File: | nnc/ccv_nnc_cmd.c |
Warning: | line 580, column 27 Potential memory leak |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include "ccv_nnc.h" | |||
2 | #include "ccv_nnc_internal.h" | |||
3 | #include "3rdparty/khash/khash.h" | |||
4 | #include "ccv_nnc_easy.h" | |||
5 | #ifdef HAVE_CUDA1 | |||
6 | #include "gpu/ccv_nnc_compat.h" | |||
7 | #elif defined(HAVE_MPS) | |||
8 | #include "mps/ccv_nnc_mps.h" | |||
9 | #endif | |||
10 | #include <time.h> | |||
11 | #include <sys/time.h> | |||
12 | ||||
13 | typedef struct { | |||
14 | const uint32_t cmd; | |||
15 | const char* name; | |||
16 | ccv_nnc_cmd_registry_t registry; | |||
17 | ccv_nnc_cmd_backend_registry_t backends[CCV_NNC_BACKEND_COUNT]; | |||
18 | } ccv_nnc_cmd_init_t; | |||
19 | ||||
20 | typedef struct { | |||
21 | const uint32_t backend; | |||
22 | const char* name; | |||
23 | } ccv_nnc_cmd_backend_init_t; | |||
24 | ||||
25 | // The generated code configures command and its mapping. | |||
26 | #include "cmd/ccv_nnc_cmd.inc" | |||
27 | ||||
28 | void ccv_nnc_init(void) | |||
29 | { | |||
30 | _ccv_nnc_cmd_init(); | |||
31 | } | |||
32 | ||||
33 | static uint64_t _ccv_nnc_flags = 0; | |||
34 | ||||
35 | uint64_t ccv_nnc_flags(void) | |||
36 | { | |||
37 | return _ccv_nnc_flags; | |||
38 | } | |||
39 | ||||
40 | void ccv_nnc_enable_flag(uint64_t flag) | |||
41 | { | |||
42 | _ccv_nnc_flags |= flag; | |||
43 | } | |||
44 | ||||
45 | void ccv_nnc_disable_flag(uint64_t flag) | |||
46 | { | |||
47 | _ccv_nnc_flags &= ~flag; | |||
48 | } | |||
49 | ||||
50 | const char* ccv_nnc_cmd_name(const uint32_t cmd) | |||
51 | { | |||
52 | switch (cmd) | |||
53 | { | |||
54 | case CCV_NNC_NOOP: | |||
55 | return "CCV_NNC_NOOP"; | |||
56 | case CCV_NNC_CUSTOM_FORWARD: | |||
57 | return "CCV_NNC_CUSTOM_FORWARD"; | |||
58 | case CCV_NNC_CUSTOM_BACKWARD: | |||
59 | return "CCV_NNC_CUSTOM_BACKWARD"; | |||
60 | case CCV_NNC_GRAPH_FORWARD: | |||
61 | return "CCV_NNC_GRAPH_FORWARD"; | |||
62 | case CCV_NNC_GRAPH_BACKWARD: | |||
63 | return "CCV_NNC_GRAPH_BACKWARD"; | |||
64 | } | |||
65 | const int idx = _ccv_nnc_cmd_ph(cmd); | |||
66 | assert(idx >= 0)((void) sizeof ((idx >= 0) ? 1 : 0), __extension__ ({ if ( idx >= 0) ; else __assert_fail ("idx >= 0", "ccv_nnc_cmd.c" , 66, __extension__ __PRETTY_FUNCTION__); })); | |||
67 | assert(idx < sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((idx < sizeof(init_map) / sizeof(init_map[ 0])) ? 1 : 0), __extension__ ({ if (idx < sizeof(init_map) / sizeof(init_map[0])) ; else __assert_fail ("idx < sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 67, __extension__ __PRETTY_FUNCTION__); }) ); | |||
68 | return init_map[idx].name; | |||
69 | } | |||
70 | ||||
71 | const char* ccv_nnc_cmd_backend_name(const uint32_t backend) | |||
72 | { | |||
73 | if (backend == CCV_NNC_NO_BACKEND) | |||
74 | return "CCV_NNC_NO_BACKEND"; | |||
75 | const int idx = _ccv_nnc_cmd_backend_ph(backend); | |||
76 | assert(idx >= 0)((void) sizeof ((idx >= 0) ? 1 : 0), __extension__ ({ if ( idx >= 0) ; else __assert_fail ("idx >= 0", "ccv_nnc_cmd.c" , 76, __extension__ __PRETTY_FUNCTION__); })); | |||
77 | assert(idx < CCV_NNC_BACKEND_COUNT)((void) sizeof ((idx < CCV_NNC_BACKEND_COUNT) ? 1 : 0), __extension__ ({ if (idx < CCV_NNC_BACKEND_COUNT) ; else __assert_fail ( "idx < CCV_NNC_BACKEND_COUNT", "ccv_nnc_cmd.c", 77, __extension__ __PRETTY_FUNCTION__); })); | |||
78 | return backend_init_map[idx].name; | |||
79 | } | |||
80 | ||||
81 | const ccv_nnc_cmd_param_t ccv_nnc_cmd_auto = {}; | |||
82 | ||||
83 | int ccv_nnc_is_cmd_auto(const ccv_nnc_cmd_param_t params) | |||
84 | { | |||
85 | return (memcmp(¶ms, &ccv_nnc_cmd_auto, sizeof(ccv_nnc_cmd_param_t)) == 0); | |||
86 | } | |||
87 | ||||
88 | int ccv_nnc_cmd_is_forward(const ccv_nnc_cmd_t cmd) | |||
89 | { | |||
90 | switch (cmd.cmd) | |||
91 | { | |||
92 | case CCV_NNC_NOOP: | |||
93 | return 0; | |||
94 | case CCV_NNC_CUSTOM_FORWARD: | |||
95 | case CCV_NNC_CUSTOM_BACKWARD: | |||
96 | case CCV_NNC_GRAPH_FORWARD: | |||
97 | case CCV_NNC_GRAPH_BACKWARD: | |||
98 | default: | |||
99 | return !(cmd.cmd & 0x1); // If it is even, it is forward | |||
100 | } | |||
101 | } | |||
102 | ||||
103 | int ccv_nnc_cmd_is_backward(const ccv_nnc_cmd_t cmd) | |||
104 | { | |||
105 | switch (cmd.cmd) | |||
106 | { | |||
107 | case CCV_NNC_NOOP: | |||
108 | return 0; | |||
109 | case CCV_NNC_CUSTOM_FORWARD: | |||
110 | case CCV_NNC_CUSTOM_BACKWARD: | |||
111 | case CCV_NNC_GRAPH_FORWARD: | |||
112 | case CCV_NNC_GRAPH_BACKWARD: | |||
113 | default: | |||
114 | return !!(cmd.cmd & 0x1); // If it is odd, it is backward | |||
115 | } | |||
116 | } | |||
117 | ||||
118 | int ccv_nnc_cmd_ok(const uint32_t cmd, const uint32_t backend) | |||
119 | { | |||
120 | // If it is a custom command, a no op, or a graph op, there is no backend to check. | |||
121 | if (cmd == CCV_NNC_NOOP || | |||
122 | cmd == CCV_NNC_GRAPH_FORWARD || cmd == CCV_NNC_GRAPH_BACKWARD || | |||
123 | cmd == CCV_NNC_CUSTOM_FORWARD || cmd == CCV_NNC_CUSTOM_BACKWARD) | |||
124 | return 1; | |||
125 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd); | |||
126 | const int backend_idx = _ccv_nnc_cmd_backend_ph(backend); | |||
127 | assert(cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((cmd_idx >= 0 && cmd_idx < sizeof (init_map) / sizeof(init_map[0])) ? 1 : 0), __extension__ ({ if (cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof (init_map[0])) ; else __assert_fail ("cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 127, __extension__ __PRETTY_FUNCTION__); } )); | |||
128 | assert(backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT)((void) sizeof ((backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT) ? 1 : 0), __extension__ ({ if (backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT) ; else __assert_fail ("backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT" , "ccv_nnc_cmd.c", 128, __extension__ __PRETTY_FUNCTION__); } )); | |||
129 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[backend_idx]; | |||
130 | // Check if the execution function exists or not. | |||
131 | return !!api_registry.exec; | |||
132 | } | |||
133 | ||||
134 | ccv_nnc_cmd_t ccv_nnc_cmd(const uint32_t _cmd, ccv_nnc_cmd_vtab_t* const isa, const ccv_nnc_cmd_param_t params, const int flags) | |||
135 | { | |||
136 | ccv_nnc_cmd_t cmd; | |||
137 | cmd.info = params; | |||
138 | cmd.backend = CCV_NNC_NO_BACKEND; | |||
139 | assert((_cmd == CCV_NNC_CUSTOM_FORWARD && isa) || (_cmd != CCV_NNC_CUSTOM_FORWARD && !isa))((void) sizeof (((_cmd == CCV_NNC_CUSTOM_FORWARD && isa ) || (_cmd != CCV_NNC_CUSTOM_FORWARD && !isa)) ? 1 : 0 ), __extension__ ({ if ((_cmd == CCV_NNC_CUSTOM_FORWARD && isa) || (_cmd != CCV_NNC_CUSTOM_FORWARD && !isa)) ; else __assert_fail ("(_cmd == CCV_NNC_CUSTOM_FORWARD && isa) || (_cmd != CCV_NNC_CUSTOM_FORWARD && !isa)" , "ccv_nnc_cmd.c", 139, __extension__ __PRETTY_FUNCTION__); } )); | |||
140 | cmd.cmd = _cmd; | |||
141 | cmd.algorithm = -1; // This is default. | |||
142 | cmd.isa = isa; | |||
143 | cmd.data = 0; | |||
144 | return cmd; | |||
145 | } | |||
146 | ||||
147 | const ccv_nnc_hint_t ccv_nnc_no_hint = {}; | |||
148 | ||||
149 | int ccv_nnc_is_no_hint(const ccv_nnc_hint_t hint) | |||
150 | { | |||
151 | return (memcmp(&hint, &ccv_nnc_no_hint, sizeof(ccv_nnc_hint_t)) == 0); | |||
152 | } | |||
153 | ||||
154 | int ccv_nnc_hint_verify(const ccv_nnc_hint_t hint, const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t a, const ccv_nnc_tensor_param_t b) | |||
155 | { | |||
