File: | nnc/ccv_cnnp_model_core.c |
Warning: | line 276, column 36 Array access (via field 'vals') results in a null pointer dereference |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include "ccv_nnc.h" | |||
2 | #include "ccv_nnc_easy.h" | |||
3 | #include "ccv_nnc_internal.h" | |||
4 | #include "ccv_internal.h" | |||
5 | #include "_ccv_cnnp_model.h" | |||
6 | #include "3rdparty/khash/khash.h" | |||
7 | ||||
8 | // MARK - Baisc Layers | |||
9 | ||||
10 | static const ccv_cnnp_model_vtab_t ccv_cnnp_input_isa; | |||
11 | ||||
12 | #define CCV_CNNP_IS_MODEL_INPUT(x)((x)->isa == &ccv_cnnp_input_isa) ((x)->isa == &ccv_cnnp_input_isa) | |||
13 | ||||
14 | #define CCV_CNNP_IS_MODEL_PARAMETER(x)((x)->param_ref != 0 || (x)->param_sel != 0) ((x)->param_ref != 0 || (x)->param_sel != 0) | |||
15 | ||||
16 | typedef struct { | |||
17 | ccv_cnnp_model_t super; | |||
18 | int sequence_size; | |||
19 | ccv_cnnp_model_t* sequence[1]; | |||
20 | } ccv_cnnp_sequential_model_t; | |||
21 | ||||
22 | static void _ccv_cnnp_sequential_model_deinit(ccv_cnnp_model_t* const super) | |||
23 | { | |||
24 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
25 | int i, j = 0; | |||
26 | for (i = 0; i < self->sequence_size; i++) | |||
27 | { | |||
28 | ccv_cnnp_model_t* const model = self->sequence[i]; | |||
29 | if (model->deinit_state) | |||
30 | continue; | |||
31 | ccv_cnnp_model_deinit(model); | |||
32 | self->sequence[j++] = model; | |||
33 | } | |||
34 | self->sequence_size = j; | |||
35 | } | |||
36 | ||||
37 | static void _ccv_cnnp_sequential_model_dealloc(ccv_cnnp_model_t* const super) | |||
38 | { | |||
39 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
40 | int i; | |||
41 | for (i = 0; i < self->sequence_size; i++) | |||
42 | ccv_cnnp_model_free(self->sequence[i]); | |||
43 | } | |||
44 | ||||
45 | static void _ccv_cnnp_sequential_model_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size) | |||
46 | { | |||
47 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
48 | PRINT(CCV_CLI_VERBOSE, "[cnnp_sequential_model_build] 1. %p, sequence_size: %d\n", self, self->sequence_size)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_sequential_model_build] 1. %p, sequence_size: %d\n" , self, self->sequence_size); fflush(stdout); } } while (0 ); | |||
49 | ccv_cnnp_model_t* const sub_model = self->sequence[0]; | |||
50 | // Go through each sub model to build the graph. | |||
51 | ccv_nnc_tensor_symbol_t input; | |||
52 | sub_model->data = self->super.data; | |||
53 | ccv_cnnp_model_build(sub_model, graph, inputs, input_size, &input, 1); | |||
54 | sub_model->data = 0; | |||
55 | int i; | |||
56 | for (i = 1; i < self->sequence_size; i++) | |||
57 | { | |||
58 | ccv_nnc_tensor_symbol_t output; | |||
59 | ccv_cnnp_model_t* const sub_model = self->sequence[i]; | |||
60 | // Go through each sub model to build the graph. | |||
61 | sub_model->data = self->super.data; | |||
62 | ccv_cnnp_model_build(sub_model, graph, &input, 1, &output, 1); | |||
63 | sub_model->data = 0; | |||
64 | input = output; | |||
65 | } | |||
66 | outputs[0] = input; | |||
67 | PRINT(CCV_CLI_VERBOSE, "[cnnp_sequential_model_build] 2. %p\n", self)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_sequential_model_build] 2. %p\n", self); fflush (stdout); } } while (0); | |||
68 | } | |||
69 | ||||
70 | static void _ccv_cnnp_sequential_model_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context) | |||
71 | { | |||
72 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
73 | int i; | |||
74 | for (i = 0; i < self->sequence_size; i++) | |||
75 | ccv_cnnp_model_init_states(self->sequence[i], graph, initializer, context); | |||
76 | } | |||
77 | ||||
78 | static void _ccv_cnnp_sequential_model_set_is_test(ccv_cnnp_model_t* const super, const int is_test, const ccv_cnnp_cmd_updater_f updater, void* const context) | |||
79 | { | |||
80 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
81 | int i; | |||
82 | for (i = 0; i < self->sequence_size; i++) | |||
83 | ccv_cnnp_model_set_is_test(self->sequence[i], is_test, updater, context); | |||
84 | } | |||
85 | ||||
86 | static ccv_cnnp_model_t* _ccv_cnnp_sequential_model_copy(const ccv_cnnp_model_t* const super, void* const context); | |||
87 | ||||
88 | static void _ccv_cnnp_sequential_model_add_to_parameter_indices(ccv_cnnp_model_t* const super, const int index, ccv_array_t* const parameter_indices) | |||
89 | { | |||
90 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
91 | int i; | |||
92 | for (i = 0; i < self->sequence_size; i++) | |||
93 | ccv_cnnp_model_add_to_parameter_indices(self->sequence[i], index, parameter_indices); | |||
94 | } | |||
95 | ||||
96 | static void _ccv_cnnp_sequential_model_notify(const ccv_cnnp_model_t* const super, const int tag, void* const payload) | |||
97 | { | |||
98 | ccv_cnnp_sequential_model_t* const self = (ccv_cnnp_sequential_model_t*)super; | |||
99 | int i; | |||
100 | for (i = 0; i < self->sequence_size; i++) | |||
101 | ccv_cnnp_model_notify(self->sequence[i], tag, payload); | |||
102 | } | |||
103 | ||||
104 | static const ccv_cnnp_model_vtab_t ccv_cnnp_sequential_model_isa = { | |||
105 | .deinit = _ccv_cnnp_sequential_model_deinit, | |||
106 | .dealloc = _ccv_cnnp_sequential_model_dealloc, | |||
107 | .build = _ccv_cnnp_sequential_model_build, | |||
108 | .init_states = _ccv_cnnp_sequential_model_init_states, | |||
109 | .copy = _ccv_cnnp_sequential_model_copy, | |||
110 | .set_is_test = _ccv_cnnp_sequential_model_set_is_test, | |||
111 | .add_to_parameter_indices = _ccv_cnnp_sequential_model_add_to_parameter_indices, | |||
112 | .notify = _ccv_cnnp_sequential_model_notify, | |||
113 | }; | |||
114 | ||||
115 | KHASH_MAP_INIT_INT64(model, ccv_cnnp_model_t*)typedef struct kh_model_s { khint_t n_buckets, size, n_occupied , upper_bound; khint32_t *flags; khint64_t *keys; ccv_cnnp_model_t * *vals; } kh_model_t; static inline __attribute__ ((__unused__ )) kh_model_t *kh_init_model(void) { return (kh_model_t*)calloc (1,sizeof(kh_model_t)); } static inline __attribute__ ((__unused__ )) void kh_destroy_model(kh_model_t *h) { if (h) { free((void *)h->keys); free(h->flags); free((void *)h->vals); free (h); } } static inline __attribute__ ((__unused__)) void kh_clear_model (kh_model_t *h) { if (h && h->flags) { memset(h-> flags, 0xaa, ((h->n_buckets) < 16? 1 : (h->n_buckets )>>4) * sizeof(khint32_t)); h->size = h->n_occupied = 0; } } static inline __attribute__ ((__unused__)) khint_t kh_get_model (const kh_model_t *h, khint64_t key) { if (h->n_buckets) { khint_t k, i, last, mask, step = 0; mask = h->n_buckets - 1; k = (khint32_t)((key)>>33^(key)^(key)<<11); i = k & mask; last = i; while (!((h->flags[i>>4]>> ((i&0xfU)<<1))&2) && (((h->flags[i>> 4]>>((i&0xfU)<<1))&1) || !((h->keys[i] ) == (key)))) { i = (i + (++step)) & mask; if (i == last) return h->n_buckets; } return ((h->flags[i>>4]>> ((i&0xfU)<<1))&3)? h->n_buckets : i; } else return 0; } static inline __attribute__ ((__unused__)) int kh_resize_model (kh_model_t *h, khint_t new_n_buckets) { khint32_t *new_flags = 0; khint_t j = 1; { (--(new_n_buckets), (new_n_buckets)|=( new_n_buckets)>>1, (new_n_buckets)|=(new_n_buckets)>> 2, (new_n_buckets)|=(new_n_buckets)>>4, (new_n_buckets) |=(new_n_buckets)>>8, (new_n_buckets)|=(new_n_buckets)>> 16, ++(new_n_buckets)); if (new_n_buckets < 4) new_n_buckets = 4; if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER + 0.5)) j = 0; else { new_flags = (khint32_t*)malloc(((new_n_buckets ) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)) ; if (!new_flags) return -1; memset(new_flags, 0xaa, ((new_n_buckets ) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)) ; if (h->n_buckets < new_n_buckets) { khint64_t *new_keys = (khint64_t*)realloc((void *)h->keys,new_n_buckets * sizeof (khint64_t)); if (!new_keys) { free(new_flags); return -1; } h ->keys = new_keys; if (1) { ccv_cnnp_model_t* *new_vals = ( ccv_cnnp_model_t**)realloc((void *)h->vals,new_n_buckets * sizeof(ccv_cnnp_model_t*)); if (!new_vals) { free(new_flags) ; return -1; } h->vals = new_vals; } } } } if (j) { for (j = 0; j != h->n_buckets; ++j) { if (((h->flags[j>> 4]>>((j&0xfU)<<1))&3) == 0) { khint64_t key = h->keys[j]; ccv_cnnp_model_t* val; khint_t new_mask; new_mask = new_n_buckets - 1; if (1) val = h->vals[j]; (h->flags [j>>4]|=1ul<<((j&0xfU)<<1)); while (1) { khint_t k, i, step = 0; k = (khint32_t)((key)>>33^(key )^(key)<<11); i = k & new_mask; while (!((new_flags [i>>4]>>((i&0xfU)<<1))&2)) i = (i + (++step)) & new_mask; (new_flags[i>>4]&=~(2ul<< ((i&0xfU)<<1))); if (i < h->n_buckets && ((h->flags[i>>4]>>((i&0xfU)<<1))& 3) == 0) { { khint64_t tmp = h->keys[i]; h->keys[i] = key ; key = tmp; } if (1) { ccv_cnnp_model_t* tmp = h->vals[i] ; h->vals[i] = val; val = tmp; } (h->flags[i>>4]|= 1ul<<((i&0xfU)<<1)); } else { h->keys[i] = key; if (1) h->vals[i] = val; break; } } } } if (h->n_buckets > new_n_buckets) { h->keys = (khint64_t*)realloc((void *)h->keys,new_n_buckets * sizeof(khint64_t)); if (1) h-> vals = (ccv_cnnp_model_t**)realloc((void *)h->vals,new_n_buckets * sizeof(ccv_cnnp_model_t*)); } free(h->flags); h->flags = new_flags; h->n_buckets = new_n_buckets; h->n_occupied = h->size; h->upper_bound = (khint_t)(h->n_buckets * __ac_HASH_UPPER + 0.5); } return 0; } static inline __attribute__ ((__unused__)) khint_t kh_put_model(kh_model_t *h, khint64_t key, int *ret) { khint_t x; if (h->n_occupied >= h-> upper_bound) { if (h->n_buckets > (h->size<<1) ) { if (kh_resize_model(h, h->n_buckets - 1) < 0) { *ret = -1; return h->n_buckets; } } else if (kh_resize_model(h , h->n_buckets + 1) < 0) { *ret = -1; return h->n_buckets ; } } { khint_t k, i, site, last, mask = h->n_buckets - 1, step = 0; x = site = h->n_buckets; k = (khint32_t)((key)>> 33^(key)^(key)<<11); i = k & mask; if (((h->flags [i>>4]>>((i&0xfU)<<1))&2)) x = i; else { last = i; while (!((h->flags[i>>4]>>((i& 0xfU)<<1))&2) && (((h->flags[i>>4] >>((i&0xfU)<<1))&1) || !((h->keys[i]) == (key)))) { if (((h->flags[i>>4]>>((i&0xfU )<<1))&1)) site = i; i = (i + (++step)) & mask; if (i == last) { x = site; break; } } if (x == h->n_buckets ) { if (((h->flags[i>>4]>>((i&0xfU)<< 1))&2) && site != h->n_buckets) x = site; else x = i; } } } if (((h->flags[x>>4]>>((x&0xfU )<<1))&2)) { h->keys[x] = key; (h->flags[x>> 4]&=~(3ul<<((x&0xfU)<<1))); ++h->size; ++h->n_occupied; *ret = 1; } else if (((h->flags[x>> 4]>>((x&0xfU)<<1))&1)) { h->keys[x] = key ; (h->flags[x>>4]&=~(3ul<<((x&0xfU)<< 1))); ++h->size; *ret = 2; } else *ret = 0; return x; } static inline __attribute__ ((__unused__)) void kh_del_model(kh_model_t *h, khint_t x) { if (x != h->n_buckets && !((h-> flags[x>>4]>>((x&0xfU)<<1))&3)) { ( h->flags[x>>4]|=1ul<<((x&0xfU)<<1)); --h->size; } } | |||
