_symbolic_graph_set_destinations(model->graph, compiled_data->update_nodes, parameter_size);
1128 for (i = 0; i < parameter_size_maybe_more - parameter_size; i++)
1129 {
1130 if (compiled_data->outgrads[i].d < 0) // When we go through input, we might find zero-length inputs, and for these, we cannot have any outgrads.
1131 continue;
1132 const ccv_nnc_graph_exec_symbol_t outgrad = ccv_nnc_graph_exec_symbol_for_backward(model->graph, compiled_data->outgrads[i]);
1133 const int* tos;
1134 int to_size;
1135 ccv_nnc_graph_exec_symbol_to(model->graph, outgrad, &tos, &to_size);
1136 if (to_size == 0) // If this is the end (no minimizers afterwards). We need to attach this as a destination. Otherwise this is covered in update_nodes.
1137 {
1138 const ccv_nnc_graph_exec_symbol_t* destinations = ccv_nnc_symbolic_graph_destinations(model->graph);
1139 const int destination_count = ccv_nnc_symbolic_graph_destination_size(model->graph);
1140 int flag = 0;
1141 const int outgrad_destination_start = ccv_max(0, destination_count - i)({ typeof (0) _a = (0); typeof (destination_count - i) _b = (
destination_count - i); (_a > _b) ? _a : _b; })
;
1142 for (j = i - 1; !flag && j >= 0; j--)
1143 if (j + outgrad_destination_start < destination_count)
1144 flag = (destinations[j + outgrad_destination_start].d == outgrad.d);
1145 if (!flag) // Only if we cannot find it, we add it.
1146 ccv_nnc_symbolic_graph_add_destination(model->graph, outgrad);
1147 }
1148 }
1149 if (parallel_count > 1)
1150 {
1151 ccv_nnc_symbolic_graph_data_parallel(model->graph, parallel_count,
1152 0, 0,
1153 compiled_data->gradients, parameter_size /* No need to deal with outgrads, we don't allreduce outgrads */,
1154 compiled_data->gradients /* We only care about gradients before allreduce, thus, update our current pointers */,
1155 0, 0, 0,
1156 CCV_NNC_PARALLEL_REDUCE_OP_SUM,
1157 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1158 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1159 for (i = 0; i < evaluate_to_size; i++)
1160 for (j = 1; j < parallel_count; j++)
1161 {
1162 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->evaluate.tos[i], j);
1163 if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL)
1164 compiled_data->evaluate.tos[compiled_data->evaluate.to_size++] = copy;
1165 }
1166 const int backward_to_size = compiled_data->backward.to_size;
1167 for (i = 0; i < backward_to_size; i++)
1168 for (j = 1; j < parallel_count; j++)
1169 {
1170 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->backward.tos[i], j);
1171 if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL)
1172 compiled_data->backward.tos[compiled_data->backward.to_size++] = copy;
1173 }
1174 }
1175 // Only use memory compression if we are in gradient parameter mode.
1176 if (gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS)
1177 {
1178 if (model->memory_compression)
1179 ccv_nnc_symbolic_graph_memory_compression(model->graph, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1180 if (model->memory_reduction)
1181 ccv_nnc_symbolic_graph_memory_reduction(model->graph, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1182 }
1183 compiled_data->backward.to_size = _ccv_nnc_array_dedup_graph_exec_symbols(compiled_data->backward.tos, compiled_data->backward.to_size);
1184 compiled_data->gradient_mode = gradient_mode;
1185}
1186
1187void ccv_cnnp_model_tensors_init_0(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1188{
1189 assert(!compiled_data->tensors.parameters)((void) sizeof ((!compiled_data->tensors.parameters) ? 1 :
0), __extension__ ({ if (!compiled_data->tensors.parameters
) ; else __assert_fail ("!compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 1189, __extension__ __PRETTY_FUNCTION__
); }))
;
1190 const int parameter_size = compiled_data->parameters->rnum;
1191 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1192 const int internal_size = compiled_data->internals->rnum;
1193 compiled_data->tensors_init.size = ccv_nnc_tensor_symbol_count(model->graph);
1194 compiled_data->tensors_init.v = cccalloccalloc(((compiled_data->tensors_init.size + 31) >> 5), sizeof(uint32_t));
1195 compiled_data->tensors.parameters = (ccv_nnc_tensor_t**)cccalloccalloc((parameter_size + internal_size) * parallel_count, sizeof(ccv_nnc_tensor_t*));
1196 compiled_data->tensors.internals = compiled_data->tensors.parameters + parameter_size * parallel_count;
1197}
1198
1199int ccv_cnnp_model_tensors_any_to_alloc(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1200{
1201 int i, j;
1202 const int parameter_size = compiled_data->parameters->rnum;
1203 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1204 const int internal_size = compiled_data->internals->rnum;
1205 for (i = 0; i < parameter_size; i++)
1206 {
1207 // parameters has to be allocated all together.
1208 if (compiled_data->tensors.parameters[i])
1209 {
1210 for (j = 1; j < parallel_count; j++)
1211 { assert(compiled_data->tensors.parameters[i + j * parameter_size])((void) sizeof ((compiled_data->tensors.parameters[i + j *
parameter_size]) ? 1 : 0), __extension__ ({ if (compiled_data
->tensors.parameters[i + j * parameter_size]) ; else __assert_fail
("compiled_data->tensors.parameters[i + j * parameter_size]"
, "ccv_cnnp_model.c", 1211, __extension__ __PRETTY_FUNCTION__
); }))
; }
1212 continue;
1213 }
1214 return 1;
1215 }
1216 for (i = 0; i < internal_size; i++)
1217 {
1218 if (!compiled_data->tensors.internals[i])
1219 return 1;
1220 for (j = 1; j < parallel_count; j++)
1221 if (!compiled_data->tensors.internals[i + j * internal_size])
1222 return 1;
1223 }
1224 return 0;
1225}
1226
1227void ccv_cnnp_model_tensors_init_1(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1228{
1229 int i, j;
1230 const int parameter_size = compiled_data->parameters->rnum;
1231 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1232 const int internal_size = compiled_data->internals->rnum;
1233 for (i = 0; i < parameter_size; i++)
1234 {
1235 // parameters has to be allocated all together.
1236 if (compiled_data->tensors.parameters[i])
1237 {
1238 for (j = 1; j < parallel_count; j++)
1239 { assert(compiled_data->tensors.parameters[i + j * parameter_size])((void) sizeof ((compiled_data->tensors.parameters[i + j *
parameter_size]) ? 1 : 0), __extension__ ({ if (compiled_data
->tensors.parameters[i + j * parameter_size]) ; else __assert_fail
("compiled_data->tensors.parameters[i + j * parameter_size]"
, "ccv_cnnp_model.c", 1239, __extension__ __PRETTY_FUNCTION__
); }))
; }
1240 continue;
1241 }
1242 const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
;
1243 ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(parameter.graph, parameter);
1244 if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY)
1245 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1246 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
1247 compiled_data->tensors.parameters[i] = ccv_nnc_tensor_new(0, info, 0);
1248 for (j = 1; j < parallel_count; j++)
1249 {
1250 if (j != device_id)
1251 CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff
) << 8))
;
1252 else
1253 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1254 compiled_data->tensors.parameters[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0);
1255 }
1256 }
1257 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1258 for (i = 0; i < internal_size; i++)
1259 {
1260 const ccv_nnc_tensor_symbol_t retained = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, i)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(i))
)
;
1261 const int d = retained.d;
1262 if (init_v[d >> 5] & (1u << (d & 0x1f)))
1263 continue;
1264 ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(retained.graph, retained);
1265 if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY)
1266 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1267 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
1268 if (!compiled_data->tensors.internals[i])
1269 compiled_data->tensors.internals[i] = ccv_nnc_tensor_new(0, info, 0);
1270 for (j = 1; j < parallel_count; j++)
1271 {
1272 if (j != device_id)
1273 CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff
) << 8))
;
1274 else
1275 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1276 if (!compiled_data->tensors.internals[i + j * internal_size])
1277 compiled_data->tensors.internals[i + j * internal_size] = ccv_nnc_tensor_new(0, info, 0);
1278 }
1279 }
1280 compiled_data->tensors_init.v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
; // Remove 1 if any.
1281}
1282
1283static void _ccv_cnnp_model_tensors_init(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1284{
1285 ccv_cnnp_model_tensors_init_0(model, compiled_data);
1286 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1287}
1288
1289static void _ccv_cnnp_model_copy_tensors(const uint32_t* const tensors_init, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count)
1290{
1291 assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__
({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0"
, "ccv_cnnp_model.c", 1291, __extension__ __PRETTY_FUNCTION__
); }))
;
1292 int i, j;
1293 for (i = 0; i < tensor_size; i++)
1294 {
1295 if (!tensors[i])
1296 continue;
1297 const int d = tensor_symbols[i].d;
1298 if (!(tensors_init[d >> 5] & (1u << (d & 0x1f))))
1299 continue;
1300 for (j = 1; j < parallel_count; j++)
1301 if (tensors[i + j * tensor_size])
1302 {
1303 ccv_nnc_tensor_t* const input = CCV_NNC_TENSOR(tensors[i])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i]) & ~(uintptr_t
)1))
;
1304 ccv_nnc_tensor_t* const output = CCV_NNC_TENSOR(tensors[i + j * tensor_size])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i + j * tensor_size]
) & ~(uintptr_t)1))
;
1305 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, &input, 1, &output, 1, 0);
1306 }
1307 }
1308}
1309
1310static void _ccv_cnnp_model_remove_nocopies(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t** const tensors, const int tensor_size, const int parallel_count)
1311{
1312 assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__
({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0"
, "ccv_cnnp_model.c", 1312, __extension__ __PRETTY_FUNCTION__
); }))
;
1313 int i, j;
1314 for (i = 0; i < tensor_size; i++)
1315 {
1316 const ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i];
1317 for (j = 1; j < parallel_count; j++)
1318 {
1319 const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j);
1320 ccv_nnc_tensor_t* copy_tensor = tensors[i + j * tensor_size];
1321 if (copy_tensor && copy.d == CCV_NNC_NO_TENSOR_SYMBOL)
1322 { // We shouldn't allocate this, free it up.
1323 ccv_nnc_tensor_free(tensors[i + j * tensor_size]);
1324 tensors[i + j * tensor_size] = 0;
1325 }
1326 }
1327 }
1328}
1329
1330static void _ccv_cnnp_model_bind_tensors(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count, ccv_array_t* const tensor_binds)
1331{
1332 assert(parallel_count > 0)((void) sizeof ((parallel_count > 0) ? 1 : 0), __extension__
({ if (parallel_count > 0) ; else __assert_fail ("parallel_count > 0"
, "ccv_cnnp_model.c", 1332, __extension__ __PRETTY_FUNCTION__
); }))
;
1333 int i, j;
1334 for (i = 0; i < tensor_size; i++)
1335 {
1336 ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i];
1337 if (tensor_symbol.d == CCV_NNC_NO_TENSOR_SYMBOL)
1338 continue;
1339 if (graph)
1340 {
1341 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph, tensor_symbol);
1342 if (alias_to.d != CCV_NNC_NO_TENSOR_SYMBOL)
1343 tensor_symbol = alias_to;
1344 }
1345 ccv_nnc_tensor_t* const tensor = CCV_NNC_TENSOR(tensors[i])((ccv_nnc_tensor_t*)((uintptr_t)(tensors[i]) & ~(uintptr_t
)1))
;
1346 if (tensor && tensor_symbol.d != CCV_NNC_NO_TENSOR_SYMBOL)
1347 {
1348 const ccv_nnc_tensor_bind_t retained_bind = {
1349 .symbol = tensor_symbol,
1350 .tensor = tensor
1351 };
1352 ccv_array_push(tensor_binds, &retained_bind);
1353 }
1354 for (j = 1; j < parallel_count; j++)
1355 {
1356 const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j);
1357 ccv_nnc_tensor_t* copy_tensor = tensors[i + j * tensor_size];
1358 if (copy_tensor && copy.d != CCV_NNC_NO_TENSOR_SYMBOL)
1359 {
1360 const ccv_nnc_tensor_bind_t bind = {
1361 .symbol = copy,
1362 .tensor = tensors[i + j * tensor_size]
1363 };
1364 ccv_array_push(tensor_binds, &bind);
1365 }
1366 }
1367 }
1368}
1369
1370static void _ccv_cnnp_compiled_data_graph_free(ccv_cnnp_compiled_data_t* const compiled_data)
1371{
1372 if (compiled_data->graph)
1373 ccv_nnc_graph_free(compiled_data->graph);
1374 compiled_data->graph = 0;
1375 compiled_data->is_test = 0;
1376 if (compiled_data->tensor_arena)
1377 ccv_nnc_tensor_arena_free(compiled_data->tensor_arena);
1378 compiled_data->tensor_arena = 0;
1379 if (compiled_data->graph_exec_arena)
1380 ccv_nnc_graph_exec_arena_free(compiled_data->graph_exec_arena);
1381 compiled_data->graph_exec_arena = 0;
1382 if (compiled_data->backward.from_ops)
1383 ccfreefree(compiled_data->backward.from_ops);
1384 compiled_data->backward.from_ops = 0;
1385 if (compiled_data->evaluate.schedule)
1386 ccv_nnc_graph_static_schedule_free(compiled_data->evaluate.schedule);
1387 compiled_data->evaluate.schedule = 0;
1388 if (compiled_data->backward.schedule)
1389 ccv_nnc_graph_static_schedule_free(compiled_data->backward.schedule);
1390 compiled_data->backward.schedule = 0;
1391}
1392
1393static void _ccv_cnnp_compiled_data_gradient_free(ccv_cnnp_compiled_data_t* const compiled_data)
1394{
1395 if (compiled_data->gradients)
1396 ccfreefree(compiled_data->gradients);
1397 compiled_data->gradients = 0;
1398 if (compiled_data->updated_parameters)
1399 ccfreefree(compiled_data->updated_parameters);
1400 compiled_data->updated_parameters = 0;
1401 compiled_data->update_nodes = 0;
1402 compiled_data->saved_aux = 0;
1403}
1404
1405static void _ccv_cnnp_compiled_data_backward_free(ccv_cnnp_compiled_data_t* const compiled_data)
1406{
1407 if (compiled_data->backward.gradients)
1408 ccfreefree(compiled_data->backward.gradients);
1409 compiled_data->backward.gradients = 0;
1410 if (compiled_data->backward.accum)
1411 ccv_nnc_graph_free(compiled_data->backward.accum);
1412 compiled_data->backward.accum = 0;
1413 if (compiled_data->backward.tensor_arena)
1414 ccv_nnc_tensor_arena_free(compiled_data->backward.tensor_arena);
1415 compiled_data->backward.tensor_arena = 0;
1416 if (compiled_data->backward.graph_exec_arena)
1417 ccv_nnc_graph_exec_arena_free(compiled_data->backward.graph_exec_arena);
1418 compiled_data->backward.graph_exec_arena = 0;
1419}
1420
1421static void _ccv_cnnp_compiled_data_apply_gradients_free(ccv_cnnp_compiled_data_t* const compiled_data)
1422{
1423 if (compiled_data->apply_gradients.graph)
1424 ccv_nnc_graph_free(compiled_data->apply_gradients.graph);
1425 compiled_data->apply_gradients.graph = 0;
1426 if (compiled_data->apply_gradients.tensor_arena)
1427 ccv_nnc_tensor_arena_free(compiled_data->apply_gradients.tensor_arena);
1428 compiled_data->apply_gradients.tensor_arena = 0;
1429 if (compiled_data->apply_gradients.graph_exec_arena)
1430 ccv_nnc_graph_exec_arena_free(compiled_data->apply_gradients.graph_exec_arena);
1431 compiled_data->apply_gradients.graph_exec_arena = 0;
1432}
1433
1434// Compile the graph to run ccv_cnnp_model_fit
1435static void _ccv_cnnp_model_fit_jit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const fits, const int fit_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1436{
1437 int i, j;
1438 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1439 assert(!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE)((void) sizeof ((!compiled_data->graph || compiled_data->
graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE) ? 1 : 0), __extension__
({ if (!compiled_data->graph || compiled_data->graph_mode
!= CCV_CNNP_MODEL_GRAPH_FIT_MODE) ; else __assert_fail ("!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE"
, "ccv_cnnp_model.c", 1439, __extension__ __PRETTY_FUNCTION__
); }))
;
1440 compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_FIT_MODE;
1441 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1442 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1442, __extension__ __PRETTY_FUNCTION__
); }))
;
1443 assert(!fits || output_size == fit_size)((void) sizeof ((!fits || output_size == fit_size) ? 1 : 0), __extension__
({ if (!fits || output_size == fit_size) ; else __assert_fail
("!fits || output_size == fit_size", "ccv_cnnp_model.c", 1443
, __extension__ __PRETTY_FUNCTION__); }))
;
1444 assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ (
{ if (output_size > 0) ; else __assert_fail ("output_size > 0"
, "ccv_cnnp_model.c", 1444, __extension__ __PRETTY_FUNCTION__
); }))
;
1445 if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
1446 {
1447 _ccv_cnnp_model_set_rewindables(model);
1448 _ccv_cnnp_model_gradient_init(model, CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES, CCV_CNNP_DISABLE_OUTGRAD_ALL, fits, fit_size);
1449 } else if (compiled_data->gradient_mode != CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES) {
1450 _ccv_cnnp_model_rewind_graph(model);
1451 _ccv_cnnp_compiled_data_gradient_free(compiled_data);
1452 compiled_data->gradient_mode = CCV_CNNP_COMPILED_DATA_GRADIENT_NONE;
1453 _ccv_cnnp_model_gradient_init(model, CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES, CCV_CNNP_DISABLE_OUTGRAD_ALL, fits, fit_size);
1454 }
1455 const int tensors_init = !!compiled_data->tensors_init.v;
1456 if (!tensors_init)
1457 _ccv_cnnp_model_tensors_init(model, compiled_data);
1458 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
1459 // Check if it is not fully allocated, if it is not, init_1.
1460 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1461 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1462 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1462, __extension__ __PRETTY_FUNCTION__); }))
;
1463 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1463, __extension__ __PRETTY_FUNCTION__); }))
;
1464 assert((fit_size % parallel_count) == 0)((void) sizeof (((fit_size % parallel_count) == 0) ? 1 : 0), __extension__
({ if ((fit_size % parallel_count) == 0) ; else __assert_fail
("(fit_size % parallel_count) == 0", "ccv_cnnp_model.c", 1464
, __extension__ __PRETTY_FUNCTION__); }))
;
1465 const int input_size_per_p = input_size / parallel_count;
1466 _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds);
1467 const int output_size_per_p = output_size / parallel_count;
1468 _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds);
1469 const int fit_size_per_p = fit_size / parallel_count;
1470 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->fits, fits, fit_size_per_p, parallel_count, tensor_binds);
1471 const int parameter_size = compiled_data->parameters->rnum;
1472 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1473 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->updated_parameters, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1474 const int internal_size = compiled_data->internals->rnum;
1475 _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count);
1476 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds);
1477 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1478 ccv_array_free(tensor_binds);
1479 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1480 if (tensors_init && parallel_count > 1)
1481 _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count);
1482 // If tensor is not init'ed, we need to init states first.
1483 if (_ccv_cnnp_any_to_init(compiled_data))
1484 {
1485 ccv_nnc_tensor_init_states_t tensor_init_states = {
1486 .parallel_count = parallel_count,
1487 .graph = model->graph,
1488 .compiled_data = compiled_data,
1489 .tensor_arena = compiled_data->tensor_arena
1490 };
1491 ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states);
1492 }
1493 compiled_data->is_test = 0;
1494 const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(compiled_data->minimize.minimizer);
1495 // No need to set because it is default to training mode.
