File: | nnc/cmd/ew/ccv_nnc_ew_cpu_ref.c |
Warning: | line 1303, column 27 The right operand of '*' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include "ccv.h" | |||
2 | #include "ccv_internal.h" | |||
3 | #include "nnc/ccv_nnc.h" | |||
4 | #include "nnc/ccv_nnc_easy.h" | |||
5 | #include "nnc/ccv_nnc_internal.h" | |||
6 | #ifdef USE_OPENMP | |||
7 | #include <omp.h> | |||
8 | #endif | |||
9 | #ifdef USE_DISPATCH | |||
10 | #include <dispatch/dispatch.h> | |||
11 | #endif | |||
12 | ||||
13 | #include "../_ccv_nnc_cpu_ref.h" | |||
14 | ||||
15 | void _ccv_nnc_ewsum_forw_cpu_ref_f32(ccv_nnc_tensor_view_t* const* const inputs, const int input_size, ccv_nnc_tensor_view_t* const* const outputs, const int output_size) | |||
16 | { | |||
17 | if (input_size == 1 && output_size == 1) | |||
18 | { | |||
19 | _ccv_nnc_tensor_transfer_cpu_ref_f32(inputs[0], outputs[0]); | |||
20 | return; | |||
21 | } | |||
22 | // Assuming this is float 32. | |||
23 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
24 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
25 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
26 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
27 | int x, z; | |||
28 | int k = 0; | |||
29 | // Bad, I promised this can be inplace operation. Need to first find out if there are share the same pointer first. | |||
30 | for (z = 1; z < input_size; z++) | |||
31 | { | |||
32 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
33 | ccv_nnc_tensor_view_t* a = inputs[z]; | |||
34 | if (c->data.f32 == a->data.f32) | |||
35 | { | |||
36 | k = z; | |||
37 | break; | |||
38 | } | |||
39 | } | |||
40 | for (z = 0; z < input_size - 1; z++) | |||
41 | { | |||
42 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
43 | ccv_nnc_tensor_view_t* a = z > 0 ? c : inputs[k]; | |||
44 | ccv_nnc_tensor_view_t* b = z >= k ? inputs[z + 1] : inputs[z]; | |||
45 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 45, __extension__ __PRETTY_FUNCTION__ ); })); | |||
46 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 46, __extension__ __PRETTY_FUNCTION__ ); })); | |||
47 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 47, __extension__ __PRETTY_FUNCTION__ ); })); | |||
48 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
49 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 49, __extension__ __PRETTY_FUNCTION__ ); })); | |||
50 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 50, __extension__ __PRETTY_FUNCTION__ ); })); | |||
51 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
52 | { | |||
53 | // Super optimal case, just do one for-loop for sum. | |||
54 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
55 | for (x = 0; x < tensor_count; x++) | |||
56 | c->data.f32[x] = a->data.f32[x] + b->data.f32[x]; | |||
57 | continue; | |||
58 | } | |||
59 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 59, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
60 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
61 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
62 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
63 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
64 | float* const ap = a->data.f32; | |||
65 | float* const bp = b->data.f32; | |||
66 | float* const cp = c->data.f32; | |||
67 | const int count = dim[2] * dim[3]; | |||
68 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && astride[3] == 1 && bstride[3] == 1 && cstride[3] == 1) | |||
69 | { | |||
70 | // Special casing if the ainc[3] is the same as dim[3] (do memcpy for the last two dim) | |||
71 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
72 | { | |||
73 | float* ap0 = ap + i[0] * astride[0]; | |||
74 | float* bp0 = bp + i[0] * bstride[0]; | |||
75 | float* cp0 = cp + i[0] * cstride[0]; | |||
76 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
77 | { | |||
78 | for (x = 0; x < count; x++) | |||
79 | cp0[x] = ap0[x] + bp0[x]; | |||
80 | ap0 += astride[1]; | |||
81 | bp0 += bstride[1]; | |||
82 | cp0 += cstride[1]; | |||
83 | } | |||
84 | } | |||
85 | continue; | |||
86 | } | |||
87 | // Non-optimal case, need to do skip copy. | |||
88 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
89 | { | |||
90 | float* const ap0 = ap + i[0] * astride[0]; | |||