116 | ||||
117 | static ccv_cnnp_model_t* _ccv_cnnp_sequential_model_copy(const ccv_cnnp_model_t* const super, void* const context) | |||
118 | { | |||
119 | const ccv_cnnp_sequential_model_t* const self = (const ccv_cnnp_sequential_model_t*)super; | |||
120 | ccv_cnnp_sequential_model_t* const sequential_model = (ccv_cnnp_sequential_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_sequential_model_t) + sizeof(ccv_cnnp_model_t*) * (self->sequence_size - 1) + sizeof(ccv_nnc_tensor_symbol_t)); | |||
121 | sequential_model->super.isa = &ccv_cnnp_sequential_model_isa; | |||
122 | sequential_model->super.input_size = 1; | |||
123 | sequential_model->super.outputs = (ccv_nnc_tensor_symbol_t*)(sequential_model->sequence + self->sequence_size); | |||
124 | sequential_model->super.output_size = 1; | |||
125 | ccv_cnnp_model_copy_name(&sequential_model->super, self->super.name); | |||
126 | sequential_model->sequence_size = self->sequence_size; | |||
127 | int i; | |||
128 | khash_t(model)kh_model_t* model_map = context ? (khash_t(model)kh_model_t*)context : kh_init(model)kh_init_model(); | |||
129 | for (i = 0; i < self->sequence_size; i++) | |||
130 | { | |||
131 | ccv_cnnp_model_t* const sub_model = self->sequence[i]; | |||
132 | int ret; | |||
133 | khiter_t k = kh_put(model, model_map, (uint64_t)(uintptr_t)sub_model, &ret)kh_put_model(model_map, (uint64_t)(uintptr_t)sub_model, & ret); | |||
134 | ccv_cnnp_model_t* model_copy; | |||
135 | if (ret != 0) | |||
136 | model_copy = kh_val(model_map, k)((model_map)->vals[k]) = _ccv_cnnp_model_copy(sub_model, model_map); | |||
137 | else | |||
138 | model_copy = kh_val(model_map, k)((model_map)->vals[k]); | |||
139 | sequential_model->sequence[i] = model_copy; | |||
140 | } | |||
141 | if (!context) | |||
142 | kh_destroy(model, model_map)kh_destroy_model(model_map); | |||
143 | return (ccv_cnnp_model_t*)sequential_model; | |||
144 | } | |||
145 | ||||
146 | ccv_cnnp_model_t* ccv_cnnp_sequential_new(ccv_cnnp_model_t* const* const models, const int model_size, const int is_trainable, const char* const name) | |||
147 | { | |||
148 | assert(model_size > 0)((void) sizeof ((model_size > 0) ? 1 : 0), __extension__ ( { if (model_size > 0) ; else __assert_fail ("model_size > 0" , "ccv_cnnp_model_core.c", 148, __extension__ __PRETTY_FUNCTION__ ); })); | |||
149 | ccv_cnnp_sequential_model_t* const sequential_model = (ccv_cnnp_sequential_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_sequential_model_t) + sizeof(ccv_cnnp_model_t*) * (model_size - 1) + sizeof(ccv_nnc_tensor_symbol_t)); | |||
150 | sequential_model->super.isa = &ccv_cnnp_sequential_model_isa; | |||
151 | sequential_model->super.input_size = models[0]->input_size; | |||
152 | sequential_model->super.outputs = (ccv_nnc_tensor_symbol_t*)(sequential_model->sequence + model_size); | |||
153 | sequential_model->super.output_size = 1; | |||
154 | sequential_model->super.is_trainable = is_trainable; | |||
155 | ccv_cnnp_model_copy_name(&sequential_model->super, name); | |||
156 | sequential_model->sequence_size = model_size; | |||
157 | memcpy(sequential_model->sequence, models, sizeof(ccv_cnnp_model_t*) * model_size); | |||
158 | return (ccv_cnnp_model_t*)sequential_model; | |||
159 | } | |||
160 | ||||
161 | typedef struct { | |||
162 | ccv_cnnp_model_t super; | |||
163 | // The model's outputs, it is different from super.output_size, as latter is for actual tensor symbols. | |||
164 | int model_output_size; | |||
165 | // The name is similar to sequential model, but it is just topological sorted models. | |||
166 | int sequence_size; | |||
167 | int* model_outputs; // Which model, as in sequences, have some outputs. | |||
168 | ccv_cnnp_model_io_t sequence[1]; | |||
169 | } ccv_cnnp_functional_model_t; | |||
170 | ||||
171 | static void _ccv_cnnp_functional_model_deinit(ccv_cnnp_model_t* const super) | |||
172 | { | |||
173 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
174 | int i, j = 0, k; | |||
175 | for (i = 0; i < self->sequence_size; i++) | |||
176 | { | |||
177 | ccv_cnnp_model_t* const model = self->sequence[i]->model; | |||
178 | if (!model || model->deinit_state) | |||
179 | continue; | |||
180 | self->sequence[j++] = (ccv_cnnp_model_io_t)model; | |||
181 | // Go through all their IO to remove itself as model. | |||
182 | assert(model->io)((void) sizeof ((model->io) ? 1 : 0), __extension__ ({ if ( model->io) ; else __assert_fail ("model->io", "ccv_cnnp_model_core.c" , 182, __extension__ __PRETTY_FUNCTION__); })); | |||
183 | for (k = 0; k < model->io->rnum; k++) | |||
184 | { | |||
185 | ccv_cnnp_model_io_t model_io = *(ccv_cnnp_model_io_t*)ccv_array_get(model->io, k)((void*)(((char*)((model->io)->data)) + (size_t)(model-> io)->rsize * (size_t)(k))); | |||
186 | model_io->model = 0; | |||
187 | } | |||
188 | } | |||
189 | for (i = 0; i < j; i++) | |||
190 | ccv_cnnp_model_deinit((ccv_cnnp_model_t*)self->sequence[i]); | |||
191 | self->sequence_size = j; | |||
192 | } | |||
193 | ||||
194 | static void _ccv_cnnp_functional_model_dealloc(ccv_cnnp_model_t* const super) | |||
195 | { | |||
196 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
197 | int i; | |||
198 | for (i = 0; i < self->sequence_size; i++) | |||
199 | ccv_cnnp_model_free((ccv_cnnp_model_t*)self->sequence[i]); | |||
200 | } | |||
201 | ||||
202 | KHASH_MAP_INIT_INT64(io_node, ccv_array_t*)typedef struct kh_io_node_s { khint_t n_buckets, size, n_occupied , upper_bound; khint32_t *flags; khint64_t *keys; ccv_array_t * *vals; } kh_io_node_t; static inline __attribute__ ((__unused__ )) kh_io_node_t *kh_init_io_node(void) { return (kh_io_node_t *)calloc(1,sizeof(kh_io_node_t)); } static inline __attribute__ ((__unused__)) void kh_destroy_io_node(kh_io_node_t *h) { if (h) { free((void *)h->keys); free(h->flags); free((void *)h->vals); free(h); } } static inline __attribute__ ((__unused__ )) void kh_clear_io_node(kh_io_node_t *h) { if (h && h ->flags) { memset(h->flags, 0xaa, ((h->n_buckets) < 16? 1 : (h->n_buckets)>>4) * sizeof(khint32_t)); h-> size = h->n_occupied = 0; } } static inline __attribute__ ( (__unused__)) khint_t kh_get_io_node(const kh_io_node_t *h, khint64_t key) { if (h->n_buckets) { khint_t k, i, last, mask, step = 0; mask = h->n_buckets - 1; k = (khint32_t)((key)>> 33^(key)^(key)<<11); i = k & mask; last = i; while ( !((h->flags[i>>4]>>((i&0xfU)<<1))& 2) && (((h->flags[i>>4]>>((i&0xfU) <<1))&1) || !((h->keys[i]) == (key)))) { i = (i + (++step)) & mask; if (i == last) return h->n_buckets; } return ((h->flags[i>>4]>>((i&0xfU)<< 1))&3)? h->n_buckets : i; } else return 0; } static inline __attribute__ ((__unused__)) int kh_resize_io_node(kh_io_node_t *h, khint_t new_n_buckets) { khint32_t *new_flags = 0; khint_t j = 1; { (--(new_n_buckets), (new_n_buckets)|=(new_n_buckets )>>1, (new_n_buckets)|=(new_n_buckets)>>2, (new_n_buckets )|=(new_n_buckets)>>4, (new_n_buckets)|=(new_n_buckets) >>8, (new_n_buckets)|=(new_n_buckets)>>16, ++(new_n_buckets )); if (new_n_buckets < 4) new_n_buckets = 4; if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER + 0.5)) j = 0 ; else { new_flags = (khint32_t*)malloc(((new_n_buckets) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)); if ( !new_flags) return -1; memset(new_flags, 0xaa, ((new_n_buckets ) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)) ; if (h->n_buckets < new_n_buckets) { khint64_t *new_keys = (khint64_t*)realloc((void *)h->keys,new_n_buckets * sizeof (khint64_t)); if (!new_keys) { free(new_flags); return -1; } h ->keys = new_keys; if (1) { ccv_array_t* *new_vals = (ccv_array_t **)realloc((void *)h->vals,new_n_buckets * sizeof(ccv_array_t *)); if (!new_vals) { free(new_flags); return -1; } h->vals = new_vals; } } } } if (j) { for (j = 0; j != h->n_buckets ; ++j) { if (((h->flags[j>>4]>>((j&0xfU)<< 1))&3) == 0) { khint64_t key = h->keys[j]; ccv_array_t * val; khint_t new_mask; new_mask = new_n_buckets - 1; if (1) val = h->vals[j]; (h->flags[j>>4]|=1ul<<(( j&0xfU)<<1)); while (1) { khint_t k, i, step = 0; k = (khint32_t)((key)>>33^(key)^(key)<<11); i = k & new_mask; while (!((new_flags[i>>4]>>((i&0xfU )<<1))&2)) i = (i + (++step)) & new_mask; (new_flags [i>>4]&=~(2ul<<((i&0xfU)<<1))); if ( i < h->n_buckets && ((h->flags[i>>4]>> ((i&0xfU)<<1))&3) == 0) { { khint64_t tmp = h-> keys[i]; h->keys[i] = key; key = tmp; } if (1) { ccv_array_t * tmp = h->vals[i]; h->vals[i] = val; val = tmp; } (h-> flags[i>>4]|=1ul<<((i&0xfU)<<1)); } else { h->keys[i] = key; if (1) h->vals[i] = val; break; } } } } if (h->n_buckets > new_n_buckets) { h->keys = ( khint64_t*)realloc((void *)h->keys,new_n_buckets * sizeof( khint64_t)); if (1) h->vals = (ccv_array_t**)realloc((void *)h->vals,new_n_buckets * sizeof(ccv_array_t*)); } free(h ->flags); h->flags = new_flags; h->n_buckets = new_n_buckets ; h->n_occupied = h->size; h->upper_bound = (khint_t )(h->n_buckets * __ac_HASH_UPPER + 0.5); } return 0; } static inline __attribute__ ((__unused__)) khint_t kh_put_io_node(kh_io_node_t *h, khint64_t key, int *ret) { khint_t x; if (h->n_occupied >= h->upper_bound) { if (h->n_buckets > (h->size <<1)) { if (kh_resize_io_node(h, h->n_buckets - 1) < 0) { *ret = -1; return h->n_buckets; } } else if (kh_resize_io_node (h, h->n_buckets + 1) < 0) { *ret = -1; return h->n_buckets ; } } { khint_t k, i, site, last, mask = h->n_buckets - 1, step = 0; x = site = h->n_buckets; k = (khint32_t)((key)>> 33^(key)^(key)<<11); i = k & mask; if (((h->flags [i>>4]>>((i&0xfU)<<1))&2)) x = i; else { last = i; while (!((h->flags[i>>4]>>((i& 0xfU)<<1))&2) && (((h->flags[i>>4] >>((i&0xfU)<<1))&1) || !((h->keys[i]) == (key)))) { if (((h->flags[i>>4]>>((i&0xfU )<<1))&1)) site = i; i = (i + (++step)) & mask; if (i == last) { x = site; break; } } if (x == h->n_buckets ) { if (((h->flags[i>>4]>>((i&0xfU)<< 1))&2) && site != h->n_buckets) x = site; else x = i; } } } if (((h->flags[x>>4]>>((x&0xfU )<<1))&2)) { h->keys[x] = key; (h->flags[x>> 4]&=~(3ul<<((x&0xfU)<<1))); ++h->size; ++h->n_occupied; *ret = 1; } else if (((h->flags[x>> 4]>>((x&0xfU)<<1))&1)) { h->keys[x] = key ; (h->flags[x>>4]&=~(3ul<<((x&0xfU)<< 1))); ++h->size; *ret = 2; } else *ret = 0; return x; } static inline __attribute__ ((__unused__)) void kh_del_io_node(kh_io_node_t *h, khint_t x) { if (x != h->n_buckets && !((h-> flags[x>>4]>>((x&0xfU)<<1))&3)) { ( h->flags[x>>4]|=1ul<<((x&0xfU)<<1)); --h->size; } } | |||