156 | int i; | |||
157 | assert(a.format == b.format)((void) sizeof ((a.format == b.format) ? 1 : 0), __extension__ ({ if (a.format == b.format) ; else __assert_fail ("a.format == b.format" , "ccv_nnc_cmd.c", 157, __extension__ __PRETTY_FUNCTION__); } )); | |||
158 | const int nd = ccv_nnc_tensor_nd(a.dim); | |||
159 | const int size_nd = ccv_max(2, ccv_nnc_tensor_nd(cmd.size.dim) - 1)({ typeof (2) _a = (2); typeof (ccv_nnc_tensor_nd(cmd.size.dim ) - 1) _b = (ccv_nnc_tensor_nd(cmd.size.dim) - 1); (_a > _b ) ? _a : _b; }); | |||
160 | assert(size_nd == 2 || size_nd == 3)((void) sizeof ((size_nd == 2 || size_nd == 3) ? 1 : 0), __extension__ ({ if (size_nd == 2 || size_nd == 3) ; else __assert_fail ("size_nd == 2 || size_nd == 3" , "ccv_nnc_cmd.c", 160, __extension__ __PRETTY_FUNCTION__); } )); // Support 3D convolution. | |||
161 | assert(nd == size_nd + 1 || nd == size_nd + 2)((void) sizeof ((nd == size_nd + 1 || nd == size_nd + 2) ? 1 : 0), __extension__ ({ if (nd == size_nd + 1 || nd == size_nd + 2) ; else __assert_fail ("nd == size_nd + 1 || nd == size_nd + 2" , "ccv_nnc_cmd.c", 161, __extension__ __PRETTY_FUNCTION__); } )); | |||
162 | int hw; | |||
163 | if ((a.format == CCV_TENSOR_FORMAT_CHWN) || | |||
164 | (a.format == CCV_TENSOR_FORMAT_NHWC && nd == size_nd + 1)) | |||
165 | hw = 0; | |||
166 | else if ((a.format == CCV_TENSOR_FORMAT_NHWC && nd == size_nd + 2) || | |||
167 | (a.format == CCV_TENSOR_FORMAT_NCHW && nd == size_nd + 1)) | |||
168 | hw = 1; | |||
169 | else if (a.format == CCV_TENSOR_FORMAT_NCHW && nd == size_nd + 2) | |||
170 | hw = 2; | |||
171 | else | |||
172 | assert(0 && "unknown format")((void) sizeof ((0 && "unknown format") ? 1 : 0), __extension__ ({ if (0 && "unknown format") ; else __assert_fail ( "0 && \"unknown format\"", "ccv_nnc_cmd.c", 172, __extension__ __PRETTY_FUNCTION__); })); | |||
173 | for (i = 0; i < size_nd; i++) | |||
174 | { | |||
175 | if ((hint.border.begin[i] + hint.border.end[i] + a.dim[i + hw] - cmd.size.dim[i]) % hint.stride.dim[i] != 0) | |||
176 | return -1; | |||
177 | int expected = (hint.border.begin[i] + hint.border.end[i] + a.dim[i + hw] - cmd.size.dim[i]) / hint.stride.dim[i] + 1; | |||
178 | if (expected != b.dim[i + hw]) | |||
179 | return -1; | |||
180 | } | |||
181 | return 0; | |||
182 | } | |||
183 | ||||
184 | ccv_nnc_hint_t ccv_nnc_hint_auto(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t a, const ccv_nnc_tensor_param_t b) | |||
185 | { | |||
186 | int i; | |||
187 | if (a.format != b.format) | |||
188 | return ccv_nnc_no_hint; | |||
189 | assert(a.format == b.format)((void) sizeof ((a.format == b.format) ? 1 : 0), __extension__ ({ if (a.format == b.format) ; else __assert_fail ("a.format == b.format" , "ccv_nnc_cmd.c", 189, __extension__ __PRETTY_FUNCTION__); } )); | |||
190 | const int a_nd = ccv_nnc_tensor_nd(a.dim); | |||
191 | const int b_nd = ccv_nnc_tensor_nd(b.dim); | |||
192 | const int size_nd = ccv_max(2, ccv_nnc_tensor_nd(cmd.size.dim) - 1)({ typeof (2) _a = (2); typeof (ccv_nnc_tensor_nd(cmd.size.dim ) - 1) _b = (ccv_nnc_tensor_nd(cmd.size.dim) - 1); (_a > _b ) ? _a : _b; }); | |||
193 | assert(size_nd == 2 || size_nd == 3)((void) sizeof ((size_nd == 2 || size_nd == 3) ? 1 : 0), __extension__ ({ if (size_nd == 2 || size_nd == 3) ; else __assert_fail ("size_nd == 2 || size_nd == 3" , "ccv_nnc_cmd.c", 193, __extension__ __PRETTY_FUNCTION__); } )); // Support 3D convolution. | |||
194 | // Is not auto hint deducible dimensions. | |||
195 | if (a_nd != b_nd || (a_nd != size_nd + 1 && a_nd != size_nd + 2)) | |||
196 | return ccv_nnc_no_hint; | |||
197 | int hw; | |||
198 | if ((a.format == CCV_TENSOR_FORMAT_CHWN) || | |||
199 | (a.format == CCV_TENSOR_FORMAT_NHWC && a_nd == size_nd + 1)) | |||
200 | hw = 0; | |||
201 | else if ((a.format == CCV_TENSOR_FORMAT_NHWC && a_nd == size_nd + 2) || | |||
202 | (a.format == CCV_TENSOR_FORMAT_NCHW && a_nd == size_nd + 1)) | |||
203 | hw = 1; | |||
204 | else if (a.format == CCV_TENSOR_FORMAT_NCHW && a_nd == size_nd + 2) | |||
205 | hw = 2; | |||
206 | else | |||
207 | assert(0 && "unknown format")((void) sizeof ((0 && "unknown format") ? 1 : 0), __extension__ ({ if (0 && "unknown format") ; else __assert_fail ( "0 && \"unknown format\"", "ccv_nnc_cmd.c", 207, __extension__ __PRETTY_FUNCTION__); })); | |||
208 | ccv_nnc_hint_t hint_auto = {}; | |||
209 | // 0-dim is reserved for channels | |||
210 | for (i = 0; i < size_nd; i++) | |||
211 | { | |||
212 | // Cannot have one of the dim is zero, we cannot auto the hint, return no hint. | |||
213 | assert(a.dim[i + hw] && b.dim[i + hw])((void) sizeof ((a.dim[i + hw] && b.dim[i + hw]) ? 1 : 0), __extension__ ({ if (a.dim[i + hw] && b.dim[i + hw ]) ; else __assert_fail ("a.dim[i + hw] && b.dim[i + hw]" , "ccv_nnc_cmd.c", 213, __extension__ __PRETTY_FUNCTION__); } )); | |||
214 | // This is guessed by having a stride that will approximately match the scale. | |||
215 | int stride = (a.dim[i + hw] + b.dim[i + hw] / 2) / b.dim[i + hw]; | |||
216 | hint_auto.stride.dim[i] = stride; | |||
217 | int border = (b.dim[i + hw] - 1) * stride - a.dim[i + hw] + cmd.size.dim[i]; | |||
218 | hint_auto.border.begin[i] = (border + 1) / 2; // Always prefer to have more padding in the beginning, this matches CUDNN behavior. | |||
219 | hint_auto.border.end[i] = border - hint_auto.border.begin[i]; | |||
220 | } | |||
221 | return hint_auto; | |||
222 | } | |||
223 | ||||
224 | void ccv_nnc_hint_tensor_auto_forward_from_inputs(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size) | |||
225 | { | |||
226 | int i; | |||
227 | assert(output_size <= input_size)((void) sizeof ((output_size <= input_size) ? 1 : 0), __extension__ ({ if (output_size <= input_size) ; else __assert_fail ("output_size <= input_size" , "ccv_nnc_cmd.c", 227, __extension__ __PRETTY_FUNCTION__); } )); | |||
228 | for (i = 0; i < output_size; i++) | |||
229 | outputs[i] = inputs[i]; | |||
230 | } | |||
231 | ||||
232 | void ccv_nnc_hint_tensor_auto_backward_from_gradient(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size) | |||
233 | { | |||
234 | int i; | |||
235 | for (i = 0; i < output_size; i++) | |||
236 | outputs[i] = inputs[0]; | |||
237 | } | |||
238 | ||||
239 | void ccv_nnc_hint_tensor_auto_backward_from_inputs(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size) | |||
240 | { | |||
241 | int i; | |||
242 | assert(output_size < input_size)((void) sizeof ((output_size < input_size) ? 1 : 0), __extension__ ({ if (output_size < input_size) ; else __assert_fail ("output_size < input_size" , "ccv_nnc_cmd.c", 242, __extension__ __PRETTY_FUNCTION__); } )); | |||
243 | for (i = 0; i < output_size; i++) | |||
244 | outputs[i] = inputs[i + 1]; | |||
245 | } | |||
246 | ||||
247 | void ccv_nnc_hint_tensor_auto_backward_from_gradient_and_inputs(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size) | |||
248 | { | |||
249 | int i; | |||
250 | outputs[0] = inputs[0]; | |||
251 | assert(output_size < input_size)((void) sizeof ((output_size < input_size) ? 1 : 0), __extension__ ({ if (output_size < input_size) ; else __assert_fail ("output_size < input_size" , "ccv_nnc_cmd.c", 251, __extension__ __PRETTY_FUNCTION__); } )); | |||
252 | for (i = 1; i < output_size; i++) | |||
253 | outputs[i] = inputs[i + 1]; | |||
254 | } | |||
255 | ||||
256 | void ccv_nnc_hint_tensor_auto(const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size) | |||
257 | { | |||
258 | // zero out the parameters | |||
259 | const ccv_nnc_tensor_param_t z = {}; | |||
260 | int i; | |||