1496 // ccv_cnnp_model_set_is_test(model, 0, _ccv_cnnp_cmd_update_for_execs, &update);
1497 for (i = 0; i < saved_aux_size * parameter_size; i++)
1498 {
1499 if (compiled_data->saved_aux[i].source.d == CCV_NNC_NO_TENSOR_SYMBOL)
1500 continue;
1501 ccv_nnc_tensor_t* const tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, compiled_data->saved_aux[i].source);
1502 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &tensor, 1, 0);
1503 for (j = 1; j < parallel_count; j++)
1504 {
1505 ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, compiled_data->saved_aux[i].source, j));
1506 if (copy)
1507 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &copy, 1, 0);
1508 }
1509 }
1510 const int evaluate_to_size = compiled_data->evaluate.to_size;
1511 compiled_data->evaluate.to_op_size = 0;
1512 for (i = 0; i < evaluate_to_size; i++)
1513 {
1514 ccv_nnc_graph_exec_t const to = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, compiled_data->evaluate.tos[i]);
1515 if (to.graph)
1516 compiled_data->evaluate.to_ops[compiled_data->evaluate.to_op_size++] = to;
1517 }
1518 ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count);
1519 ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0);
1520}
1521
1522ccv_nnc_stream_context_t* ccv_cnnp_model_default_stream(const ccv_cnnp_model_t* const model)
1523{
1524 const ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1525 if (!compiled_data || !compiled_data->graph)
1526 return 0;
1527 return ccv_nnc_graph_default_stream(compiled_data->graph);
1528}
1529
1530uint64_t ccv_cnnp_model_memory_size(const ccv_cnnp_model_t* const model)
1531{
1532 const ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1533 if (!compiled_data || !compiled_data->tensor_arena)
1534 return 0;
1535 return ccv_nnc_tensor_arena_size(compiled_data->tensor_arena);
1536}
1537
1538static void _ccv_cnnp_bind_tensors_to_arena(ccv_nnc_tensor_arena_t* const tensor_arena, const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const tensor_symbols, ccv_nnc_tensor_t* const* const tensors, const int tensor_size, const int parallel_count)
1539{
1540 int i, j;
1541 for (i = 0; i < tensor_size; i++)
1542 {
1543 ccv_nnc_tensor_symbol_t tensor_symbol = tensor_symbols[i];
1544 if (tensor_symbol.d == CCV_NNC_NO_TENSOR_SYMBOL)
1545 continue;
1546 if (graph)
1547 {
1548 const ccv_nnc_tensor_symbol_t alias_to = ccv_nnc_tensor_symbol_alias_to(graph, tensor_symbol);
1549 if (alias_to.d != CCV_NNC_NO_TENSOR_SYMBOL)
1550 tensor_symbol = alias_to;
1551 }
1552 ccv_nnc_tensor_bind_symbol(tensor_arena, tensor_symbol, tensors[i]);
1553 for (j = 1; j < parallel_count; j++)
1554 {
1555 const ccv_nnc_tensor_symbol_t copy = ccv_nnc_tensor_symbol_copy(graph, tensor_symbol, j);
1556 if (copy.d != CCV_NNC_NO_TENSOR_SYMBOL)
1557 ccv_nnc_tensor_bind_symbol(tensor_arena, copy, tensors[i + tensor_size * j]);
1558 }
1559 }
1560}
1561
1562void ccv_cnnp_model_fit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const fits, const int fit_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context)
1563{
1564 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1565 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1565, __extension__ __PRETTY_FUNCTION__); }))
;
1566 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1567 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1567, __extension__ __PRETTY_FUNCTION__
); }))
;
1568 assert(input_size == model->input_size * parallel_count)((void) sizeof ((input_size == model->input_size * parallel_count
) ? 1 : 0), __extension__ ({ if (input_size == model->input_size
* parallel_count) ; else __assert_fail ("input_size == model->input_size * parallel_count"
, "ccv_cnnp_model.c", 1568, __extension__ __PRETTY_FUNCTION__
); }))
;
1569 assert(!fits || fit_size == output_size)((void) sizeof ((!fits || fit_size == output_size) ? 1 : 0), __extension__
({ if (!fits || fit_size == output_size) ; else __assert_fail
("!fits || fit_size == output_size", "ccv_cnnp_model.c", 1569
, __extension__ __PRETTY_FUNCTION__); }))
;
1570 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 1570, __extension__ __PRETTY_FUNCTION__); }))
;
1571 if (!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_FIT_MODE)
1572 {
1573 _ccv_cnnp_compiled_data_graph_free(compiled_data);
1574 _ccv_cnnp_compiled_data_backward_free(compiled_data);
1575 _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data);
1576 // Compile the symbolic graph down only when needed.
1577 _ccv_cnnp_model_fit_jit(model, inputs, input_size, fits, fit_size, outputs, output_size);
1578 } else {
1579 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1579, __extension__ __PRETTY_FUNCTION__); }))
;
1580 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1580, __extension__ __PRETTY_FUNCTION__); }))
;
1581 assert((fit_size % parallel_count) == 0)((void) sizeof (((fit_size % parallel_count) == 0) ? 1 : 0), __extension__
({ if ((fit_size % parallel_count) == 0) ; else __assert_fail
("(fit_size % parallel_count) == 0", "ccv_cnnp_model.c", 1581
, __extension__ __PRETTY_FUNCTION__); }))
;
1582 const int input_size_per_p = input_size / parallel_count;
1583 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->inputs, inputs, input_size_per_p, parallel_count);
1584 const int output_size_per_p = output_size / parallel_count;
1585 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->outputs, outputs, output_size_per_p, parallel_count);
1586 const int fit_size_per_p = fit_size / parallel_count;
1587 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, compiled_data->fits, fits, fit_size_per_p, parallel_count);
1588 }
1589 if (compiled_data->is_test)
1590 {
1591 compiled_data->is_test = 0;
1592 ccv_nnc_graph_exec_update_t update = {
1593 .parallel_count = parallel_count,
1594 .graph = model->graph,
1595 .graph_exec_arena = compiled_data->graph_exec_arena,
1596 };
1597 ccv_cnnp_model_set_is_test(model, 0, _ccv_cnnp_cmd_update_for_execs, &update);
1598 }
1599 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, 0, tensor_tape, stream_context);
1600}
1601
1602// Compile the graph to run ccv_cnnp_model_evaluate with require_grad = false (MULTISTAGE_MODE_NO_GRAD).
1603static void _ccv_cnnp_model_multistage_no_grad_jit(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1604{
1605 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1606 compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE_NO_GRAD;
1607 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1608 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1608, __extension__ __PRETTY_FUNCTION__
); }))
;
1609 assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ (
{ if (output_size > 0) ; else __assert_fail ("output_size > 0"
, "ccv_cnnp_model.c", 1609, __extension__ __PRETTY_FUNCTION__
); }))
;
1610 // If the gradient is not initialized, continue to setup parallel process. We don't init gradient here, but rather,
1611 // we setup proper rewindables so the graph can be rewinded to previous state before we run data parallel.
1612 if (parallel_count > 1 && compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
1613 {
1614 const int evaluate_to_size = compiled_data->evaluate.to_size;
1615 compiled_data->evaluate.tos = ccreallocrealloc(compiled_data->evaluate.tos, sizeof(ccv_nnc_graph_exec_symbol_t) * evaluate_to_size * parallel_count + sizeof(ccv_nnc_graph_exec_t) * evaluate_to_size * parallel_count);
1616 _ccv_cnnp_model_set_rewindables(model);
1617 ccv_nnc_symbolic_graph_data_parallel(model->graph, parallel_count,
1618 0, 0,
1619 0, 0, 0,
1620 0, 0, 0,
1621 CCV_NNC_PARALLEL_REDUCE_OP_SUM,
1622 SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, SYMBOLIC_GRAPH_DESTINATIONS(model->graph)ccv_nnc_symbolic_graph_destinations(model->graph), ccv_nnc_symbolic_graph_destination_size
(model->graph)
);
1623 ccv_nnc_graph_exec_symbol_autogen(model->graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1624 int i, j;
1625 for (i = 0; i < evaluate_to_size; i++)
1626 for (j = 1; j < parallel_count; j++)
1627 {
1628 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->evaluate.tos[i], j);
1629 if (copy.d != CCV_NNC_NO_GRAPH_EXEC_SYMBOL)
1630 compiled_data->evaluate.tos[compiled_data->evaluate.to_size++] = copy;
1631 }
1632 }
1633 const int tensors_init = !!compiled_data->tensors_init.v;
1634 if (!tensors_init)
1635 _ccv_cnnp_model_tensors_init(model, compiled_data);
1636 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
1637 // Check if it is not fully allocated, if it is not, init_1.
1638 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1639 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1640 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1640, __extension__ __PRETTY_FUNCTION__); }))
;
1641 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1641, __extension__ __PRETTY_FUNCTION__); }))
;
1642 const int input_size_per_p = input_size / parallel_count;
1643 _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds);
1644 const int output_size_per_p = output_size / parallel_count;
1645 _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds);
1646 const int parameter_size = compiled_data->parameters->rnum;
1647 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1648 const int internal_size = compiled_data->internals->rnum;
1649 _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count);
1650 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds);
1651 // If we generated gradient for the graph, only compile part of the graph because the rest is irrelevant for evaluation.
1652 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, compiled_data->evaluate.tos, compiled_data->evaluate.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1653 ccv_array_free(tensor_binds);
1654 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1655 // If tensor is not init'ed, we need to init states first.
1656 if (tensors_init && parallel_count > 1)
1657 _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count);
1658 if (_ccv_cnnp_any_to_init(compiled_data))
1659 {
1660 ccv_nnc_tensor_init_states_t tensor_init_states = {
1661 .parallel_count = parallel_count,
1662 .graph = model->graph,
1663 .compiled_data = compiled_data,
1664 .tensor_arena = compiled_data->tensor_arena
1665 };
1666 ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states);
1667 }
1668 compiled_data->is_test = 1;
1669 ccv_nnc_graph_exec_update_t update = {
1670 .parallel_count = parallel_count,
1671 .graph = model->graph,
1672 .graph_exec_arena = compiled_data->graph_exec_arena,
1673 };
1674 ccv_cnnp_model_set_is_test(model, 1, _ccv_cnnp_cmd_update_for_execs, &update);
1675 ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count);
1676 ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0);
1677}
1678
1679static void _ccv_cnnp_model_gradient_tensors_init(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
1680{
1681 assert(!compiled_data->tensors.gradients)((void) sizeof ((!compiled_data->tensors.gradients) ? 1 : 0
), __extension__ ({ if (!compiled_data->tensors.gradients)
; else __assert_fail ("!compiled_data->tensors.gradients"
, "ccv_cnnp_model.c", 1681, __extension__ __PRETTY_FUNCTION__
); }))
;
1682 const int parameter_size = compiled_data->parameters->rnum;
1683 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1684 compiled_data->tensors.gradients = (ccv_nnc_tensor_t**)ccmallocmalloc(sizeof(ccv_nnc_tensor_t*) * parameter_size * 2 * parallel_count);
1685 compiled_data->tensors.accum_gradients = compiled_data->tensors.gradients + parameter_size * parallel_count;
1686 int i, j;
1687 for (i = 0; i < parameter_size; i++)
1688 {
1689 if (compiled_data->parameter_flags && !(compiled_data->parameter_flags[i >> 6] & ((uint64_t)1 << (i & 63))))
1690 {
1691 compiled_data->tensors.gradients[i] = 0;
1692 compiled_data->tensors.accum_gradients[i] = 0;
1693 for (j = 1; j < parallel_count; j++)
1694 {
1695 compiled_data->tensors.gradients[i + j * parameter_size] = 0;
1696 compiled_data->tensors.accum_gradients[i + j * parameter_size] = 0;
1697 }
1698 continue;
1699 }
1700 const ccv_nnc_tensor_symbol_t parameter = *(ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
;
1701 ccv_nnc_tensor_param_t info = ccv_nnc_tensor_symbol_params(parameter.graph, parameter);
1702 if (CCV_TENSOR_GET_DEVICE(info.type)((info.type) & 0xfff00) == CCV_COMPUTE_DEVICE_ANY)
1703 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1704 const int device_id = CCV_TENSOR_GET_DEVICE_ID(info.type)(((info.type) & 0xfff00) >> 8);
1705 compiled_data->tensors.gradients[i] = ccv_nnc_tensor_new(0, info, 0);
1706 compiled_data->tensors.accum_gradients[i] = 0; // delay the accumulated gradient allocation until when we need it.
1707 for (j = 1; j < parallel_count; j++)
1708 {
1709 if (j != device_id)
1710 CCV_TENSOR_SET_DEVICE_ID(info.type, j)(info.type) = (((info.type) & ~0xfff00) | (((j) & 0xfff
) << 8))
;
1711 else
1712 CCV_TENSOR_SET_DEVICE_ID(info.type, 0)(info.type) = (((info.type) & ~0xfff00) | (((0) & 0xfff
) << 8))
;
1713 compiled_data->tensors.gradients[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0);
1714 compiled_data->tensors.accum_gradients[i + j * parameter_size] = 0;
1715 }
1716 }
1717}
1718
1719static int _ccv_cnnp_is_disable_outgrad_all(const uint64_t disable_outgrad, const int input_size)
1720{
1721 if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_ALL)
1722 return 1;
1723 if (disable_outgrad == CCV_CNNP_DISABLE_OUTGRAD_NONE)
1724 return 0;
1725 int i;
1726 for (i = 0; i < input_size; i++)
1727 if (!(disable_outgrad & ((uint64_t)1 << i)))
1728 return 0;
1729 return 1;
1730}
1731
1732// Compile the graph to run ccv_cnnp_model_evaluate with requires_grad = true (MULTISTAGE_MODE).
1733// Particularly, this method compiles the evaluation and backprop graph (the main graph).
1734static void _ccv_cnnp_model_multistage_jit_0(ccv_cnnp_model_t* const model, const uint64_t disable_outgrad, const int is_test, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1735{
1736 int i, j;
1737 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1738 const int target_gradient_mode = _ccv_cnnp_is_disable_outgrad_all(disable_outgrad, model->input_size) ? CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES : CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS;
1739 assert(!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode)((void) sizeof ((!compiled_data->graph || compiled_data->
graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data
->gradient_mode != target_gradient_mode) ? 1 : 0), __extension__
({ if (!compiled_data->graph || compiled_data->graph_mode
!= CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->
gradient_mode != target_gradient_mode) ; else __assert_fail (
"!compiled_data->graph || compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode"
, "ccv_cnnp_model.c", 1739, __extension__ __PRETTY_FUNCTION__
); }))
;
1740 compiled_data->graph_mode = CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE;
1741 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1742 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1742, __extension__ __PRETTY_FUNCTION__
); }))
;
1743 assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ (
{ if (output_size > 0) ; else __assert_fail ("output_size > 0"
, "ccv_cnnp_model.c", 1743, __extension__ __PRETTY_FUNCTION__
); }))
;
1744 // There shouldn't be a loss function if we evaluate with multistage jit.
1745 assert(compiled_data->loss.cmd == CCV_NNC_NOOP)((void) sizeof ((compiled_data->loss.cmd == CCV_NNC_NOOP) ?
1 : 0), __extension__ ({ if (compiled_data->loss.cmd == CCV_NNC_NOOP
) ; else __assert_fail ("compiled_data->loss.cmd == CCV_NNC_NOOP"
, "ccv_cnnp_model.c", 1745, __extension__ __PRETTY_FUNCTION__
); }))
;
1746 if (compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_NONE)
1747 {
1748 _ccv_cnnp_model_set_rewindables(model);
1749 _ccv_cnnp_model_gradient_init(model, target_gradient_mode, disable_outgrad, 0, 0); // The type of outputs and fits should be the same. We only use type here.
1750 } else if (compiled_data->gradient_mode != target_gradient_mode) {
1751 _ccv_cnnp_model_rewind_graph(model);
1752 _ccv_cnnp_compiled_data_gradient_free(compiled_data);
1753 compiled_data->gradient_mode = CCV_CNNP_COMPILED_DATA_GRADIENT_NONE;
1754 _ccv_cnnp_model_gradient_init(model, target_gradient_mode, disable_outgrad, 0, 0); // The type of outputs and fits should be the same. We only use type here.
1755 }
1756 const int tensors_init = !!compiled_data->tensors_init.v;
1757 if (!tensors_init)
1758 _ccv_cnnp_model_tensors_init(model, compiled_data);
1759 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
1760 // Check if it is not fully allocated, if it is not, init_1.
1761 ccv_cnnp_model_tensors_init_1(model, compiled_data);
1762 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1763 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1763, __extension__ __PRETTY_FUNCTION__); }))
;
1764 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1764, __extension__ __PRETTY_FUNCTION__); }))
;
1765 const int input_size_per_p = input_size / parallel_count;
1766 _ccv_cnnp_model_bind_tensors(model->graph, model->inputs, inputs, input_size_per_p, parallel_count, tensor_binds);
1767 const int output_size_per_p = output_size / parallel_count;
1768 _ccv_cnnp_model_bind_tensors(model->graph, model->outputs, outputs, output_size_per_p, parallel_count, tensor_binds);
1769 const int parameter_size = compiled_data->parameters->rnum;
1770 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
1771 const int internal_size = compiled_data->internals->rnum;
1772 _ccv_cnnp_model_remove_nocopies(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count);
1773 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->internals, 0)((void*)(((char*)((compiled_data->internals)->data)) + (
size_t)(compiled_data->internals)->rsize * (size_t)(0))
)
, compiled_data->tensors.internals, internal_size, parallel_count, tensor_binds);
1774 if (!compiled_data->tensors.gradients)
1775 _ccv_cnnp_model_gradient_tensors_init(model, compiled_data);
1776 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count, tensor_binds);
1777 if (compiled_data->backward.to_size > 0)
1778 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, compiled_data->backward.tos, compiled_data->backward.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1779 else
1780 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(model->graph)ccv_nnc_symbolic_graph_sources(model->graph), ccv_nnc_symbolic_graph_source_size
(model->graph)
, compiled_data->evaluate.tos, compiled_data->evaluate.to_size, &compiled_data->graph, &compiled_data->tensor_arena, &compiled_data->graph_exec_arena);
1781 ccv_array_free(tensor_binds);
1782 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
1783 if (tensors_init && parallel_count > 1)
1784 _ccv_cnnp_model_copy_tensors(init_v, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, compiled_data->parameters->rnum, parallel_count);
1785 // If tensor is not init'ed, we need to init states first.
1786 if (_ccv_cnnp_any_to_init(compiled_data))
1787 {
1788 ccv_nnc_tensor_init_states_t tensor_init_states = {
1789 .parallel_count = parallel_count,
1790 .graph = model->graph,
1791 .compiled_data = compiled_data,
1792 .tensor_arena = compiled_data->tensor_arena
1793 };
1794 ccv_cnnp_model_init_states(model, model->graph, _ccv_cnnp_init_states_for_tensors, &tensor_init_states);
1795 }
1796 compiled_data->is_test = is_test;
1797 ccv_nnc_graph_exec_update_t update = {
1798 .parallel_count = parallel_count,
1799 .graph = model->graph,
1800 .graph_exec_arena = compiled_data->graph_exec_arena,
1801 };
1802 ccv_cnnp_model_set_is_test(model, is_test, _ccv_cnnp_cmd_update_for_execs, &update);
1803 const int evaluate_to_size = compiled_data->evaluate.to_size;
1804 compiled_data->evaluate.to_op_size = 0;
1805 ccv_array_t* const backward_from = ccv_array_new(sizeof(int), 0, 0);
1806 for (i = 0; i < evaluate_to_size; i++)
1807 {
1808 ccv_nnc_graph_exec_t const to_op = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, compiled_data->evaluate.tos[i]);
1809 if (to_op.graph)
1810 compiled_data->evaluate.to_ops[compiled_data->evaluate.to_op_size++] = to_op;
1811 const int* tos;
1812 int to_size;
1813 ccv_nnc_graph_exec_symbol_to(model->graph, compiled_data->evaluate.tos[i], &tos, &to_size);
1814 for (j = 0; j < to_size; j++)
1815 {
1816 ccv_nnc_graph_exec_t const to_op = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, (ccv_nnc_graph_exec_symbol_t){
1817 .d = tos[j],
1818 .graph = model->graph
1819 });
1820 if (to_op.graph)
1821 ccv_array_add_unique_int(backward_from, to_op.d);
1822 }
1823 }
1824 assert(backward_from->rnum > 0)((void) sizeof ((backward_from->rnum > 0) ? 1 : 0), __extension__
({ if (backward_from->rnum > 0) ; else __assert_fail (
"backward_from->rnum > 0", "ccv_cnnp_model.c", 1824, __extension__
__PRETTY_FUNCTION__); }))
;
1825 compiled_data->backward.from_op_size = backward_from->rnum;
1826 compiled_data->backward.from_ops = (ccv_nnc_graph_exec_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_t) * backward_from->rnum);
1827 for (i = 0; i < backward_from->rnum; i++)
1828 compiled_data->backward.from_ops[i] = (ccv_nnc_graph_exec_t){
1829 .d = *(int*)ccv_array_get(backward_from, i)((void*)(((char*)((backward_from)->data)) + (size_t)(backward_from
)->rsize * (size_t)(i)))
,
1830 .graph = compiled_data->graph,
1831 };
1832 // If there are any set node (to set some tensors to 0) inserted through backward pass, these won't be executed if we just do sources -> evaluate.to_ops, backward.from_ops -> destinations. We need this logic to find out these nodes and explicitly adding them to backward.from_ops.