203 | ||||
204 | typedef struct { | |||
205 | ccv_array_t* nodes; | |||
206 | ccv_nnc_graph_exec_symbol_new_hook_f previous_func; | |||
207 | void* previous_context; | |||
208 | } ccv_functional_model_build_node_hook_t; | |||
209 | ||||
210 | static void _ccv_cnnp_functional_model_build_node_new(void* context, const ccv_nnc_graph_exec_symbol_t symbol, const ccv_nnc_cmd_t cmd, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, const ccv_nnc_tensor_symbol_t* const outputs, const int output_size, const char* const name) | |||
211 | { | |||
212 | ccv_functional_model_build_node_hook_t* const hook = (ccv_functional_model_build_node_hook_t*)context; | |||
213 | ccv_array_push(hook->nodes, &symbol); | |||
214 | if (hook->previous_func) | |||
215 | hook->previous_func(hook->previous_context, symbol, cmd, inputs, input_size, outputs, output_size, name); | |||
216 | } | |||
217 | ||||
218 | static void _ccv_cnnp_functional_model_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size) | |||
219 | { | |||
220 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
221 | PRINT(CCV_CLI_VERBOSE, "[cnnp_functional_model_build] 1. %p, input_size: %d, output_size: %d\n", self, input_size, output_size)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_functional_model_build] 1. %p, input_size: %d, output_size: %d\n" , self, input_size, output_size); fflush(stdout); } } while ( 0); | |||
| ||||
222 | assert(self->super.input_size == input_size)((void) sizeof ((self->super.input_size == input_size) ? 1 : 0), __extension__ ({ if (self->super.input_size == input_size ) ; else __assert_fail ("self->super.input_size == input_size" , "ccv_cnnp_model_core.c", 222, __extension__ __PRETTY_FUNCTION__ ); })); | |||
223 | assert(self->super.output_size == output_size)((void) sizeof ((self->super.output_size == output_size) ? 1 : 0), __extension__ ({ if (self->super.output_size == output_size ) ; else __assert_fail ("self->super.output_size == output_size" , "ccv_cnnp_model_core.c", 223, __extension__ __PRETTY_FUNCTION__ ); })); | |||
224 | int i, j, k; | |||
225 | for (i = 0; i < self->super.input_size; i++) | |||
226 | self->sequence[i]->outputs[0] = self->sequence[i]->model->outputs[0] = inputs[i]; // Assigning the output symbol of input layer to be the input symbol. | |||
227 | ccv_array_t* input_symbols = ccv_array_new(sizeof(ccv_nnc_tensor_symbol_t), 1, 0); | |||
228 | ccv_array_t* parameter_indices = 0; | |||
229 | khash_t(io_node)kh_io_node_t* io_node_map = kh_init(io_node)kh_init_io_node(); | |||
230 | for (i = self->super.input_size; i < self->sequence_size; i++) | |||
231 | { | |||
232 | ccv_cnnp_model_t* const sub_model = self->sequence[i]->model; | |||
233 | ccv_array_clear(input_symbols); | |||
234 | const ccv_array_t* const incomings = self->sequence[i]->incomings; | |||
235 | if (incomings) | |||
236 | for (j = 0; j < incomings->rnum; j++) | |||
237 | { | |||
238 | const ccv_cnnp_model_io_t input = *(ccv_cnnp_model_io_t*)ccv_array_get(incomings, j)((void*)(((char*)((incomings)->data)) + (size_t)(incomings )->rsize * (size_t)(j))); | |||
239 | if (CCV_CNNP_IS_MODEL_PARAMETER(input)((input)->param_ref != 0 || (input)->param_sel != 0)) | |||
240 | { | |||
241 | if (!parameter_indices) | |||
242 | parameter_indices = ccv_array_new(sizeof(int), 0, 0); | |||
243 | else | |||
244 | ccv_array_clear(parameter_indices); | |||
245 | const int param_sel = input->param_sel > 0 ? input->param_sel - 1 : input->param_sel; | |||
246 | assert(input->param_sel != 0)((void) sizeof ((input->param_sel != 0) ? 1 : 0), __extension__ ({ if (input->param_sel != 0) ; else __assert_fail ("input->param_sel != 0" , "ccv_cnnp_model_core.c", 246, __extension__ __PRETTY_FUNCTION__ ); })); | |||
247 | ccv_cnnp_model_add_to_parameter_indices(input->model, param_sel, parameter_indices); | |||
248 | assert(parameter_indices->rnum > 0)((void) sizeof ((parameter_indices->rnum > 0) ? 1 : 0), __extension__ ({ if (parameter_indices->rnum > 0) ; else __assert_fail ("parameter_indices->rnum > 0", "ccv_cnnp_model_core.c" , 248, __extension__ __PRETTY_FUNCTION__); })); | |||
249 | const int param_ref = input->param_ref > 0 ? input->param_ref - 1 : input->param_ref; | |||
250 | assert(input->param_ref != 0)((void) sizeof ((input->param_ref != 0) ? 1 : 0), __extension__ ({ if (input->param_ref != 0) ; else __assert_fail ("input->param_ref != 0" , "ccv_cnnp_model_core.c", 250, __extension__ __PRETTY_FUNCTION__ ); })); | |||
251 | if (param_ref >= 0) | |||
252 | { | |||
253 | assert(param_ref < parameter_indices->rnum)((void) sizeof ((param_ref < parameter_indices->rnum) ? 1 : 0), __extension__ ({ if (param_ref < parameter_indices ->rnum) ; else __assert_fail ("param_ref < parameter_indices->rnum" , "ccv_cnnp_model_core.c", 253, __extension__ __PRETTY_FUNCTION__ ); })); | |||
254 | const ccv_nnc_tensor_symbol_t parameter = ccv_cnnp_parameter_from_indice(super, *(int*)ccv_array_get(parameter_indices, param_ref)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(param_ref)))); | |||
255 | ccv_array_push(input_symbols, ¶meter); | |||
256 | } else // Otherwise, all of them. | |||
257 | for (k = 0; k < parameter_indices->rnum; k++) | |||
258 | { | |||
259 | const ccv_nnc_tensor_symbol_t parameter = ccv_cnnp_parameter_from_indice(super, *(int*)ccv_array_get(parameter_indices, k)((void*)(((char*)((parameter_indices)->data)) + (size_t)(parameter_indices )->rsize * (size_t)(k)))); | |||
260 | ccv_array_push(input_symbols, ¶meter); | |||
261 | } | |||
262 | } else { | |||
263 | for (k = 0; k < input->model->output_size; k++) | |||
264 | ccv_array_push(input_symbols, &input->outputs[k]); | |||
265 | } | |||
266 | } | |||
267 | // Go through each sub model to build the graph. | |||
268 | ccv_array_t* nodes; | |||
269 | ccv_functional_model_build_node_hook_t hook; | |||
270 | const ccv_array_t* const dependencies = self->sequence[i]->dependencies; | |||
271 | if ((dependencies && dependencies->rnum > 0) || self->sequence[i]->dependents > 0) | |||
272 | { | |||
273 | int ret; | |||
274 | khiter_t k = kh_put(io_node, io_node_map, (uint64_t)(uintptr_t)self->sequence[i], &ret)kh_put_io_node(io_node_map, (uint64_t)(uintptr_t)self->sequence [i], &ret); | |||
275 | if (ret
| |||
276 | nodes = kh_val(io_node_map, k)((io_node_map)->vals[k]) = ccv_array_new(sizeof(ccv_nnc_graph_exec_symbol_t), 1, 0); | |||
| ||||
277 | else | |||
278 | nodes = kh_val(io_node_map, k)((io_node_map)->vals[k]); | |||
279 | hook.nodes = nodes; | |||
280 | hook.previous_context = ccv_nnc_graph_exec_symbol_new_hook(graph, _ccv_cnnp_functional_model_build_node_new, &hook, &hook.previous_func); | |||
281 | } | |||
282 | sub_model->data = self->super.data; | |||
283 | ccv_cnnp_model_build(sub_model, graph, (ccv_nnc_tensor_symbol_t*)ccv_array_get(input_symbols, 0)((void*)(((char*)((input_symbols)->data)) + (size_t)(input_symbols )->rsize * (size_t)(0))), input_symbols->rnum, self->sequence[i]->outputs, sub_model->output_size); | |||
284 | if ((dependencies && dependencies->rnum > 0) || self->sequence[i]->dependents > 0) | |||
285 | { | |||
286 | ccv_nnc_graph_exec_symbol_new_hook(graph, hook.previous_func, hook.previous_context, 0); | |||
287 | if (dependencies) | |||
288 | for (j = 0; j < dependencies->rnum; j++) | |||
289 | { | |||
290 | const ccv_cnnp_model_io_t dependency = *(ccv_cnnp_model_io_t*)ccv_array_get(dependencies, j)((void*)(((char*)((dependencies)->data)) + (size_t)(dependencies )->rsize * (size_t)(j))); | |||
291 | khiter_t k = kh_get(io_node, io_node_map, (uint64_t)(uintptr_t)dependency)kh_get_io_node(io_node_map, (uint64_t)(uintptr_t)dependency); | |||
292 | if (k == kh_end(io_node_map)((io_node_map)->n_buckets)) | |||
293 | continue; | |||
294 | const ccv_array_t* const dependency_nodes = kh_val(io_node_map, k)((io_node_map)->vals[k]); | |||
295 | int x, y; | |||
296 | for (y = 0; y < dependency_nodes->rnum; y++) | |||
297 | for (x = 0; x < nodes->rnum; x++) | |||
298 | ccv_nnc_graph_exec_symbol_concat(graph, *(ccv_nnc_graph_exec_symbol_t*)ccv_array_get(dependency_nodes, y)((void*)(((char*)((dependency_nodes)->data)) + (size_t)(dependency_nodes )->rsize * (size_t)(y))), *(ccv_nnc_graph_exec_symbol_t*)ccv_array_get(nodes, x)((void*)(((char*)((nodes)->data)) + (size_t)(nodes)->rsize * (size_t)(x)))); | |||
299 | } | |||
300 | } | |||
301 | sub_model->data = 0; | |||
302 | } | |||
303 | khiter_t it; | |||
304 | for (it = kh_begin(io_node_map)(khint_t)(0); it != kh_end(io_node_map)((io_node_map)->n_buckets); ++it) | |||
305 | { | |||
306 | if (!kh_exist(io_node_map, it)(!(((io_node_map)->flags[(it)>>4]>>(((it)& 0xfU)<<1))&3))) | |||
307 | continue; | |||
308 | ccv_array_t* const nodes = kh_val(io_node_map, it)((io_node_map)->vals[it]); | |||
309 | ccv_array_free(nodes); | |||
310 | } | |||
311 | kh_destroy(io_node, io_node_map)kh_destroy_io_node(io_node_map); | |||
312 | ccv_array_free(input_symbols); | |||
313 | if (parameter_indices) | |||
314 | ccv_array_free(parameter_indices); | |||
315 | for (i = 0, k = 0; k < self->model_output_size; k++) | |||
316 | { | |||
317 | ccv_cnnp_model_t* const sub_model = self->sequence[self->model_outputs[k]]->model; | |||
318 | for (j = 0; j < sub_model->output_size; j++) | |||
319 | outputs[i + j] = self->sequence[self->model_outputs[k]]->outputs[j]; | |||
320 | i += sub_model->output_size; | |||
321 | } | |||
322 | assert(i == output_size)((void) sizeof ((i == output_size) ? 1 : 0), __extension__ ({ if (i == output_size) ; else __assert_fail ("i == output_size" , "ccv_cnnp_model_core.c", 322, __extension__ __PRETTY_FUNCTION__ ); })); | |||
323 | PRINT(CCV_CLI_VERBOSE, "[cnnp_functional_model_build] 2. %p\n", self)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_functional_model_build] 2. %p\n", self); fflush (stdout); } } while (0); | |||
324 | } | |||
325 | ||||
326 | static void _ccv_cnnp_functional_model_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context) | |||
327 | { | |||
328 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
329 | int i; | |||
330 | for (i = self->super.input_size; i < self->sequence_size; i++) | |||
331 | ccv_cnnp_model_init_states(self->sequence[i]->model, graph, initializer, context); | |||
332 | } | |||
333 | ||||