261 | for (i = 0; i < output_size; i++) | |||
262 | outputs[i] = z; // Reset the outputs. | |||
263 | // Cannot handle these situations. | |||
264 | if (cmd.cmd == CCV_NNC_NOOP || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD || cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD) | |||
265 | return; | |||
266 | if (cmd.cmd == CCV_NNC_CUSTOM_FORWARD) | |||
267 | { | |||
268 | if (cmd.isa->tensor_auto) | |||
269 | cmd.isa->tensor_auto(cmd, inputs, input_size, hint, outputs, output_size); | |||
270 | return; | |||
271 | } | |||
272 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
273 | const ccv_nnc_cmd_registry_t registry = init_map[cmd_idx].registry; | |||
274 | if (registry.tensor_auto) | |||
275 | registry.tensor_auto(cmd.info, inputs, input_size, hint, outputs, output_size); | |||
276 | else if (ccv_nnc_cmd_is_forward(cmd)) // For forward, the default auto is forward_from_inputs | |||
277 | ccv_nnc_hint_tensor_auto_forward_from_inputs(cmd.info, inputs, input_size, hint, outputs, output_size); | |||
278 | else // For backward, the default auto is backward_from_inputs | |||
279 | ccv_nnc_hint_tensor_auto_backward_from_inputs(cmd.info, inputs, input_size, hint, outputs, output_size); | |||
280 | } | |||
281 | ||||
282 | int ccv_nnc_cmd_allow_inplace(const ccv_nnc_cmd_t cmd, const int input_idx, const int input_size, const int output_idx, const int output_size) | |||
283 | { | |||
284 | if (cmd.cmd == CCV_NNC_NOOP || cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD || cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD) | |||
285 | return 0; | |||
286 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
287 | const ccv_nnc_cmd_registry_t registry = init_map[cmd_idx].registry; | |||
288 | if (registry.allow_inplace) | |||
289 | return registry.allow_inplace(cmd.info, input_idx, input_size, output_idx, output_size); | |||
290 | return 0; | |||
291 | } | |||
292 | ||||
293 | int ccv_nnc_cmd_enforce_inplace(const ccv_nnc_cmd_t cmd, const int input_idx, const int input_size, const int output_idx, const int output_size) | |||
294 | { | |||
295 | if (cmd.cmd == CCV_NNC_NOOP || cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD || cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD) | |||
296 | return 0; | |||
297 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
298 | const ccv_nnc_cmd_registry_t registry = init_map[cmd_idx].registry; | |||
299 | if (registry.enforce_inplace) | |||
300 | return registry.enforce_inplace(cmd.info, input_idx, input_size, output_idx, output_size); | |||
301 | return 0; | |||
302 | } | |||
303 | ||||
304 | // This returns absolute time. | |||
305 | uint64_t ccv_nnc_cmd_mono_time(void) | |||
306 | { | |||
307 | struct timespec ts; | |||
308 | clock_gettime(CLOCK_MONOTONIC1, &ts); | |||
309 | return ts.tv_sec * 1000000000ULL + ts.tv_nsec; | |||
310 | } | |||
311 | ||||
312 | uint32_t ccv_nnc_cmd_find_backend(const ccv_nnc_cmd_t cmd, const int tensor_memory, const int tensor_formats, const int tensor_datatypes) | |||
313 | { | |||
314 | if (cmd.cmd == CCV_NNC_NOOP || | |||
315 | cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD || | |||
316 | cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD) | |||
317 | return cmd.backend; | |||
318 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
319 | assert(cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((cmd_idx >= 0 && cmd_idx < sizeof (init_map) / sizeof(init_map[0])) ? 1 : 0), __extension__ ({ if (cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof (init_map[0])) ; else __assert_fail ("cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 319, __extension__ __PRETTY_FUNCTION__); } )); | |||
320 | assert(tensor_memory != 0 && tensor_formats != 0 && tensor_datatypes != 0)((void) sizeof ((tensor_memory != 0 && tensor_formats != 0 && tensor_datatypes != 0) ? 1 : 0), __extension__ ({ if (tensor_memory != 0 && tensor_formats != 0 && tensor_datatypes != 0) ; else __assert_fail ("tensor_memory != 0 && tensor_formats != 0 && tensor_datatypes != 0" , "ccv_nnc_cmd.c", 320, __extension__ __PRETTY_FUNCTION__); } )); | |||
321 | int i; | |||
322 | for (i = 0; i < CCV_NNC_BACKEND_COUNT; i++) | |||
323 | { | |||
324 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[i]; | |||
325 | // We have the exec kernel, and support all the tensor memory types. | |||
326 | if (api_registry.exec && | |||
327 | (api_registry.tensor_memory & tensor_memory) == tensor_memory && | |||
328 | (api_registry.tensor_formats & tensor_formats) == tensor_formats && | |||
329 | (api_registry.tensor_datatypes & tensor_datatypes) == tensor_datatypes) | |||
330 | return backend_init_map[i].backend; | |||
331 | } | |||
332 | return cmd.backend; | |||
333 | } | |||
334 | ||||
335 | #define AUTO_TUNE_TRIAL_SIZE(3) (3) | |||
336 | ||||
337 | static void _ccv_nnc_cmd_set_device_id(ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
338 | { | |||
339 | #ifdef HAVE_CUDA1 | |||
340 | if (!stream_context) | |||
341 | { | |||
342 | int device_id; | |||
343 | if (ccv_nnc_device_ids_for_io(inputs, input_size, outputs, output_size, CCV_TENSOR_GPU_MEMORY, &device_id, 1) > 0) | |||
344 | cudevice(device_id); | |||
345 | } | |||
346 | #endif | |||
347 | } | |||
348 | ||||
349 | typedef struct { | |||
350 | int format; | |||
351 | int datatype; | |||
352 | int nd; | |||
353 | off_t dataof; | |||
354 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
355 | int stride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
356 | } ccv_nnc_cmd_autotune_tensor_shape_t; | |||
357 | ||||
358 | typedef struct { | |||
359 | uint32_t cmd; | |||
360 | ccv_nnc_cmd_param_t params; | |||
361 | ccv_nnc_hint_t hint; | |||
362 | int flags; | |||
363 | int input_size; | |||
364 | int output_size; | |||
365 | size_t workspace_size; | |||
366 | ccv_nnc_cmd_autotune_tensor_shape_t* inputs; | |||
367 | ccv_nnc_cmd_autotune_tensor_shape_t* outputs; | |||
368 | } ccv_nnc_cmd_autotune_key_t; | |||
369 | ||||
370 | static CCV_WARN_UNUSED(ccv_nnc_cmd_autotune_key_t)ccv_nnc_cmd_autotune_key_t __attribute__((warn_unused_result) ) ccv_nnc_cmd_autotune_key_new(const ccv_nnc_cmd_t cmd, const size_t workspace_size, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size) | |||
371 | { | |||
372 | ccv_nnc_cmd_autotune_key_t key = { | |||
373 | .cmd = cmd.cmd, | |||
374 | .params = cmd.info, | |||
375 | .hint = hint, | |||
376 | .workspace_size = workspace_size, | |||
377 | .inputs = 0, | |||
378 | .input_size = 0, | |||
379 | .outputs = 0, | |||
380 | .output_size = 0 | |||
381 | }; | |||
382 | if (input_size == 0 && output_size
| |||
383 | return key; | |||
384 | assert(input_size >= 0 && output_size >= 0)((void) sizeof ((input_size >= 0 && output_size >= 0) ? 1 : 0), __extension__ ({ if (input_size >= 0 && output_size >= 0) ; else __assert_fail ("input_size >= 0 && output_size >= 0" , "ccv_nnc_cmd.c", 384, __extension__ __PRETTY_FUNCTION__); } )); | |||
385 | key.input_size = input_size; | |||
386 | key.output_size = output_size; | |||
387 | key.inputs = (ccv_nnc_cmd_autotune_tensor_shape_t*)ccmallocmalloc(sizeof(ccv_nnc_cmd_autotune_tensor_shape_t) * (input_size + output_size)); | |||
388 | key.outputs = key.inputs + input_size; | |||
389 | int i, j; | |||
390 | for (i = 0; i < input_size; i++) | |||
391 | { | |||
392 | memset(key.inputs[i].dim, 0, sizeof(key.inputs[i].dim)); | |||
393 | memset(key.inputs[i].stride, 0, sizeof(key.inputs[i].stride)); | |||
394 | if (!inputs[i]) | |||
395 | { | |||
396 | key.inputs[i].format = 0; | |||