91 | float* const bp0 = bp + i[0] * bstride[0]; | |||
92 | float* const cp0 = cp + i[0] * cstride[0]; | |||
93 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
94 | { | |||
95 | float* ap1 = ap0 + i[1] * astride[1]; | |||
96 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
97 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
98 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
99 | { | |||
100 | for (x = 0; x < dim[3]; x++) | |||
101 | cp1[x * cstride[3]] = ap1[x * astride[3]] + bp1[x * bstride[3]]; | |||
102 | ap1 += astride[2]; | |||
103 | bp1 += bstride[2]; | |||
104 | cp1 += cstride[2]; | |||
105 | } | |||
106 | } | |||
107 | } | |||
108 | } | |||
109 | } | |||
110 | ||||
111 | void _ccv_nnc_ewsum_forw_cpu_ref_i32(ccv_nnc_tensor_view_t* const* const inputs, const int input_size, ccv_nnc_tensor_view_t* const* const outputs, const int output_size) | |||
112 | { | |||
113 | if (input_size == 1 && output_size == 1) | |||
114 | { | |||
115 | _ccv_nnc_tensor_transfer_cpu_ref_f32(inputs[0], outputs[0]); | |||
116 | return; | |||
117 | } | |||
118 | // Assuming this is float 32. | |||
119 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
120 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
121 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
122 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
123 | int x, z; | |||
124 | int k = 0; | |||
125 | // Bad, I promised this can be inplace operation. Need to first find out if there are share the same pointer first. | |||
126 | for (z = 1; z < input_size; z++) | |||
127 | { | |||
128 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
129 | ccv_nnc_tensor_view_t* a = inputs[z]; | |||
130 | if (c->data.f32 == a->data.f32) | |||
131 | { | |||
132 | k = z; | |||
133 | break; | |||
134 | } | |||
135 | } | |||
136 | for (z = 0; z < input_size - 1; z++) | |||
137 | { | |||
138 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
139 | ccv_nnc_tensor_view_t* a = z > 0 ? c : inputs[k]; | |||
140 | ccv_nnc_tensor_view_t* b = z >= k ? inputs[z + 1] : inputs[z]; | |||
141 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 141, __extension__ __PRETTY_FUNCTION__ ); })); | |||
142 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 142, __extension__ __PRETTY_FUNCTION__ ); })); | |||
143 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 143, __extension__ __PRETTY_FUNCTION__ ); })); | |||
144 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
145 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 145, __extension__ __PRETTY_FUNCTION__ ); })); | |||
146 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 146, __extension__ __PRETTY_FUNCTION__ ); })); | |||
147 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
148 | { | |||
149 | // Super optimal case, just do one for-loop for sum. | |||
150 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
151 | for (x = 0; x < tensor_count; x++) | |||
152 | c->data.f32[x] = a->data.f32[x] + b->data.f32[x]; | |||
153 | continue; | |||
154 | } | |||
155 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 155, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
156 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
157 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
158 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
159 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
160 | int* const ap = a->data.i32; | |||
161 | int* const bp = b->data.i32; | |||
162 | int* const cp = c->data.i32; | |||
163 | const int count = dim[2] * dim[3]; | |||
164 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && astride[3] == 1 && bstride[3] == 1 && cstride[3] == 1) | |||
165 | { | |||
166 | // Special casing if the ainc[3] is the same as dim[3] (do memcpy for the last two dim) | |||
167 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
168 | { | |||
169 | int* ap0 = ap + i[0] * astride[0]; | |||
170 | int* bp0 = bp + i[0] * bstride[0]; | |||
171 | int* cp0 = cp + i[0] * cstride[0]; | |||
172 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
173 | { | |||
174 | for (x = 0; x < count; x++) | |||
175 | cp0[x] = ap0[x] + bp0[x]; | |||
176 | ap0 += astride[1]; | |||
177 | bp0 += bstride[1]; | |||
178 | cp0 += cstride[1]; | |||
179 | } | |||
180 | } | |||
181 | continue; | |||
182 | } | |||