334 | static void _ccv_cnnp_functional_model_set_is_test(ccv_cnnp_model_t* const super, const int is_test, const ccv_cnnp_cmd_updater_f updater, void* const context) | |||
335 | { | |||
336 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
337 | int i; | |||
338 | for (i = self->super.input_size; i < self->sequence_size; i++) | |||
339 | ccv_cnnp_model_set_is_test(self->sequence[i]->model, is_test, updater, context); | |||
340 | } | |||
341 | ||||
342 | static void _ccv_cnnp_functional_model_add_to_parameter_indices(ccv_cnnp_model_t* const super, const int index, ccv_array_t* const parameter_indices) | |||
343 | { | |||
344 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
345 | int i; | |||
346 | for (i = self->super.input_size; i < self->sequence_size; i++) | |||
347 | ccv_cnnp_model_add_to_parameter_indices(self->sequence[i]->model, index, parameter_indices); | |||
348 | } | |||
349 | ||||
350 | static void _ccv_cnnp_functional_model_notify(const ccv_cnnp_model_t* const super, const int tag, void* const payload) | |||
351 | { | |||
352 | ccv_cnnp_functional_model_t* const self = (ccv_cnnp_functional_model_t*)super; | |||
353 | int i; | |||
354 | for (i = 0; i < self->sequence_size; i++) | |||
355 | { | |||
356 | const ccv_cnnp_model_t* const model = self->sequence[i]->model; | |||
357 | ccv_cnnp_model_notify(model, tag, payload); | |||
358 | } | |||
359 | } | |||
360 | ||||
361 | static ccv_cnnp_model_t* _ccv_cnnp_functional_model_copy(const ccv_cnnp_model_t* const super, void* const context); | |||
362 | ||||
363 | static const ccv_cnnp_model_vtab_t ccv_cnnp_functional_model_isa = { | |||
364 | .deinit = _ccv_cnnp_functional_model_deinit, | |||
365 | .dealloc = _ccv_cnnp_functional_model_dealloc, | |||
366 | .build = _ccv_cnnp_functional_model_build, | |||
367 | .init_states = _ccv_cnnp_functional_model_init_states, | |||
368 | .copy = _ccv_cnnp_functional_model_copy, | |||
369 | .set_is_test = _ccv_cnnp_functional_model_set_is_test, | |||
370 | .add_to_parameter_indices = _ccv_cnnp_functional_model_add_to_parameter_indices, | |||
371 | .notify = _ccv_cnnp_functional_model_notify, | |||
372 | }; | |||
373 | ||||
374 | KHASH_MAP_INIT_INT64(model_io, ccv_cnnp_model_io_t)typedef struct kh_model_io_s { khint_t n_buckets, size, n_occupied , upper_bound; khint32_t *flags; khint64_t *keys; ccv_cnnp_model_io_t *vals; } kh_model_io_t; static inline __attribute__ ((__unused__ )) kh_model_io_t *kh_init_model_io(void) { return (kh_model_io_t *)calloc(1,sizeof(kh_model_io_t)); } static inline __attribute__ ((__unused__)) void kh_destroy_model_io(kh_model_io_t *h) { if (h) { free((void *)h->keys); free(h->flags); free((void *)h->vals); free(h); } } static inline __attribute__ ((__unused__ )) void kh_clear_model_io(kh_model_io_t *h) { if (h && h->flags) { memset(h->flags, 0xaa, ((h->n_buckets) < 16? 1 : (h->n_buckets)>>4) * sizeof(khint32_t)); h-> size = h->n_occupied = 0; } } static inline __attribute__ ( (__unused__)) khint_t kh_get_model_io(const kh_model_io_t *h, khint64_t key) { if (h->n_buckets) { khint_t k, i, last, mask , step = 0; mask = h->n_buckets - 1; k = (khint32_t)((key) >>33^(key)^(key)<<11); i = k & mask; last = i ; while (!((h->flags[i>>4]>>((i&0xfU)<< 1))&2) && (((h->flags[i>>4]>>((i& 0xfU)<<1))&1) || !((h->keys[i]) == (key)))) { i = (i + (++step)) & mask; if (i == last) return h->n_buckets ; } return ((h->flags[i>>4]>>((i&0xfU)<< 1))&3)? h->n_buckets : i; } else return 0; } static inline __attribute__ ((__unused__)) int kh_resize_model_io(kh_model_io_t *h, khint_t new_n_buckets) { khint32_t *new_flags = 0; khint_t j = 1; { (--(new_n_buckets), (new_n_buckets)|=(new_n_buckets )>>1, (new_n_buckets)|=(new_n_buckets)>>2, (new_n_buckets )|=(new_n_buckets)>>4, (new_n_buckets)|=(new_n_buckets) >>8, (new_n_buckets)|=(new_n_buckets)>>16, ++(new_n_buckets )); if (new_n_buckets < 4) new_n_buckets = 4; if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER + 0.5)) j = 0 ; else { new_flags = (khint32_t*)malloc(((new_n_buckets) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)); if ( !new_flags) return -1; memset(new_flags, 0xaa, ((new_n_buckets ) < 16? 1 : (new_n_buckets)>>4) * sizeof(khint32_t)) ; if (h->n_buckets < new_n_buckets) { khint64_t *new_keys = (khint64_t*)realloc((void *)h->keys,new_n_buckets * sizeof (khint64_t)); if (!new_keys) { free(new_flags); return -1; } h ->keys = new_keys; if (1) { ccv_cnnp_model_io_t *new_vals = (ccv_cnnp_model_io_t*)realloc((void *)h->vals,new_n_buckets * sizeof(ccv_cnnp_model_io_t)); if (!new_vals) { free(new_flags ); return -1; } h->vals = new_vals; } } } } if (j) { for ( j = 0; j != h->n_buckets; ++j) { if (((h->flags[j>> 4]>>((j&0xfU)<<1))&3) == 0) { khint64_t key = h->keys[j]; ccv_cnnp_model_io_t val; khint_t new_mask; new_mask = new_n_buckets - 1; if (1) val = h->vals[j]; (h->flags [j>>4]|=1ul<<((j&0xfU)<<1)); while (1) { khint_t k, i, step = 0; k = (khint32_t)((key)>>33^(key )^(key)<<11); i = k & new_mask; while (!((new_flags [i>>4]>>((i&0xfU)<<1))&2)) i = (i + (++step)) & new_mask; (new_flags[i>>4]&=~(2ul<< ((i&0xfU)<<1))); if (i < h->n_buckets && ((h->flags[i>>4]>>((i&0xfU)<<1))& 3) == 0) { { khint64_t tmp = h->keys[i]; h->keys[i] = key ; key = tmp; } if (1) { ccv_cnnp_model_io_t tmp = h->vals[ i]; h->vals[i] = val; val = tmp; } (h->flags[i>>4 ]|=1ul<<((i&0xfU)<<1)); } else { h->keys[i ] = key; if (1) h->vals[i] = val; break; } } } } if (h-> n_buckets > new_n_buckets) { h->keys = (khint64_t*)realloc ((void *)h->keys,new_n_buckets * sizeof(khint64_t)); if (1 ) h->vals = (ccv_cnnp_model_io_t*)realloc((void *)h->vals ,new_n_buckets * sizeof(ccv_cnnp_model_io_t)); } free(h->flags ); h->flags = new_flags; h->n_buckets = new_n_buckets; h ->n_occupied = h->size; h->upper_bound = (khint_t)(h ->n_buckets * __ac_HASH_UPPER + 0.5); } return 0; } static inline __attribute__ ((__unused__)) khint_t kh_put_model_io( kh_model_io_t *h, khint64_t key, int *ret) { khint_t x; if (h ->n_occupied >= h->upper_bound) { if (h->n_buckets > (h->size<<1)) { if (kh_resize_model_io(h, h-> n_buckets - 1) < 0) { *ret = -1; return h->n_buckets; } } else if (kh_resize_model_io(h, h->n_buckets + 1) < 0 ) { *ret = -1; return h->n_buckets; } } { khint_t k, i, site , last, mask = h->n_buckets - 1, step = 0; x = site = h-> n_buckets; k = (khint32_t)((key)>>33^(key)^(key)<< 11); i = k & mask; if (((h->flags[i>>4]>>( (i&0xfU)<<1))&2)) x = i; else { last = i; while (!((h->flags[i>>4]>>((i&0xfU)<<1))& 2) && (((h->flags[i>>4]>>((i&0xfU) <<1))&1) || !((h->keys[i]) == (key)))) { if (((h ->flags[i>>4]>>((i&0xfU)<<1))&1) ) site = i; i = (i + (++step)) & mask; if (i == last) { x = site; break; } } if (x == h->n_buckets) { if (((h->flags [i>>4]>>((i&0xfU)<<1))&2) && site != h->n_buckets) x = site; else x = i; } } } if (((h ->flags[x>>4]>>((x&0xfU)<<1))&2) ) { h->keys[x] = key; (h->flags[x>>4]&=~(3ul<< ((x&0xfU)<<1))); ++h->size; ++h->n_occupied; * ret = 1; } else if (((h->flags[x>>4]>>((x& 0xfU)<<1))&1)) { h->keys[x] = key; (h->flags[ x>>4]&=~(3ul<<((x&0xfU)<<1))); ++h-> size; *ret = 2; } else *ret = 0; return x; } static inline __attribute__ ((__unused__)) void kh_del_model_io(kh_model_io_t *h, khint_t x) { if (x != h->n_buckets && !((h->flags[x>> 4]>>((x&0xfU)<<1))&3)) { (h->flags[x>> 4]|=1ul<<((x&0xfU)<<1)); --h->size; } } | |||
375 | ||||
376 | static ccv_cnnp_model_t* _ccv_cnnp_functional_model_copy(const ccv_cnnp_model_t* const super, void* const context) | |||
377 | { | |||
378 | const ccv_cnnp_functional_model_t* const self = (const ccv_cnnp_functional_model_t*)super; | |||
379 | ccv_cnnp_functional_model_t* const functional_model = (ccv_cnnp_functional_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_functional_model_t) + sizeof(ccv_cnnp_model_t*) * (self->sequence_size - 1) + sizeof(ccv_nnc_tensor_symbol_t) * self->super.output_size + sizeof(int) * self->model_output_size); | |||
380 | functional_model->super.isa = &ccv_cnnp_functional_model_isa; | |||
381 | functional_model->super.outputs = (ccv_nnc_tensor_symbol_t*)(functional_model->sequence + self->sequence_size); | |||
382 | functional_model->super.output_size = self->super.output_size; | |||
383 | functional_model->super.input_size = self->super.input_size; | |||
384 | ccv_cnnp_model_copy_name(&functional_model->super, self->super.name); | |||
385 | functional_model->sequence_size = self->sequence_size; | |||
386 | functional_model->model_output_size = self->model_output_size; | |||
387 | functional_model->model_outputs = (int*)(functional_model->super.outputs + functional_model->super.output_size); | |||
388 | memcpy(functional_model->model_outputs, self->model_outputs, sizeof(int) * self->model_output_size); | |||
389 | // Now the difficult part, copy over the model_io. | |||
390 | khash_t(model_io)kh_model_io_t* model_io_map = kh_init(model_io)kh_init_model_io(); | |||
391 | khash_t(model)kh_model_t* model_map = context ? (khash_t(model)kh_model_t*)context : kh_init(model)kh_init_model(); | |||
392 | int i, j; | |||
393 | for (i = 0; i < self->sequence_size; i++) | |||
394 | { | |||
395 | const ccv_cnnp_model_t* const sub_model = self->sequence[i]->model; | |||
396 | int ret; | |||
397 | khiter_t k = kh_put(model, model_map, (uint64_t)(uintptr_t)sub_model, &ret)kh_put_model(model_map, (uint64_t)(uintptr_t)sub_model, & ret); | |||
398 | ccv_cnnp_model_t* model_copy; | |||
399 | if (ret != 0) | |||
400 | model_copy = kh_val(model_map, k)((model_map)->vals[k]) = _ccv_cnnp_model_copy(sub_model, model_map); | |||
401 | else | |||
402 | model_copy = kh_val(model_map, k)((model_map)->vals[k]); | |||
403 | ccv_cnnp_model_io_t model_io = functional_model->sequence[i] = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s) + sizeof(ccv_nnc_tensor_symbol_t) * sub_model->output_size); | |||
404 | model_io->param_ref = 0; | |||
405 | model_io->param_sel = 0; | |||
406 | model_io->visit = 0; | |||
407 | model_io->model = model_copy; | |||
408 | model_io->dependencies = 0; | |||
409 | model_io->dependents = 0; | |||
410 | model_io->incomings = 0; | |||
411 | model_io->outgoings = 0; | |||
412 | model_io->outputs = (ccv_nnc_tensor_symbol_t*)(model_io + 1); | |||
413 | if (!model_copy->io) | |||
414 | model_copy->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0); | |||
415 | ccv_array_push(model_copy->io, &model_io); | |||
416 | k = kh_put(model_io, model_io_map, (uint64_t)(uintptr_t)self->sequence[i], &ret)kh_put_model_io(model_io_map, (uint64_t)(uintptr_t)self->sequence [i], &ret); | |||