397 | key.inputs[i].datatype = 0; | |||
398 | key.inputs[i].dataof = 0; | |||
399 | key.inputs[i].nd = 0; | |||
400 | continue; | |||
401 | } | |||
402 | key.inputs[i].format = inputs[i]->info.format; | |||
403 | key.inputs[i].datatype = inputs[i]->info.datatype; | |||
404 | key.inputs[i].dataof = inputs[i]->dataof; | |||
405 | const int nd = key.inputs[i].nd = ccv_nnc_tensor_nd(inputs[i]->info.dim); | |||
406 | for (j = 0; j < nd; j++) | |||
407 | key.inputs[i].dim[j] = inputs[i]->info.dim[j]; | |||
408 | if (CCV_IS_TENSOR_VIEW(inputs[i])((*(int*)(inputs[i])) & CCV_TENSOR_VIEW)) | |||
409 | for (j = 0; j < nd; j++) | |||
410 | key.inputs[i].stride[j] = ((ccv_nnc_tensor_view_t*)inputs[i])->stride[j]; | |||
411 | } | |||
412 | for (i = 0; i < output_size; i++) | |||
413 | { | |||
414 | memset(key.outputs[i].dim, 0, sizeof(key.outputs[i].dim)); | |||
415 | memset(key.outputs[i].stride, 0, sizeof(key.outputs[i].stride)); | |||
416 | if (!outputs[i]) | |||
417 | { | |||
418 | key.outputs[i].format = 0; | |||
419 | key.outputs[i].datatype = 0; | |||
420 | key.outputs[i].dataof = 0; | |||
421 | key.outputs[i].nd = 0; | |||
422 | continue; | |||
423 | } | |||
424 | key.outputs[i].format = outputs[i]->info.format; | |||
425 | key.outputs[i].datatype = outputs[i]->info.datatype; | |||
426 | key.outputs[i].dataof = outputs[i]->dataof; | |||
427 | const int nd = key.outputs[i].nd = ccv_nnc_tensor_nd(outputs[i]->info.dim); | |||
428 | for (j = 0; j < nd; j++) | |||
429 | key.outputs[i].dim[j] = outputs[i]->info.dim[j]; | |||
430 | if (CCV_IS_TENSOR_VIEW(outputs[i])((*(int*)(outputs[i])) & CCV_TENSOR_VIEW)) | |||
431 | for (j = 0; j < nd; j++) | |||
432 | key.outputs[i].stride[j] = ((ccv_nnc_tensor_view_t*)outputs[i])->stride[j]; | |||
433 | } | |||
434 | return key; | |||
435 | } | |||
436 | ||||
437 | // autotune cache. | |||
438 | static inline uint32_t twang_32from64(uint64_t key) | |||
439 | { | |||
440 | key = (~key) + (key << 18); | |||
441 | key = key ^ (key >> 31); | |||
442 | key = key * 21; | |||
443 | key = key ^ (key >> 11); | |||
444 | key = key + (key << 6); | |||
445 | key = key ^ (key >> 22); | |||
446 | return (uint32_t)(key); | |||
447 | } | |||
448 | ||||
449 | static inline khint32_t _kh_autotune_key_executable_hash_func(const ccv_nnc_cmd_autotune_key_t key) | |||
450 | { | |||
451 | uint32_t h = key.cmd; | |||
452 | int i, j; | |||
453 | uint32_t* data = (uint32_t*)&key.params; | |||
454 | for (i = 0; i < sizeof(key.params) / sizeof(uint32_t); i++) | |||
455 | h = twang_32from64(((uint64_t)h << 32) | data[i]); | |||
456 | data = (uint32_t*)&key.hint; | |||
457 | for (i = 0; i < sizeof(key.hint) / sizeof(uint32_t); i++) | |||
458 | h = twang_32from64(((uint64_t)h << 32) | data[i]); | |||
459 | h = twang_32from64(((uint64_t)h << 32) | key.workspace_size); | |||
460 | h = twang_32from64(((uint64_t)h << 32) | key.input_size); | |||
461 | h = twang_32from64(((uint64_t)h << 32) | key.output_size); | |||
462 | for (i = 0; i < key.input_size; i++) | |||
463 | { | |||
464 | h = twang_32from64(((uint64_t)h << 32) | key.inputs[i].format); | |||
465 | h = twang_32from64(((uint64_t)h << 32) | key.inputs[i].datatype); | |||
466 | h = twang_32from64(((uint64_t)h << 32) | key.inputs[i].dataof); | |||
467 | h = twang_32from64(((uint64_t)h << 32) | key.inputs[i].nd); | |||
468 | for (j = 0; j < key.inputs[i].nd; j++) | |||
469 | { | |||
470 | h = twang_32from64(((uint64_t)h << 32) | key.inputs[i].dim[j]); | |||
471 | h = twang_32from64(((uint64_t)h << 32) | key.inputs[i].stride[j]); | |||
472 | } | |||
473 | } | |||
474 | for (i = 0; i < key.output_size; i++) | |||
475 | { | |||
476 | h = twang_32from64(((uint64_t)h << 32) | key.outputs[i].format); | |||
477 | h = twang_32from64(((uint64_t)h << 32) | key.outputs[i].datatype); | |||
478 | h = twang_32from64(((uint64_t)h << 32) | key.outputs[i].dataof); | |||
479 | h = twang_32from64(((uint64_t)h << 32) | key.outputs[i].nd); | |||
480 | for (j = 0; j < key.outputs[i].nd; j++) | |||
481 | { | |||
482 | h = twang_32from64(((uint64_t)h << 32) | key.outputs[i].dim[j]); | |||
483 | h = twang_32from64(((uint64_t)h << 32) | key.outputs[i].stride[j]); | |||
484 | } | |||
485 | } | |||
486 | return (khint32_t)h; | |||
487 | } | |||
488 | ||||
489 | static inline int _kh_autotune_key_executable_hash_equal(const ccv_nnc_cmd_autotune_key_t a, const ccv_nnc_cmd_autotune_key_t b) | |||
490 | { | |||
491 | if (a.cmd != b.cmd || a.flags != b.flags || a.workspace_size != b.workspace_size || a.input_size != b.input_size || a.output_size != b.output_size) | |||
492 | return 0; | |||
493 | if (memcmp(&a.params, &b.params, sizeof(a.params)) != 0) | |||
494 | return 0; | |||
495 | if (memcmp(&a.hint, &b.hint, sizeof(a.hint)) != 0) | |||
496 | return 0; | |||
497 | int i, j; | |||
498 | for (i = 0; i < a.input_size; i++) | |||
499 | { | |||
500 | if (a.inputs[i].format != b.inputs[i].format || a.inputs[i].datatype != b.inputs[i].datatype || a.inputs[i].nd != b.inputs[i].nd || a.inputs[i].dataof != b.inputs[i].dataof) | |||
501 | return 0; | |||
502 | for (j = 0; j < a.inputs[i].nd; j++) | |||
503 | if (a.inputs[i].dim[j] != b.inputs[i].dim[j] || a.inputs[i].stride[j] != b.inputs[i].stride[j]) | |||
504 | return 0; | |||
505 | } | |||
506 | for (i = 0; i < a.output_size; i++) | |||
507 | { | |||
508 | if (a.outputs[i].format != b.outputs[i].format || a.outputs[i].datatype != b.outputs[i].datatype || a.outputs[i].nd != b.outputs[i].nd || a.outputs[i].dataof != b.outputs[i].dataof) | |||
509 | return 0; | |||
510 | for (j = 0; j < a.outputs[i].nd; j++) | |||
511 | if (a.outputs[i].dim[j] != b.outputs[i].dim[j] || a.outputs[i].stride[j] != b.outputs[i].stride[j]) | |||
512 | return 0; | |||
513 | } | |||
514 | return 1; | |||
515 | } | |||
516 | ||||
517 | typedef struct { | |||
518 | int backend; | |||
519 | int algorithm; | |||
520 | } ccv_nnc_cmd_autotune_val_t; | |||
521 | ||||
522 | KHASH_INIT(autotune_executable_cache, ccv_nnc_cmd_autotune_key_t, ccv_nnc_cmd_autotune_val_t, 1, _kh_autotune_key_executable_hash_func, _kh_autotune_key_executable_hash_equal)typedef struct kh_autotune_executable_cache_s { khint_t n_buckets , size, n_occupied, upper_bound; khint32_t *flags; ccv_nnc_cmd_autotune_key_t *keys; ccv_nnc_cmd_autotune_val_t *vals; } kh_autotune_executable_cache_t ; static inline __attribute__ ((__unused__)) kh_autotune_executable_cache_t *kh_init_autotune_executable_cache(void) { return (kh_autotune_executable_cache_t *)calloc(1,sizeof(kh_autotune_executable_cache_t)); } static inline __attribute__ ((__unused__)) void kh_destroy_autotune_executable_cache (kh_autotune_executable_cache_t *h) { if (h) { free((void *)h ->keys); free(h->flags); free((void *)h->vals); free (h); } } static inline __attribute__ ((__unused__)) void kh_clear_autotune_executable_cache (kh_autotune_executable_cache_t *h) { if (h && h-> flags) { memset(h->flags, 0xaa, ((h->n_buckets) < 16 ? 1 : (h->n_buckets)>>4) * sizeof(khint32_t)); h-> size = h->n_occupied = 0; } } static inline __attribute__ ( (__unused__)) khint_t kh_get_autotune_executable_cache(const kh_autotune_executable_cache_t *h, ccv_nnc_cmd_autotune_key_t key) { if (h->n_buckets) { khint_t k, i, last, mask, step = 0; mask = h->n_buckets - 1; k = _kh_autotune_key_executable_hash_func(key); i = k & mask; last = i; while (!((h->flags[i>>4]>>((i &0xfU)<<1))&2) && (((h->flags[i>> 4]>>((i&0xfU)<<1))&1) || !