183 | // Non-optimal case, need to do skip copy. | |||
184 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
185 | { | |||
186 | int* const ap0 = ap + i[0] * astride[0]; | |||
187 | int* const bp0 = bp + i[0] * bstride[0]; | |||
188 | int* const cp0 = cp + i[0] * cstride[0]; | |||
189 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
190 | { | |||
191 | int* ap1 = ap0 + i[1] * astride[1]; | |||
192 | int* bp1 = bp0 + i[1] * bstride[1]; | |||
193 | int* cp1 = cp0 + i[1] * cstride[1]; | |||
194 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
195 | { | |||
196 | for (x = 0; x < dim[3]; x++) | |||
197 | cp1[x * cstride[3]] = ap1[x * astride[3]] + bp1[x * bstride[3]]; | |||
198 | ap1 += astride[2]; | |||
199 | bp1 += bstride[2]; | |||
200 | cp1 += cstride[2]; | |||
201 | } | |||
202 | } | |||
203 | } | |||
204 | } | |||
205 | } | |||
206 | ||||
207 | static int _ccv_nnc_ewsum_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
208 | { | |||
209 | if (outputs[0]->info.datatype == CCV_32S) | |||
210 | _ccv_nnc_ewsum_forw_cpu_ref_i32((ccv_nnc_tensor_view_t**)inputs, input_size, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
211 | else | |||
212 | _ccv_nnc_ewsum_forw_cpu_ref_f32((ccv_nnc_tensor_view_t**)inputs, input_size, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
213 | return CCV_NNC_EXEC_SUCCESS; | |||
214 | } | |||
215 | ||||
216 | static int _ccv_nnc_ewsum_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
217 | { | |||
218 | // D[x + y + z, x] = 1 | |||
219 | int i; | |||
220 | if (inputs[0] == 0) | |||
221 | { | |||
222 | // Set them to 1. | |||
223 | for (i = 0; i < output_size; i++) | |||
224 | if (outputs[i]) | |||
225 | _ccv_nnc_tensor_set_cpu_ref_f32((ccv_nnc_tensor_view_t*)outputs[i], 1); | |||
226 | } else { | |||
227 | // Copy over the gradient (If they are not pointing to the same tensor already). | |||
228 | for (i = 0; i < output_size; i++) | |||
229 | if (outputs[i] && inputs[0]->data.f32 != outputs[i]->data.f32) | |||
230 | _ccv_nnc_tensor_transfer_cpu_ref_f32((ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)outputs[i]); | |||
231 | } | |||
232 | return CCV_NNC_EXEC_SUCCESS; | |||
233 | } | |||
234 | ||||
235 | void _ccv_nnc_ewprod_forw_cpu_ref(ccv_nnc_tensor_view_t* const* const inputs, const int input_size, ccv_nnc_tensor_view_t* const* const outputs, const int output_size) | |||
236 | { | |||
237 | if (input_size == 1 && output_size == 1) | |||
238 | { | |||
239 | _ccv_nnc_tensor_transfer_cpu_ref_f32(inputs[0], outputs[0]); | |||
240 | return; | |||
241 | } | |||
242 | // Assuming this is float 32. | |||
243 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
244 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
245 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
246 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
247 | int x, z; | |||
248 | int k = 0; | |||
249 | // Bad, I promised this can be inplace operation. Need to first find out if there are share the same pointer first. | |||
250 | for (z = 1; z < input_size; z++) | |||
251 | { | |||
252 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
253 | ccv_nnc_tensor_view_t* a = inputs[z]; | |||
254 | if (c->data.f32 == a->data.f32) | |||
255 | { | |||
256 | k = z; | |||
257 | break; | |||
258 | } | |||
259 | } | |||
260 | for (z = 0; z < input_size - 1; z++) | |||
261 | { | |||
262 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
263 | ccv_nnc_tensor_view_t* a = z > 0 ? c : inputs[k]; | |||
264 | ccv_nnc_tensor_view_t* b = z >= k ? inputs[z + 1] : inputs[z]; | |||
265 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 265, __extension__ __PRETTY_FUNCTION__ ); })); | |||
266 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 266, __extension__ __PRETTY_FUNCTION__ ); })); | |||
267 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 267, __extension__ __PRETTY_FUNCTION__ ); })); | |||
268 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
269 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 269, __extension__ __PRETTY_FUNCTION__ ); })); | |||
270 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 270, __extension__ __PRETTY_FUNCTION__ ); })); | |||
271 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
272 | { | |||
273 | // Super optimal case, just do one for-loop for sum. | |||