1833 ccv_nnc_graph_exec_info_t* const exec_info = (ccv_nnc_graph_exec_info_t*)ccv_array_get(compiled_data->graph->exec_info, 0)((void*)(((char*)((compiled_data->graph->exec_info)->
data)) + (size_t)(compiled_data->graph->exec_info)->
rsize * (size_t)(0)))
;
1834 const int exec_info_size = compiled_data->graph->exec_info->rnum;
1835 uint32_t* const visited = cccalloccalloc((exec_info_size + 31) >> 5, sizeof(uint32_t));
1836 const ccv_nnc_graph_exec_t* const sources = (ccv_nnc_graph_exec_t*)ccv_array_get(compiled_data->graph->sources, 0)((void*)(((char*)((compiled_data->graph->sources)->data
)) + (size_t)(compiled_data->graph->sources)->rsize *
(size_t)(0)))
;
1837 const int source_size = compiled_data->graph->sources->rnum;
1838 ccv_nnc_graph_visit_t* visit = ccv_nnc_graph_visit_new(compiled_data->graph, exec_info, exec_info_size, sources, source_size, compiled_data->evaluate.to_ops, compiled_data->evaluate.to_op_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_info_size) - 1)); _visit_->size = 0; do { typedef struct
{ int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_info_size); _i_++) _incoming_edges_ += ((exec_info)[_i_
].outgoings) ? (exec_info)[_i_].outgoings->rnum : 0; const
int _heap_mem_ = ((exec_info_size) + _incoming_edges_ > 1024
); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_) _incomings_
= (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t) * (
exec_info_size) + sizeof(int32_t) * ((exec_info_size) * 2 + _incoming_edges_
)); else _incomings_ = (ccv_nnc_incoming_t*)__builtin_alloca (
sizeof(ccv_nnc_incoming_t) * (exec_info_size) + sizeof(int32_t
) * ((exec_info_size) * 2 + _incoming_edges_)); memset(_incomings_
, 0, sizeof(ccv_nnc_incoming_t) * (exec_info_size)); int32_t*
_exists_[2] = { (int32_t*)(_incomings_ + (exec_info_size)), (
int32_t*)(_incomings_ + (exec_info_size)) + (exec_info_size),
}; int32_t* const _edges_ = _exists_[1] + (exec_info_size); for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 1; _exists_[0][_i_]
= (sources)[_i_].d; } int _exist_size_[2] = { (source_size),
0, }; int _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0)
{ _exist_size_[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_
[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_][_i_]; if (
_incomings_[_idx_].r != 1) continue; _incomings_[_idx_].r = 2
; if ((exec_info)[_idx_].outgoings) for (_j_ = 0; _j_ < (exec_info
)[_idx_].outgoings->rnum; _j_++) { const int d = *(int*)((
void*)(((char*)(((exec_info)[_idx_].outgoings)->data)) + (
size_t)((exec_info)[_idx_].outgoings)->rsize * (size_t)(_j_
))); ++_incomings_[d].c; if (_incomings_[d].r != 0) continue;
_incomings_[d].r = 1; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 3; _exists_[0][_i_]
= (sources)[_i_].d; } _exist_size_[0] = (source_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 3) continue; _incomings_[
_idx_].r = 4; if ((exec_info)[_idx_].outgoings) for (_j_ = 0;
_j_ < (exec_info)[_idx_].outgoings->rnum; _j_++) { const
int d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings
)->data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize
* (size_t)(_j_))); if (_incomings_[d].edges == 0) { _incomings_
[d].edges = _bump_; _bump_ += _incomings_[d].c; _incomings_[d
].c = 0; } _edges_[_incomings_[d].edges - 1 + _incomings_[d].
c] = _idx_; ++_incomings_[d].c; if (_incomings_[d].r != 2) continue
; _incomings_[d].r = 3; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (compiled_data->evaluate.to_op_size); _i_
++) { ((void) sizeof (((compiled_data->evaluate.to_ops)[_i_
].graph == compiled_data->graph) ? 1 : 0), __extension__ (
{ if ((compiled_data->evaluate.to_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->evaluate.to_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->evaluate.to_ops)[_i_].
d].r = 5; _exists_[0][_i_] = (compiled_data->evaluate.to_ops
)[_i_].d; } _exist_size_[0] = (compiled_data->evaluate.to_op_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 5) continue; _incomings_[
_idx_].r = 6; if (_incomings_[_idx_].edges > 0) for (_j_ =
0; _j_ < _incomings_[_idx_].c; _j_++) { const int d = _edges_
[_incomings_[_idx_].edges - 1 + _j_]; if (_incomings_[d].r !=
4) continue; _incomings_[d].r = 5; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (compiled_data->evaluate.to_op_size); _i_
++) { ((void) sizeof (((compiled_data->evaluate.to_ops)[_i_
].graph == compiled_data->graph) ? 1 : 0), __extension__ (
{ if ((compiled_data->evaluate.to_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->evaluate.to_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->evaluate.to_ops)[_i_].
d].d = 1; } for (_i_ = 0; _i_ < (source_size); _i_++) { ((
void) sizeof (((sources)[_i_].graph == compiled_data->graph
) ? 1 : 0), __extension__ ({ if ((sources)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (sources)[_i_].d; } _p_ = 0; _q_ =
1; _exist_size_[0] = (source_size); _exist_size_[1] = 0; int
_d_ = 0; while (_exist_size_[_p_] > 0) { _exist_size_[_q_
] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_];) { const int32_t
_idx_ = _exists_[_p_][_i_]; _visit_->node[_visit_->size
].index = ((_idx_)); _visit_->node[_visit_->size].term =
((_incomings_[_idx_].d)); ++_visit_->size;; if (_incomings_
[_idx_].d) { ++_d_; _incomings_[_idx_].r = 7; } if ((exec_info
)[_idx_].outgoings) { if ((exec_info)[_idx_].outgoings->rnum
== 1) { const int d = *(int*)((void*)(((char*)(((exec_info)[
_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].outgoings
)->rsize * (size_t)(0))); --_incomings_[d].c; if (_incomings_
[d].c == 0 && _incomings_[d].r == 6 && _d_ <
(compiled_data->evaluate.to_op_size)) { _exists_[_p_][_i_
] = d; continue; } } else for (_j_ = 0; _j_ < (exec_info)[
_idx_].outgoings->rnum; _j_++) { const int d = *(int*)((void
*)(((char*)(((exec_info)[_idx_].outgoings)->data)) + (size_t
)((exec_info)[_idx_].outgoings)->rsize * (size_t)(_j_))); --
_incomings_[d].c; if (_incomings_[d].c == 0 && _incomings_
[d].r == 6 && _d_ < (compiled_data->evaluate.to_op_size
)) { ((void) sizeof ((_exist_size_[_q_] < (exec_info_size)
) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (compiled_data->evaluate.to_op_size
); _i_++) { ((void) sizeof (((compiled_data->evaluate.to_ops
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((compiled_data->evaluate.to_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->evaluate.to_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(compiled_data->evaluate.to_ops)[_i_
].d].r == 7) continue; if (!(0)) { ((void) sizeof ((_incomings_
[(compiled_data->evaluate.to_ops)[_i_].d].c == 0) ? 1 : 0)
, __extension__ ({ if (_incomings_[(compiled_data->evaluate
.to_ops)[_i_].d].c == 0) ; else __assert_fail ("_incomings_[(compiled_data->evaluate.to_ops)[_i_].d].c == 0"
, "ccv_cnnp_model.c", 1838, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(compiled_data->evaluate.to_ops
)[_i_].d].c > 0) continue; _visit_->node[_visit_->size
].index = (((compiled_data->evaluate.to_ops)[_i_].d)); _visit_
->node[_visit_->size].term = ((_incomings_[(compiled_data
->evaluate.to_ops)[_i_].d].d)); ++_visit_->size;; } if (
_heap_mem_) free(_incomings_); } while (0);; ((void) sizeof (
(_visit_->size <= (exec_info_size)) ? 1 : 0), __extension__
({ if (_visit_->size <= (exec_info_size)) ; else __assert_fail
("_visit_->size <= (exec_info_size)", "ccv_cnnp_model.c"
, 1838, __extension__ __PRETTY_FUNCTION__); })); _visit_; })
;
1839 ccv_nnc_graph_visit_for(visit, exec_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (visit)->size; _i_++) { const
int idx __attribute__((unused)) = (visit)->node[_i_].index
; const int _node_unused_ __attribute__((unused)) = (visit)->
node[_i_].term; typeof ((exec_info)) const node __attribute__
((unused)) = (exec_info) + idx;
{
1840 visited[(idx >> 5)] |= (1u << (idx & 31));
1841 } ccv_nnc_graph_visit_endfor} }
1842 ccv_nnc_graph_visit_free(visit);
1843 const ccv_nnc_graph_exec_t* const destinations = (ccv_nnc_graph_exec_t*)ccv_array_get(compiled_data->graph->destinations, 0)((void*)(((char*)((compiled_data->graph->destinations)->
data)) + (size_t)(compiled_data->graph->destinations)->
rsize * (size_t)(0)))
;
1844 const int destination_size = compiled_data->graph->destinations->rnum;
1845 visit = ccv_nnc_graph_visit_new(compiled_data->graph, exec_info, exec_info_size, compiled_data->backward.from_ops, compiled_data->backward.from_op_size, destinations, destination_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_info_size) - 1)); _visit_->size = 0; do { typedef struct
{ int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_info_size); _i_++) _incoming_edges_ += ((exec_info)[_i_
].outgoings) ? (exec_info)[_i_].outgoings->rnum : 0; const
int _heap_mem_ = ((exec_info_size) + _incoming_edges_ > 1024
); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_) _incomings_
= (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t) * (
exec_info_size) + sizeof(int32_t) * ((exec_info_size) * 2 + _incoming_edges_
)); else _incomings_ = (ccv_nnc_incoming_t*)__builtin_alloca (
sizeof(ccv_nnc_incoming_t) * (exec_info_size) + sizeof(int32_t
) * ((exec_info_size) * 2 + _incoming_edges_)); memset(_incomings_
, 0, sizeof(ccv_nnc_incoming_t) * (exec_info_size)); int32_t*
_exists_[2] = { (int32_t*)(_incomings_ + (exec_info_size)), (
int32_t*)(_incomings_ + (exec_info_size)) + (exec_info_size),
}; int32_t* const _edges_ = _exists_[1] + (exec_info_size); for
(_i_ = 0; _i_ < (compiled_data->backward.from_op_size)
; _i_++) { ((void) sizeof (((compiled_data->backward.from_ops
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((compiled_data->backward.from_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->backward.from_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->backward.from_ops)[_i_
].d].r = 1; _exists_[0][_i_] = (compiled_data->backward.from_ops
)[_i_].d; } int _exist_size_[2] = { (compiled_data->backward
.from_op_size), 0, }; int _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 1) continue; _incomings_[
_idx_].r = 2; if ((exec_info)[_idx_].outgoings) for (_j_ = 0;
_j_ < (exec_info)[_idx_].outgoings->rnum; _j_++) { const
int d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings
)->data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize
* (size_t)(_j_))); ++_incomings_[d].c; if (_incomings_[d].r !=
0) continue; _incomings_[d].r = 1; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (compiled_data->backward.from_op_size)
; _i_++) { ((void) sizeof (((compiled_data->backward.from_ops
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((compiled_data->backward.from_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->backward.from_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(compiled_data->backward.from_ops)[_i_
].d].r = 3; _exists_[0][_i_] = (compiled_data->backward.from_ops
)[_i_].d; } _exist_size_[0] = (compiled_data->backward.from_op_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while
(_exist_size_[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_
= 0; _i_ < _exist_size_[_p_]; _i_++) { const int32_t _idx_
= _exists_[_p_][_i_]; if (_incomings_[_idx_].r != 3) continue
; _incomings_[_idx_].r = 4; if ((exec_info)[_idx_].outgoings)
for (_j_ = 0; _j_ < (exec_info)[_idx_].outgoings->rnum
; _j_++) { const int d = *(int*)((void*)(((char*)(((exec_info
)[_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].
outgoings)->rsize * (size_t)(_j_))); if (_incomings_[d].edges
== 0) { _incomings_[d].edges = _bump_; _bump_ += _incomings_
[d].c; _incomings_[d].c = 0; } _edges_[_incomings_[d].edges -
1 + _incomings_[d].c] = _idx_; ++_incomings_[d].c; if (_incomings_
[d].r != 2) continue; _incomings_[d].r = 3; ((void) sizeof ((
_exist_size_[_q_] < (exec_info_size)) ? 1 : 0), __extension__
({ if (_exist_size_[_q_] < (exec_info_size)) ; else __assert_fail
("_exist_size_[_q_] < (exec_info_size)", "ccv_cnnp_model.c"
, 1845, __extension__ __PRETTY_FUNCTION__); })); _exists_[_q_
][_exist_size_[_q_]] = d; ++_exist_size_[_q_]; } } ((_i_) = (
_p_), (_p_) = (_q_), (_q_) = (_i_)); } for (_i_ = 0; _i_ <
(destination_size); _i_++) { ((void) sizeof (((destinations)
[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((destinations)[_i_].graph == compiled_data->graph)
; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].r = 5; _exists_[0]
[_i_] = (destinations)[_i_].d; } _exist_size_[0] = (destination_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 5) continue; _incomings_[
_idx_].r = 6; if (_incomings_[_idx_].edges > 0) for (_j_ =
0; _j_ < _incomings_[_idx_].c; _j_++) { const int d = _edges_
[_incomings_[_idx_].edges - 1 + _j_]; if (_incomings_[d].r !=
4) continue; _incomings_[d].r = 5; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == compiled_data->graph) ? 1 :
0), __extension__ ({ if ((destinations)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].d = 1; } for (_i_ =
0; _i_ < (compiled_data->backward.from_op_size); _i_++
) { ((void) sizeof (((compiled_data->backward.from_ops)[_i_
].graph == compiled_data->graph) ? 1 : 0), __extension__ (
{ if ((compiled_data->backward.from_ops)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(compiled_data->backward.from_ops)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (compiled_data->backward.from_ops
)[_i_].d; } _p_ = 0; _q_ = 1; _exist_size_[0] = (compiled_data
->backward.from_op_size); _exist_size_[1] = 0; int _d_ = 0
; while (_exist_size_[_p_] > 0) { _exist_size_[_q_] = 0; for
(_i_ = 0; _i_ < _exist_size_[_p_];) { const int32_t _idx_
= _exists_[_p_][_i_]; _visit_->node[_visit_->size].index
= ((_idx_)); _visit_->node[_visit_->size].term = ((_incomings_
[_idx_].d)); ++_visit_->size;; if (_incomings_[_idx_].d) {
++_d_; _incomings_[_idx_].r = 7; } if ((exec_info)[_idx_].outgoings
) { if ((exec_info)[_idx_].outgoings->rnum == 1) { const int
d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings)->
data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize * (
size_t)(0))); --_incomings_[d].c; if (_incomings_[d].c == 0 &&
_incomings_[d].r == 6 && _d_ < (destination_size)
) { _exists_[_p_][_i_] = d; continue; } } else for (_j_ = 0; _j_
< (exec_info)[_idx_].outgoings->rnum; _j_++) { const int
d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings)->
data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize * (
size_t)(_j_))); --_incomings_[d].c; if (_incomings_[d].c == 0
&& _incomings_[d].r == 6 && _d_ < (destination_size
)) { ((void) sizeof ((_exist_size_[_q_] < (exec_info_size)
) ? 1 : 0), __extension__ ({ if (_exist_size_[_q_] < (exec_info_size
)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (destination_size); _i_++) { (
(void) sizeof (((destinations)[_i_].graph == compiled_data->
graph) ? 1 : 0), __extension__ ({ if ((destinations)[_i_].graph
== compiled_data->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(destinations)[_i_].d].r == 7) continue
; if (!(0)) { ((void) sizeof ((_incomings_[(destinations)[_i_
].d].c == 0) ? 1 : 0), __extension__ ({ if (_incomings_[(destinations
)[_i_].d].c == 0) ; else __assert_fail ("_incomings_[(destinations)[_i_].d].c == 0"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(destinations)[_i_].d].c > 0
) continue; _visit_->node[_visit_->size].index = (((destinations
)[_i_].d)); _visit_->node[_visit_->size].term = ((_incomings_
[(destinations)[_i_].d].d)); ++_visit_->size;; } if (_heap_mem_
) free(_incomings_); } while (0);; ((void) sizeof ((_visit_->
size <= (exec_info_size)) ? 1 : 0), __extension__ ({ if (_visit_
->size <= (exec_info_size)) ; else __assert_fail ("_visit_->size <= (exec_info_size)"
, "ccv_cnnp_model.c", 1845, __extension__ __PRETTY_FUNCTION__
); })); _visit_; })
;
1846 ccv_nnc_graph_visit_for(visit, exec_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (visit)->size; _i_++) { const
int idx __attribute__((unused)) = (visit)->node[_i_].index
; const int _node_unused_ __attribute__((unused)) = (visit)->
node[_i_].term; typeof ((exec_info)) const node __attribute__
((unused)) = (exec_info) + idx;
{
1847 visited[(idx >> 5)] |= (1u << (idx & 31));
1848 } ccv_nnc_graph_visit_endfor} }
1849 ccv_nnc_graph_visit_free(visit);
1850 visit = ccv_nnc_graph_visit_new(compiled_data->graph, exec_info, exec_info_size, sources, source_size, destinations, destination_size, 0)({ ccv_nnc_graph_visit_t* _visit_ = (ccv_nnc_graph_visit_t*)malloc
(sizeof(ccv_nnc_graph_visit_t) + sizeof(_visit_->node[0]) *
((exec_info_size) - 1)); _visit_->size = 0; do { typedef struct
{ int8_t d; int8_t r; uint16_t c; int32_t edges; } ccv_nnc_incoming_t
; int _i_, _j_; int _incoming_edges_ = 0; for (_i_ = 0; _i_ <
(exec_info_size); _i_++) _incoming_edges_ += ((exec_info)[_i_
].outgoings) ? (exec_info)[_i_].outgoings->rnum : 0; const
int _heap_mem_ = ((exec_info_size) + _incoming_edges_ > 1024
); ccv_nnc_incoming_t* _incomings_; if (_heap_mem_) _incomings_
= (ccv_nnc_incoming_t*)malloc(sizeof(ccv_nnc_incoming_t) * (
exec_info_size) + sizeof(int32_t) * ((exec_info_size) * 2 + _incoming_edges_
)); else _incomings_ = (ccv_nnc_incoming_t*)__builtin_alloca (
sizeof(ccv_nnc_incoming_t) * (exec_info_size) + sizeof(int32_t
) * ((exec_info_size) * 2 + _incoming_edges_)); memset(_incomings_
, 0, sizeof(ccv_nnc_incoming_t) * (exec_info_size)); int32_t*
_exists_[2] = { (int32_t*)(_incomings_ + (exec_info_size)), (
int32_t*)(_incomings_ + (exec_info_size)) + (exec_info_size),
}; int32_t* const _edges_ = _exists_[1] + (exec_info_size); for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 1; _exists_[0][_i_]
= (sources)[_i_].d; } int _exist_size_[2] = { (source_size),
0, }; int _p_ = 0, _q_ = 1; while (_exist_size_[_p_] > 0)
{ _exist_size_[_q_] = 0; for (_i_ = 0; _i_ < _exist_size_
[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_][_i_]; if (
_incomings_[_idx_].r != 1) continue; _incomings_[_idx_].r = 2
; if ((exec_info)[_idx_].outgoings) for (_j_ = 0; _j_ < (exec_info
)[_idx_].outgoings->rnum; _j_++) { const int d = *(int*)((
void*)(((char*)(((exec_info)[_idx_].outgoings)->data)) + (
size_t)((exec_info)[_idx_].outgoings)->rsize * (size_t)(_j_
))); ++_incomings_[d].c; if (_incomings_[d].r != 0) continue;
_incomings_[d].r = 1; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (source_size); _i_++) { ((void) sizeof ((
(sources)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(sources)[_i_].d].r = 3; _exists_[0][_i_]
= (sources)[_i_].d; } _exist_size_[0] = (source_size); _exist_size_
[1] = 0; _p_ = 0, _q_ = 1; int _bump_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 3) continue; _incomings_[
_idx_].r = 4; if ((exec_info)[_idx_].outgoings) for (_j_ = 0;
_j_ < (exec_info)[_idx_].outgoings->rnum; _j_++) { const
int d = *(int*)((void*)(((char*)(((exec_info)[_idx_].outgoings
)->data)) + (size_t)((exec_info)[_idx_].outgoings)->rsize
* (size_t)(_j_))); if (_incomings_[d].edges == 0) { _incomings_
[d].edges = _bump_; _bump_ += _incomings_[d].c; _incomings_[d
].c = 0; } _edges_[_incomings_[d].edges - 1 + _incomings_[d].
c] = _idx_; ++_incomings_[d].c; if (_incomings_[d].r != 2) continue
; _incomings_[d].r = 3; ((void) sizeof ((_exist_size_[_q_] <
(exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == compiled_data->graph) ? 1 :
0), __extension__ ({ if ((destinations)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].r = 5; _exists_[0]
[_i_] = (destinations)[_i_].d; } _exist_size_[0] = (destination_size
); _exist_size_[1] = 0; _p_ = 0, _q_ = 1; while (_exist_size_
[_p_] > 0) { _exist_size_[_q_] = 0; for (_i_ = 0; _i_ <
_exist_size_[_p_]; _i_++) { const int32_t _idx_ = _exists_[_p_
][_i_]; if (_incomings_[_idx_].r != 5) continue; _incomings_[
_idx_].r = 6; if (_incomings_[_idx_].edges > 0) for (_j_ =
0; _j_ < _incomings_[_idx_].c; _j_++) { const int d = _edges_
[_incomings_[_idx_].edges - 1 + _j_]; if (_incomings_[d].r !=
4) continue; _incomings_[d].r = 5; ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (_i_)); } for
(_i_ = 0; _i_ < (destination_size); _i_++) { ((void) sizeof
(((destinations)[_i_].graph == compiled_data->graph) ? 1 :
0), __extension__ ({ if ((destinations)[_i_].graph == compiled_data
->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _incomings_[(destinations)[_i_].d].d = 1; } for (_i_ =
0; _i_ < (source_size); _i_++) { ((void) sizeof (((sources
)[_i_].graph == compiled_data->graph) ? 1 : 0), __extension__
({ if ((sources)[_i_].graph == compiled_data->graph) ; else
__assert_fail ("(sources)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _exists_[0][_i_] = (sources)[_i_].d; } _p_ = 0; _q_ =
1; _exist_size_[0] = (source_size); _exist_size_[1] = 0; int
_d_ = 0; while (_exist_size_[_p_] > 0) { _exist_size_[_q_
] = 0; for (_i_ = 0; _i_ < _exist_size_[_p_];) { const int32_t
_idx_ = _exists_[_p_][_i_]; _visit_->node[_visit_->size
].index = ((_idx_)); _visit_->node[_visit_->size].term =
((_incomings_[_idx_].d)); ++_visit_->size;; if (_incomings_
[_idx_].d) { ++_d_; _incomings_[_idx_].r = 7; } if ((exec_info
)[_idx_].outgoings) { if ((exec_info)[_idx_].outgoings->rnum
== 1) { const int d = *(int*)((void*)(((char*)(((exec_info)[
_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].outgoings
)->rsize * (size_t)(0))); --_incomings_[d].c; if (_incomings_
[d].c == 0 && _incomings_[d].r == 6 && _d_ <
(destination_size)) { _exists_[_p_][_i_] = d; continue; } } else
for (_j_ = 0; _j_ < (exec_info)[_idx_].outgoings->rnum
; _j_++) { const int d = *(int*)((void*)(((char*)(((exec_info
)[_idx_].outgoings)->data)) + (size_t)((exec_info)[_idx_].
outgoings)->rsize * (size_t)(_j_))); --_incomings_[d].c; if
(_incomings_[d].c == 0 && _incomings_[d].r == 6 &&
_d_ < (destination_size)) { ((void) sizeof ((_exist_size_
[_q_] < (exec_info_size)) ? 1 : 0), __extension__ ({ if (_exist_size_
[_q_] < (exec_info_size)) ; else __assert_fail ("_exist_size_[_q_] < (exec_info_size)"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _exists_[_q_][_exist_size_[_q_]] = d; ++_exist_size_[
_q_]; } } } ++_i_; } ((_i_) = (_p_), (_p_) = (_q_), (_q_) = (
_i_)); } for (_i_ = 0; _i_ < (destination_size); _i_++) { (
(void) sizeof (((destinations)[_i_].graph == compiled_data->
graph) ? 1 : 0), __extension__ ({ if ((destinations)[_i_].graph
== compiled_data->graph) ; else __assert_fail ("(destinations)[_i_].graph == compiled_data->graph"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); if (_incomings_[(destinations)[_i_].d].r == 7) continue
; if (!(0)) { ((void) sizeof ((_incomings_[(destinations)[_i_
].d].c == 0) ? 1 : 0), __extension__ ({ if (_incomings_[(destinations
)[_i_].d].c == 0) ; else __assert_fail ("_incomings_[(destinations)[_i_].d].c == 0"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); } else if (_incomings_[(destinations)[_i_].d].c > 0
) continue; _visit_->node[_visit_->size].index = (((destinations
)[_i_].d)); _visit_->node[_visit_->size].term = ((_incomings_
[(destinations)[_i_].d].d)); ++_visit_->size;; } if (_heap_mem_
) free(_incomings_); } while (0);; ((void) sizeof ((_visit_->
size <= (exec_info_size)) ? 1 : 0), __extension__ ({ if (_visit_
->size <= (exec_info_size)) ; else __assert_fail ("_visit_->size <= (exec_info_size)"
, "ccv_cnnp_model.c", 1850, __extension__ __PRETTY_FUNCTION__
); })); _visit_; })
;
1851 // Find any missing nodes to be added as source. Right now, these are only set nodes.