417 | kh_val(model_io_map, k)((model_io_map)->vals[k]) = functional_model->sequence[i]; | |||
418 | } | |||
419 | for (i = self->super.input_size; i < self->sequence_size; i++) | |||
420 | { | |||
421 | if (self->sequence[i]->incomings) | |||
422 | for (j = 0; j < self->sequence[i]->incomings->rnum; j++) | |||
423 | { | |||
424 | const ccv_cnnp_model_io_t input = *(ccv_cnnp_model_io_t*)ccv_array_get(self->sequence[i]->incomings, j)((void*)(((char*)((self->sequence[i]->incomings)->data )) + (size_t)(self->sequence[i]->incomings)->rsize * (size_t)(j))); | |||
425 | if (CCV_CNNP_IS_MODEL_PARAMETER(input)((input)->param_ref != 0 || (input)->param_sel != 0)) // I am pretty sure this is not in the model_io_map. | |||
426 | { | |||
427 | int ret; | |||
428 | khiter_t k = kh_put(model_io, model_io_map, (uint64_t)(uintptr_t)input, &ret)kh_put_model_io(model_io_map, (uint64_t)(uintptr_t)input, & ret); | |||
429 | if (ret != 0) | |||
430 | { | |||
431 | // The model may not exist on the map due to wrapping (it is inside another sequential or functional model). | |||
432 | khiter_t m = kh_get(model, model_map, (uint64_t)(uintptr_t)input->model)kh_get_model(model_map, (uint64_t)(uintptr_t)input->model); | |||
433 | assert(m != kh_end(model_map))((void) sizeof ((m != ((model_map)->n_buckets)) ? 1 : 0), __extension__ ({ if (m != ((model_map)->n_buckets)) ; else __assert_fail ("m != kh_end(model_map)", "ccv_cnnp_model_core.c", 433, __extension__ __PRETTY_FUNCTION__); })); | |||
434 | ccv_cnnp_model_t* const model_copy = kh_val(model_map, m)((model_map)->vals[m]); | |||
435 | ccv_cnnp_model_io_t model_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s)); | |||
436 | model_io->param_ref = input->param_ref; | |||
437 | model_io->param_sel = input->param_sel; | |||
438 | model_io->visit = 0; | |||
439 | model_io->model = model_copy; | |||
440 | model_io->incomings = 0; | |||
441 | model_io->dependencies = 0; | |||
442 | model_io->dependents = 0; | |||
443 | model_io->outgoings = 0; | |||
444 | model_io->outputs = 0; | |||
445 | if (!model_copy->io) | |||
446 | model_copy->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0); | |||
447 | ccv_array_push(model_copy->io, &model_io); | |||
448 | kh_val(model_io_map, k)((model_io_map)->vals[k]) = model_io; | |||
449 | if (input->outgoings) | |||
450 | { | |||
451 | model_io->outgoings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), input->outgoings->rnum, 0); | |||
452 | int x; | |||
453 | for (x = 0; x < input->outgoings->rnum; x++) | |||
454 | { | |||
455 | khiter_t k = kh_get(model_io, model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t*)ccv_array_get(input->outgoings, x)))kh_get_model_io(model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t *)((void*)(((char*)((input->outgoings)->data)) + (size_t )(input->outgoings)->rsize * (size_t)(x))))); | |||
456 | assert(k != kh_end(model_io_map))((void) sizeof ((k != ((model_io_map)->n_buckets)) ? 1 : 0 ), __extension__ ({ if (k != ((model_io_map)->n_buckets)) ; else __assert_fail ("k != kh_end(model_io_map)", "ccv_cnnp_model_core.c" , 456, __extension__ __PRETTY_FUNCTION__); })); | |||
457 | ccv_cnnp_model_io_t outgoing_io = kh_val(model_io_map, k)((model_io_map)->vals[k]); | |||
458 | ccv_array_push(model_io->outgoings, &outgoing_io); | |||
459 | } | |||
460 | } | |||
461 | } | |||
462 | } | |||
463 | } | |||
464 | } | |||
465 | if (!context) | |||
466 | kh_destroy(model, model_map)kh_destroy_model(model_map); | |||
467 | for (i = 0; i < self->sequence_size; i++) | |||
468 | { | |||
469 | const ccv_cnnp_model_io_t model_io = self->sequence[i]; | |||
470 | ccv_cnnp_model_io_t model_io_copy = functional_model->sequence[i]; | |||
471 | model_io_copy->param_ref = model_io->param_ref; | |||
472 | model_io_copy->param_sel = model_io->param_sel; | |||
473 | if (model_io->incomings) | |||
474 | { | |||
475 | model_io_copy->incomings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), model_io->incomings->rnum, 0); | |||
476 | for (j = 0; j < model_io->incomings->rnum; j++) | |||
477 | { | |||
478 | khiter_t k = kh_get(model_io, model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t*)ccv_array_get(model_io->incomings, j)))kh_get_model_io(model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t *)((void*)(((char*)((model_io->incomings)->data)) + (size_t )(model_io->incomings)->rsize * (size_t)(j))))); | |||
479 | assert(k != kh_end(model_io_map))((void) sizeof ((k != ((model_io_map)->n_buckets)) ? 1 : 0 ), __extension__ ({ if (k != ((model_io_map)->n_buckets)) ; else __assert_fail ("k != kh_end(model_io_map)", "ccv_cnnp_model_core.c" , 479, __extension__ __PRETTY_FUNCTION__); })); | |||
480 | ccv_cnnp_model_io_t input_io = kh_val(model_io_map, k)((model_io_map)->vals[k]); | |||
481 | ccv_array_push(model_io_copy->incomings, &input_io); | |||
482 | } | |||
483 | } | |||
484 | if (model_io->dependencies) | |||
485 | { | |||
486 | model_io_copy->dependencies = ccv_array_new(sizeof(ccv_cnnp_model_io_t), model_io->dependencies->rnum, 0); | |||
487 | for (j = 0; j < model_io->dependencies->rnum; j++) | |||
488 | { | |||
489 | khiter_t k = kh_get(model_io, model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t*)ccv_array_get(model_io->dependencies, j)))kh_get_model_io(model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t *)((void*)(((char*)((model_io->dependencies)->data)) + ( size_t)(model_io->dependencies)->rsize * (size_t)(j)))) ); | |||
490 | assert(k != kh_end(model_io_map))((void) sizeof ((k != ((model_io_map)->n_buckets)) ? 1 : 0 ), __extension__ ({ if (k != ((model_io_map)->n_buckets)) ; else __assert_fail ("k != kh_end(model_io_map)", "ccv_cnnp_model_core.c" , 490, __extension__ __PRETTY_FUNCTION__); })); | |||
491 | ccv_cnnp_model_io_t input_io = kh_val(model_io_map, k)((model_io_map)->vals[k]); | |||
492 | ccv_array_push(model_io_copy->dependencies, &input_io); | |||
493 | } | |||
494 | } | |||
495 | model_io_copy->dependents = model_io->dependents; | |||
496 | if (model_io->outgoings) | |||
497 | { | |||
498 | model_io_copy->outgoings = ccv_array_new(sizeof(ccv_cnnp_model_io_t), model_io->outgoings->rnum, 0); | |||
499 | for (j = 0; j < model_io->outgoings->rnum; j++) | |||
500 | { | |||
501 | khiter_t k = kh_get(model_io, model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t*)ccv_array_get(model_io->outgoings, j)))kh_get_model_io(model_io_map, (uint64_t)(uintptr_t)(*(ccv_cnnp_model_io_t *)((void*)(((char*)((model_io->outgoings)->data)) + (size_t )(model_io->outgoings)->rsize * (size_t)(j))))); | |||
502 | assert(k != kh_end(model_io_map))((void) sizeof ((k != ((model_io_map)->n_buckets)) ? 1 : 0 ), __extension__ ({ if (k != ((model_io_map)->n_buckets)) ; else __assert_fail ("k != kh_end(model_io_map)", "ccv_cnnp_model_core.c" , 502, __extension__ __PRETTY_FUNCTION__); })); | |||
503 | ccv_cnnp_model_io_t outgoing_io = kh_val(model_io_map, k)((model_io_map)->vals[k]); | |||
504 | ccv_array_push(model_io_copy->outgoings, &outgoing_io); | |||
505 | } | |||
506 | } | |||
507 | } | |||
508 | kh_destroy(model_io, model_io_map)kh_destroy_model_io(model_io_map); | |||
509 | return (ccv_cnnp_model_t*)functional_model; | |||
510 | } | |||
511 | ||||
512 | ccv_cnnp_model_t* ccv_cnnp_model_new(const ccv_cnnp_model_io_t* const inputs, const int input_size, const ccv_cnnp_model_io_t* const outputs, const int output_size, const int is_trainable, const char* const name) | |||
513 | { | |||
514 | assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ ( { if (output_size > 0) ; else __assert_fail ("output_size > 0" , "ccv_cnnp_model_core.c", 514, __extension__ __PRETTY_FUNCTION__ ); })); | |||
515 | // Do topological sort. | |||
516 | ccv_array_t* const reverse_top = ccv_array_new(sizeof(ccv_cnnp_model_io_t), output_size, 0); | |||
517 | int i, j, k; | |||
518 | // Go through output one by one, reverse traversal them, to detect potential overlap (overlap means, for example, | |||
519 | // outputs[1] is an incoming node for outputs[0]. Thus, if we reverse them, we may have outputs[0] build before outputs[1], | |||
520 | // hence, having issues. | |||
521 | for (i = 0; i < output_size; i++) | |||
522 | outputs[i]->visit = 2; | |||
523 | for (i = output_size - 1; i >= 0; i--) | |||
524 | { | |||
525 | if (outputs[i]->visit == 3) // If we need to remove it, no need to visit. | |||
526 | continue; | |||
527 | assert(outputs[i]->visit == 2)((void) sizeof ((outputs[i]->visit == 2) ? 1 : 0), __extension__ ({ if (outputs[i]->visit == 2) ; else __assert_fail ("outputs[i]->visit == 2" , "ccv_cnnp_model_core.c", 527, __extension__ __PRETTY_FUNCTION__ ); })); | |||
528 | ccv_array_clear(reverse_top); | |||
529 | ccv_array_push(reverse_top, &outputs[i]); | |||
530 | for (j = 0; j < reverse_top->rnum; j++) | |||
531 | { | |||
532 | const ccv_cnnp_model_io_t output = *(ccv_cnnp_model_io_t*)ccv_array_get(reverse_top, j)((void*)(((char*)((reverse_top)->data)) + (size_t)(reverse_top )->rsize * (size_t)(j))); | |||
533 | assert(!CCV_CNNP_IS_MODEL_INPUT(output->model))((void) sizeof ((!((output->model)->isa == &ccv_cnnp_input_isa )) ? 1 : 0), __extension__ ({ if (!((output->model)->isa == &ccv_cnnp_input_isa)) ; else __assert_fail ("!CCV_CNNP_IS_MODEL_INPUT(output->model)" , "ccv_cnnp_model_core.c", 533, __extension__ __PRETTY_FUNCTION__ ); })); | |||
534 | // If it is input, push it here. | |||
535 | if (output->incomings && !CCV_CNNP_IS_MODEL_PARAMETER(output)((output)->param_ref != 0 || (output)->param_sel != 0)) | |||
536 | for (k = 0; k < output->incomings->rnum; k++) | |||
537 | { | |||
538 | const ccv_cnnp_model_io_t input = *(ccv_cnnp_model_io_t*)ccv_array_get(output->incomings, k)((void*)(((char*)((output->incomings)->data)) + (size_t )(output->incomings)->rsize * (size_t)(k))); | |||
539 | // If it is an input or parameter, skip. | |||
540 | if (CCV_CNNP_IS_MODEL_INPUT(input->model)((input->model)->isa == &ccv_cnnp_input_isa) || CCV_CNNP_IS_MODEL_PARAMETER(input)((input)->param_ref != 0 || (input)->param_sel != 0)) | |||
541 | continue; | |||
542 | if (input->visit == 1 || input->visit == 3) // Visited, skip. | |||
543 | continue; | |||
544 | // If this is an output, we need to remove it from the output array. Otherwise mark it as visited. | |||
545 | input->visit = input->visit == 2 ? 3 : 1; | |||
546 | ccv_array_push(reverse_top, &input); | |||
547 | } | |||
548 | // Similar for dependencies. | |||
549 | if (output->dependencies && !CCV_CNNP_IS_MODEL_PARAMETER(output)((output)->param_ref != 0 || (output)->param_sel != 0)) | |||