_kh_autotune_key_executable_hash_equal (h->keys[i], key))) { i = (i + (++step)) & mask; if (i == last) return h->n_buckets; } return ((h->flags[i>> 4]>>((i&0xfU)<<1))&3)? h->n_buckets : i ; } else return 0; } static inline __attribute__ ((__unused__ )) int kh_resize_autotune_executable_cache(kh_autotune_executable_cache_t *h, khint_t new_n_buckets) { khint32_t *new_flags = 0; khint_t j = 1; { (--(new_n_buckets), (new_n_buckets)|=(new_n_buckets )>>1, (new_n_buckets)|=(new_n_buckets)>>2, (new_n_buckets )|=(new_n_buckets)>>4, (new_n_buckets)|=(new_n_buckets) >>8, (new_n_buckets)|=(new_n_buckets)>>16, ++(new_n_buckets )); if (new_n_buckets < 4) new_n_buckets = 4; if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER + 0.5)) j = 0 ; else { new_flags = (khint32_t*)malloc(((new_n_buckets) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)); if ( !new_flags) return -1; memset(new_flags, 0xaa, ((new_n_buckets ) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)) ; if (h->n_buckets < new_n_buckets) { ccv_nnc_cmd_autotune_key_t *new_keys = (ccv_nnc_cmd_autotune_key_t*)realloc((void *)h-> keys,new_n_buckets * sizeof(ccv_nnc_cmd_autotune_key_t)); if ( !new_keys) { free(new_flags); return -1; } h->keys = new_keys ; if (1) { ccv_nnc_cmd_autotune_val_t *new_vals = (ccv_nnc_cmd_autotune_val_t *)realloc((void *)h->vals,new_n_buckets * sizeof(ccv_nnc_cmd_autotune_val_t )); if (!new_vals) { free(new_flags); return -1; } h->vals = new_vals; } } } } if (j) { for (j = 0; j != h->n_buckets ; ++j) { if (((h->flags[j>>4]>>((j&0xfU)<< 1))&3) == 0) { ccv_nnc_cmd_autotune_key_t key = h->keys [j]; ccv_nnc_cmd_autotune_val_t val; khint_t new_mask; new_mask = new_n_buckets - 1; if (1) val = h->vals[j]; (h->flags [j>>4]|=1ul<<((j&0xfU)<<1)); while (1) { khint_t k, i, step = 0; k = _kh_autotune_key_executable_hash_func (key); i = k & new_mask; while (!((new_flags[i>>4]>> ((i&0xfU)<<1))&2)) i = (i + (++step)) & new_mask ; (new_flags[i>>4]&=~(2ul<<((i&0xfU)<< 1))); if (i < h->n_buckets && ((h->flags[i>> 4]>>((i&0xfU)<<1))&3) == 0) { { ccv_nnc_cmd_autotune_key_t tmp = h->keys[i]; h->keys[i] = key; key = tmp; } if (1 ) { ccv_nnc_cmd_autotune_val_t tmp = h->vals[i]; h->vals [i] = val; val = tmp; } (h->flags[i>>4]|=1ul<< ((i&0xfU)<<1)); } else { h->keys[i] = key; if (1 ) h->vals[i] = val; break; } } } } if (h->n_buckets > new_n_buckets) { h->keys = (ccv_nnc_cmd_autotune_key_t*)realloc ((void *)h->keys,new_n_buckets * sizeof(ccv_nnc_cmd_autotune_key_t )); if (1) h->vals = (ccv_nnc_cmd_autotune_val_t*)realloc( (void *)h->vals,new_n_buckets * sizeof(ccv_nnc_cmd_autotune_val_t )); } free(h->flags); h->flags = new_flags; h->n_buckets = new_n_buckets; h->n_occupied = h->size; h->upper_bound = (khint_t)(h->n_buckets * __ac_HASH_UPPER + 0.5); } return 0; } static inline __attribute__ ((__unused__)) khint_t kh_put_autotune_executable_cache (kh_autotune_executable_cache_t *h, ccv_nnc_cmd_autotune_key_t key, int *ret) { khint_t x; if (h->n_occupied >= h-> upper_bound) { if (h->n_buckets > (h->size<<1) ) { if (kh_resize_autotune_executable_cache(h, h->n_buckets - 1) < 0) { *ret = -1; return h->n_buckets; } } else if (kh_resize_autotune_executable_cache(h, h->n_buckets + 1) < 0) { *ret = -1; return h->n_buckets; } } { khint_t k , i, site, last, mask = h->n_buckets - 1, step = 0; x = site = h->n_buckets; k = _kh_autotune_key_executable_hash_func (key); i = k & mask; if (((h->flags[i>>4]>> ((i&0xfU)<<1))&2)) x = i; else { last = i; while (!((h->flags[i>>4]>>((i&0xfU)<<1))& 2) && (((h->flags[i>>4]>>((i&0xfU) <<1))&1) || !_kh_autotune_key_executable_hash_equal (h->keys[i], key))) { if (((h->flags[i>>4]>> ((i&0xfU)<<1))&1)) site = i; i = (i + (++step)) & mask; if (i == last) { x = site; break; } } if (x == h ->n_buckets) { if (((h->flags[i>>4]>>((i& 0xfU)<<1))&2) && site != h->n_buckets) x = site; else x = i; } } } if (((h->flags[x>>4]>> ((x&0xfU)<<1))&2)) { h->keys[x] = key; (h-> flags[x>>4]&=~(3ul<<((x&0xfU)<<1))) ; ++h->size; ++h->n_occupied; *ret = 1; } else if (((h-> flags[x>>4]>>((x&0xfU)<<1))&1)) { h ->keys[x] = key; (h->flags[x>>4]&=~(3ul<< ((x&0xfU)<<1))); ++h->size; *ret = 2; } else *ret = 0; return x; } static inline __attribute__ ((__unused__)) void kh_del_autotune_executable_cache(kh_autotune_executable_cache_t *h, khint_t x) { if (x != h->n_buckets && !((h-> flags[x>>4]>>((x&0xfU)<<1))&3)) { ( h->flags[x>>4]|=1ul<<((x&0xfU)<<1)); --h->size; } } | |||
523 | ||||
524 | static khash_t(autotune_executable_cache)kh_autotune_executable_cache_t* g_autotune_executable_cache = 0; | |||
525 | ||||
526 | static inline void ccv_nnc_cmd_autotune_key_free(ccv_nnc_cmd_autotune_key_t key) | |||
527 | { | |||
528 | if (key.inputs) | |||
529 | ccfreefree(key.inputs); | |||
530 | } | |||
531 | ||||
532 | void ccv_nnc_drain_autotune_cache(void) | |||
533 | { | |||
534 | if (!g_autotune_executable_cache) | |||
535 | return; | |||
536 | khiter_t k; | |||
537 | for (k = kh_begin(g_autotune_executable_cache)(khint_t)(0); k < kh_end(g_autotune_executable_cache)((g_autotune_executable_cache)->n_buckets); k++) | |||
538 | { | |||
539 | if (!kh_exist(g_autotune_executable_cache, k)(!(((g_autotune_executable_cache)->flags[(k)>>4]>> (((k)&0xfU)<<1))&3))) | |||
540 | continue; | |||
541 | ccv_nnc_cmd_autotune_key_free(kh_key(g_autotune_executable_cache, k)((g_autotune_executable_cache)->keys[k])); | |||
542 | kh_del(autotune_executable_cache, g_autotune_executable_cache, k)kh_del_autotune_executable_cache(g_autotune_executable_cache, k); | |||
543 | } | |||
544 | } | |||
545 | ||||
546 | ccv_nnc_cmd_t ccv_nnc_cmd_autotune(const ccv_nnc_cmd_t cmd, const size_t max_workspace_size, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
547 | { | |||
548 | // This is a custom cmd kernel, no need to autotune. | |||
549 | if (cmd.cmd == CCV_NNC_NOOP || | |||
| ||||
550 | cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD || | |||
551 | cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD) | |||
552 | return cmd; | |||
553 | int i, j, k; | |||
554 | // Go through all the backends that supports the same type of memory input / output tensors support. | |||
555 | int tensor_memory = 0, tensor_formats = 0, tensor_datatypes = 0; | |||
556 | for (i = 0; i < input_size; i++) | |||
557 | if (inputs[i]) | |||
558 | tensor_memory |= CCV_TENSOR_GET_MEMORY(inputs[i]->info.type)((inputs[i]->info.type) & 0x3), tensor_formats |= inputs[i]->info.format, tensor_datatypes |= CCV_GET_DATA_TYPE(inputs[i]->info.datatype)((inputs[i]->info.datatype) & 0xFF000); | |||
559 | for (i = 0; i < output_size; i++) | |||
560 | if (outputs[i]) | |||
561 | tensor_memory |= CCV_TENSOR_GET_MEMORY(outputs[i]->info.type)((outputs[i]->info.type) & 0x3), tensor_formats |= outputs[i]->info.format, tensor_datatypes |= CCV_GET_DATA_TYPE(outputs[i]->info.datatype)((outputs[i]->info.datatype) & 0xFF000); | |||
562 | // In this case, we cannot determine the type of the tensor, skip auto-tune. | |||
563 | if (!tensor_memory) | |||
564 | return cmd; | |||
565 | // Otherwise, we are good to go. | |||
566 | ccv_nnc_cmd_t tuned_cmd = cmd; | |||
567 | if (!g_autotune_executable_cache) | |||
568 | g_autotune_executable_cache = kh_init(autotune_executable_cache)kh_init_autotune_executable_cache(); | |||
569 | int ret = 0; | |||
570 | ccv_nnc_cmd_autotune_key_t key = ccv_nnc_cmd_autotune_key_new(cmd, max_workspace_size, hint, flags, inputs, input_size, outputs, output_size); | |||
571 | khiter_t kiter = kh_put(autotune_executable_cache, g_autotune_executable_cache, key, &ret)kh_put_autotune_executable_cache(g_autotune_executable_cache, key, &ret); | |||
572 | if (ret
| |||
573 | { | |||
574 | ccv_nnc_cmd_autotune_key_free(key); | |||