1852 ccv_nnc_graph_visit_for(visit, exec_info, node, idx){ int _i_; for (_i_ = 0; _i_ < (visit)->size; _i_++) { const
int idx __attribute__((unused)) = (visit)->node[_i_].index
; const int _node_unused_ __attribute__((unused)) = (visit)->
node[_i_].term; typeof ((exec_info)) const node __attribute__
((unused)) = (exec_info) + idx;
{
1853 if (!(visited[(idx >> 5)] & (1u << (idx & 31))))
1854 {
1855 assert(exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD)((void) sizeof ((exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD
) ? 1 : 0), __extension__ ({ if (exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD
) ; else __assert_fail ("exec_info[idx].cmd.cmd == CCV_NNC_SET_FORWARD"
, "ccv_cnnp_model.c", 1855, __extension__ __PRETTY_FUNCTION__
); }))
;
1856 if (exec_info[idx].cmd.info.blas.a[0] == 0) // Special-casing for empty out the tensor set function, not for the set grad to 1 one.
1857 ccv_array_add_unique_int(backward_from, idx);
1858 }
1859 } ccv_nnc_graph_visit_endfor} }
1860 ccv_nnc_graph_visit_free(visit);
1861 ccfreefree(visited);
1862 if (backward_from->rnum != compiled_data->backward.from_op_size) // If it doesn't match, need to redo this.
1863 {
1864 compiled_data->backward.from_op_size = backward_from->rnum;
1865 compiled_data->backward.from_ops = (ccv_nnc_graph_exec_t*)ccreallocrealloc(compiled_data->backward.from_ops, sizeof(ccv_nnc_graph_exec_t) * backward_from->rnum);
1866 for (i = 0; i < backward_from->rnum; i++)
1867 compiled_data->backward.from_ops[i] = (ccv_nnc_graph_exec_t){
1868 .d = *(int*)ccv_array_get(backward_from, i)((void*)(((char*)((backward_from)->data)) + (size_t)(backward_from
)->rsize * (size_t)(i)))
,
1869 .graph = compiled_data->graph,
1870 };
1871 }
1872 ccv_array_free(backward_from);
1873 ccv_nnc_graph_set_default_static_schedule(compiled_data->graph, compiled_data->stream_type, model->max_stream_count);
1874 ccv_nnc_graph_autotune(compiled_data->graph, model->workspace_size, 0, TRAVERSE_FULL0,0,0,0);
1875}
1876
1877void ccv_cnnp_model_dry_run(ccv_cnnp_model_t* const model, const ccv_cnnp_evaluate_param_t params, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size)
1878{
1879 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1880 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1880, __extension__ __PRETTY_FUNCTION__); }))
;
1881 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1882 assert(output_size == model->output_size * parallel_count)((void) sizeof ((output_size == model->output_size * parallel_count
) ? 1 : 0), __extension__ ({ if (output_size == model->output_size
* parallel_count) ; else __assert_fail ("output_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1882, __extension__ __PRETTY_FUNCTION__
); }))
;
1883 assert(input_size == model->input_size * parallel_count)((void) sizeof ((input_size == model->input_size * parallel_count
) ? 1 : 0), __extension__ ({ if (input_size == model->input_size
* parallel_count) ; else __assert_fail ("input_size == model->input_size * parallel_count"
, "ccv_cnnp_model.c", 1883, __extension__ __PRETTY_FUNCTION__
); }))
;
1884 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 1884, __extension__ __PRETTY_FUNCTION__); }))
;
1885 const int target_gradient_mode = _ccv_cnnp_is_disable_outgrad_all(params.disable_outgrad, model->input_size) ? CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES : CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS;
1886 const int mode_mismatch = (params.requires_grad && (compiled_data->graph_mode != CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE || compiled_data->gradient_mode != target_gradient_mode || compiled_data->disable_outgrad != params.disable_outgrad));
1887 if (!compiled_data->graph || mode_mismatch)
1888 {
1889 _ccv_cnnp_compiled_data_graph_free(compiled_data);
1890 if (mode_mismatch) // If mode mismatch, we need to redo the backward as well (no need to redo apply_gradients, it doesn't require target_gradient_mode or disable_outgrad.
1891 _ccv_cnnp_compiled_data_backward_free(compiled_data);
1892 if (params.requires_grad)
1893 _ccv_cnnp_model_multistage_jit_0(model, params.disable_outgrad, params.is_test, inputs, input_size, outputs, output_size);
1894 else
1895 _ccv_cnnp_model_multistage_no_grad_jit(model, inputs, input_size, outputs, output_size);
1896 } else {
1897 ccv_nnc_tensor_arena_clear_bindings(compiled_data->tensor_arena);
1898 assert((input_size % parallel_count) == 0)((void) sizeof (((input_size % parallel_count) == 0) ? 1 : 0)
, __extension__ ({ if ((input_size % parallel_count) == 0) ; else
__assert_fail ("(input_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1898, __extension__ __PRETTY_FUNCTION__); }))
;
1899 const int input_size_per_p = input_size / parallel_count;
1900 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->inputs, inputs, input_size_per_p, parallel_count);
1901 assert((output_size % parallel_count) == 0)((void) sizeof (((output_size % parallel_count) == 0) ? 1 : 0
), __extension__ ({ if ((output_size % parallel_count) == 0) ;
else __assert_fail ("(output_size % parallel_count) == 0", "ccv_cnnp_model.c"
, 1901, __extension__ __PRETTY_FUNCTION__); }))
;
1902 const int output_size_per_p = output_size / parallel_count;
1903 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, model->outputs, outputs, output_size_per_p, parallel_count);
1904 }
1905 if (compiled_data->is_test != params.is_test)
1906 {
1907 compiled_data->is_test = params.is_test;
1908 ccv_nnc_graph_exec_update_t update = {
1909 .parallel_count = parallel_count,
1910 .graph = model->graph,
1911 .graph_exec_arena = compiled_data->graph_exec_arena,
1912 };
1913 ccv_cnnp_model_set_is_test(model, params.is_test, _ccv_cnnp_cmd_update_for_execs, &update);
1914 }
1915}
1916
1917void ccv_cnnp_model_evaluate(ccv_cnnp_model_t* const model, const ccv_cnnp_evaluate_param_t params, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context)
1918{
1919 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1920 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1920, __extension__ __PRETTY_FUNCTION__); }))
;
1921 ccv_cnnp_model_dry_run(model, params, inputs, input_size, outputs, output_size);
1922 if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE_NO_GRAD)
1923 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, 0, tensor_tape, stream_context);
1924 else {
1925 if (!compiled_data->evaluate.schedule)
1926 compiled_data->evaluate.schedule = ccv_nnc_graph_static_schedule_new(compiled_data->graph, compiled_data->stream_type, model->max_stream_count, 0, 0, compiled_data->evaluate.to_ops, compiled_data->evaluate.to_op_size);
1927 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, compiled_data->evaluate.schedule, tensor_tape, stream_context);
1928 }
1929}
1930
1931// Compile the graph to run ccv_cnnp_model_backward after ccv_cnnp_model_evaluate with requires_grad = true (MULTISTAGE_MODE).
1932// Particularly, this method compiles the accumulator graph.
1933static void _ccv_cnnp_model_multistage_jit_1(ccv_cnnp_model_t* const model)
1934{
1935 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1936 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1936, __extension__ __PRETTY_FUNCTION__); }))
;
1937 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 1937, __extension__ __PRETTY_FUNCTION__
); }))
;
1938 ccv_nnc_symbolic_graph_t* accum = ccv_nnc_symbolic_graph_new();
1939 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1940 const int parameter_size = compiled_data->parameters->rnum;
1941 int i, j;
1942 compiled_data->backward.gradients = (ccv_nnc_tensor_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_symbol_t) * parameter_size * parallel_count * 3);
1943 compiled_data->backward.accum_gradients = compiled_data->backward.gradients + parameter_size * parallel_count;
1944 compiled_data->backward.updated_accum_gradients = compiled_data->backward.accum_gradients + parameter_size * parallel_count;
1945 for (i = 0; i < parameter_size; i++)
1946 for (j = 0; j < parallel_count; j++)
1947 if (compiled_data->tensors.gradients[i + j * parameter_size])
1948 {
1949 const ccv_nnc_tensor_param_t info = compiled_data->tensors.gradients[i + j * parameter_size]->info;
1950 // Now, the old gradient is the accumulated gradient, getting new gradient tensor setup so we can collect them.
1951 compiled_data->tensors.accum_gradients[i + j * parameter_size] = compiled_data->tensors.gradients[i + j * parameter_size];
1952 compiled_data->tensors.gradients[i + j * parameter_size] = ccv_nnc_tensor_new(0, info, 0);
1953 ccv_nnc_tensor_symbol_t inputs[2];
1954 inputs[0] = compiled_data->backward.accum_gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0);
1955 inputs[1] = compiled_data->backward.gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0);
1956 ccv_nnc_tensor_symbol_t output = compiled_data->backward.updated_accum_gradients[i + j * parameter_size] = ccv_nnc_tensor_symbol_new(accum, info, 0);
1957 ccv_nnc_graph_exec_symbol_new(accum, CMD_EWSUM_FORWARD()ccv_nnc_cmd(CCV_NNC_EWSUM_FORWARD, 0, ccv_nnc_cmd_auto, 0), inputs, 2, &output, 1, 0);
1958 } else {
1959 compiled_data->backward.accum_gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1960 compiled_data->backward.gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1961 compiled_data->backward.updated_accum_gradients[i + j * parameter_size] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL
}
;
1962 }
1963 ccv_nnc_graph_exec_symbol_autogen(accum, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
1964 if (ccv_nnc_symbolic_graph_source_size(accum) == 0)
1965 {
1966 ccv_nnc_symbolic_graph_free(accum);
1967 // Create empty graph.
1968 compiled_data->backward.accum = ccv_nnc_graph_new();
1969 ccv_nnc_graph_topsort(compiled_data->backward.accum, 0, 0);
1970 return;
1971 }
1972 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
1973 _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1, tensor_binds);
1974 _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.gradients, compiled_data->tensors.gradients, parameter_size * parallel_count, 1, tensor_binds);
1975 _ccv_cnnp_model_bind_tensors(accum, compiled_data->backward.updated_accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1, tensor_binds);
1976 ccv_nnc_symbolic_graph_compile(accum, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, SYMBOLIC_GRAPH_SOURCES(accum)ccv_nnc_symbolic_graph_sources(accum), ccv_nnc_symbolic_graph_source_size
(accum)
, SYMBOLIC_GRAPH_DESTINATIONS(accum)ccv_nnc_symbolic_graph_destinations(accum), ccv_nnc_symbolic_graph_destination_size
(accum)
, &compiled_data->backward.accum, &compiled_data->backward.tensor_arena, &compiled_data->backward.graph_exec_arena);
1977 ccv_nnc_symbolic_graph_free(accum);
1978 ccv_array_free(tensor_binds);
1979 ccv_nnc_graph_set_default_static_schedule(compiled_data->backward.accum, compiled_data->stream_type, model->max_stream_count);
1980}
1981
1982void ccv_cnnp_model_backward(ccv_cnnp_model_t* const model, ccv_nnc_tensor_t* const* const ingrads, const int ingrad_size, ccv_nnc_tensor_t* const* const outgrads, const int outgrad_size, ccv_nnc_tensor_tape_t* const tensor_tape, ccv_nnc_stream_context_t* const stream_context)
1983{
1984 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
1985 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 1985, __extension__ __PRETTY_FUNCTION__); }))
;
1986 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 1986, __extension__ __PRETTY_FUNCTION__
); }))
;
1987 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
1988 assert(ingrad_size == 0 || ingrad_size == model->output_size * parallel_count)((void) sizeof ((ingrad_size == 0 || ingrad_size == model->
output_size * parallel_count) ? 1 : 0), __extension__ ({ if (
ingrad_size == 0 || ingrad_size == model->output_size * parallel_count
) ; else __assert_fail ("ingrad_size == 0 || ingrad_size == model->output_size * parallel_count"
, "ccv_cnnp_model.c", 1988, __extension__ __PRETTY_FUNCTION__
); }))
;
1989 if (outgrad_size > 0)
1990 { assert(outgrad_size == compiled_data->outgrad_size * parallel_count)((void) sizeof ((outgrad_size == compiled_data->outgrad_size
* parallel_count) ? 1 : 0), __extension__ ({ if (outgrad_size
== compiled_data->outgrad_size * parallel_count) ; else __assert_fail
("outgrad_size == compiled_data->outgrad_size * parallel_count"
, "ccv_cnnp_model.c", 1990, __extension__ __PRETTY_FUNCTION__
); }))
; }
1991 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 1991, __extension__ __PRETTY_FUNCTION__); }))
;
1992 assert(compiled_data->graph)((void) sizeof ((compiled_data->graph) ? 1 : 0), __extension__
({ if (compiled_data->graph) ; else __assert_fail ("compiled_data->graph"
, "ccv_cnnp_model.c", 1992, __extension__ __PRETTY_FUNCTION__
); }))
;
1993 const int parameter_size = compiled_data->parameters->rnum;
1994 // If we need to accumulate the gradients now, do jit on accumulator.
1995 if (compiled_data->backward.count > 0)
1996 {
1997 if (!compiled_data->backward.accum)
1998 _ccv_cnnp_model_multistage_jit_1(model);
1999 else if (compiled_data->backward.count == 1) {
2000 // On this round, we need to switch accumulated gradients with gradients (so we can do accumulation properly).
2001 int i;
2002 for (i = 0; i < parameter_size * parallel_count; i++)
2003 {
2004 ccv_nnc_tensor_t* tensor;
2005 CCV_SWAP(compiled_data->tensors.accum_gradients[i], compiled_data->tensors.gradients[i], tensor)((tensor) = (compiled_data->tensors.accum_gradients[i]), (
compiled_data->tensors.accum_gradients[i]) = (compiled_data
->tensors.gradients[i]), (compiled_data->tensors.gradients
[i]) = (tensor))
;
2006 }
2007 if (compiled_data->backward.tensor_arena)
2008 {
2009 ccv_nnc_tensor_arena_clear_bindings(compiled_data->backward.tensor_arena);
2010 // Do rebind in case we messed up the binding (we switch accum_gradients and gradients).
2011 _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.gradients, compiled_data->tensors.gradients, parameter_size * parallel_count, 1);
2012 _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1);
2013 _ccv_cnnp_bind_tensors_to_arena(compiled_data->backward.tensor_arena, 0, compiled_data->backward.updated_accum_gradients, compiled_data->tensors.accum_gradients, parameter_size * parallel_count, 1);
2014 }
2015 }
2016 }
2017 const int ingrad_size_per_p = model->output_size;
2018 const int outgrad_size_per_p = compiled_data->outgrad_size;
2019 int i, j;
2020 for (i = 0; i < ingrad_size_per_p; i++)
2021 {
2022 const ccv_nnc_tensor_symbol_t ingrad = ccv_nnc_tensor_symbol_for_backward(model->graph, compiled_data->f[i]);
2023 if (!ingrad_size || !ingrads || ingrads[i] == 0)
2024 {
2025 // Set it to 1 if it is not specified.
2026 ccv_nnc_tensor_t* const ingrad_tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ingrad);
2027 if (ingrad_tensor)
2028 ccv_nnc_cmd_exec(CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(ingrad_tensor)(ccv_nnc_tensor_t* []){ingrad_tensor}, (1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
2029 for (j = 1; j < parallel_count; j++)
2030 {
2031 ccv_nnc_tensor_t* const ingrad_tensor = ccv_nnc_tensor_from_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, ingrad, j));
2032 if (ingrad_tensor)
2033 ccv_nnc_cmd_exec(CMD_SET_FORWARD(1)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={1,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, TENSOR_LIST(ingrad_tensor)(ccv_nnc_tensor_t* []){ingrad_tensor}, (1 +1 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, stream_context);
2034 }
2035 } else {
2036 // Make sure the length matches, in case it is an alias.
2037 assert(ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->graph, ingrad)))((void) sizeof ((ccv_nnc_tensor_count(ingrads[i]->info) ==
ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->
graph, ingrad))) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_count
(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params
(model->graph, ingrad))) ; else __assert_fail ("ccv_nnc_tensor_count(ingrads[i]->info) == ccv_nnc_tensor_count(ccv_nnc_tensor_symbol_params(model->graph, ingrad))"
, "ccv_cnnp_model.c", 2037, __extension__ __PRETTY_FUNCTION__
); }))
;
2038 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ingrad, ingrads[i]);
2039 for (j = 1; j < parallel_count; j++)
2040 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, ingrad, j), ingrads[i + ingrad_size_per_p * j]);
2041 }
2042 }
2043 if (outgrad_size > 0)
2044 {
2045 assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad")((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
&& "shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad"
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS &&
"shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad"
) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS && \"shouldn't pass disable_outgrad to ccv_cnnp_model_evaluate before if you plan to compute outgrad\""
, "ccv_cnnp_model.c", 2045, __extension__ __PRETTY_FUNCTION__
); }))
;
2046 for (i = 0; i < outgrad_size_per_p; i++)
2047 if (outgrads[i])
2048 {
2049 const ccv_nnc_tensor_symbol_t outgrad = compiled_data->outgrads[i];
2050 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, outgrad, outgrads[i]);
2051 for (j = 1; j < parallel_count; j++)
2052 ccv_nnc_tensor_bind_symbol(compiled_data->tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, outgrad, j), outgrads[i + outgrad_size_per_p * j]);
2053 }
2054 } else {
2055 assert(compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES ||((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES
|| compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data
->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS"
, "ccv_cnnp_model.c", 2056, __extension__ __PRETTY_FUNCTION__
); }))
2056 compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS)((void) sizeof ((compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES
|| compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ? 1 : 0), __extension__ ({ if (compiled_data->gradient_mode
== CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data
->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS
) ; else __assert_fail ("compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES || compiled_data->gradient_mode == CCV_CNNP_COMPILED_DATA_GRADIENT_TRAINABLES_AND_INPUTS"
, "ccv_cnnp_model.c", 2056, __extension__ __PRETTY_FUNCTION__
); }))
;
2057 }
2058 // We need to rebind here because in ccv_cnnp_evaluate, we clear bindings, that will reset all bindings for the gradients.
2059 // For parameters and internals these are fine because when we clear bindings, it restores to original bindings, which are these
2060 // parameters and internals. The same cannot be said for gradients due to the accum_gradients switching.
2061 _ccv_cnnp_bind_tensors_to_arena(compiled_data->tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count);
2062 if (!compiled_data->backward.schedule)
2063 compiled_data->backward.schedule = ccv_nnc_graph_static_schedule_new(compiled_data->graph, compiled_data->stream_type, model->max_stream_count, compiled_data->backward.from_ops, compiled_data->backward.from_op_size, 0, 0);
2064 // Run the backward pass.
2065 ccv_nnc_graph_run_with_schedule(compiled_data->graph, 0, compiled_data->backward.schedule, tensor_tape, stream_context);
2066 // If we need to run accumulation round, do that now.
2067 if (compiled_data->backward.count > 0)
2068 ccv_nnc_graph_run_with_schedule(compiled_data->backward.accum, 0, 0, 0, stream_context);
2069 // Update the count, this determines whether we need to accumulate or not.