550 | for (k = 0; k < output->dependencies->rnum; k++) | |||
551 | { | |||
552 | const ccv_cnnp_model_io_t dependency = *(ccv_cnnp_model_io_t*)ccv_array_get(output->dependencies, k)((void*)(((char*)((output->dependencies)->data)) + (size_t )(output->dependencies)->rsize * (size_t)(k))); | |||
553 | // If it is an input or parameter, skip. | |||
554 | if (CCV_CNNP_IS_MODEL_INPUT(dependency->model)((dependency->model)->isa == &ccv_cnnp_input_isa) || CCV_CNNP_IS_MODEL_PARAMETER(dependency)((dependency)->param_ref != 0 || (dependency)->param_sel != 0)) | |||
555 | continue; | |||
556 | if (dependency->visit == 1 || dependency->visit == 3) // Visited, skip. | |||
557 | continue; | |||
558 | // If this is an output, we need to remove it from the output array. Otherwise mark it as visited. | |||
559 | dependency->visit = dependency->visit == 2 ? 3 : 1; | |||
560 | ccv_array_push(reverse_top, &dependency); | |||
561 | } | |||
562 | } | |||
563 | for (j = 1; j < reverse_top->rnum; j++) | |||
564 | { | |||
565 | const ccv_cnnp_model_io_t output = *(ccv_cnnp_model_io_t*)ccv_array_get(reverse_top, j)((void*)(((char*)((reverse_top)->data)) + (size_t)(reverse_top )->rsize * (size_t)(j))); | |||
566 | if (output->visit == 1) // Clean the visit back. | |||
567 | output->visit = 0; | |||
568 | } | |||
569 | } | |||
570 | ccv_array_clear(reverse_top); | |||
571 | for (i = 0; i < output_size; i++) // We will assign sequence in reverse order, thus, reverse the reverse top when copying the outputs. | |||
572 | { | |||
573 | if (outputs[output_size - 1 - i]->visit == 2) | |||
574 | ccv_array_push(reverse_top, &outputs[output_size - 1 - i]); | |||
575 | assert(outputs[output_size - 1 - i]->visit == 2 || outputs[output_size - 1 - i]->visit == 3)((void) sizeof ((outputs[output_size - 1 - i]->visit == 2 || outputs[output_size - 1 - i]->visit == 3) ? 1 : 0), __extension__ ({ if (outputs[output_size - 1 - i]->visit == 2 || outputs [output_size - 1 - i]->visit == 3) ; else __assert_fail ("outputs[output_size - 1 - i]->visit == 2 || outputs[output_size - 1 - i]->visit == 3" , "ccv_cnnp_model_core.c", 575, __extension__ __PRETTY_FUNCTION__ ); })); | |||
576 | outputs[output_size - 1 - i]->visit = 0; // Clean up all visits. | |||
577 | } | |||
578 | // Go from the output, until we meet inputs. | |||
579 | uint64_t input_bitmask[((input_size - 1) >> 6) + 1]; | |||
580 | memset(input_bitmask, 0, sizeof(uint64_t) * (((input_size - 1) >> 6) + 1)); | |||
581 | int tensor_output_size = 0; // io can be mapped to multiple tensor outputs, therefore, need to compute the exact tensor output size. | |||
582 | for (i = 0; i < output_size; i++) | |||
583 | tensor_output_size += outputs[i]->model->output_size; | |||
584 | for (i = 0; i < reverse_top->rnum; i++) | |||
585 | { | |||
586 | const ccv_cnnp_model_io_t output = *(ccv_cnnp_model_io_t*)ccv_array_get(reverse_top, i)((void*)(((char*)((reverse_top)->data)) + (size_t)(reverse_top )->rsize * (size_t)(i))); | |||
587 | assert(!CCV_CNNP_IS_MODEL_INPUT(output->model))((void) sizeof ((!((output->model)->isa == &ccv_cnnp_input_isa )) ? 1 : 0), __extension__ ({ if (!((output->model)->isa == &ccv_cnnp_input_isa)) ; else __assert_fail ("!CCV_CNNP_IS_MODEL_INPUT(output->model)" , "ccv_cnnp_model_core.c", 587, __extension__ __PRETTY_FUNCTION__ ); })); | |||
588 | // If it is input, push it here. | |||
589 | if (output->incomings && !CCV_CNNP_IS_MODEL_PARAMETER(output)((output)->param_ref != 0 || (output)->param_sel != 0)) | |||
590 | for (j = 0; j < output->incomings->rnum; j++) | |||
591 | { | |||
592 | const ccv_cnnp_model_io_t input = *(ccv_cnnp_model_io_t*)ccv_array_get(output->incomings, j)((void*)(((char*)((output->incomings)->data)) + (size_t )(output->incomings)->rsize * (size_t)(j))); | |||
593 | ++input->visit; // Mark it as visited. | |||
594 | if (input->visit != input->outgoings->rnum + input->dependents) // Not all dependencies visited. | |||
595 | continue; | |||
596 | if (!CCV_CNNP_IS_MODEL_INPUT(input->model)((input->model)->isa == &ccv_cnnp_input_isa) && !CCV_CNNP_IS_MODEL_PARAMETER(input)((input)->param_ref != 0 || (input)->param_sel != 0)) | |||
597 | ccv_array_push(reverse_top, &input); | |||
598 | else if (CCV_CNNP_IS_MODEL_INPUT(input->model)((input->model)->isa == &ccv_cnnp_input_isa)) { | |||
599 | for (k = 0; k < input_size; k++) | |||
600 | if (input == inputs[k]) | |||
601 | break; | |||
602 | assert(k < input_size)((void) sizeof ((k < input_size) ? 1 : 0), __extension__ ( { if (k < input_size) ; else __assert_fail ("k < input_size" , "ccv_cnnp_model_core.c", 602, __extension__ __PRETTY_FUNCTION__ ); })); | |||
603 | input_bitmask[k >> 6] |= ((uint64_t)1 << (k & 63)); | |||
604 | } | |||
605 | } | |||
606 | if (output->dependencies && !CCV_CNNP_IS_MODEL_PARAMETER(output)((output)->param_ref != 0 || (output)->param_sel != 0)) | |||
607 | for (j = 0; j < output->dependencies->rnum; j++) | |||
608 | { | |||
609 | const ccv_cnnp_model_io_t dependency = *(ccv_cnnp_model_io_t*)ccv_array_get(output->dependencies, j)((void*)(((char*)((output->dependencies)->data)) + (size_t )(output->dependencies)->rsize * (size_t)(j))); | |||
610 | ++dependency->visit; // Mark it as visited. | |||
611 | if (dependency->visit != (dependency->outgoings ? dependency->outgoings->rnum : 0) + dependency->dependents) // Not all dependencies visited. | |||
612 | continue; | |||
613 | if (!CCV_CNNP_IS_MODEL_INPUT(dependency->model)((dependency->model)->isa == &ccv_cnnp_input_isa) && !CCV_CNNP_IS_MODEL_PARAMETER(dependency)((dependency)->param_ref != 0 || (dependency)->param_sel != 0)) | |||
614 | ccv_array_push(reverse_top, &dependency); | |||
615 | else if (CCV_CNNP_IS_MODEL_INPUT(dependency->model)((dependency->model)->isa == &ccv_cnnp_input_isa)) { | |||
616 | for (k = 0; k < input_size; k++) | |||
617 | if (dependency == inputs[k]) | |||
618 | break; | |||
619 | assert(k < input_size)((void) sizeof ((k < input_size) ? 1 : 0), __extension__ ( { if (k < input_size) ; else __assert_fail ("k < input_size" , "ccv_cnnp_model_core.c", 619, __extension__ __PRETTY_FUNCTION__ ); })); | |||
620 | input_bitmask[k >> 6] |= ((uint64_t)1 << (k & 63)); | |||
621 | } | |||
622 | } | |||
623 | } | |||
624 | for (i = 0; i < reverse_top->rnum; i++) | |||
625 | { | |||
626 | const ccv_cnnp_model_io_t output = *(ccv_cnnp_model_io_t*)ccv_array_get(reverse_top, i)((void*)(((char*)((reverse_top)->data)) + (size_t)(reverse_top )->rsize * (size_t)(i))); | |||
627 | output->visit = 0; // Clean the visit back. | |||
628 | } | |||
629 | for (i = 0; i < input_size; i++) | |||
630 | inputs[i]->visit = 0; // Clean the visit back. | |||
631 | for (i = 0; i < input_size; i++) | |||
632 | { assert((input_bitmask[i >> 6] & ((uint64_t)1 << (i & 63))))((void) sizeof (((input_bitmask[i >> 6] & ((uint64_t )1 << (i & 63)))) ? 1 : 0), __extension__ ({ if ((input_bitmask [i >> 6] & ((uint64_t)1 << (i & 63)))) ; else __assert_fail ("(input_bitmask[i >> 6] & ((uint64_t)1 << (i & 63)))" , "ccv_cnnp_model_core.c", 632, __extension__ __PRETTY_FUNCTION__ ); })); } // Assuming they all match. | |||
633 | const int sequence_size = reverse_top->rnum + input_size; | |||
634 | ccv_cnnp_functional_model_t* const functional_model = (ccv_cnnp_functional_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_functional_model_t) + sizeof(ccv_cnnp_model_t*) * (sequence_size - 1) + sizeof(ccv_nnc_tensor_symbol_t) * tensor_output_size + sizeof(int) * output_size); | |||
635 | functional_model->super.isa = &ccv_cnnp_functional_model_isa; | |||
636 | functional_model->super.outputs = (ccv_nnc_tensor_symbol_t*)(functional_model->sequence + sequence_size); | |||
637 | functional_model->super.output_size = tensor_output_size; | |||
638 | functional_model->super.input_size = input_size; | |||
639 | functional_model->super.is_trainable = is_trainable; | |||
640 | functional_model->model_output_size = output_size; | |||
641 | functional_model->model_outputs = (int*)(functional_model->super.outputs + tensor_output_size); | |||
642 | ccv_cnnp_model_copy_name(&functional_model->super, name); | |||
643 | functional_model->sequence_size = sequence_size; | |||
644 | memcpy(functional_model->sequence, inputs, sizeof(ccv_cnnp_model_io_t) * input_size); | |||
645 | for (i = 0; i < reverse_top->rnum; i++) | |||
646 | functional_model->sequence[input_size + i] = *(ccv_cnnp_model_io_t*)ccv_array_get(reverse_top, reverse_top->rnum - 1 - i)((void*)(((char*)((reverse_top)->data)) + (size_t)(reverse_top )->rsize * (size_t)(reverse_top->rnum - 1 - i))); | |||
647 | for (i = 0; i < output_size; i++) | |||
648 | { | |||
649 | for (j = sequence_size - 1; j >= input_size; j--) | |||
650 | if (functional_model->sequence[j] == outputs[i]) | |||
651 | { | |||
652 | functional_model->model_outputs[i] = j; | |||
653 | break; | |||
654 | } | |||
655 | } | |||
656 | ccv_array_free(reverse_top); | |||
657 | return (ccv_cnnp_model_t*)functional_model; | |||
658 | } | |||
659 | ||||
660 | static ccv_cnnp_model_t* _ccv_cnnp_input_copy(const ccv_cnnp_model_t* const self, void* const context) | |||
661 | { | |||
662 | ccv_cnnp_model_t* const input = (ccv_cnnp_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_t) + sizeof(ccv_nnc_tensor_symbol_t)); | |||
663 | input->isa = &ccv_cnnp_input_isa; | |||
664 | input->outputs = (ccv_nnc_tensor_symbol_t*)(input + 1); | |||
665 | input->output_size = 1; | |||
666 | return input; | |||
667 | } | |||
668 | ||||
669 | static const ccv_cnnp_model_vtab_t ccv_cnnp_input_isa = { | |||
670 | .copy = _ccv_cnnp_input_copy, | |||
671 | }; | |||
672 | ||||
673 | ccv_cnnp_model_io_t ccv_cnnp_input(void) | |||
674 | { | |||
675 | ccv_cnnp_model_t* const input = (ccv_cnnp_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_t) + sizeof(ccv_nnc_tensor_symbol_t)); | |||
676 | input->isa = &ccv_cnnp_input_isa; | |||
677 | input->io = ccv_array_new(sizeof(ccv_cnnp_model_io_t), 1, 0); | |||
678 | ccv_cnnp_model_io_t input_io = ccmallocmalloc(sizeof(struct ccv_cnnp_model_io_s) + sizeof(ccv_nnc_tensor_symbol_t)); | |||
679 | input_io->param_ref = 0; | |||
680 | input_io->param_sel = 0; | |||
681 | input_io->visit = 0; | |||
682 | input_io->incomings = 0; | |||
683 | input_io->dependencies = 0; | |||
684 | input_io->dependents = 0; | |||
685 | input_io->outgoings = 0; | |||
686 | input_io->model = input; | |||
687 | input_io->outputs = (ccv_nnc_tensor_symbol_t*)(input_io + 1); | |||