575 | const ccv_nnc_cmd_autotune_val_t val = kh_val(g_autotune_executable_cache, kiter)((g_autotune_executable_cache)->vals[kiter]); | |||
576 | tuned_cmd.backend = val.backend; | |||
577 | tuned_cmd.algorithm = val.algorithm; | |||
578 | return tuned_cmd; | |||
579 | } | |||
580 | int64_t best_measured = -1; | |||
| ||||
581 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
582 | assert(cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((cmd_idx >= 0 && cmd_idx < sizeof (init_map) / sizeof(init_map[0])) ? 1 : 0), __extension__ ({ if (cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof (init_map[0])) ; else __assert_fail ("cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 582, __extension__ __PRETTY_FUNCTION__); } )); | |||
583 | int flag = 0, autotune_available_1 = 0; // This is only applicable if we have only one backend. | |||
584 | for (i = 0; i < CCV_NNC_BACKEND_COUNT; i++) | |||
585 | { | |||
586 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[i]; | |||
587 | // We have the exec kernel, and support all the tensor memory types. | |||
588 | if (api_registry.exec && | |||
589 | (api_registry.tensor_memory & tensor_memory) == tensor_memory && | |||
590 | (api_registry.tensor_formats & tensor_formats) == tensor_formats && | |||
591 | (api_registry.tensor_datatypes & tensor_datatypes) == tensor_datatypes) | |||
592 | { | |||
593 | if (api_registry.autotune) | |||
594 | autotune_available_1 = 1; | |||
595 | if ((++flag) >= 2) // If we have more than 2 suitable backend, we can do this now. | |||
596 | break; | |||
597 | } | |||
598 | } | |||
599 | if (flag == 0) | |||
600 | return cmd; | |||
601 | _ccv_nnc_cmd_set_device_id(inputs, input_size, outputs, output_size, stream_context); | |||
602 | // Allocate inputs / outputs and fill them in. | |||
603 | ccv_nnc_tensor_t** copy_inputs; | |||
604 | ccv_nnc_tensor_t** copy_outputs; | |||
605 | ccv_nnc_tensor_t** allocated_inputs; | |||
606 | ccv_nnc_tensor_t** allocated_outputs; | |||
607 | ccv_nnc_tensor_view_t** allocated_input_views; | |||
608 | ccv_nnc_tensor_view_t** allocated_output_views; | |||
609 | if (flag > 1 || autotune_available_1) | |||
610 | { | |||
611 | copy_inputs = (ccv_nnc_tensor_t**)cccalloccalloc((input_size + output_size) * 3, sizeof(ccv_nnc_tensor_t*)); | |||
612 | copy_outputs = copy_inputs + input_size; | |||
613 | allocated_inputs = copy_outputs + output_size; | |||
614 | allocated_outputs = allocated_inputs + input_size; | |||
615 | allocated_input_views = (ccv_nnc_tensor_view_t**)(allocated_outputs + output_size); | |||
616 | allocated_output_views = allocated_input_views + input_size; | |||
617 | int stride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
618 | for (i = 0; i < output_size; i++) | |||
619 | if (outputs[i]) | |||
620 | { | |||
621 | for (j = 0; j < input_size; j++) | |||
622 | if (inputs[j]) | |||
623 | { | |||
624 | if (outputs[i] == inputs[j]) | |||
625 | { | |||
626 | if (!copy_inputs[j]) | |||
627 | { | |||
628 | allocated_inputs[j] = ccv_nnc_tensor_new(0, inputs[j]->info, 0); | |||
629 | if (CCV_IS_TENSOR_VIEW(inputs[j])((*(int*)(inputs[j])) & CCV_TENSOR_VIEW)) | |||
630 | { | |||
631 | ccv_nnc_tensor_get_stride(inputs[j]->info.dim, stride); | |||
632 | copy_inputs[j] = (ccv_nnc_tensor_t*)(allocated_input_views[j] = ccv_nnc_tensor_view_new(allocated_inputs[j], inputs[j]->info, DIM_ALLOC()(int [(12)]){}, stride)); | |||
633 | } else | |||
634 | copy_inputs[j] = allocated_inputs[j]; | |||
635 | } | |||
636 | copy_outputs[i] = copy_inputs[j]; | |||
637 | break; | |||
638 | } else if (outputs[i]->data.u8 == inputs[j]->data.u8 && | |||
639 | ccv_nnc_tensor_count(outputs[i]->info) == ccv_nnc_tensor_count(inputs[j]->info)) { | |||
640 | if (!copy_inputs[j]) | |||
641 | { | |||
642 | allocated_inputs[j] = ccv_nnc_tensor_new(0, inputs[j]->info, 0); | |||
643 | if (CCV_IS_TENSOR_VIEW(inputs[j])((*(int*)(inputs[j])) & CCV_TENSOR_VIEW)) | |||
644 | { | |||
645 | ccv_nnc_tensor_get_stride(inputs[j]->info.dim, stride); | |||
646 | copy_inputs[j] = (ccv_nnc_tensor_t*)(allocated_input_views[j] = ccv_nnc_tensor_view_new(allocated_inputs[j], inputs[j]->info, DIM_ALLOC()(int [(12)]){}, stride)); | |||
647 | } else | |||
648 | copy_inputs[j] = allocated_inputs[j]; | |||
649 | } | |||
650 | allocated_outputs[i] = ccv_nnc_tensor_new(copy_inputs[j]->data.u8, outputs[i]->info, 0); | |||
651 | if (CCV_IS_TENSOR_VIEW(outputs[i])((*(int*)(outputs[i])) & CCV_TENSOR_VIEW)) | |||
652 | { | |||
653 | ccv_nnc_tensor_get_stride(outputs[i]->info.dim, stride); | |||
654 | copy_outputs[i] = (ccv_nnc_tensor_t*)(allocated_output_views[i] = ccv_nnc_tensor_view_new(allocated_outputs[i], outputs[i]->info, DIM_ALLOC()(int [(12)]){}, stride)); | |||
655 | } else | |||
656 | copy_outputs[i] = allocated_outputs[i]; | |||
657 | break; | |||
658 | } | |||
659 | } | |||
660 | if (!copy_outputs[i]) | |||
661 | { | |||
662 | allocated_outputs[i] = ccv_nnc_tensor_new(0, outputs[i]->info, 0); | |||
663 | if (CCV_IS_TENSOR_VIEW(outputs[i])((*(int*)(outputs[i])) & CCV_TENSOR_VIEW)) | |||
664 | { | |||
665 | ccv_nnc_tensor_get_stride(outputs[i]->info.dim, stride); | |||
666 | copy_outputs[i] = (ccv_nnc_tensor_t*)(allocated_output_views[i] = ccv_nnc_tensor_view_new(allocated_outputs[i], outputs[i]->info, DIM_ALLOC()(int [(12)]){}, stride)); | |||
667 | } else | |||
668 | copy_outputs[i] = allocated_outputs[i]; | |||
669 | } | |||
670 | } | |||
671 | for (i = 0; i < input_size; i++) | |||
672 | if (inputs[i] && !copy_inputs[i]) | |||
673 | copy_inputs[i] = inputs[i]; | |||
674 | } | |||
675 | if (flag == 1) | |||
676 | { | |||
677 | for (i = 0; i < CCV_NNC_BACKEND_COUNT; i++) | |||
678 | { | |||
679 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[i]; | |||
680 | // We have the exec kernel, and support all the tensor memory types. | |||
681 | if (api_registry.exec && | |||
682 | (api_registry.tensor_memory & tensor_memory) == tensor_memory && | |||
683 | (api_registry.tensor_formats & tensor_formats) == tensor_formats && | |||
684 | (api_registry.tensor_datatypes & tensor_datatypes) == tensor_datatypes) | |||
685 | { | |||
686 | tuned_cmd.backend = backend_init_map[i].backend; | |||
687 | // If a given API exist an autotune function, use that to pick the top algorithm. | |||
688 | if (api_registry.autotune) | |||
689 | { | |||
690 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, inputs, input_size, copy_inputs, input_size, stream_context); | |||
691 | _ccv_nnc_cmd_set_device_id(copy_inputs, input_size, copy_outputs, output_size, stream_context); | |||
692 | tuned_cmd.algorithm = api_registry.autotune(tuned_cmd, max_workspace_size, hint, flags, copy_inputs, input_size, copy_outputs, output_size, stream_context); | |||
693 | // Drain the context, autotune can use excessive amount of memory. Need to drain it now. | |||
694 | ccv_nnc_stream_context_drain(stream_context); | |||
695 | } | |||
696 | break; | |||
697 | } | |||
698 | } | |||
699 | if (autotune_available_1) | |||
700 | { | |||
701 | for (i = 0; i < input_size; i++) | |||
702 | { | |||
703 | if (allocated_inputs[i]) | |||
704 | ccv_nnc_tensor_free(allocated_inputs[i]); | |||
705 | if (allocated_input_views[i]) | |||
706 | ccv_nnc_tensor_view_free(allocated_input_views[i]); | |||
707 | } | |||
708 | for (i = 0; i < output_size; i++) | |||
709 | { | |||
710 | if (allocated_outputs[i]) | |||
711 | ccv_nnc_tensor_free(allocated_outputs[i]); | |||
712 | if (allocated_output_views[i]) | |||
713 | ccv_nnc_tensor_view_free(allocated_output_views[i]); | |||
714 | } | |||