2070 ++compiled_data->backward.count;
2071}
2072
2073// Compile the graph to run ccv_cnnp_model_apply_gradients after ccv_cnnp_model_backward (MULTISTAGE_MODE).
2074// Particularly, this method compiles the parameter update graph.
2075static void _ccv_cnnp_model_multistage_jit_2(ccv_cnnp_model_t* const model)
2076{
2077 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2078 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 2078, __extension__ __PRETTY_FUNCTION__
); }))
;
2079 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2080 const int parameter_size = compiled_data->parameters->rnum;
2081 ccv_array_t* const tensor_binds = ccv_array_new(sizeof(ccv_nnc_tensor_bind_t), 0, 0);
2082 _ccv_cnnp_model_bind_tensors(model->graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, 0)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
0)))
, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
2083 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->updated_parameters, compiled_data->tensors.parameters, parameter_size, parallel_count, tensor_binds);
2084 // Bind accumulated gradients.
2085 if (compiled_data->backward.count > 1)
2086 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.accum_gradients, parameter_size, parallel_count, tensor_binds);
2087 else
2088 _ccv_cnnp_model_bind_tensors(model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count, tensor_binds);
2089 ccv_array_t* const apply_gradients_from = ccv_array_new(sizeof(int), 0, 0);
2090 int i, j;
2091 for (i = 0; i < compiled_data->backward.to_size; i++)
2092 {
2093 const int* tos;
2094 int to_size;
2095 ccv_nnc_graph_exec_symbol_to(model->graph, compiled_data->backward.tos[i], &tos, &to_size);
2096 for (j = 0; j < to_size; j++)
2097 {
2098 // Check if this is already show up in the backward graph, if that is the case, it won't be in the apply
2099 // gradients graph.
2100 const ccv_nnc_graph_exec_t exec = ccv_nnc_graph_exec_from_symbol(compiled_data->graph_exec_arena, (ccv_nnc_graph_exec_symbol_t){
2101 .d = tos[j],
2102 .graph = model->graph,
2103 });
2104 if (!exec.graph)
2105 ccv_array_add_unique_int(apply_gradients_from, tos[j]);
2106 }
2107 }
2108 const int from_size = apply_gradients_from->rnum;
2109 if (from_size == 0)
2110 {
2111 ccv_array_free(apply_gradients_from);
2112 ccv_array_free(tensor_binds);
2113 return;
2114 }
2115 ccv_nnc_graph_exec_symbol_t* const froms = (ccv_nnc_graph_exec_symbol_t*)ccmallocmalloc(sizeof(ccv_nnc_graph_exec_symbol_t) * from_size);
2116 for (i = 0; i < from_size; i++)
2117 froms[i] = (ccv_nnc_graph_exec_symbol_t){
2118 .d = *(int*)ccv_array_get(apply_gradients_from, i)((void*)(((char*)((apply_gradients_from)->data)) + (size_t
)(apply_gradients_from)->rsize * (size_t)(i)))
,
2119 .graph = model->graph
2120 };
2121 ccv_array_free(apply_gradients_from);
2122 // It can only ends with updates on the parameters.
2123 ccv_array_t* const tos = ccv_array_new(sizeof(ccv_nnc_graph_exec_symbol_t), parameter_size * parallel_count, 0);
2124 for (i = 0; i < parameter_size; i++)
2125 {
2126 if (compiled_data->update_nodes[i].d == CCV_NNC_NO_TENSOR_SYMBOL)
2127 continue;
2128 ccv_array_push(tos, &compiled_data->update_nodes[i]);
2129 for (j = 1; j < parallel_count; j++)
2130 {
2131 const ccv_nnc_graph_exec_symbol_t copy = ccv_nnc_graph_exec_symbol_copy(model->graph, compiled_data->update_nodes[i], j);
2132 ccv_array_push(tos, &copy);
2133 }
2134 }
2135 ccv_nnc_symbolic_graph_compile(model->graph, compiled_data->compile_params, (ccv_nnc_tensor_bind_t*)ccv_array_get(tensor_binds, 0)((void*)(((char*)((tensor_binds)->data)) + (size_t)(tensor_binds
)->rsize * (size_t)(0)))
, tensor_binds->rnum, 0, 0, froms, from_size, (ccv_nnc_graph_exec_symbol_t*)ccv_array_get(tos, 0)((void*)(((char*)((tos)->data)) + (size_t)(tos)->rsize *
(size_t)(0)))
, tos->rnum, &compiled_data->apply_gradients.graph, &compiled_data->apply_gradients.tensor_arena, &compiled_data->apply_gradients.graph_exec_arena);
2136 ccv_array_free(tos);
2137 ccv_array_free(tensor_binds);
2138 ccfreefree(froms);
2139 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
2140 for (i = 0; i < max_saved_aux_size * parameter_size; i++)
2141 {
2142 // Skip on no tensor.
2143 if (compiled_data->saved_aux[i].source.d == CCV_NNC_NO_TENSOR_SYMBOL)
2144 continue;
2145 ccv_nnc_tensor_t* const tensor = ccv_nnc_tensor_from_symbol(compiled_data->apply_gradients.tensor_arena, compiled_data->saved_aux[i].source);
2146 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &tensor, 1, 0);
2147 for (j = 1; j < parallel_count; j++)
2148 {
2149 ccv_nnc_tensor_t* const copy = ccv_nnc_tensor_from_symbol(compiled_data->apply_gradients.tensor_arena, ccv_nnc_tensor_symbol_copy(model->graph, compiled_data->saved_aux[i].source, j));
2150 if (copy)
2151 ccv_nnc_cmd_exec(CMD_SET_FORWARD(0)ccv_nnc_cmd(CCV_NNC_SET_FORWARD, 0, (ccv_nnc_cmd_param_t){.size
={.dim={1,1,1}},.blas={.a={0,}}}, 0)
, ccv_nnc_no_hint, 0, 0, 0, &copy, 1, 0);
2152 }
2153 }
2154 ccv_nnc_graph_set_default_static_schedule(compiled_data->apply_gradients.graph, compiled_data->stream_type, model->max_stream_count);
2155}
2156
2157void ccv_cnnp_model_apply_gradients(ccv_cnnp_model_t* const model, ccv_nnc_stream_context_t* const stream_context)
2158{
2159 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2160 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2160, __extension__ __PRETTY_FUNCTION__); }))
;
2161 assert(compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE)((void) sizeof ((compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE
) ? 1 : 0), __extension__ ({ if (compiled_data->graph_mode
== CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE) ; else __assert_fail
("compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_MULTISTAGE_MODE"
, "ccv_cnnp_model.c", 2161, __extension__ __PRETTY_FUNCTION__
); }))
;
2162 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2163 assert(model->graph)((void) sizeof ((model->graph) ? 1 : 0), __extension__ ({ if
(model->graph) ; else __assert_fail ("model->graph", "ccv_cnnp_model.c"
, 2163, __extension__ __PRETTY_FUNCTION__); }))
;
2164 assert(compiled_data->graph)((void) sizeof ((compiled_data->graph) ? 1 : 0), __extension__
({ if (compiled_data->graph) ; else __assert_fail ("compiled_data->graph"
, "ccv_cnnp_model.c", 2164, __extension__ __PRETTY_FUNCTION__
); }))
;
2165 // Skip if there is no backward pass.
2166 if (compiled_data->backward.count <= 0)
2167 return;
2168 // Skip if there is no parameters.
2169 if (compiled_data->parameters->rnum == 0)
2170 {
2171 compiled_data->backward.count = 0;
2172 return;
2173 }
2174 if (!compiled_data->apply_gradients.graph)
2175 _ccv_cnnp_model_multistage_jit_2(model);
2176 else {
2177 const int parameter_size = compiled_data->parameters->rnum;
2178 ccv_nnc_tensor_arena_clear_bindings(compiled_data->apply_gradients.tensor_arena);
2179 // Change to bind accum_gradients if we do gradient accumulation (run backward more than once).
2180 if (compiled_data->backward.count > 1)
2181 _ccv_cnnp_bind_tensors_to_arena(compiled_data->apply_gradients.tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.accum_gradients, parameter_size, parallel_count);
2182 else
2183 _ccv_cnnp_bind_tensors_to_arena(compiled_data->apply_gradients.tensor_arena, model->graph, compiled_data->gradients, compiled_data->tensors.gradients, parameter_size, parallel_count);
2184 }
2185 if (compiled_data->apply_gradients.graph)
2186 ccv_nnc_graph_run_with_schedule(compiled_data->apply_gradients.graph, 0, 0, 0, stream_context);
2187 // Reset backward count to 0.
2188 compiled_data->backward.count = 0;
2189}
2190
2191void ccv_cnnp_model_set_parameter(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter, const ccv_nnc_tensor_t* const tensor)
2192{
2193 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2194 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2195 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2195, __extension__ __PRETTY_FUNCTION__
); }))
;
2196 const int tensors_init = !!compiled_data->tensors_init.v;
2197 if (!tensors_init)
2198 _ccv_cnnp_model_tensors_init(model, compiled_data);
2199 else if ((uintptr_t)compiled_data->tensors_init.v & (uintptr_t)1)
2200 // Check if it is not fully allocated, if it is not, init_1.
2201 ccv_cnnp_model_tensors_init_1(model, compiled_data);
2202 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2203 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2204 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2205 if (param_ref < 0)
2206 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2206
, __extension__ __PRETTY_FUNCTION__); }))
; }
2207 else
2208 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2208, __extension__ __PRETTY_FUNCTION__
); }))
; }
2209 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2210 ccv_array_free(parameter_indices);
2211 const int parameter_size = compiled_data->parameters->rnum;
2212 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2212
, __extension__ __PRETTY_FUNCTION__); }))
;
2213 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2213, __extension__ __PRETTY_FUNCTION__
); }))
;
2214 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2215 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d]) & ~(uintptr_t)1))
;
2216 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2216, __extension__
__PRETTY_FUNCTION__); }))
;
2217 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST((ccv_nnc_tensor_t*)tensor)(ccv_nnc_tensor_t* []){(ccv_nnc_tensor_t*)tensor}, (1 +1 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1
)
, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2218 int i;
2219 for (i = 1; i < parallel_count; i++)
2220 {
2221 ccv_nnc_tensor_t* const copy_tensor = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d + i * parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d + i * parameter_size]) & ~(uintptr_t)1))
;
2222 if (copy_tensor)
2223 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(copy_tensor)(ccv_nnc_tensor_t* []){copy_tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2224 }
2225 // Mark this symbol as init'ed.
2226 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, d)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
d)))
)->d;
2227 uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
2228 init_v[s >> 5] |= (1u << (s & 0x1f));
2229}
2230
2231void ccv_cnnp_model_parameter_copy(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter, ccv_nnc_tensor_t* const tensor)
2232{
2233 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2234 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2235 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2235, __extension__ __PRETTY_FUNCTION__
); }))
;
2236 assert(compiled_data->tensors.parameters)((void) sizeof ((compiled_data->tensors.parameters) ? 1 : 0
), __extension__ ({ if (compiled_data->tensors.parameters)
; else __assert_fail ("compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2236, __extension__ __PRETTY_FUNCTION__
); }))
;
2237 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2238 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2239 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2240 if (param_ref < 0)
2241 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2241
, __extension__ __PRETTY_FUNCTION__); }))
; }
2242 else
2243 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2243, __extension__ __PRETTY_FUNCTION__
); }))
; }
2244 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2245 ccv_array_free(parameter_indices);
2246 const int parameter_size = compiled_data->parameters->rnum;
2247 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2247
, __extension__ __PRETTY_FUNCTION__); }))
;
2248 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2248, __extension__ __PRETTY_FUNCTION__
); }))
;
2249 // We don't need to consider parallel_count, every parameter on each device is identical.
2250 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d]) & ~(uintptr_t)1))
;
2251 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2251, __extension__
__PRETTY_FUNCTION__); }))
;
2252 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(src)(ccv_nnc_tensor_t* []){src}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(tensor)(ccv_nnc_tensor_t* []){tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2253}
2254
2255ccv_nnc_tensor_param_t ccv_cnnp_model_parameter_tensor_params(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter)
2256{
2257 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2258 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2259 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2259, __extension__ __PRETTY_FUNCTION__
); }))
;
2260 assert(compiled_data->tensors.parameters)((void) sizeof ((compiled_data->tensors.parameters) ? 1 : 0
), __extension__ ({ if (compiled_data->tensors.parameters)
; else __assert_fail ("compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2260, __extension__ __PRETTY_FUNCTION__
); }))
;
2261 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2262 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2263 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2264 if (param_ref < 0)
2265 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2265
, __extension__ __PRETTY_FUNCTION__); }))
; }
2266 else
2267 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2267, __extension__ __PRETTY_FUNCTION__
); }))
; }
2268 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2269 ccv_array_free(parameter_indices);
2270 const int parameter_size = compiled_data->parameters->rnum;
2271 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2271
, __extension__ __PRETTY_FUNCTION__); }))
;
2272 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2272, __extension__ __PRETTY_FUNCTION__
); }))
;
2273 // We don't need to consider parallel_count, every parameter on each device is identical.
2274 ccv_nnc_tensor_t* const tensor = CCV_NNC_TENSOR(compiled_data->tensors.parameters[d])((ccv_nnc_tensor_t*)((uintptr_t)(compiled_data->tensors.parameters
[d]) & ~(uintptr_t)1))
;
2275 assert(tensor)((void) sizeof ((tensor) ? 1 : 0), __extension__ ({ if (tensor
) ; else __assert_fail ("tensor", "ccv_cnnp_model.c", 2275, __extension__
__PRETTY_FUNCTION__); }))
;
2276 return tensor->info;
2277}
2278
2279const char* ccv_cnnp_model_parameter_name(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameter)
2280{
2281 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2282 const int param_sel = parameter->param_sel > 0 ? parameter->param_sel - 1 : parameter->param_sel;
2283 assert(parameter->param_sel != 0)((void) sizeof ((parameter->param_sel != 0) ? 1 : 0), __extension__
({ if (parameter->param_sel != 0) ; else __assert_fail ("parameter->param_sel != 0"
, "ccv_cnnp_model.c", 2283, __extension__ __PRETTY_FUNCTION__
); }))
;
2284 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2285 ccv_cnnp_model_add_to_parameter_indices(parameter->model, param_sel, parameter_indices);
2286 const int param_ref = parameter->param_ref > 0 ? parameter->param_ref - 1 : parameter->param_ref;
2287 if (param_ref < 0)
2288 { assert(parameter_indices->rnum == 1)((void) sizeof ((parameter_indices->rnum == 1) ? 1 : 0), __extension__
({ if (parameter_indices->rnum == 1) ; else __assert_fail
("parameter_indices->rnum == 1", "ccv_cnnp_model.c", 2288
, __extension__ __PRETTY_FUNCTION__); }))
; }
2289 else
2290 { assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ?
1 : 0), __extension__ ({ if (param_ref < parameter_indices
->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2290, __extension__ __PRETTY_FUNCTION__
); }))
; }
2291 const int d = *(int*)ccv_array_get(parameter_indices, param_ref >= 0 ? param_ref : 0)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref >= 0 ? param_ref : 0)))
;
2292 ccv_array_free(parameter_indices);
2293 const int parameter_size = compiled_data->parameters->rnum;
2294 assert(d >= 0)((void) sizeof ((d >= 0) ? 1 : 0), __extension__ ({ if (d >=
0) ; else __assert_fail ("d >= 0", "ccv_cnnp_model.c", 2294
, __extension__ __PRETTY_FUNCTION__); }))
;
2295 assert(d < parameter_size)((void) sizeof ((d < parameter_size) ? 1 : 0), __extension__
({ if (d < parameter_size) ; else __assert_fail ("d < parameter_size"
, "ccv_cnnp_model.c", 2295, __extension__ __PRETTY_FUNCTION__
); }))
;
2296 return *(char**)ccv_array_get(compiled_data->ids.parameters, d)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(d)))
;
2297}
2298
2299int ccv_cnnp_model_parameter_count(ccv_cnnp_model_t* const model)
2300{
2301 assert(model->compiled_data)((void) sizeof ((model->compiled_data) ? 1 : 0), __extension__
({ if (model->compiled_data) ; else __assert_fail ("model->compiled_data"
, "ccv_cnnp_model.c", 2301, __extension__ __PRETTY_FUNCTION__
); }))
;
2302 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2303 return compiled_data->parameters->rnum;
2304}
2305
2306ccv_cnnp_model_io_t ccv_cnnp_model_parameter_first(ccv_cnnp_model_t* const model, ccv_cnnp_model_parameters_filter_f first, void* const context)
2307{
2308 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2309 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2309, __extension__ __PRETTY_FUNCTION__); }))
;
2310 const int parameter_size = compiled_data->parameters->rnum;
2311 int i;
2312 for (i = 0; i < parameter_size; i++)
2313 {
2314 const char* const name = *(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(i)))
;
2315 if (first(model, name, context))
2316 return ccv_cnnp_model_parameters(model, -1, i);
2317 }
2318 return 0;
2319}
2320
2321ccv_array_t* ccv_cnnp_model_parameters_filter(ccv_cnnp_model_t* const model, ccv_cnnp_model_parameters_filter_f filter, void* const context)
2322{
2323 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2324 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2324, __extension__ __PRETTY_FUNCTION__); }))
;
2325 ccv_array_t* const parameters = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 0, 0);
2326 const int parameter_size = compiled_data->parameters->rnum;
2327 int i;
2328 for (i = 0; i < parameter_size; i++)
2329 {
2330 const char* const name = *(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(i)))
;
2331 if (filter(model, name, context))
2332 {
2333 ccv_cnnp_model_io_t parameter = ccv_cnnp_model_parameters(model, -1, i);
2334 ccv_array_push(parameters, &parameter);
2335 }
2336 }
2337 return parameters;
2338
2339}
2340
2341CCV_WARN_UNUSED(ccv_cnnp_model_io_t)ccv_cnnp_model_io_t __attribute__((warn_unused_result)) ccv_cnnp_model_parameter_first_uninit(ccv_cnnp_model_t* const model)
2342{
2343 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2344 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2344, __extension__ __PRETTY_FUNCTION__); }))
;
2345 const int tensors_init = !!compiled_data->tensors_init.v;
2346 if (!tensors_init) // If nothing initialized, we return parameter 0.
2347 return ccv_cnnp_model_parameters(model, -1, 0);
2348 const int parameter_size = compiled_data->parameters->rnum;
2349 int i;
2350 const uint32_t* const init_v = CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
;
2351 for (i = 0; i < parameter_size; i++)
2352 {
2353 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(compiled_data->parameters, i)((void*)(((char*)((compiled_data->parameters)->data)) +
(size_t)(compiled_data->parameters)->rsize * (size_t)(
i)))
)->d;
2354 if (!(init_v[d >> 5] & (1u << (d & 0x1f))))
2355 return ccv_cnnp_model_parameters(model, -1, i);
2356 }
2357 return 0;
2358}
2359
2360static ccv_array_t* _ccv_cnnp_model_parameter_indices(const ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, int* const param_ref)
2361{
2362 const int to_param_sel = parameters->param_sel > 0 ? parameters->param_sel - 1 : parameters->param_sel;
2363 assert(parameters->param_sel != 0)((void) sizeof ((parameters->param_sel != 0) ? 1 : 0), __extension__
({ if (parameters->param_sel != 0) ; else __assert_fail (
"parameters->param_sel != 0", "ccv_cnnp_model.c", 2363, __extension__
__PRETTY_FUNCTION__); }))
;
2364 ccv_array_t* const to_parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2365 ccv_cnnp_model_add_to_parameter_indices(parameters->model, to_param_sel, to_parameter_indices);
2366 *param_ref = parameters->param_ref > 0 ? parameters->param_ref - 1 : parameters->param_ref;
2367 return to_parameter_indices;
2368}
2369
2370static void _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters, ccv_array_t** const parameter_indices, int* const param_ref, ccv_array_t** const from_parameter_indices, int* const from_param_ref, const int only_init_0)
2371{
2372 // If the model is not compiled yet. Compile them now.
2373 if (!model->graph)
2374 {
2375 model->graph = ccv_nnc_symbolic_graph_new();
2376 assert(from_model->compiled_data)((void) sizeof ((from_model->compiled_data) ? 1 : 0), __extension__
({ if (from_model->compiled_data) ; else __assert_fail ("from_model->compiled_data"
, "ccv_cnnp_model.c", 2376, __extension__ __PRETTY_FUNCTION__
); }))
;
2377 const int input_size = from_model->input_size;
2378 ccv_nnc_tensor_param_t input_params[input_size];
2379 int i;
2380 for (i = 0; i < input_size; i++)
2381 input_params[i] = ccv_nnc_tensor_symbol_params(from_model->graph, from_model->inputs[i]);
2382 _ccv_cnnp_model_compile(model, input_params, input_size, from_model->compiled_data->loss);
2383 model->parallel_count = from_model->parallel_count;
2384 model->memory_compression = from_model->memory_compression;
2385 model->memory_reduction = from_model->memory_reduction;
2386 model->gradient_checkpointing = from_model->gradient_checkpointing;
2387 model->compiled_data->stream_type = from_model->compiled_data->stream_type;
2388 model->compiled_data->minimize.minimizer = from_model->compiled_data->minimize.minimizer;
2389 model->compiled_data->minimize.max_saved_aux_size = from_model->compiled_data->minimize.max_saved_aux_size;
2390 }
2391 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2392 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2392, __extension__ __PRETTY_FUNCTION__
); }))
;
2393 const int to_tensors_init = !!to_compiled_data->tensors_init.v;
2394 if (!to_tensors_init)
2395 {
2396 if (only_init_0)
2397 ccv_cnnp_model_tensors_init_0(model, to_compiled_data);
2398 else
2399 _ccv_cnnp_model_tensors_init(model, to_compiled_data);
2400 } else if (!only_init_0 && (uintptr_t)to_compiled_data->tensors_init.v & (uintptr_t)1)
2401 // Check if it is not fully allocated, if it is not, init_1.