274 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
275 | for (x = 0; x < tensor_count; x++) | |||
276 | c->data.f32[x] = a->data.f32[x] * b->data.f32[x]; | |||
277 | continue; | |||
278 | } | |||
279 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 279, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
280 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
281 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
282 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
283 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
284 | float* const ap = a->data.f32; | |||
285 | float* const bp = b->data.f32; | |||
286 | float* const cp = c->data.f32; | |||
287 | const int count = dim[2] * dim[3]; | |||
288 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3]) | |||
289 | { | |||
290 | // Special casing if the ainc[3] is the same as dim[3] | |||
291 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
292 | { | |||
293 | float* ap0 = ap + i[0] * astride[0]; | |||
294 | float* bp0 = bp + i[0] * bstride[0]; | |||
295 | float* cp0 = cp + i[0] * cstride[0]; | |||
296 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
297 | { | |||
298 | for (x = 0; x < count; x++) | |||
299 | cp0[x] = ap0[x] * bp0[x]; | |||
300 | ap0 += astride[1]; | |||
301 | bp0 += bstride[1]; | |||
302 | cp0 += cstride[1]; | |||
303 | } | |||
304 | } | |||
305 | continue; | |||
306 | } | |||
307 | // Non-optimal case, need to do skip copy. | |||
308 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
309 | { | |||
310 | float* const ap0 = ap + i[0] * astride[0]; | |||
311 | float* const bp0 = bp + i[0] * bstride[0]; | |||
312 | float* const cp0 = cp + i[0] * cstride[0]; | |||
313 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
314 | { | |||
315 | float* ap1 = ap0 + i[1] * astride[1]; | |||
316 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
317 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
318 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
319 | { | |||
320 | for (x = 0; x < dim[3]; x++) | |||
321 | cp1[x] = ap1[x] * bp1[x]; | |||
322 | ap1 += astride[2]; | |||
323 | bp1 += bstride[2]; | |||
324 | cp1 += cstride[2]; | |||
325 | } | |||
326 | } | |||
327 | } | |||
328 | } | |||
329 | } | |||
330 | ||||
331 | static int _ccv_nnc_ewprod_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
332 | { | |||
333 | _ccv_nnc_ewprod_forw_cpu_ref((ccv_nnc_tensor_view_t**)inputs, input_size, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
334 | return CCV_NNC_EXEC_SUCCESS; | |||
335 | } | |||
336 | ||||
337 | static int _ccv_nnc_ewprod_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
338 | { | |||
339 | // D[x * y * z, x] = y * z | |||
340 | // Assuming this is float 32. | |||
341 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
342 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
343 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
344 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
345 | int hstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
346 | int x, z; | |||
347 | ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
348 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[output_size + 1]; | |||
349 | if (g == 0) | |||
350 | { | |||
351 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 351, __extension__ __PRETTY_FUNCTION__ ); })); | |||
352 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
353 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
354 | for (z = 0; z < output_size; z++) | |||
355 | { | |||
356 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[z + 1]; | |||
357 | ccv_nnc_tensor_view_t* h = (ccv_nnc_tensor_view_t*)outputs[z]; | |||
358 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 358, __extension__ __PRETTY_FUNCTION__ ); })); | |||
359 | assert(ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(h->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(h->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 359, __extension__ __PRETTY_FUNCTION__ ); })); | |||
360 | assert(ccv_nnc_tensor_view_check_dim(a, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(a, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(a, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(a, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 360, __extension__ __PRETTY_FUNCTION__ ); })); | |||