715 | ccfreefree(copy_inputs); | |||
716 | } | |||
717 | const ccv_nnc_cmd_autotune_val_t val = { | |||
718 | .backend = tuned_cmd.backend, | |||
719 | .algorithm = tuned_cmd.algorithm | |||
720 | }; | |||
721 | kh_val(g_autotune_executable_cache, kiter)((g_autotune_executable_cache)->vals[kiter]) = val; | |||
722 | return tuned_cmd; | |||
723 | } | |||
724 | // We need to have trial loop through all the data. | |||
725 | for (k = 0; k < AUTO_TUNE_TRIAL_SIZE(3); k++) | |||
726 | { | |||
727 | for (i = 0; i < CCV_NNC_BACKEND_COUNT; i++) | |||
728 | { | |||
729 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[i]; | |||
730 | // We have the exec kernel, and support all the tensor memory types. | |||
731 | if (api_registry.exec && | |||
732 | (api_registry.tensor_memory & tensor_memory) == tensor_memory && | |||
733 | (api_registry.tensor_formats & tensor_formats) == tensor_formats && | |||
734 | (api_registry.tensor_datatypes & tensor_datatypes) == tensor_datatypes) | |||
735 | { | |||
736 | ccv_nnc_cmd_t candid_cmd = cmd; | |||
737 | candid_cmd.backend = backend_init_map[i].backend; | |||
738 | // If a given API exist an autotune function, use that to pick the top algorithm. | |||
739 | if (api_registry.autotune) | |||
740 | { | |||
741 | // Assuming k == 0 is sufficient, and we can skip. | |||
742 | if (k > 0) | |||
743 | continue; | |||
744 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, inputs, input_size, copy_inputs, input_size, stream_context); | |||
745 | _ccv_nnc_cmd_set_device_id(copy_inputs, input_size, copy_outputs, output_size, stream_context); | |||
746 | candid_cmd.algorithm = api_registry.autotune(candid_cmd, max_workspace_size, hint, flags, copy_inputs, input_size, copy_outputs, output_size, stream_context); | |||
747 | // Drain the context, autotune can use excessive amount of memory. Need to drain it now. | |||
748 | ccv_nnc_stream_context_drain(stream_context); | |||
749 | uint64_t elapsed = ccv_nnc_cmd_mono_time(); | |||
750 | // Ready to run. | |||
751 | int status = ccv_nnc_cmd_exec(candid_cmd, hint, flags, inputs, input_size, outputs, output_size, stream_context); | |||
752 | ccv_nnc_stream_context_wait(stream_context); | |||
753 | elapsed = ccv_nnc_cmd_mono_time() - elapsed; | |||
754 | if (status == CCV_NNC_EXEC_SUCCESS && | |||
755 | (best_measured == -1 || elapsed < best_measured)) | |||
756 | { | |||
757 | best_measured = elapsed; | |||
758 | tuned_cmd = candid_cmd; | |||
759 | } | |||
760 | } else { | |||
761 | // Otherwise loop over the existing algorithms and pick the top one. | |||
762 | for (j = 0; j < api_registry.algorithms; j++) | |||
763 | { | |||
764 | candid_cmd.algorithm = j; | |||
765 | ccv_nnc_cmd_exec(CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, inputs, input_size, copy_inputs, input_size, stream_context); | |||
766 | _ccv_nnc_cmd_set_device_id(copy_inputs, input_size, copy_outputs, output_size, stream_context); | |||
767 | uint64_t elapsed = ccv_nnc_cmd_mono_time(); | |||
768 | // Ready to run. | |||
769 | int status = ccv_nnc_cmd_exec(candid_cmd, hint, flags, copy_inputs, input_size, copy_outputs, output_size, stream_context); | |||
770 | elapsed = ccv_nnc_cmd_mono_time() - elapsed; | |||
771 | if (status == CCV_NNC_EXEC_SUCCESS && | |||
772 | (best_measured == -1 || elapsed < best_measured)) | |||
773 | { | |||
774 | best_measured = elapsed; | |||
775 | tuned_cmd = candid_cmd; | |||
776 | } | |||
777 | } | |||
778 | } | |||
779 | } | |||
780 | } | |||
781 | } | |||
782 | for (i = 0; i < input_size; i++) | |||
783 | { | |||
784 | if (allocated_inputs[i]) | |||
785 | ccv_nnc_tensor_free(allocated_inputs[i]); | |||
786 | if (allocated_input_views[i]) | |||
787 | ccv_nnc_tensor_view_free(allocated_input_views[i]); | |||
788 | } | |||
789 | for (i = 0; i < output_size; i++) | |||
790 | { | |||
791 | if (allocated_outputs[i]) | |||
792 | ccv_nnc_tensor_free(allocated_outputs[i]); | |||
793 | if (allocated_output_views[i]) | |||
794 | ccv_nnc_tensor_view_free(allocated_output_views[i]); | |||
795 | } | |||
796 | ccfreefree(copy_inputs); | |||
797 | const ccv_nnc_cmd_autotune_val_t val = { | |||
798 | .backend = tuned_cmd.backend, | |||
799 | .algorithm = tuned_cmd.algorithm | |||
800 | }; | |||
801 | kh_val(g_autotune_executable_cache, kiter)((g_autotune_executable_cache)->vals[kiter]) = val; | |||
802 | return tuned_cmd; | |||
803 | } | |||
804 | ||||
805 | int ccv_nnc_cmd_bitmask(const ccv_nnc_cmd_t cmd, const int input_size, const int output_size, const uint64_t* const input_bitmasks, const int input_bitmask_size, const uint64_t* const output_bitmasks, const int output_bitmask_size) | |||
806 | { | |||
807 | // If it is no-op, return true, it can deal with any number of parameters. | |||
808 | if (cmd.cmd == CCV_NNC_NOOP) | |||
809 | return 1; | |||
810 | // If it is a custom command, I cannot check it at all, return false. | |||
811 | if (cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD) | |||
812 | return 0; | |||
813 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
814 | const ccv_nnc_cmd_registry_t cmd_registry = init_map[cmd_idx].registry; | |||
815 | if (cmd_registry.bitmask) | |||
816 | return cmd_registry.bitmask(cmd.info, input_size, output_size, input_bitmasks, input_bitmask_size, output_bitmasks, output_bitmask_size); | |||
817 | // If there is not checking, none can pass. | |||
818 | return 0; | |||
819 | } | |||
820 | ||||
821 | int ccv_nnc_device_ids_for_io(ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, const int tensor_type, int* const device_ids, const int max_device_id_size) | |||
822 | { | |||
823 | int i, j; | |||
824 | int device_id_size = 0; | |||
825 | if (max_device_id_size <= device_id_size) | |||
826 | return device_id_size; | |||
827 | // The device id of the exec is determined by its outputs. | |||
828 | for (i = 0; i < output_size; i++) | |||
829 | if (outputs[i] && | |||
830 | CCV_TENSOR_GET_MEMORY(outputs[i]->info.type)((outputs[i]->info.type) & 0x3) == tensor_type && | |||
831 | CCV_TENSOR_GET_DEVICE(outputs[i]->info.type)((outputs[i]->info.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY) | |||
832 | { | |||
833 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(outputs[i]->info.type)(((outputs[i]->info.type) & 0xfff00) >> 8); | |||
834 | int flag = 0; | |||
835 | for (j = 0; !flag && j < device_id_size; j++) | |||
836 | flag = (device_ids[j] == device_id); | |||
837 | if (flag) | |||
838 | continue; | |||
839 | device_ids[device_id_size++] = device_id; | |||
840 | if (device_id_size >= max_device_id_size) | |||
841 | return device_id_size; | |||
842 | } | |||
843 | if (device_id_size == 0) | |||
844 | { | |||
845 | int device_id = -1; | |||
846 | for (i = 0; i < input_size; i++) | |||
847 | if (inputs[i] && | |||
848 | CCV_TENSOR_GET_MEMORY(inputs[i]->info.type)((inputs[i]->info.type) & 0x3) == tensor_type && | |||
849 | CCV_TENSOR_GET_DEVICE(inputs[i]->info.type)((inputs[i]->info.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY && | |||
850 | (device_id < 0 || CCV_TENSOR_GET_DEVICE_ID(inputs[i]->info.type)(((inputs[i]->info.type) & 0xfff00) >> 8) < device_id)) | |||
851 | device_id = CCV_TENSOR_GET_DEVICE_ID(inputs[i]->info.type)(((inputs[i]->info.type) & 0xfff00) >> 8); | |||
852 | if (device_id >= 0) | |||
853 | { | |||
854 | device_ids[0] = device_id; | |||
855 | return 1; | |||
856 | } | |||
857 | } | |||
858 | return device_id_size; | |||
859 | } | |||
860 | ||||
861 | void* ccv_nnc_cmd_aux(const ccv_nnc_cmd_t cmd) | |||
862 | { | |||