2402 ccv_cnnp_model_tensors_init_1(model, to_compiled_data);
2403 assert(to_compiled_data->tensors.parameters)((void) sizeof ((to_compiled_data->tensors.parameters) ? 1
: 0), __extension__ ({ if (to_compiled_data->tensors.parameters
) ; else __assert_fail ("to_compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2403, __extension__ __PRETTY_FUNCTION__
); }))
;
2404 *parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, param_ref);
2405 *from_parameter_indices = _ccv_cnnp_model_parameter_indices(from_model, from_parameters, from_param_ref);
2406 if (*from_param_ref < 0 && *param_ref >= 0)
2407 { assert((*from_parameter_indices)->rnum == 1)((void) sizeof (((*from_parameter_indices)->rnum == 1) ? 1
: 0), __extension__ ({ if ((*from_parameter_indices)->rnum
== 1) ; else __assert_fail ("(*from_parameter_indices)->rnum == 1"
, "ccv_cnnp_model.c", 2407, __extension__ __PRETTY_FUNCTION__
); }))
; }
2408 else if (*from_param_ref >= 0)
2409 { assert(*from_param_ref < (*from_parameter_indices)->rnum)((void) sizeof ((*from_param_ref < (*from_parameter_indices
)->rnum) ? 1 : 0), __extension__ ({ if (*from_param_ref <
(*from_parameter_indices)->rnum) ; else __assert_fail ("*from_param_ref < (*from_parameter_indices)->rnum"
, "ccv_cnnp_model.c", 2409, __extension__ __PRETTY_FUNCTION__
); }))
; }
2410 if (*param_ref < 0 && *from_param_ref >= 0)
2411 { assert((*parameter_indices)->rnum == 1)((void) sizeof (((*parameter_indices)->rnum == 1) ? 1 : 0)
, __extension__ ({ if ((*parameter_indices)->rnum == 1) ; else
__assert_fail ("(*parameter_indices)->rnum == 1", "ccv_cnnp_model.c"
, 2411, __extension__ __PRETTY_FUNCTION__); }))
; }
2412 else if (*param_ref >= 0)
2413 { assert(*param_ref < (*parameter_indices)->rnum)((void) sizeof ((*param_ref < (*parameter_indices)->rnum
) ? 1 : 0), __extension__ ({ if (*param_ref < (*parameter_indices
)->rnum) ; else __assert_fail ("*param_ref < (*parameter_indices)->rnum"
, "ccv_cnnp_model.c", 2413, __extension__ __PRETTY_FUNCTION__
); }))
; }
2414}
2415
2416void ccv_cnnp_model_set_parameters(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters)
2417{
2418 ccv_array_t* to_parameter_indices;
2419 int to_param_ref;
2420 ccv_array_t* from_parameter_indices;
2421 int from_param_ref;
2422 _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 0);
2423 // Should be exactly the same tensor.
2424 if (to_param_ref < 0 && from_param_ref < 0)
2425 { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices
->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices
->rnum == to_parameter_indices->rnum) ; else __assert_fail
("from_parameter_indices->rnum == to_parameter_indices->rnum"
, "ccv_cnnp_model.c", 2425, __extension__ __PRETTY_FUNCTION__
); }))
; }
2426 // To models.
2427 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2428 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2428, __extension__ __PRETTY_FUNCTION__
); }))
;
2429 // From models.
2430 const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data;
2431 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2432 const int to_parameter_size = to_compiled_data->parameters->rnum;
2433 const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? from_parameter_indices->rnum : 1;
2434 int i, j;
2435 const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init.
v) & ~(uintptr_t)1))
;
2436 uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2437 for (i = 0; i < rnum; i++)
2438 {
2439 const int src_d = *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t
)(from_parameter_indices)->rsize * (size_t)(from_param_ref
>= 0 ? from_param_ref : i)))
;
2440 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2440, __extension__ __PRETTY_FUNCTION__); }))
;
2441 assert(src_d < from_compiled_data->parameters->rnum)((void) sizeof ((src_d < from_compiled_data->parameters
->rnum) ? 1 : 0), __extension__ ({ if (src_d < from_compiled_data
->parameters->rnum) ; else __assert_fail ("src_d < from_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2441, __extension__ __PRETTY_FUNCTION__
); }))
;
2442 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data
)) + (size_t)(from_compiled_data->parameters)->rsize * (
size_t)(src_d)))
)->d;
2443 // If the original is not init'ed. We cannot copy from.
2444 if (!(from_init_v[s >> 5] & (1u << (s & 0x1f))))
2445 continue;
2446 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2447 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2447, __extension__ __PRETTY_FUNCTION__); }))
;
2448 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2448, __extension__ __PRETTY_FUNCTION__
); }))
;
2449 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d]) & ~(uintptr_t)1))
;
2450 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2450, __extension__
__PRETTY_FUNCTION__); }))
;
2451 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d]) & ~(uintptr_t)1))
;
2452 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2452, __extension__
__PRETTY_FUNCTION__); }))
;
2453 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(src)(ccv_nnc_tensor_t* []){src}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2454 for (j = 1; j < parallel_count; j++)
2455 {
2456 ccv_nnc_tensor_t* const copy_tensor = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2457 if (copy_tensor)
2458 ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto
, 0)
, ccv_nnc_no_hint, 0, TENSOR_LIST(dest)(ccv_nnc_tensor_t* []){dest}, (1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, TENSOR_LIST(copy_tensor)(ccv_nnc_tensor_t* []){copy_tensor}, (1 +1 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 -1)
, 0);
2459 }
2460 // Mark this symbol as init'ed.
2461 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data)
) + (size_t)(to_compiled_data->parameters)->rsize * (size_t
)(dest_d)))
)->d;
2462 to_init_v[d >> 5] |= (1u << (d & 0x1f));
2463 }
2464 ccv_array_free(to_parameter_indices);
2465 ccv_array_free(from_parameter_indices);
2466}
2467
2468KHASH_MAP_INIT_STR(ccv_cnnp_parameter_id, int)typedef struct kh_ccv_cnnp_parameter_id_s { khint_t n_buckets
, size, n_occupied, upper_bound; khint32_t *flags; kh_cstr_t *
keys; int *vals; } kh_ccv_cnnp_parameter_id_t; static inline __attribute__
((__unused__)) kh_ccv_cnnp_parameter_id_t *kh_init_ccv_cnnp_parameter_id
(void) { return (kh_ccv_cnnp_parameter_id_t*)calloc(1,sizeof(
kh_ccv_cnnp_parameter_id_t)); } static inline __attribute__ (
(__unused__)) void kh_destroy_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t
*h) { if (h) { free((void *)h->keys); free(h->flags); free
((void *)h->vals); free(h); } } static inline __attribute__
((__unused__)) void kh_clear_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t
*h) { if (h && h->flags) { memset(h->flags, 0xaa
, ((h->n_buckets) < 16? 1 : (h->n_buckets)>>4)
* sizeof(khint32_t)); h->size = h->n_occupied = 0; } }
static inline __attribute__ ((__unused__)) khint_t kh_get_ccv_cnnp_parameter_id
(const kh_ccv_cnnp_parameter_id_t *h, kh_cstr_t key) { if (h->
n_buckets) { khint_t k, i, last, mask, step = 0; mask = h->
n_buckets - 1; k = __ac_X31_hash_string(key); i = k & mask
; last = i; while (!((h->flags[i>>4]>>((i&
0xfU)<<1))&2) && (((h->flags[i>>4]
>>((i&0xfU)<<1))&1) || !(strcmp(h->keys
[i], key) == 0))) { i = (i + (++step)) & mask; if (i == last
) return h->n_buckets; } return ((h->flags[i>>4]>>
((i&0xfU)<<1))&3)? h->n_buckets : i; } else return
0; } static inline __attribute__ ((__unused__)) int kh_resize_ccv_cnnp_parameter_id
(kh_ccv_cnnp_parameter_id_t *h, khint_t new_n_buckets) { khint32_t
*new_flags = 0; khint_t j = 1; { (--(new_n_buckets), (new_n_buckets
)|=(new_n_buckets)>>1, (new_n_buckets)|=(new_n_buckets)
>>2, (new_n_buckets)|=(new_n_buckets)>>4, (new_n_buckets
)|=(new_n_buckets)>>8, (new_n_buckets)|=(new_n_buckets)
>>16, ++(new_n_buckets)); if (new_n_buckets < 4) new_n_buckets
= 4; if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER
+ 0.5)) j = 0; else { new_flags = (khint32_t*)malloc(((new_n_buckets
) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t))
; if (!new_flags) return -1; memset(new_flags, 0xaa, ((new_n_buckets
) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t))
; if (h->n_buckets < new_n_buckets) { kh_cstr_t *new_keys
= (kh_cstr_t*)realloc((void *)h->keys,new_n_buckets * sizeof
(kh_cstr_t)); if (!new_keys) { free(new_flags); return -1; } h
->keys = new_keys; if (1) { int *new_vals = (int*)realloc(
(void *)h->vals,new_n_buckets * sizeof(int)); if (!new_vals
) { free(new_flags); return -1; } h->vals = new_vals; } } }
} if (j) { for (j = 0; j != h->n_buckets; ++j) { if (((h->
flags[j>>4]>>((j&0xfU)<<1))&3) == 0
) { kh_cstr_t key = h->keys[j]; int val; khint_t new_mask;
new_mask = new_n_buckets - 1; if (1) val = h->vals[j]; (h
->flags[j>>4]|=1ul<<((j&0xfU)<<1)); while
(1) { khint_t k, i, step = 0; k = __ac_X31_hash_string(key);
i = k & new_mask; while (!((new_flags[i>>4]>>
((i&0xfU)<<1))&2)) i = (i + (++step)) & new_mask
; (new_flags[i>>4]&=~(2ul<<((i&0xfU)<<
1))); if (i < h->n_buckets && ((h->flags[i>>
4]>>((i&0xfU)<<1))&3) == 0) { { kh_cstr_t
tmp = h->keys[i]; h->keys[i] = key; key = tmp; } if (1
) { int tmp = h->vals[i]; h->vals[i] = val; val = tmp; }
(h->flags[i>>4]|=1ul<<((i&0xfU)<<1)
); } else { h->keys[i] = key; if (1) h->vals[i] = val; break
; } } } } if (h->n_buckets > new_n_buckets) { h->keys
= (kh_cstr_t*)realloc((void *)h->keys,new_n_buckets * sizeof
(kh_cstr_t)); if (1) h->vals = (int*)realloc((void *)h->
vals,new_n_buckets * sizeof(int)); } free(h->flags); h->
flags = new_flags; h->n_buckets = new_n_buckets; h->n_occupied
= h->size; h->upper_bound = (khint_t)(h->n_buckets *
__ac_HASH_UPPER + 0.5); } return 0; } static inline __attribute__
((__unused__)) khint_t kh_put_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t
*h, kh_cstr_t key, int *ret) { khint_t x; if (h->n_occupied
>= h->upper_bound) { if (h->n_buckets > (h->size
<<1)) { if (kh_resize_ccv_cnnp_parameter_id(h, h->n_buckets
- 1) < 0) { *ret = -1; return h->n_buckets; } } else if
(kh_resize_ccv_cnnp_parameter_id(h, h->n_buckets + 1) <
0) { *ret = -1; return h->n_buckets; } } { khint_t k, i, site
, last, mask = h->n_buckets - 1, step = 0; x = site = h->
n_buckets; k = __ac_X31_hash_string(key); i = k & mask; if
(((h->flags[i>>4]>>((i&0xfU)<<1))&
2)) x = i; else { last = i; while (!((h->flags[i>>4]
>>((i&0xfU)<<1))&2) && (((h->flags
[i>>4]>>((i&0xfU)<<1))&1) || !(strcmp
(h->keys[i], key) == 0))) { if (((h->flags[i>>4]>>
((i&0xfU)<<1))&1)) site = i; i = (i + (++step))
& mask; if (i == last) { x = site; break; } } if (x == h
->n_buckets) { if (((h->flags[i>>4]>>((i&
0xfU)<<1))&2) && site != h->n_buckets) x
= site; else x = i; } } } if (((h->flags[x>>4]>>
((x&0xfU)<<1))&2)) { h->keys[x] = key; (h->
flags[x>>4]&=~(3ul<<((x&0xfU)<<1)))
; ++h->size; ++h->n_occupied; *ret = 1; } else if (((h->
flags[x>>4]>>((x&0xfU)<<1))&1)) { h
->keys[x] = key; (h->flags[x>>4]&=~(3ul<<
((x&0xfU)<<1))); ++h->size; *ret = 2; } else *ret
= 0; return x; } static inline __attribute__ ((__unused__)) void
kh_del_ccv_cnnp_parameter_id(kh_ccv_cnnp_parameter_id_t *h, khint_t
x) { if (x != h->n_buckets && !((h->flags[x>>
4]>>((x&0xfU)<<1))&3)) { (h->flags[x>>
4]|=1ul<<((x&0xfU)<<1)); --h->size; } }
25
Null pointer value stored to field 'flags'
30
Taking true branch
31
Taking false branch
32
Calling 'kh_resize_ccv_cnnp_parameter_id'
33
Taking true branch
34
Assuming the condition is true
35
Taking true branch
36
Taking false branch
37
Returning without writing to 'h->flags'
38
Returning from 'kh_resize_ccv_cnnp_parameter_id'
39
Taking false branch
40
Array access (via field 'flags') results in a null pointer dereference
2469
2470void ccv_cnnp_model_share_parameters(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters, ccv_cnnp_model_parameters_renamer_f renamer, void* const context)
2471{
2472 ccv_array_t* to_parameter_indices;
2473 int to_param_ref;
2474 ccv_array_t* from_parameter_indices;
2475 int from_param_ref;
2476 _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 1);
2477 // Should be exactly the same tensor.
2478 if (renamer == 0 && to_param_ref < 0 && from_param_ref < 0)
1
Assuming 'renamer' is not equal to null
2479 { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices
->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices
->rnum == to_parameter_indices->rnum) ; else __assert_fail
("from_parameter_indices->rnum == to_parameter_indices->rnum"
, "ccv_cnnp_model.c", 2479, __extension__ __PRETTY_FUNCTION__
); }))
; }
2480 // To models.
2481 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2482 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2482, __extension__ __PRETTY_FUNCTION__
); }))
;
2
Assuming 'to_compiled_data' is non-null
3
Taking true branch
2483 // From models.
2484 const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data;
2485 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
4
Assuming '_a' is <= '_b'
5
'?' condition is false
2486 assert(parallel_count == ccv_max(from_model->parallel_count, 1))((void) sizeof ((parallel_count == ({ typeof (from_model->
parallel_count) _a = (from_model->parallel_count); typeof (
1) _b = (1); (_a > _b) ? _a : _b; })) ? 1 : 0), __extension__
({ if (parallel_count == ({ typeof (from_model->parallel_count
) _a = (from_model->parallel_count); typeof (1) _b = (1); (
_a > _b) ? _a : _b; })) ; else __assert_fail ("parallel_count == ccv_max(from_model->parallel_count, 1)"
, "ccv_cnnp_model.c", 2486, __extension__ __PRETTY_FUNCTION__
); }))
; // Should have the same parallel count can share parameters.
6
Assuming '_a' is <= '_b'
7
'?' condition is false
8
Taking true branch
2487 const int from_parameter_size = from_compiled_data->parameters->rnum;
2488 const int to_parameter_size = to_compiled_data->parameters->rnum;
2489 const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? to_parameter_indices->rnum : 1;
9
Assuming 'to_param_ref' is >= 0
2490 int i, j;
2491 khash_t(ccv_cnnp_parameter_id)kh_ccv_cnnp_parameter_id_t* id_map = 0;
2492 char* updated_name = 0;
2493 const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init.
v) & ~(uintptr_t)1))
;
2494 uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2495 for (i = 0; i < rnum; i++)
2496 {
2497 int src_d = (from_param_ref >= 0 ? from_param_ref : i) < from_parameter_indices->rnum ? *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t
)(from_parameter_indices)->rsize * (size_t)(from_param_ref
>= 0 ? from_param_ref : i)))
: from_parameter_size;
10
Assuming 'from_param_ref' is < 0
11
'?' condition is false
12
Assuming the condition is false
13
'?' condition is false
2498 // Need to figure out how to use the renamer here.
2499 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
14
'?' condition is true
2500 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2500, __extension__ __PRETTY_FUNCTION__); }))
;
15
Assuming 'dest_d' is >= 0
16
Taking true branch
2501 assert(dest_d < to_parameter_size)((void) sizeof ((dest_d < to_parameter_size) ? 1 : 0), __extension__
({ if (dest_d < to_parameter_size) ; else __assert_fail (
"dest_d < to_parameter_size", "ccv_cnnp_model.c", 2501, __extension__
__PRETTY_FUNCTION__); }))
;
17
Assuming 'dest_d' is < 'to_parameter_size'
18
Taking true branch
2502 if (renamer
18.1
'renamer' is non-null
)
2503 {
2504 const char* const src_name = (src_d
18.2
'src_d' is >= 'from_parameter_size'
< from_parameter_size && src_d >= 0) ? *(char**)ccv_array_get(from_compiled_data->ids.parameters, src_d)((void*)(((char*)((from_compiled_data->ids.parameters)->
data)) + (size_t)(from_compiled_data->ids.parameters)->
rsize * (size_t)(src_d)))
: 0;
2505 const char* const dest_name = *(char**)ccv_array_get(to_compiled_data->ids.parameters, dest_d)((void*)(((char*)((to_compiled_data->ids.parameters)->data
)) + (size_t)(to_compiled_data->ids.parameters)->rsize *
(size_t)(dest_d)))
;
2506 if (!updated_name
18.3
'updated_name' is null
)
19
Taking true branch
2507 updated_name = (char*)ccmallocmalloc(1024);
2508 const size_t src_name_len = src_name
19.1
'src_name' is equal to null
== 0 ? 0 : ccv_min(strnlen(src_name, 1023), 1023)({ typeof (strnlen(src_name, 1023)) _a = (strnlen(src_name, 1023
)); typeof (1023) _b = (1023); (_a < _b) ? _a : _b; })
;
20
'?' condition is true
2509 if (src_name_len
20.1
'src_name_len' is <= 0
> 0)
21
Taking false branch
2510 memcpy(updated_name, src_name, src_name_len);
2511 updated_name[src_name_len] = 0;
2512 if (renamer(context, dest_name, updated_name, 1024) != 0)
22
Assuming the condition is false
2513 continue; // Skip this.
2514 if (src_name
22.1
'src_name' is equal to null
!= 0 && memcmp(updated_name, src_name, src_name_len) == 0 && strnlen(updated_name, 1023) == src_name_len)
2515 {
2516 // Nothing changed.
2517 } else {
2518 if (!id_map
22.2
'id_map' is null
)
23
Taking true branch
2519 {
2520 id_map = kh_init(ccv_cnnp_parameter_id)kh_init_ccv_cnnp_parameter_id();
24
Calling 'kh_init_ccv_cnnp_parameter_id'
26
Returning from 'kh_init_ccv_cnnp_parameter_id'
2521 for (j = 0; j < from_parameter_size; j++)
27
Assuming 'j' is < 'from_parameter_size'
28
Loop condition is true. Entering loop body
2522 {
2523 int ret;
2524 const khiter_t k = kh_put(ccv_cnnp_parameter_id, id_map, *(char**)ccv_array_get(from_compiled_data->ids.parameters, j), &ret)kh_put_ccv_cnnp_parameter_id(id_map, *(char**)((void*)(((char
*)((from_compiled_data->ids.parameters)->data)) + (size_t
)(from_compiled_data->ids.parameters)->rsize * (size_t)
(j))), &ret)
;
29
Calling 'kh_put_ccv_cnnp_parameter_id'
2525 assert(ret != 0)((void) sizeof ((ret != 0) ? 1 : 0), __extension__ ({ if (ret
!= 0) ; else __assert_fail ("ret != 0", "ccv_cnnp_model.c", 2525
, __extension__ __PRETTY_FUNCTION__); }))
;
2526 kh_val(id_map, k)((id_map)->vals[k]) = j;
2527 }
2528 }
2529 const khiter_t k = kh_get(ccv_cnnp_parameter_id, id_map, updated_name)kh_get_ccv_cnnp_parameter_id(id_map, updated_name);
2530 if (k == kh_end(id_map)((id_map)->n_buckets)) // Cannot find the name, skip.
2531 continue;
2532 src_d = kh_val(id_map, k)((id_map)->vals[k]);
2533 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2533, __extension__ __PRETTY_FUNCTION__); }))
;
2534 assert(src_d < from_parameter_size)((void) sizeof ((src_d < from_parameter_size) ? 1 : 0), __extension__
({ if (src_d < from_parameter_size) ; else __assert_fail (
"src_d < from_parameter_size", "ccv_cnnp_model.c", 2534, __extension__
__PRETTY_FUNCTION__); }))
;
2535 }
2536 }
2537 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2537, __extension__ __PRETTY_FUNCTION__); }))
;
2538 assert(src_d < from_parameter_size)((void) sizeof ((src_d < from_parameter_size) ? 1 : 0), __extension__
({ if (src_d < from_parameter_size) ; else __assert_fail (
"src_d < from_parameter_size", "ccv_cnnp_model.c", 2538, __extension__
__PRETTY_FUNCTION__); }))
;
2539 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data
)) + (size_t)(from_compiled_data->parameters)->rsize * (
size_t)(src_d)))
)->d;
2540 // If the original is not init'ed. We cannot share from.