361 | assert(ccv_nnc_tensor_view_check_dim(h, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(h, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(h, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(h, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 361, __extension__ __PRETTY_FUNCTION__ ); })); | |||
362 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
363 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
364 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW)) | |||
365 | { | |||
366 | // Super optimal case, just do one for-loop for sum. | |||
367 | const int tensor_count = ccv_nnc_tensor_count(b->info); | |||
368 | for (x = 0; x < tensor_count; x++) | |||
369 | h->data.f32[x] = b->data.f32[x] / a->data.f32[x]; | |||
370 | continue; | |||
371 | } | |||
372 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 372, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
373 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
374 | float* const ap = a->data.f32; | |||
375 | float* const bp = b->data.f32; | |||
376 | float* const hp = h->data.f32; | |||
377 | const int count = dim[2] * dim[3]; | |||
378 | if (astride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
379 | { | |||
380 | // Special casing if the ainc[3] is the same as dim[3] | |||
381 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
382 | { | |||
383 | float* ap0 = ap + i[0] * astride[0]; | |||
384 | float* bp0 = bp + i[0] * bstride[0]; | |||
385 | float* hp0 = hp + i[0] * hstride[0]; | |||
386 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
387 | { | |||
388 | for (x = 0; x < count; x++) | |||
389 | hp0[x] = bp0[x] / ap0[x]; | |||
390 | ap0 += astride[1]; | |||
391 | bp0 += bstride[1]; | |||
392 | hp0 += hstride[1]; | |||
393 | } | |||
394 | } | |||
395 | continue; | |||
396 | } | |||
397 | // Non-optimal case, need to do skip copy. | |||
398 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
399 | { | |||
400 | float* const ap0 = ap + i[0] * astride[0]; | |||
401 | float* const bp0 = bp + i[0] * bstride[0]; | |||
402 | float* const hp0 = hp + i[0] * hstride[0]; | |||
403 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
404 | { | |||
405 | float* ap1 = ap0 + i[1] * astride[1]; | |||
406 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
407 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
408 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
409 | { | |||
410 | for (x = 0; x < dim[3]; x++) | |||
411 | hp1[x] = bp1[x] / ap1[x]; | |||
412 | ap1 += astride[2]; | |||
413 | bp1 += bstride[2]; | |||
414 | hp1 += hstride[2]; | |||
415 | } | |||
416 | } | |||
417 | } | |||
418 | } | |||
419 | } else { | |||
420 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 420, __extension__ __PRETTY_FUNCTION__ ); })); | |||
421 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 421, __extension__ __PRETTY_FUNCTION__ ); })); | |||
422 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
423 | assert(ccv_nnc_tensor_view_check_dim(g, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(g, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(g, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(g, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 423, __extension__ __PRETTY_FUNCTION__ ); })); | |||
424 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
425 | ccv_nnc_tensor_view_get_stride(g, gstride); | |||
426 | for (z = 0; z < output_size; z++) | |||
427 | { | |||
428 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[z + 1]; | |||
429 | ccv_nnc_tensor_view_t* h = (ccv_nnc_tensor_view_t*)outputs[z]; | |||
430 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 430, __extension__ __PRETTY_FUNCTION__ ); })); | |||
431 | assert(ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(h->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(h->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 431, __extension__ __PRETTY_FUNCTION__ ); })); | |||
432 | assert(ccv_nnc_tensor_view_check_dim(a, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(a, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(a, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(a, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 432, __extension__ __PRETTY_FUNCTION__ ); })); | |||