688 | ccv_array_push(input->io, &input_io); | |||
689 | input->outputs = (ccv_nnc_tensor_symbol_t*)(input + 1); | |||
690 | input->output_size = 1; | |||
691 | return input_io; | |||
692 | } | |||
693 | ||||
694 | // MARK - Dynamic Layer | |||
695 | ||||
696 | typedef struct { | |||
697 | ccv_cnnp_model_t super; | |||
698 | ccv_cnnp_model_dynamic_f func; | |||
699 | void* context; | |||
700 | ccv_cnnp_model_t* model; | |||
701 | } ccv_cnnp_dynamic_model_t; | |||
702 | ||||
703 | static void _ccv_cnnp_dynamic_model_deinit(ccv_cnnp_model_t* const super) | |||
704 | { | |||
705 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
706 | if (self->model) | |||
707 | ccv_cnnp_model_deinit(self->model); | |||
708 | } | |||
709 | ||||
710 | static void _ccv_cnnp_dynamic_model_dealloc(ccv_cnnp_model_t* const super) | |||
711 | { | |||
712 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
713 | if (self->model) | |||
714 | ccv_cnnp_model_free(self->model); | |||
715 | } | |||
716 | ||||
717 | static void _ccv_cnnp_dynamic_model_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size) | |||
718 | { | |||
719 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
720 | PRINT(CCV_CLI_VERBOSE, "[cnnp_dynamic_model_build] 1. %p, func: %p\n", self, self->func)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_dynamic_model_build] 1. %p, func: %p\n", self , self->func); fflush(stdout); } } while (0); | |||
721 | if (!self->model) | |||
722 | { | |||
723 | ccv_nnc_tensor_param_t input_params[input_size]; | |||
724 | int i; | |||
725 | for (i = 0; i < input_size; i++) | |||
726 | input_params[i] = ccv_nnc_tensor_symbol_params(graph, inputs[i]); | |||
727 | self->model = self->func(input_params, input_size, self->context); | |||
728 | // Update to use the settings of the compiled model. | |||
729 | self->super.input_size = self->model->input_size; | |||
730 | self->super.outputs = self->model->outputs; | |||
731 | self->super.output_size = self->model->output_size; | |||
732 | } | |||
733 | self->model->data = self->super.data; | |||
734 | ccv_cnnp_model_build(self->model, graph, inputs, input_size, outputs, output_size); | |||
735 | self->model->data = 0; | |||
736 | PRINT(CCV_CLI_VERBOSE, "[cnnp_dynamic_model_build] 2. %p\n", self)do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_dynamic_model_build] 2. %p\n", self); fflush (stdout); } } while (0); | |||
737 | } | |||
738 | ||||
739 | static void _ccv_cnnp_dynamic_model_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context) | |||
740 | { | |||
741 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
742 | assert(self->model)((void) sizeof ((self->model) ? 1 : 0), __extension__ ({ if (self->model) ; else __assert_fail ("self->model", "ccv_cnnp_model_core.c" , 742, __extension__ __PRETTY_FUNCTION__); })); | |||
743 | ccv_cnnp_model_init_states(self->model, graph, initializer, context); | |||
744 | } | |||
745 | ||||
746 | static void _ccv_cnnp_dynamic_model_set_is_test(ccv_cnnp_model_t* const super, const int is_test, const ccv_cnnp_cmd_updater_f updater, void* const context) | |||
747 | { | |||
748 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
749 | assert(self->model)((void) sizeof ((self->model) ? 1 : 0), __extension__ ({ if (self->model) ; else __assert_fail ("self->model", "ccv_cnnp_model_core.c" , 749, __extension__ __PRETTY_FUNCTION__); })); | |||
750 | ccv_cnnp_model_set_is_test(self->model, is_test, updater, context); | |||
751 | } | |||
752 | ||||
753 | static ccv_cnnp_model_t* _ccv_cnnp_dynamic_model_copy(const ccv_cnnp_model_t* const super, void* const context); | |||
754 | ||||
755 | static void _ccv_cnnp_dynamic_model_add_to_parameter_indices(ccv_cnnp_model_t* const super, const int index, ccv_array_t* const parameter_indices) | |||
756 | { | |||
757 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
758 | assert(self->model)((void) sizeof ((self->model) ? 1 : 0), __extension__ ({ if (self->model) ; else __assert_fail ("self->model", "ccv_cnnp_model_core.c" , 758, __extension__ __PRETTY_FUNCTION__); })); | |||
759 | ccv_cnnp_model_add_to_parameter_indices(self->model, index, parameter_indices); | |||
760 | } | |||
761 | ||||
762 | static void _ccv_cnnp_dynamic_model_notify(const ccv_cnnp_model_t* const super, const int tag, void* const payload) | |||
763 | { | |||
764 | ccv_cnnp_dynamic_model_t* const self = (ccv_cnnp_dynamic_model_t*)super; | |||
765 | if (self->model) | |||
766 | ccv_cnnp_model_notify(self->model, tag, payload); | |||
767 | } | |||
768 | ||||
769 | static const ccv_cnnp_model_vtab_t ccv_cnnp_dynamic_model_isa = { | |||
770 | .deinit = _ccv_cnnp_dynamic_model_deinit, | |||
771 | .dealloc = _ccv_cnnp_dynamic_model_dealloc, | |||
772 | .build = _ccv_cnnp_dynamic_model_build, | |||
773 | .init_states = _ccv_cnnp_dynamic_model_init_states, | |||
774 | .copy = _ccv_cnnp_dynamic_model_copy, | |||
775 | .set_is_test = _ccv_cnnp_dynamic_model_set_is_test, | |||
776 | .add_to_parameter_indices = _ccv_cnnp_dynamic_model_add_to_parameter_indices, | |||
777 | .notify = _ccv_cnnp_dynamic_model_notify, | |||
778 | }; | |||
779 | ||||
780 | ccv_cnnp_model_t* ccv_cnnp_dynamic_new(ccv_cnnp_model_dynamic_f func, void* const context, const char* const name) | |||
781 | { | |||
782 | ccv_cnnp_dynamic_model_t* const dynamic_model = (ccv_cnnp_dynamic_model_t*)cccalloccalloc(1, sizeof(ccv_cnnp_dynamic_model_t)); | |||
783 | dynamic_model->super.isa = &ccv_cnnp_dynamic_model_isa; | |||
784 | dynamic_model->super.is_trainable = -1; | |||
785 | dynamic_model->func = func; | |||
786 | dynamic_model->context = context; | |||
787 | ccv_cnnp_model_copy_name(&dynamic_model->super, name); | |||
788 | return (ccv_cnnp_model_t*)dynamic_model; | |||
789 | } | |||
790 | ||||
791 | static ccv_cnnp_model_t* _ccv_cnnp_dynamic_model_copy(const ccv_cnnp_model_t* const super, void* const context) | |||
792 | { | |||
793 | const ccv_cnnp_dynamic_model_t* const self = (const ccv_cnnp_dynamic_model_t*)super; | |||
794 | return ccv_cnnp_dynamic_new(self->func, self->context, self->super.name); | |||
795 | } | |||
796 | ||||
797 | // MARK - Command Layer | |||
798 | ||||
799 | typedef struct { | |||
800 | ccv_cnnp_model_t super; | |||
801 | ccv_nnc_cmd_t cmd; | |||
802 | ccv_nnc_hint_t hint; | |||
803 | ccv_nnc_tensor_symbol_t* input_symbols; // This is only valid for INIT_SHARED_TENSOR / INIT_SHARED_TENSOR_AS_TRAINABLE | |||
804 | ccv_nnc_tensor_symbol_t* output_symbols; // This is just for the output symbol (in case we need to have no tensor symbol). | |||
805 | ccv_cnnp_cmd_exec_io_t* inputs; | |||
806 | int flags; | |||
807 | int input_size; | |||
808 | int* outputs; | |||
809 | int output_size; | |||
810 | } ccv_cnnp_model_cmd_exec_t; | |||
811 | ||||
812 | static void _ccv_cnnp_cmd_exec_build(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t* const inputs, const int input_size, ccv_nnc_tensor_symbol_t* const outputs, const int output_size) | |||
813 | { | |||
814 | ccv_cnnp_model_cmd_exec_t* const self = (ccv_cnnp_model_cmd_exec_t*)super; | |||
815 | PRINT(CCV_CLI_VERBOSE, "[cnnp_cmd_exec_build] -\n")do { if ((CCV_CLI_VERBOSE & ccv_cli_get_output_levels())) { printf("[cnnp_cmd_exec_build] -\n"); fflush(stdout); } } while (0); | |||
816 | ccv_nnc_tensor_param_t input_params[ccv_max(1, self->input_size)({ typeof (1) _a = (1); typeof (self->input_size) _b = (self ->input_size); (_a > _b) ? _a : _b; })]; | |||
817 | int i, j; | |||
818 | for (i = 0, j = 0; i < self->input_size; i++) | |||
819 | if (self->inputs[i].type == CCV_CNNP_IO) | |||
820 | { | |||
821 | self->input_symbols[i] = inputs[j++]; | |||
822 | input_params[i] = ccv_nnc_tensor_symbol_params(graph, self->input_symbols[i]); | |||
823 | } else if (self->inputs[i].type == CCV_CNNP_NO_TENSOR) { | |||
824 | self->input_symbols[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; | |||
825 | } else if (!self->input_symbols[i].graph) { | |||
826 | // Otherwise, we only create this symbol if it doesn't exist. | |||
827 | const ccv_nnc_tensor_param_t params = self->inputs[i].init_state.info; | |||
828 | input_params[i] = params; | |||
829 | self->input_symbols[i] = ccv_nnc_tensor_symbol_new(graph, params, 0); | |||
830 | } | |||
831 | // We cannot simply mark the outputs as auto, because the subsequent build call may require this output to have params setup. | |||
832 | // Infer the parameters here. | |||
833 | ccv_nnc_tensor_param_t output_params[ccv_max(1, self->output_size)({ typeof (1) _a = (1); typeof (self->output_size) _b = (self ->output_size); (_a > _b) ? _a : _b; })]; | |||
834 | ccv_nnc_hint_tensor_auto(self->cmd, input_params, self->input_size, self->hint, output_params, self->output_size); | |||
835 | for (i = 0, j = 0; i < self->output_size; i++) | |||
836 | if (self->outputs[i] == CCV_CNNP_IO) | |||
837 | self->output_symbols[i] = outputs[j++] = ccv_nnc_tensor_symbol_new(graph, output_params[i], 0); | |||
838 | else if (self->outputs[i] == CCV_CNNP_TENSOR_NOT_OUTPUT) | |||
839 | self->output_symbols[i] = ccv_nnc_tensor_symbol_new(graph, output_params[i], 0); | |||
840 | else | |||
841 | self->output_symbols[i] = NO_TENSOR_SYMBOL(const ccv_nnc_tensor_symbol_t){.d = CCV_NNC_NO_TENSOR_SYMBOL }; | |||
842 | ccv_nnc_graph_exec_symbol_new(graph, self->cmd, self->input_symbols, self->input_size, self->output_symbols, self->output_size, 0); | |||
843 | } | |||
844 | ||||
845 | static void _ccv_cnnp_cmd_exec_init_states(ccv_cnnp_model_t* const super, ccv_nnc_symbolic_graph_t* const graph, const ccv_cnnp_state_initializer_f initializer, void* const context) | |||
846 | { | |||
847 | ccv_cnnp_model_cmd_exec_t* const self = (ccv_cnnp_model_cmd_exec_t*)super; | |||
848 | int i; | |||
849 | for (i = 0; i < self->input_size; i++) | |||
850 | if (self->inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR || self->inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE) | |||
851 | self->inputs[i].init_state.init(self->input_symbols[i], initializer, context, self->inputs[i].init_state.context); | |||
852 | } | |||
853 | ||||
854 | static void _ccv_cnnp_cmd_exec_add_to_output(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const outputs) | |||
855 | { | |||
856 | ccv_cnnp_model_cmd_exec_t* const self = (ccv_cnnp_model_cmd_exec_t*)super; | |||
857 | int i; | |||
858 | for (i = 0; i < self->input_size; i++) | |||
859 | if (self->inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR) | |||