2541 if (!(from_init_v[s >> 5] & (1u << (s & 0x1f))))
2542 continue;
2543 for (j = 0; j < parallel_count; j++)
2544 {
2545 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d + j * from_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d + j * from_parameter_size]) & ~(uintptr_t
)1))
;
2546 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2546, __extension__
__PRETTY_FUNCTION__); }))
;
2547 ccv_nnc_tensor_t* const dest = to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size];
2548 if (dest && !((uintptr_t)dest & (uintptr_t)1))
2549 ccv_nnc_tensor_free(dest);
2550 to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size] = (ccv_nnc_tensor_t*)((uintptr_t)src | (uintptr_t)1);
2551 }
2552 // Mark this symbol as init'ed.
2553 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data)
) + (size_t)(to_compiled_data->parameters)->rsize * (size_t
)(dest_d)))
)->d;
2554 to_init_v[d >> 5] |= (1u << (d & 0x1f));
2555 }
2556 ccv_array_free(to_parameter_indices);
2557 ccv_array_free(from_parameter_indices);
2558 if (id_map)
2559 kh_destroy(ccv_cnnp_parameter_id, id_map)kh_destroy_ccv_cnnp_parameter_id(id_map);
2560 if (updated_name)
2561 ccfreefree(updated_name);
2562 // Mark it as incomplete so we will call init_1.
2563 if (ccv_cnnp_model_tensors_any_to_alloc(model, to_compiled_data))
2564 to_compiled_data->tensors_init.v = (uint32_t*)((uintptr_t)to_compiled_data->tensors_init.v | (uintptr_t)1);
2565 else // Remove the flag.
2566 to_compiled_data->tensors_init.v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2567}
2568
2569ccv_nnc_stream_context_t* ccv_cnnp_compiled_data_get_stream(ccv_cnnp_compiled_data_t* const compiled_data, const int type)
2570{
2571 if (!compiled_data->stream_map)
2572 compiled_data->stream_map = kh_init(stream_map)kh_init_stream_map();
2573 int ret = 0;
2574 khiter_t k = kh_put(stream_map, compiled_data->stream_map, type, &ret)kh_put_stream_map(compiled_data->stream_map, type, &ret
)
;
2575 assert(ret >= 0)((void) sizeof ((ret >= 0) ? 1 : 0), __extension__ ({ if (
ret >= 0) ; else __assert_fail ("ret >= 0", "ccv_cnnp_model.c"
, 2575, __extension__ __PRETTY_FUNCTION__); }))
;
2576 ccv_nnc_stream_context_t* stream = kh_val(compiled_data->stream_map, k)((compiled_data->stream_map)->vals[k]);
2577 // If ret == 0, the key already exist, we can return directly, otherwise, create and return.
2578 if (ret != 0)
2579 {
2580 stream = ccv_nnc_stream_context_new(type);
2581 kh_val(compiled_data->stream_map, k)((compiled_data->stream_map)->vals[k]) = stream;
2582 }
2583 return stream;
2584}
2585
2586void ccv_cnnp_model_parameters_zip_map(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const aux_ins, const int aux_in_size, ccv_nnc_tensor_t* const* const aux_outs, const int aux_out_size, ccv_nnc_stream_context_t* const stream_context, const ccv_cnnp_model_t* const from_model, const ccv_cnnp_model_io_t from_parameters)
2587{
2588 ccv_array_t* to_parameter_indices;
2589 int to_param_ref;
2590 ccv_array_t* from_parameter_indices;
2591 int from_param_ref;
2592 _ccv_cnnp_model_to_parameter_indices_and_from_parameter_indices(model, parameters, from_model, from_parameters, &to_parameter_indices, &to_param_ref, &from_parameter_indices, &from_param_ref, 0);
2593 // Should be exactly the same tensor.
2594 if (to_param_ref < 0 && from_param_ref < 0)
2595 { assert(from_parameter_indices->rnum == to_parameter_indices->rnum)((void) sizeof ((from_parameter_indices->rnum == to_parameter_indices
->rnum) ? 1 : 0), __extension__ ({ if (from_parameter_indices
->rnum == to_parameter_indices->rnum) ; else __assert_fail
("from_parameter_indices->rnum == to_parameter_indices->rnum"
, "ccv_cnnp_model.c", 2595, __extension__ __PRETTY_FUNCTION__
); }))
; }
2596 // To models.
2597 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2598 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2598, __extension__ __PRETTY_FUNCTION__
); }))
;
2599 // From models.
2600 const ccv_cnnp_compiled_data_t* const from_compiled_data = from_model->compiled_data;
2601 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2602 const int to_parameter_size = to_compiled_data->parameters->rnum;
2603 const int rnum = (to_param_ref < 0 && from_param_ref < 0) ? from_parameter_indices->rnum : 1;
2604 assert(aux_in_size >= 0)((void) sizeof ((aux_in_size >= 0) ? 1 : 0), __extension__
({ if (aux_in_size >= 0) ; else __assert_fail ("aux_in_size >= 0"
, "ccv_cnnp_model.c", 2604, __extension__ __PRETTY_FUNCTION__
); }))
;
2605 assert(aux_out_size >= 0)((void) sizeof ((aux_out_size >= 0) ? 1 : 0), __extension__
({ if (aux_out_size >= 0) ; else __assert_fail ("aux_out_size >= 0"
, "ccv_cnnp_model.c", 2605, __extension__ __PRETTY_FUNCTION__
); }))
;
2606 int i, j;
2607 ccv_nnc_tensor_t* inputs[aux_in_size + 2];
2608 ccv_nnc_tensor_t* outputs[aux_out_size + 1];
2609 for (i = 0; i < aux_in_size; i++)
2610 inputs[i + 2] = aux_ins[i];
2611 for (i = 0; i < aux_out_size; i++)
2612 outputs[i + 1] = aux_outs[i];
2613 const uint32_t* const from_init_v = CCV_NNC_INIT_V(from_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(from_compiled_data->tensors_init.
v) & ~(uintptr_t)1))
;
2614 uint32_t* const to_init_v = CCV_NNC_INIT_V(to_compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(to_compiled_data->tensors_init.v)
& ~(uintptr_t)1))
;
2615 for (i = 0; i < rnum; i++)
2616 {
2617 const int src_d = *(int*)ccv_array_get(from_parameter_indices,from_param_ref >= 0 ? from_param_ref : i)((void*)(((char*)((from_parameter_indices)->data)) + (size_t
)(from_parameter_indices)->rsize * (size_t)(from_param_ref
>= 0 ? from_param_ref : i)))
;
2618 assert(src_d >= 0)((void) sizeof ((src_d >= 0) ? 1 : 0), __extension__ ({ if
(src_d >= 0) ; else __assert_fail ("src_d >= 0", "ccv_cnnp_model.c"
, 2618, __extension__ __PRETTY_FUNCTION__); }))
;
2619 assert(src_d < from_compiled_data->parameters->rnum)((void) sizeof ((src_d < from_compiled_data->parameters
->rnum) ? 1 : 0), __extension__ ({ if (src_d < from_compiled_data
->parameters->rnum) ; else __assert_fail ("src_d < from_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2619, __extension__ __PRETTY_FUNCTION__
); }))
;
2620 const int s = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(from_compiled_data->parameters, src_d)((void*)(((char*)((from_compiled_data->parameters)->data
)) + (size_t)(from_compiled_data->parameters)->rsize * (
size_t)(src_d)))
)->d;
2621 // If the original is not init'ed. We cannot copy from.
2622 if (!(from_init_v[s >> 5] & (1u << (s & 0x1f))))
2623 continue;
2624 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2625 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2625, __extension__ __PRETTY_FUNCTION__); }))
;
2626 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2626, __extension__ __PRETTY_FUNCTION__
); }))
;
2627 if (parallel_count > 1)
2628 {
2629 ccv_nnc_stream_context_t* streams[parallel_count];
2630 ccv_nnc_stream_signal_t* signal;
2631 if (stream_context)
2632 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
2633 for (j = 0; j < parallel_count; j++)
2634 {
2635 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2636 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2637 if (!dest || !src)
2638 {
2639 streams[j] = 0;
2640 continue;
2641 }
2642 // At the moment, can only handle them on the same device.
2643 assert(CCV_TENSOR_GET_MEMORY(src->info.type) == CCV_TENSOR_GET_MEMORY(dest->info.type))((void) sizeof ((((src->info.type) & 0x3) == ((dest->
info.type) & 0x3)) ? 1 : 0), __extension__ ({ if (((src->
info.type) & 0x3) == ((dest->info.type) & 0x3)) ; else
__assert_fail ("CCV_TENSOR_GET_MEMORY(src->info.type) == CCV_TENSOR_GET_MEMORY(dest->info.type)"
, "ccv_cnnp_model.c", 2643, __extension__ __PRETTY_FUNCTION__
); }))
;
2644 assert(CCV_TENSOR_GET_DEVICE_ID(src->info.type) == CCV_TENSOR_GET_DEVICE_ID(dest->info.type))((void) sizeof (((((src->info.type) & 0xfff00) >>
8) == (((dest->info.type) & 0xfff00) >> 8)) ? 1
: 0), __extension__ ({ if ((((src->info.type) & 0xfff00
) >> 8) == (((dest->info.type) & 0xfff00) >>
8)) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE_ID(src->info.type) == CCV_TENSOR_GET_DEVICE_ID(dest->info.type)"
, "ccv_cnnp_model.c", 2644, __extension__ __PRETTY_FUNCTION__
); }))
;
2645 const int stream_type = CCV_TENSOR_GET_MEMORY(src->info.type)((src->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
2646 const int device_id = CCV_TENSOR_GET_DEVICE_ID(src->info.type)(((src->info.type) & 0xfff00) >> 8);
2647 int type = stream_type;
2648 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
2649 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(to_compiled_data, type);
2650 // Wait signal to finish.
2651 if (stream_context)
2652 ccv_nnc_stream_context_wait_signal(stream_0, signal);
2653 inputs[0] = outputs[0] = dest;
2654 inputs[1] = src;
2655 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 2, outputs, aux_out_size + 1, stream_0);
2656 if (stream_context)
2657 {
2658 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
2659 ccv_nnc_stream_context_wait_signal(stream_context, signal);
2660 }
2661 streams[j] = stream_0;
2662 }
2663 // If this should be blocking, blocking it.
2664 if (!stream_context)
2665 for (j = 0; j < parallel_count; j++)
2666 if (streams[j])
2667 ccv_nnc_stream_context_wait(streams[j]);
2668 } else {
2669 ccv_nnc_tensor_t* const src = CCV_NNC_TENSOR(from_compiled_data->tensors.parameters[src_d])((ccv_nnc_tensor_t*)((uintptr_t)(from_compiled_data->tensors
.parameters[src_d]) & ~(uintptr_t)1))
;
2670 assert(src)((void) sizeof ((src) ? 1 : 0), __extension__ ({ if (src) ; else
__assert_fail ("src", "ccv_cnnp_model.c", 2670, __extension__
__PRETTY_FUNCTION__); }))
;
2671 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d]) & ~(uintptr_t)1))
;
2672 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2672, __extension__
__PRETTY_FUNCTION__); }))
;
2673 inputs[0] = outputs[0] = dest;
2674 inputs[1] = src;
2675 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 2, outputs, aux_out_size + 1, stream_context);
2676 }
2677 // Mark this symbol as init'ed.
2678 const int d = ((ccv_nnc_tensor_symbol_t*)ccv_array_get(to_compiled_data->parameters, dest_d)((void*)(((char*)((to_compiled_data->parameters)->data)
) + (size_t)(to_compiled_data->parameters)->rsize * (size_t
)(dest_d)))
)->d;
2679 to_init_v[d >> 5] |= (1u << (d & 0x1f));
2680 }
2681 ccv_array_free(to_parameter_indices);
2682 ccv_array_free(from_parameter_indices);
2683}
2684
2685void ccv_cnnp_model_parameters_map(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const aux_ins, const int aux_in_size, ccv_nnc_tensor_t* const* const aux_outs, const int aux_out_size, ccv_nnc_stream_context_t* const stream_context)
2686{
2687 int to_param_ref;
2688 ccv_array_t* const to_parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, &to_param_ref);
2689 // To models.
2690 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2691 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2691, __extension__ __PRETTY_FUNCTION__
); }))
;
2692 // Tensor has to be inited already.
2693 assert(!!to_compiled_data->tensors_init.v)((void) sizeof ((!!to_compiled_data->tensors_init.v) ? 1 :
0), __extension__ ({ if (!!to_compiled_data->tensors_init
.v) ; else __assert_fail ("!!to_compiled_data->tensors_init.v"
, "ccv_cnnp_model.c", 2693, __extension__ __PRETTY_FUNCTION__
); }))
;
2694 assert(to_compiled_data->tensors.parameters)((void) sizeof ((to_compiled_data->tensors.parameters) ? 1
: 0), __extension__ ({ if (to_compiled_data->tensors.parameters
) ; else __assert_fail ("to_compiled_data->tensors.parameters"
, "ccv_cnnp_model.c", 2694, __extension__ __PRETTY_FUNCTION__
); }))
;
2695 // From models.
2696 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2697 const int to_parameter_size = to_compiled_data->parameters->rnum;
2698 const int rnum = (to_param_ref < 0) ? to_parameter_indices->rnum : 1;
2699 assert(aux_in_size >= 0)((void) sizeof ((aux_in_size >= 0) ? 1 : 0), __extension__
({ if (aux_in_size >= 0) ; else __assert_fail ("aux_in_size >= 0"
, "ccv_cnnp_model.c", 2699, __extension__ __PRETTY_FUNCTION__
); }))
;
2700 assert(aux_out_size >= 0)((void) sizeof ((aux_out_size >= 0) ? 1 : 0), __extension__
({ if (aux_out_size >= 0) ; else __assert_fail ("aux_out_size >= 0"
, "ccv_cnnp_model.c", 2700, __extension__ __PRETTY_FUNCTION__
); }))
;
2701 int i, j;
2702 ccv_nnc_tensor_t* inputs[aux_in_size + 1];
2703 ccv_nnc_tensor_t* outputs[aux_out_size + 1];
2704 for (i = 0; i < aux_in_size; i++)
2705 inputs[i + 1] = aux_ins[i];
2706 for (i = 0; i < aux_out_size; i++)
2707 outputs[i + 1] = aux_outs[i];
2708 for (i = 0; i < rnum; i++)
2709 {
2710 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2711 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2711, __extension__ __PRETTY_FUNCTION__); }))
;
2712 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2712, __extension__ __PRETTY_FUNCTION__
); }))
;
2713 if (parallel_count > 1)
2714 {
2715 ccv_nnc_stream_context_t* streams[parallel_count];
2716 ccv_nnc_stream_signal_t* signal;
2717 if (stream_context)
2718 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
2719 for (j = 0; j < parallel_count; j++)
2720 {
2721 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d + j * to_parameter_size])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d + j * to_parameter_size]) & ~(uintptr_t
)1))
;
2722 if (!dest)
2723 {
2724 streams[j] = 0;
2725 continue;
2726 }
2727 const int stream_type = CCV_TENSOR_GET_MEMORY(dest->info.type)((dest->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
2728 const int device_id = CCV_TENSOR_GET_DEVICE_ID(dest->info.type)(((dest->info.type) & 0xfff00) >> 8);
2729 int type = stream_type;
2730 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
2731 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(to_compiled_data, type);
2732 // Wait signal to finish.
2733 if (stream_context)
2734 ccv_nnc_stream_context_wait_signal(stream_0, signal);
2735 inputs[0] = outputs[0] = dest;
2736 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_0);
2737 if (stream_context)
2738 {
2739 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
2740 ccv_nnc_stream_context_wait_signal(stream_context, signal);
2741 }
2742 streams[j] = stream_0;
2743 }
2744 // If this should be blocking, blocking it.
2745 if (!stream_context)
2746 for (j = 0; j < parallel_count; j++)
2747 if (streams[j])
2748 ccv_nnc_stream_context_wait(streams[j]);
2749 } else {
2750 ccv_nnc_tensor_t* const dest = CCV_NNC_TENSOR(to_compiled_data->tensors.parameters[dest_d])((ccv_nnc_tensor_t*)((uintptr_t)(to_compiled_data->tensors
.parameters[dest_d]) & ~(uintptr_t)1))
;
2751 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2751, __extension__
__PRETTY_FUNCTION__); }))
;
2752 inputs[0] = outputs[0] = dest;
2753 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_context);
2754 }
2755 // No need to mark this symbol as init'ed, it is already.
2756 }
2757 ccv_array_free(to_parameter_indices);
2758}
2759
2760void ccv_cnnp_model_parameter_gradients_map(ccv_cnnp_model_t* const model, const ccv_cnnp_model_io_t parameters, const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const aux_ins, const int aux_in_size, ccv_nnc_tensor_t* const* const aux_outs, const int aux_out_size, ccv_nnc_stream_context_t* const stream_context)
2761{
2762 int to_param_ref;
2763 ccv_array_t* const to_parameter_indices = _ccv_cnnp_model_parameter_indices(model, parameters, &to_param_ref);
2764 // To models.
2765 ccv_cnnp_compiled_data_t* const to_compiled_data = model->compiled_data;
2766 assert(to_compiled_data)((void) sizeof ((to_compiled_data) ? 1 : 0), __extension__ ({
if (to_compiled_data) ; else __assert_fail ("to_compiled_data"
, "ccv_cnnp_model.c", 2766, __extension__ __PRETTY_FUNCTION__
); }))
;
2767 // Tensor has to be inited already.
2768 assert(!!to_compiled_data->tensors_init.v)((void) sizeof ((!!to_compiled_data->tensors_init.v) ? 1 :
0), __extension__ ({ if (!!to_compiled_data->tensors_init
.v) ; else __assert_fail ("!!to_compiled_data->tensors_init.v"
, "ccv_cnnp_model.c", 2768, __extension__ __PRETTY_FUNCTION__
); }))
;
2769 ccv_nnc_tensor_t** tensor_gradients;
2770 if (to_compiled_data->backward.count > 1)
2771 tensor_gradients = to_compiled_data->tensors.accum_gradients;
2772 else
2773 tensor_gradients = to_compiled_data->tensors.gradients;
2774 assert(tensor_gradients)((void) sizeof ((tensor_gradients) ? 1 : 0), __extension__ ({
if (tensor_gradients) ; else __assert_fail ("tensor_gradients"
, "ccv_cnnp_model.c", 2774, __extension__ __PRETTY_FUNCTION__
); }))
;
2775 // From models.
2776 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2777 const int to_parameter_size = to_compiled_data->parameters->rnum;
2778 const int rnum = (to_param_ref < 0) ? to_parameter_indices->rnum : 1;
2779 assert(aux_in_size >= 0)((void) sizeof ((aux_in_size >= 0) ? 1 : 0), __extension__
({ if (aux_in_size >= 0) ; else __assert_fail ("aux_in_size >= 0"
, "ccv_cnnp_model.c", 2779, __extension__ __PRETTY_FUNCTION__
); }))
;
2780 assert(aux_out_size >= 0)((void) sizeof ((aux_out_size >= 0) ? 1 : 0), __extension__
({ if (aux_out_size >= 0) ; else __assert_fail ("aux_out_size >= 0"
, "ccv_cnnp_model.c", 2780, __extension__ __PRETTY_FUNCTION__
); }))
;
2781 int i, j;
2782 ccv_nnc_tensor_t* inputs[aux_in_size + 1];
2783 ccv_nnc_tensor_t* outputs[aux_out_size + 1];
2784 for (i = 0; i < aux_in_size; i++)
2785 inputs[i + 1] = aux_ins[i];
2786 for (i = 0; i < aux_out_size; i++)
2787 outputs[i + 1] = aux_outs[i];
2788 for (i = 0; i < rnum; i++)
2789 {
2790 const int dest_d = *(int*)ccv_array_get(to_parameter_indices, to_param_ref >= 0 ? to_param_ref : i)((void*)(((char*)((to_parameter_indices)->data)) + (size_t
)(to_parameter_indices)->rsize * (size_t)(to_param_ref >=
0 ? to_param_ref : i)))
;
2791 assert(dest_d >= 0)((void) sizeof ((dest_d >= 0) ? 1 : 0), __extension__ ({ if
(dest_d >= 0) ; else __assert_fail ("dest_d >= 0", "ccv_cnnp_model.c"
, 2791, __extension__ __PRETTY_FUNCTION__); }))
;
2792 assert(dest_d < to_compiled_data->parameters->rnum)((void) sizeof ((dest_d < to_compiled_data->parameters->
rnum) ? 1 : 0), __extension__ ({ if (dest_d < to_compiled_data
->parameters->rnum) ; else __assert_fail ("dest_d < to_compiled_data->parameters->rnum"
, "ccv_cnnp_model.c", 2792, __extension__ __PRETTY_FUNCTION__
); }))
;
2793 if (parallel_count > 1)
2794 {
2795 ccv_nnc_stream_context_t* streams[parallel_count];
2796 ccv_nnc_stream_signal_t* signal;
2797 if (stream_context)
2798 signal = ccv_nnc_stream_context_emit_signal_new(stream_context);
2799 for (j = 0; j < parallel_count; j++)
2800 {
2801 ccv_nnc_tensor_t* const dest = tensor_gradients[dest_d + j * to_parameter_size];
2802 if (!dest)
2803 {
2804 streams[j] = 0;
2805 continue;
2806 }
2807 const int stream_type = CCV_TENSOR_GET_MEMORY(dest->info.type)((dest->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ? CCV_STREAM_CONTEXT_GPU : CCV_STREAM_CONTEXT_CPU;
2808 const int device_id = CCV_TENSOR_GET_DEVICE_ID(dest->info.type)(((dest->info.type) & 0xfff00) >> 8);
2809 int type = stream_type;
2810 CCV_STREAM_SET_DEVICE_ID(type, device_id)(type) = (((type) & ~0xfff00) | (((device_id) & 0xfff
) << 8))
;
2811 ccv_nnc_stream_context_t* const stream_0 = ccv_cnnp_compiled_data_get_stream(to_compiled_data, type);
2812 // Wait signal to finish.