863 | if (cmd.cmd == CCV_NNC_NOOP || | |||
864 | cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD || | |||
865 | cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD) | |||
866 | return 0; | |||
867 | assert(cmd.backend != CCV_NNC_NO_BACKEND)((void) sizeof ((cmd.backend != CCV_NNC_NO_BACKEND) ? 1 : 0), __extension__ ({ if (cmd.backend != CCV_NNC_NO_BACKEND) ; else __assert_fail ("cmd.backend != CCV_NNC_NO_BACKEND", "ccv_nnc_cmd.c" , 867, __extension__ __PRETTY_FUNCTION__); })); | |||
868 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
869 | assert(cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((cmd_idx >= 0 && cmd_idx < sizeof (init_map) / sizeof(init_map[0])) ? 1 : 0), __extension__ ({ if (cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof (init_map[0])) ; else __assert_fail ("cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 869, __extension__ __PRETTY_FUNCTION__); } )); | |||
870 | const int backend_idx = _ccv_nnc_cmd_backend_ph(cmd.backend); | |||
871 | assert(backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT)((void) sizeof ((backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT) ? 1 : 0), __extension__ ({ if (backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT) ; else __assert_fail ("backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT" , "ccv_nnc_cmd.c", 871, __extension__ __PRETTY_FUNCTION__); } )); | |||
872 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[backend_idx]; | |||
873 | return api_registry.aux; | |||
874 | } | |||
875 | ||||
876 | int ccv_nnc_cmd_exec(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
877 | { | |||
878 | // If it is no-op, return as if succeed already. | |||
879 | if (cmd.cmd == CCV_NNC_NOOP) | |||
880 | return 0; | |||
881 | _ccv_nnc_cmd_set_device_id(inputs, input_size, outputs, output_size, stream_context); | |||
882 | // If it is a custom command, just apply it directly. | |||
883 | if (cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD) | |||
884 | { | |||
885 | int ret = cmd.isa->exec(cmd, hint, flags, inputs, input_size, outputs, output_size, stream_context); | |||
886 | if (!stream_context) | |||
887 | ccv_nnc_stream_context_drain(stream_context); | |||
888 | return ret; | |||
889 | } | |||
890 | assert(cmd.cmd != CCV_NNC_GRAPH_FORWARD && cmd.cmd != CCV_NNC_GRAPH_BACKWARD)((void) sizeof ((cmd.cmd != CCV_NNC_GRAPH_FORWARD && cmd .cmd != CCV_NNC_GRAPH_BACKWARD) ? 1 : 0), __extension__ ({ if (cmd.cmd != CCV_NNC_GRAPH_FORWARD && cmd.cmd != CCV_NNC_GRAPH_BACKWARD ) ; else __assert_fail ("cmd.cmd != CCV_NNC_GRAPH_FORWARD && cmd.cmd != CCV_NNC_GRAPH_BACKWARD" , "ccv_nnc_cmd.c", 890, __extension__ __PRETTY_FUNCTION__); } )); | |||
891 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
892 | assert(cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((cmd_idx >= 0 && cmd_idx < sizeof (init_map) / sizeof(init_map[0])) ? 1 : 0), __extension__ ({ if (cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof (init_map[0])) ; else __assert_fail ("cmd_idx >= 0 && cmd_idx < sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 892, __extension__ __PRETTY_FUNCTION__); } )); | |||
893 | int i; | |||
894 | uint32_t backend = cmd.backend; | |||
895 | if (backend == CCV_NNC_NO_BACKEND) | |||
896 | { | |||
897 | // Find a suitable backend. | |||
898 | int tensor_memory = 0, tensor_formats = 0, tensor_datatypes = 0; | |||
899 | for (i = 0; i < input_size; i++) | |||
900 | if (inputs[i]) | |||
901 | tensor_memory |= CCV_TENSOR_GET_MEMORY(inputs[i]->info.type)((inputs[i]->info.type) & 0x3), tensor_formats |= inputs[i]->info.format, tensor_datatypes |= CCV_GET_DATA_TYPE(inputs[i]->info.datatype)((inputs[i]->info.datatype) & 0xFF000); | |||
902 | for (i = 0; i < output_size; i++) | |||
903 | if (outputs[i]) | |||
904 | tensor_memory |= CCV_TENSOR_GET_MEMORY(outputs[i]->info.type)((outputs[i]->info.type) & 0x3), tensor_formats |= outputs[i]->info.format, tensor_datatypes |= CCV_GET_DATA_TYPE(outputs[i]->info.datatype)((outputs[i]->info.datatype) & 0xFF000); | |||
905 | backend = ccv_nnc_cmd_find_backend(cmd, tensor_memory, tensor_formats, tensor_datatypes); | |||
906 | } | |||
907 | assert(backend != CCV_NNC_NO_BACKEND)((void) sizeof ((backend != CCV_NNC_NO_BACKEND) ? 1 : 0), __extension__ ({ if (backend != CCV_NNC_NO_BACKEND) ; else __assert_fail ( "backend != CCV_NNC_NO_BACKEND", "ccv_nnc_cmd.c", 907, __extension__ __PRETTY_FUNCTION__); })); | |||
908 | const int backend_idx = _ccv_nnc_cmd_backend_ph(backend); | |||
909 | assert(backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT)((void) sizeof ((backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT) ? 1 : 0), __extension__ ({ if (backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT) ; else __assert_fail ("backend_idx >= 0 && backend_idx < CCV_NNC_BACKEND_COUNT" , "ccv_nnc_cmd.c", 909, __extension__ __PRETTY_FUNCTION__); } )); | |||
910 | const ccv_nnc_cmd_backend_registry_t api_registry = init_map[cmd_idx].backends[backend_idx]; | |||
911 | if (!api_registry.exec) | |||
912 | return CCV_NNC_EXEC_NO_KERNEL; | |||
913 | // Everything is out, call the underlying implementation. | |||
914 | int ret = api_registry.exec(cmd, hint, flags, inputs, input_size, outputs, output_size, stream_context); | |||
915 | if (!stream_context) | |||
916 | ccv_nnc_stream_context_drain(stream_context); | |||
917 | return ret; | |||
918 | } | |||
919 | ||||
920 | int ccv_nnc_cmd_attr(const ccv_nnc_cmd_t cmd, const int flags) | |||
921 | { | |||
922 | // No additional attr for noop. | |||
923 | if (cmd.cmd == CCV_NNC_NOOP || | |||
924 | // If it is a custom command, just apply it directly. | |||
925 | cmd.cmd == CCV_NNC_CUSTOM_FORWARD || cmd.cmd == CCV_NNC_CUSTOM_BACKWARD || | |||
926 | // If it is sub-graph, there is no additional attr as well. | |||
927 | cmd.cmd == CCV_NNC_GRAPH_FORWARD || cmd.cmd == CCV_NNC_GRAPH_BACKWARD) | |||
928 | return 0; | |||
929 | const int cmd_idx = _ccv_nnc_cmd_ph(cmd.cmd); | |||
930 | assert(cmd_idx >= 0 && cmd_idx <sizeof(init_map) / sizeof(init_map[0]))((void) sizeof ((cmd_idx >= 0 && cmd_idx <sizeof (init_map) / sizeof(init_map[0])) ? 1 : 0), __extension__ ({ if (cmd_idx >= 0 && cmd_idx <sizeof(init_map) / sizeof (init_map[0])) ; else __assert_fail ("cmd_idx >= 0 && cmd_idx <sizeof(init_map) / sizeof(init_map[0])" , "ccv_nnc_cmd.c", 930, __extension__ __PRETTY_FUNCTION__); } )); | |||
931 | const ccv_nnc_cmd_registry_t cmd_registry = init_map[cmd_idx].registry; | |||
932 | return !!(cmd_registry.flags & flags); | |||
933 | } | |||
934 | ||||
935 | void ccv_nnc_set_profiler(int state) | |||
936 | { | |||
937 | #ifdef HAVE_CUDA1 | |||
938 | cusetprofiler(state); | |||
939 | #endif | |||
940 | } | |||
941 | ||||
942 | int ccv_nnc_queue_watermark(void) | |||
943 | { | |||
944 | #ifdef HAVE_MPS | |||
945 | return ccv_nnc_mps_queue_watermark(); | |||
946 | #else | |||
947 | return 0; | |||
948 | #endif | |||
949 | } | |||
950 | ||||
951 | void ccv_nnc_set_queue_watermark(int watermark) | |||
952 | { | |||
953 | #ifdef HAVE_MPS | |||
954 | // If we need to be memory efficient, we need to bound how many in-flight command buffers there are. | |||
955 | ccv_nnc_mps_set_queue_watermark(watermark); | |||
956 | #endif | |||
957 | } | |||
958 | ||||
959 | void ccv_nnc_set_device_permutation(const int type, const int* const device_map, const int size) | |||
960 | { | |||
961 | if (type != CCV_STREAM_CONTEXT_GPU) | |||
962 | return; | |||
963 | #ifdef HAVE_CUDA1 | |||
964 | cusetdevicemap(device_map, size); | |||
965 | #endif | |||
966 | } |