860 | add_to_array(outputs, self->input_symbols[i], 0); // Push this as retainable because it need to be init. | |||
861 | } | |||
862 | ||||
863 | static void _ccv_cnnp_cmd_exec_add_to_parameter(ccv_cnnp_model_t* const super, const ccv_cnnp_add_to_array_f add_to_array, void* const parameters, const int is_trainable) | |||
864 | { | |||
865 | ccv_cnnp_model_cmd_exec_t* const self = (ccv_cnnp_model_cmd_exec_t*)super; | |||
866 | int i; | |||
867 | for (i = 0; i < self->input_size; i++) | |||
868 | if (self->inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE) | |||
869 | add_to_array(parameters, self->input_symbols[i], is_trainable); // Push this as parameter. | |||
870 | } | |||
871 | ||||
872 | static void _ccv_cnnp_cmd_exec_deinit(ccv_cnnp_model_t* const super) | |||
873 | { | |||
874 | ccv_cnnp_model_cmd_exec_t* const self = (ccv_cnnp_model_cmd_exec_t*)super; | |||
875 | int i, j; | |||
876 | for (i = 0; i < self->input_size; i++) | |||
877 | if ((self->inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR || self->inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE) && | |||
878 | self->inputs[i].init_state.context) | |||
879 | { | |||
880 | void* const context = self->inputs[i].init_state.context; | |||
881 | if (self->inputs[i].init_state.deinit) | |||
882 | self->inputs[i].init_state.deinit(context); | |||
883 | self->inputs[i].init_state.init = 0; | |||
884 | self->inputs[i].init_state.deinit = 0; | |||
885 | self->inputs[i].init_state.context = 0; | |||
886 | for (j = i + 1; j < self->input_size; j++) | |||
887 | if (self->inputs[j].init_state.context == context) | |||
888 | { | |||
889 | self->inputs[j].init_state.init = 0; | |||
890 | self->inputs[j].init_state.deinit = 0; | |||
891 | self->inputs[j].init_state.context = 0; | |||
892 | } | |||
893 | } | |||
894 | } | |||
895 | ||||
896 | static ccv_cnnp_model_t* _ccv_cnnp_cmd_exec_copy(const ccv_cnnp_model_t* const super, void* const context); | |||
897 | ||||
898 | static const ccv_cnnp_model_vtab_t ccv_cnnp_cmd_exec_isa = { | |||
899 | .build = _ccv_cnnp_cmd_exec_build, | |||
900 | .init_states = _ccv_cnnp_cmd_exec_init_states, | |||
901 | .add_to_parameter = _ccv_cnnp_cmd_exec_add_to_parameter, | |||
902 | .add_to_output = _ccv_cnnp_cmd_exec_add_to_output, | |||
903 | .deinit = _ccv_cnnp_cmd_exec_deinit, | |||
904 | .copy = _ccv_cnnp_cmd_exec_copy, | |||
905 | }; | |||
906 | ||||
907 | static ccv_cnnp_model_t* _ccv_cnnp_cmd_exec(const ccv_nnc_cmd_t cmd, int copy_io, const ccv_nnc_hint_t hint, const int flags, const ccv_cnnp_cmd_exec_io_t* const inputs, const int input_size, const int* const outputs, const int output_size, const int is_trainable, const char* const name) | |||
908 | { | |||
909 | assert(input_size >= 0)((void) sizeof ((input_size >= 0) ? 1 : 0), __extension__ ( { if (input_size >= 0) ; else __assert_fail ("input_size >= 0" , "ccv_cnnp_model_core.c", 909, __extension__ __PRETTY_FUNCTION__ ); })); | |||
910 | assert(output_size > 0)((void) sizeof ((output_size > 0) ? 1 : 0), __extension__ ( { if (output_size > 0) ; else __assert_fail ("output_size > 0" , "ccv_cnnp_model_core.c", 910, __extension__ __PRETTY_FUNCTION__ ); })); | |||
911 | int i; | |||
912 | int io_input_size = 0; | |||
913 | for (i = 0; i < input_size; i++) | |||
914 | if (inputs[i].type == CCV_CNNP_IO) | |||
915 | ++io_input_size; | |||
916 | else { | |||
917 | assert(inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR || inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE)((void) sizeof ((inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR || inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE ) ? 1 : 0), __extension__ ({ if (inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR || inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE ) ; else __assert_fail ("inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR || inputs[i].type == CCV_CNNP_INIT_SHARED_TENSOR_AS_TRAINABLE" , "ccv_cnnp_model_core.c", 917, __extension__ __PRETTY_FUNCTION__ ); })); | |||
918 | assert(inputs[i].init_state.init)((void) sizeof ((inputs[i].init_state.init) ? 1 : 0), __extension__ ({ if (inputs[i].init_state.init) ; else __assert_fail ("inputs[i].init_state.init" , "ccv_cnnp_model_core.c", 918, __extension__ __PRETTY_FUNCTION__ ); })); | |||
919 | } | |||
920 | int io_output_size = 0; | |||
921 | for (i = 0; i < output_size; i++) | |||
922 | if (outputs[i] == CCV_CNNP_IO) | |||
923 | ++io_output_size; | |||
924 | else { | |||
925 | assert(outputs[i] == CCV_CNNP_TENSOR_NOT_OUTPUT || outputs[i] == CCV_CNNP_NO_TENSOR)((void) sizeof ((outputs[i] == CCV_CNNP_TENSOR_NOT_OUTPUT || outputs [i] == CCV_CNNP_NO_TENSOR) ? 1 : 0), __extension__ ({ if (outputs [i] == CCV_CNNP_TENSOR_NOT_OUTPUT || outputs[i] == CCV_CNNP_NO_TENSOR ) ; else __assert_fail ("outputs[i] == CCV_CNNP_TENSOR_NOT_OUTPUT || outputs[i] == CCV_CNNP_NO_TENSOR" , "ccv_cnnp_model_core.c", 925, __extension__ __PRETTY_FUNCTION__ ); })); | |||
926 | } | |||
927 | assert(io_output_size > 0)((void) sizeof ((io_output_size > 0) ? 1 : 0), __extension__ ({ if (io_output_size > 0) ; else __assert_fail ("io_output_size > 0" , "ccv_cnnp_model_core.c", 927, __extension__ __PRETTY_FUNCTION__ ); })); | |||
928 | ccv_cnnp_model_cmd_exec_t* const model_cmd_exec = (ccv_cnnp_model_cmd_exec_t*)cccalloccalloc(1, sizeof(ccv_cnnp_model_cmd_exec_t) + sizeof(ccv_nnc_tensor_symbol_t) * (io_output_size + input_size + output_size) + sizeof(ccv_cnnp_cmd_exec_io_t) * input_size + sizeof(int) * output_size); | |||
929 | model_cmd_exec->super.isa = &ccv_cnnp_cmd_exec_isa; | |||
930 | model_cmd_exec->super.input_size = io_input_size; | |||
931 | model_cmd_exec->super.outputs = (ccv_nnc_tensor_symbol_t*)(model_cmd_exec + 1); | |||
932 | model_cmd_exec->super.output_size = io_output_size; | |||
933 | model_cmd_exec->super.is_trainable = is_trainable; | |||
934 | ccv_cnnp_model_copy_name(&model_cmd_exec->super, name); | |||
935 | model_cmd_exec->cmd = cmd; | |||
936 | model_cmd_exec->hint = hint; | |||
937 | model_cmd_exec->flags = flags; | |||
938 | model_cmd_exec->input_size = input_size; | |||
939 | model_cmd_exec->input_symbols = model_cmd_exec->super.outputs + io_output_size; | |||
940 | model_cmd_exec->output_symbols = model_cmd_exec->input_symbols + input_size; | |||
941 | model_cmd_exec->inputs = (ccv_cnnp_cmd_exec_io_t*)(model_cmd_exec->output_symbols + output_size); | |||
942 | if (input_size > 0) | |||
943 | { | |||
944 | memcpy(model_cmd_exec->inputs, inputs, sizeof(ccv_cnnp_cmd_exec_io_t) * input_size); | |||
945 | if (copy_io) | |||
946 | for (i = 0; i < input_size; i++) | |||
947 | if (inputs[i].type != CCV_CNNP_IO && inputs[i].init_state.copy) | |||
948 | model_cmd_exec->inputs[i].init_state.context = inputs[i].init_state.copy(inputs[i].init_state.context); | |||
949 | } | |||
950 | model_cmd_exec->output_size = output_size; | |||
951 | model_cmd_exec->outputs = (int*)(model_cmd_exec->inputs + input_size); | |||
952 | if (output_size > 0) | |||
953 | memcpy(model_cmd_exec->outputs, outputs, sizeof(int) * output_size); | |||
954 | return (ccv_cnnp_model_t*)model_cmd_exec; | |||
955 | } | |||
956 | ||||
957 | ccv_cnnp_model_t* ccv_cnnp_cmd_exec(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, const ccv_cnnp_cmd_exec_io_t* const inputs, const int input_size, const int* const outputs, const int output_size, const int is_trainable, const char* const name) | |||
958 | { | |||
959 | return _ccv_cnnp_cmd_exec(cmd, 0, hint, flags, inputs, input_size, outputs, output_size, is_trainable, name); | |||
960 | } | |||
961 | ||||
962 | static ccv_cnnp_model_t* _ccv_cnnp_cmd_exec_copy(const ccv_cnnp_model_t* const super, void* const context) | |||
963 | { | |||
964 | const ccv_cnnp_model_cmd_exec_t* const self = (const ccv_cnnp_model_cmd_exec_t*)super; | |||
965 | return _ccv_cnnp_cmd_exec(self->cmd, 1, self->hint, self->flags, self->inputs, self->input_size, self->outputs, self->output_size, self->super.is_trainable, self->super.name); | |||
966 | } | |||
967 | ||||
968 | static void _ccv_cnnp_cmd_exec_io_copy(const ccv_nnc_tensor_symbol_t tensor_symbol, const ccv_cnnp_state_initializer_f initializer, void* const initializer_context, void* const context) | |||
969 | { | |||
970 | initializer(initializer_context, CMD_DATA_TRANSFER_FORWARD()ccv_nnc_cmd(CCV_NNC_DATA_TRANSFER_FORWARD, 0, ccv_nnc_cmd_auto , 0), ccv_nnc_no_hint, 0, (ccv_nnc_tensor_t*)context, tensor_symbol); | |||
971 | } | |||
972 | ||||
973 | ccv_cnnp_cmd_exec_io_init_state_t ccv_cnnp_cmd_exec_io_copy(const ccv_nnc_tensor_t* const tensor) | |||
974 | { | |||
975 | return (ccv_cnnp_cmd_exec_io_init_state_t){ | |||
976 | .info = tensor->info, | |||
977 | .context = (void *)tensor, | |||
978 | .init = _ccv_cnnp_cmd_exec_io_copy, | |||
979 | }; | |||
980 | } | |||
981 | ||||
982 | typedef struct { | |||
983 | ccv_nnc_cmd_t cmd; | |||
984 | ccv_nnc_hint_t hint; | |||
985 | int flags; | |||
986 | } ccv_cnnp_cmd_exec_io_set_by_t; | |||
987 | ||||
988 | static void _ccv_cnnp_cmd_exec_io_set_by(const ccv_nnc_tensor_symbol_t tensor_symbol, const ccv_cnnp_state_initializer_f initializer, void* const initializer_context, void* const context) | |||
989 | { | |||
990 | const ccv_cnnp_cmd_exec_io_set_by_t* const set_by = (ccv_cnnp_cmd_exec_io_set_by_t*)context; | |||
991 | initializer(initializer_context, set_by->cmd, set_by->hint, set_by->flags, 0, tensor_symbol); | |||
992 | } | |||
993 | ||||
994 | static void* _ccv_cnnp_cmd_exec_io_set_by_copy(void* const context) | |||
995 | { | |||
996 | ccv_cnnp_cmd_exec_io_set_by_t* const set_by = (ccv_cnnp_cmd_exec_io_set_by_t*)ccmallocmalloc(sizeof(ccv_cnnp_cmd_exec_io_set_by_t)); | |||
997 | memcpy(set_by, context, sizeof(ccv_cnnp_cmd_exec_io_set_by_t)); | |||
998 | return set_by; | |||
999 | } | |||
1000 | ||||
1001 | ccv_cnnp_cmd_exec_io_init_state_t ccv_cnnp_cmd_exec_io_set_by(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, const ccv_nnc_tensor_param_t params) | |||
1002 | { | |||
1003 | ccv_cnnp_cmd_exec_io_set_by_t* const set_by = (ccv_cnnp_cmd_exec_io_set_by_t*)ccmallocmalloc(sizeof(ccv_cnnp_cmd_exec_io_set_by_t)); | |||
1004 | set_by->cmd = cmd; | |||
1005 | set_by->hint = hint; | |||
1006 | set_by->flags = flags; | |||
1007 | return (ccv_cnnp_cmd_exec_io_init_state_t){ | |||
1008 | .info = params, | |||
1009 | .context = set_by, | |||
1010 | .init = _ccv_cnnp_cmd_exec_io_set_by, | |||
1011 | .copy = _ccv_cnnp_cmd_exec_io_set_by_copy, | |||
1012 | .deinit = ccfreefree, | |||
1013 | }; | |||
1014 | } |