2813 if (stream_context)
2814 ccv_nnc_stream_context_wait_signal(stream_0, signal);
2815 inputs[0] = outputs[0] = dest;
2816 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_0);
2817 if (stream_context)
2818 {
2819 ccv_nnc_stream_signal_t* const signal = ccv_nnc_stream_context_emit_signal_new(stream_0);
2820 ccv_nnc_stream_context_wait_signal(stream_context, signal);
2821 }
2822 streams[j] = stream_0;
2823 }
2824 // If this should be blocking, blocking it.
2825 if (!stream_context)
2826 for (j = 0; j < parallel_count; j++)
2827 if (streams[j])
2828 ccv_nnc_stream_context_wait(streams[j]);
2829 } else {
2830 ccv_nnc_tensor_t* const dest = tensor_gradients[dest_d];
2831 if (!dest)
2832 continue;
2833 assert(dest)((void) sizeof ((dest) ? 1 : 0), __extension__ ({ if (dest) ;
else __assert_fail ("dest", "ccv_cnnp_model.c", 2833, __extension__
__PRETTY_FUNCTION__); }))
;
2834 inputs[0] = outputs[0] = dest;
2835 ccv_nnc_cmd_exec(cmd, hint, flags, inputs, aux_in_size + 1, outputs, aux_out_size + 1, stream_context);
2836 }
2837 // No need to mark this symbol as init'ed, it is already.
2838 }
2839 ccv_array_free(to_parameter_indices);
2840}
2841
2842ccv_nnc_cmd_t ccv_cnnp_model_minimizer(ccv_cnnp_model_t* const model)
2843{
2844 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2845 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2845, __extension__ __PRETTY_FUNCTION__); }))
;
2846 return compiled_data->minimize.minimizer;
2847}
2848
2849void ccv_cnnp_model_set_minimizer(ccv_cnnp_model_t* const model, const ccv_nnc_cmd_t minimizer, const int reset, const ccv_cnnp_model_io_t* const set_parameters, const int set_parameter_size)
2850{
2851 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2852 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2852, __extension__ __PRETTY_FUNCTION__); }))
;
2853 const int parameter_size = compiled_data->parameters->rnum;
2854 if (parameter_size == 0)
2855 return;
2856 if (reset)
2857 { assert(set_parameters == 0 && set_parameter_size == 0)((void) sizeof ((set_parameters == 0 && set_parameter_size
== 0) ? 1 : 0), __extension__ ({ if (set_parameters == 0 &&
set_parameter_size == 0) ; else __assert_fail ("set_parameters == 0 && set_parameter_size == 0"
, "ccv_cnnp_model.c", 2857, __extension__ __PRETTY_FUNCTION__
); }))
; }
2858 const int old_max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
2859 const int saved_aux_size = ccv_nnc_minimizer_saved_aux_size(minimizer);
2860 if (saved_aux_size > compiled_data->minimize.max_saved_aux_size)
2861 compiled_data->minimize.max_saved_aux_size = saved_aux_size;
2862 const int max_saved_aux_size = compiled_data->minimize.max_saved_aux_size;
2863 // We update all parameters, at this point, we have one minimizer.
2864 if (set_parameters == 0 || set_parameter_size == 0)
2865 compiled_data->minimize.minimizer = minimizer;
2866 int i;
2867 if (set_parameters && set_parameter_size)
2868 {
2869 // I need to save what's the minimizer along with this.
2870 if (!compiled_data->minimize.parameters)
2871 compiled_data->minimize.parameters = ccv_array_new(sizeof(ccv_cnnp_set_minimizer_for_parameter_t*), 1, 0);
2872 ccv_cnnp_set_minimizer_for_parameter_t* const set_minimizer_for_parameter = ccmallocmalloc(sizeof(ccv_cnnp_set_minimizer_for_parameter_t) + (set_parameter_size - 1) * sizeof(ccv_cnnp_model_io_t));
2873 set_minimizer_for_parameter->minimizer = minimizer;
2874 set_minimizer_for_parameter->parameter_size = set_parameter_size;
2875 memcpy(set_minimizer_for_parameter->parameters, set_parameters, sizeof(ccv_cnnp_model_io_t) * set_parameter_size);
2876 ccv_array_push(compiled_data->minimize.parameters, &set_minimizer_for_parameter);
2877 }
2878 // If reset is true, clear the parameters array.
2879 if (reset && compiled_data->minimize.parameters)
2880 {
2881 for (i = 0; i < compiled_data->minimize.parameters->rnum; i++)
2882 ccfreefree(*(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(compiled_data->minimize.parameters, i)((void*)(((char*)((compiled_data->minimize.parameters)->
data)) + (size_t)(compiled_data->minimize.parameters)->
rsize * (size_t)(i)))
);
2883 ccv_array_clear(compiled_data->minimize.parameters);
2884 }
2885 if (!compiled_data->update_nodes)
2886 return;
2887 ccv_nnc_symbolic_graph_t* const symbolic_graph = model->graph;
2888 assert(symbolic_graph)((void) sizeof ((symbolic_graph) ? 1 : 0), __extension__ ({ if
(symbolic_graph) ; else __assert_fail ("symbolic_graph", "ccv_cnnp_model.c"
, 2888, __extension__ __PRETTY_FUNCTION__); }))
;
2889 if (saved_aux_size > old_max_saved_aux_size)
2890 {
2891 assert(compiled_data->updated_parameters)((void) sizeof ((compiled_data->updated_parameters) ? 1 : 0
), __extension__ ({ if (compiled_data->updated_parameters)
; else __assert_fail ("compiled_data->updated_parameters"
, "ccv_cnnp_model.c", 2891, __extension__ __PRETTY_FUNCTION__
); }))
;
2892 // Reallocate first, move them around later.
2893 compiled_data->updated_parameters = (ccv_nnc_tensor_symbol_t*)ccreallocrealloc(compiled_data->updated_parameters, sizeof(ccv_nnc_tensor_symbol_t) * parameter_size + sizeof(ccv_nnc_graph_exec_symbol_t) * parameter_size + sizeof(ccv_nnc_tensor_symbol_map_t) * saved_aux_size * parameter_size);
2894 compiled_data->update_nodes = (ccv_nnc_graph_exec_symbol_t*)(compiled_data->updated_parameters + parameter_size);
2895 compiled_data->saved_aux = (ccv_nnc_tensor_symbol_map_t*)(compiled_data->update_nodes + parameter_size);
2896 // We need to do this from back to front because saved_aux_size > old_saved_aux_size, it could overlap.
2897 _ccv_cnnp_scatter_saved_aux(compiled_data->saved_aux, parameter_size, old_max_saved_aux_size, saved_aux_size);
2898 }
2899 int flag = 0;
2900 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2901 if (set_parameters && set_parameter_size)
2902 {
2903 ccv_array_t* const parameter_indices = ccv_array_new(sizeof(int), 0, 0);
2904 for (i = 0; i < set_parameter_size; i++)
2905 {
2906 const int param_sel = set_parameters[i]->param_sel > 0 ? set_parameters[i]->param_sel - 1 : set_parameters[i]->param_sel;
2907 assert(set_parameters[i]->param_sel != 0)((void) sizeof ((set_parameters[i]->param_sel != 0) ? 1 : 0
), __extension__ ({ if (set_parameters[i]->param_sel != 0)
; else __assert_fail ("set_parameters[i]->param_sel != 0"
, "ccv_cnnp_model.c", 2907, __extension__ __PRETTY_FUNCTION__
); }))
;
2908 const int old_rnum = parameter_indices->rnum;
2909 ccv_cnnp_model_add_to_parameter_indices(set_parameters[i]->model, param_sel, parameter_indices);
2910 const int param_ref = set_parameters[i]->param_ref > 0 ? set_parameters[i]->param_ref - 1 : set_parameters[i]->param_ref;
2911 assert(set_parameters[i]->param_ref != 0)((void) sizeof ((set_parameters[i]->param_ref != 0) ? 1 : 0
), __extension__ ({ if (set_parameters[i]->param_ref != 0)
; else __assert_fail ("set_parameters[i]->param_ref != 0"
, "ccv_cnnp_model.c", 2911, __extension__ __PRETTY_FUNCTION__
); }))
;
2912 if (param_ref >= 0)
2913 {
2914 assert(param_ref + old_rnum < parameter_indices->rnum)((void) sizeof ((param_ref + old_rnum < parameter_indices->
rnum) ? 1 : 0), __extension__ ({ if (param_ref + old_rnum <
parameter_indices->rnum) ; else __assert_fail ("param_ref + old_rnum < parameter_indices->rnum"
, "ccv_cnnp_model.c", 2914, __extension__ __PRETTY_FUNCTION__
); }))
;
2915 *(int*)ccv_array_get(parameter_indices, old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(old_rnum)))
= *(int*)ccv_array_get(parameter_indices, param_ref + old_rnum)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(param_ref + old_rnum)))
;
2916 parameter_indices->rnum = old_rnum + 1;
2917 }
2918 }
2919 // We may have duplicated indices, but that is OK, we will set it twice.
2920 for (i = 0; i < parameter_indices->rnum; i++)
2921 {
2922 const int d = *(int*)ccv_array_get(parameter_indices, i)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices
)->rsize * (size_t)(i)))
;
2923 if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, compiled_data->update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, minimizer, saved_aux_size, max_saved_aux_size, d))
2924 flag = 1;
2925 }
2926 ccv_array_free(parameter_indices);
2927 } else {
2928 for (i = 0; i < parameter_size; i++)
2929 if (_ccv_cnnp_set_minimizer_for_parameter(symbolic_graph, compiled_data, compiled_data->update_nodes, compiled_data->updated_parameters, compiled_data->saved_aux, parallel_count, minimizer, saved_aux_size, max_saved_aux_size, i))
2930 flag = 1;
2931 if (compiled_data->minimize.parameters)
2932 if (_ccv_cnnp_apply_parameters_with_minimizer(model))
2933 flag = 1;
2934 }
2935 if (flag)
2936 {
2937 // If saved_aux_size doesn't match, we need to remove / add new saved_aux to the graph. But first, free up apply gradients graph.
2938 if (compiled_data->graph_mode == CCV_CNNP_MODEL_GRAPH_FIT_MODE)
2939 _ccv_cnnp_compiled_data_graph_free(compiled_data);
2940 _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data);
2941 }
2942}
2943
2944void ccv_cnnp_model_set_compile_params(ccv_cnnp_model_t* const model, const ccv_nnc_symbolic_graph_compile_param_t compile_params)
2945{
2946 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
2947 assert(compiled_data)((void) sizeof ((compiled_data) ? 1 : 0), __extension__ ({ if
(compiled_data) ; else __assert_fail ("compiled_data", "ccv_cnnp_model.c"
, 2947, __extension__ __PRETTY_FUNCTION__); }))
;
2948 compiled_data->compile_params = compile_params;
2949}
2950
2951void ccv_cnnp_model_dot(const ccv_cnnp_model_t* const model, const int flags, FILE** const outs, const int out_size)
2952{
2953 if (model->graph && out_size > 0)
2954 ccv_nnc_symbolic_graph_dot(model->graph, flags, outs[0]);
2955 if (model->compiled_data && model->compiled_data->graph && out_size > 1)
2956 ccv_nnc_graph_dot(model->compiled_data->graph, flags, outs[1]);
2957 if (model->compiled_data && model->compiled_data->backward.accum && out_size > 2)
2958 ccv_nnc_graph_dot(model->compiled_data->backward.accum, flags, outs[2]);
2959 if (model->compiled_data && model->compiled_data->apply_gradients.graph && out_size > 3)
2960 ccv_nnc_graph_dot(model->compiled_data->apply_gradients.graph, flags, outs[3]);
2961}
2962
2963void ccv_cnnp_model_format(const ccv_cnnp_model_t* const model, const ccv_nnc_symbolic_graph_format_f format_fn, void* const context)
2964{
2965 if (model->graph)
2966 ccv_nnc_symbolic_graph_format(model->graph, 0, 0, 0, 0, format_fn, context);
2967}
2968
2969static void _ccv_cnnp_compiled_data_free(const ccv_cnnp_model_t* const model, ccv_cnnp_compiled_data_t* const compiled_data)
2970{
2971 int i;
2972 const int parameter_size = compiled_data->parameters->rnum;
2973 ccv_array_free(compiled_data->parameters);
2974 if (compiled_data->parameter_flags)
2975 ccfreefree(compiled_data->parameter_flags);
2976 const int internal_size = compiled_data->internals->rnum;
2977 ccv_array_free(compiled_data->internals);
2978 assert(compiled_data->ids.parameters->rnum == parameter_size)((void) sizeof ((compiled_data->ids.parameters->rnum ==
parameter_size) ? 1 : 0), __extension__ ({ if (compiled_data
->ids.parameters->rnum == parameter_size) ; else __assert_fail
("compiled_data->ids.parameters->rnum == parameter_size"
, "ccv_cnnp_model.c", 2978, __extension__ __PRETTY_FUNCTION__
); }))
;
2979 assert(compiled_data->ids.internals->rnum == internal_size)((void) sizeof ((compiled_data->ids.internals->rnum == internal_size
) ? 1 : 0), __extension__ ({ if (compiled_data->ids.internals
->rnum == internal_size) ; else __assert_fail ("compiled_data->ids.internals->rnum == internal_size"
, "ccv_cnnp_model.c", 2979, __extension__ __PRETTY_FUNCTION__
); }))
;
2980 for (i = 0; i < parameter_size; i++)
2981 ccfreefree(*(char**)ccv_array_get(compiled_data->ids.parameters, i)((void*)(((char*)((compiled_data->ids.parameters)->data
)) + (size_t)(compiled_data->ids.parameters)->rsize * (
size_t)(i)))
);
2982 ccv_array_free(compiled_data->ids.parameters);
2983 for (i = 0; i < internal_size; i++)
2984 ccfreefree(*(char**)ccv_array_get(compiled_data->ids.internals, i)((void*)(((char*)((compiled_data->ids.internals)->data)
) + (size_t)(compiled_data->ids.internals)->rsize * (size_t
)(i)))
);
2985 ccv_array_free(compiled_data->ids.internals);
2986 const int parallel_count = ccv_max(model->parallel_count, 1)({ typeof (model->parallel_count) _a = (model->parallel_count
); typeof (1) _b = (1); (_a > _b) ? _a : _b; })
;
2987 if (compiled_data->tensors.parameters)
2988 {
2989 for (i = 0; i < parameter_size * parallel_count; i++)
2990 // If it is not marked as not belonging, we can free it.
2991 if (!((uintptr_t)compiled_data->tensors.parameters[i] & (uintptr_t)1))
2992 if (compiled_data->tensors.parameters[i])
2993 ccv_nnc_tensor_free(compiled_data->tensors.parameters[i]);
2994 for (i = 0; i < internal_size * parallel_count; i++)
2995 if (compiled_data->tensors.internals[i])
2996 ccv_nnc_tensor_free(compiled_data->tensors.internals[i]);
2997 ccfreefree(compiled_data->tensors.parameters);
2998 }
2999 if (compiled_data->tensors.gradients)
3000 {
3001 for (i = 0; i < parameter_size * parallel_count; i++)
3002 {
3003 if (compiled_data->tensors.gradients[i])
3004 ccv_nnc_tensor_free(compiled_data->tensors.gradients[i]);
3005 if (compiled_data->tensors.accum_gradients[i])
3006 ccv_nnc_tensor_free(compiled_data->tensors.accum_gradients[i]);
3007 }
3008 ccfreefree(compiled_data->tensors.gradients);
3009 }
3010 if (compiled_data->minimize.parameters)
3011 {
3012 for (i = 0; i < compiled_data->minimize.parameters->rnum; i++)
3013 ccfreefree(*(ccv_cnnp_set_minimizer_for_parameter_t**)ccv_array_get(compiled_data->minimize.parameters, i)((void*)(((char*)((compiled_data->minimize.parameters)->
data)) + (size_t)(compiled_data->minimize.parameters)->
rsize * (size_t)(i)))
);
3014 ccv_array_free(compiled_data->minimize.parameters);
3015 }
3016 if (compiled_data->rewindables)
3017 ccv_array_free(compiled_data->rewindables);
3018 if (compiled_data->tensors_init.v)
3019 ccfreefree(CCV_NNC_INIT_V(compiled_data->tensors_init.v)((uint32_t*)((uintptr_t)(compiled_data->tensors_init.v) &
~(uintptr_t)1))
);
3020 if (compiled_data->evaluate.tos)
3021 ccfreefree(compiled_data->evaluate.tos);
3022 compiled_data->evaluate.tos = 0;
3023 if (compiled_data->stream_map)
3024 {
3025 khiter_t k;
3026 for (k = kh_begin(compiled_data->stream_map)(khint_t)(0); k != kh_end(compiled_data->stream_map)((compiled_data->stream_map)->n_buckets); ++k)
3027 {
3028 if (!kh_exist(compiled_data->stream_map, k)(!(((compiled_data->stream_map)->flags[(k)>>4]>>
(((k)&0xfU)<<1))&3))
)
3029 continue;
3030 ccv_nnc_stream_context_t* const stream = kh_val(compiled_data->stream_map, k)((compiled_data->stream_map)->vals[k]);
3031 ccv_nnc_stream_context_free(stream);
3032 }
3033 kh_destroy(stream_map, compiled_data->stream_map)kh_destroy_stream_map(compiled_data->stream_map);
3034 }
3035 _ccv_cnnp_compiled_data_graph_free(compiled_data);
3036 _ccv_cnnp_compiled_data_gradient_free(compiled_data);
3037 _ccv_cnnp_compiled_data_backward_free(compiled_data);
3038 _ccv_cnnp_compiled_data_apply_gradients_free(compiled_data);
3039 if (compiled_data->gradient_checkpoints)
3040 {
3041 for (i = 0; i < compiled_data->gradient_checkpoints->rnum; i++)
3042 {
3043 ccv_cnnp_model_gradient_checkpoint_t* const checkpoint = (ccv_cnnp_model_gradient_checkpoint_t*)ccv_array_get(compiled_data->gradient_checkpoints, i)((void*)(((char*)((compiled_data->gradient_checkpoints)->
data)) + (size_t)(compiled_data->gradient_checkpoints)->
rsize * (size_t)(i)))
;
3044 assert(checkpoint->inputs)((void) sizeof ((checkpoint->inputs) ? 1 : 0), __extension__
({ if (checkpoint->inputs) ; else __assert_fail ("checkpoint->inputs"
, "ccv_cnnp_model.c", 3044, __extension__ __PRETTY_FUNCTION__
); }))
;
3045 ccfreefree(checkpoint->inputs);
3046 ccv_array_free(checkpoint->tensor_symbols);
3047 }
3048 ccv_array_free(compiled_data->gradient_checkpoints);
3049 }
3050 ccv_nnc_xpu_alloc_destroy(&compiled_data->xpu_alloc);
3051 ccfreefree(compiled_data);
3052}
3053
3054void ccv_cnnp_model_free(ccv_cnnp_model_t* const model)
3055{
3056 if (model->isa->deinit)
3057 model->isa->deinit(model);
3058 if (model->io)
3059 {
3060 int i;
3061 for (i = 0; i < model->io->rnum; i++)
3062 {
3063 ccv_cnnp_model_io_t model_io = *(ccv_cnnp_model_io_t*)ccv_array_get(model->io, i)((void*)(((char*)((model->io)->data)) + (size_t)(model->
io)->rsize * (size_t)(i)))
;
3064 if (model_io->outgoings)
3065 ccv_array_free(model_io->outgoings);
3066 if (model_io->incomings)
3067 ccv_array_free(model_io->incomings);
3068 if (model_io->dependencies)
3069 ccv_array_free(model_io->dependencies);
3070 ccfreefree(model_io);
3071 }
3072 ccv_array_free(model->io);
3073 }
3074 if (model->parameter_indices)
3075 ccv_array_free(model->parameter_indices);
3076 if (model->inputs)
3077 ccfreefree(model->inputs);
3078 if (model->graph)
3079 ccv_nnc_symbolic_graph_free(model->graph);
3080 if (model->compiled_data)
3081 _ccv_cnnp_compiled_data_free(model, model->compiled_data);
3082 if (model->name)
3083 ccfreefree(model->name);
3084 ccfreefree(model);
3085}
3086
3087void ccv_cnnp_model_cancel(ccv_cnnp_model_t* const model)
3088{
3089 ccv_cnnp_compiled_data_t* const compiled_data = model->compiled_data;
3090 if (!compiled_data)
3091 return;
3092 if (compiled_data->graph)
3093 ccv_nnc_graph_cancel(compiled_data->graph);
3094 if (compiled_data->apply_gradients.graph)
3095 ccv_nnc_graph_cancel(compiled_data->apply_gradients.graph);
3096}
3097
3098void ccv_cnnp_model_set_flags(ccv_cnnp_model_t* const model, const int flags)
3099{
3100 model->exec_flags = flags;
3101}
3102
3103int ccv_cnnp_model_flags(ccv_cnnp_model_t* const model)
3104{
3105 return model->exec_flags;
3106}