433 | assert(ccv_nnc_tensor_view_check_dim(h, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(h, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(h, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(h, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 433, __extension__ __PRETTY_FUNCTION__ ); })); | |||
434 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
435 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
436 | if (!CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW)) | |||
437 | { | |||
438 | // Super optimal case, just do one for-loop for sum. | |||
439 | const int tensor_count = ccv_nnc_tensor_count(g->info); | |||
440 | for (x = 0; x < tensor_count; x++) | |||
441 | h->data.f32[x] = g->data.f32[x] * b->data.f32[x] / a->data.f32[x]; | |||
442 | continue; | |||
443 | } | |||
444 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 444, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
445 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
446 | float* const gp = g->data.f32; | |||
447 | float* const ap = a->data.f32; | |||
448 | float* const bp = b->data.f32; | |||
449 | float* const hp = h->data.f32; | |||
450 | const int count = dim[2] * dim[3]; | |||
451 | if (gstride[2] == dim[3] && astride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
452 | { | |||
453 | // Special casing if the ainc[3] is the same as dim[3] | |||
454 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
455 | { | |||
456 | float* gp0 = gp + i[0] * gstride[0]; | |||
457 | float* ap0 = ap + i[0] * astride[0]; | |||
458 | float* bp0 = bp + i[0] * bstride[0]; | |||
459 | float* hp0 = hp + i[0] * hstride[0]; | |||
460 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
461 | { | |||
462 | for (x = 0; x < count; x++) | |||
463 | hp0[x] = gp0[x] * bp0[x] / ap0[x]; | |||
464 | gp0 += gstride[1]; | |||
465 | ap0 += astride[1]; | |||
466 | bp0 += bstride[1]; | |||
467 | hp0 += hstride[1]; | |||
468 | } | |||
469 | } | |||
470 | continue; | |||
471 | } | |||
472 | // Non-optimal case, need to do skip copy. | |||
473 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
474 | { | |||
475 | float* const gp0 = gp + i[0] * gstride[0]; | |||
476 | float* const ap0 = ap + i[0] * astride[0]; | |||
477 | float* const bp0 = bp + i[0] * bstride[0]; | |||
478 | float* const hp0 = hp + i[0] * hstride[0]; | |||
479 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
480 | { | |||
481 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
482 | float* ap1 = ap0 + i[1] * astride[1]; | |||
483 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
484 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
485 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
486 | { | |||
487 | for (x = 0; x < dim[3]; x++) | |||
488 | hp1[x] = gp1[x] * bp1[x] / ap1[x]; | |||
489 | gp1 += gstride[2]; | |||
490 | ap1 += astride[2]; | |||
491 | bp1 += bstride[2]; | |||
492 | hp1 += hstride[2]; | |||
493 | } | |||
494 | } | |||
495 | } | |||
496 | } | |||
497 | } | |||
498 | return CCV_NNC_EXEC_SUCCESS; | |||
499 | } | |||
500 | ||||
501 | static void _ccv_nnc_ewdiv_forw_cpu_ref(const float p, ccv_nnc_tensor_view_t* const a, ccv_nnc_tensor_view_t* const b, ccv_nnc_tensor_view_t* const c) | |||
502 | { | |||
503 | // Assuming this is float 32. | |||
504 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
505 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
506 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
507 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
508 | if (a == 0) // Take 0 as all ones tensor. | |||
509 | { | |||
510 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 510, __extension__ __PRETTY_FUNCTION__ ); })); | |||
511 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 511, __extension__ __PRETTY_FUNCTION__ ); })); | |||
512 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
513 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 513, __extension__ __PRETTY_FUNCTION__ ); })); | |||
514 | int x; | |||
515 | if (!CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
516 | { | |||
517 | // Super optimal case, just do one for-loop for sum. | |||
518 | const int tensor_count = ccv_nnc_tensor_count(b->info); | |||
519 | for (x = 0; x < tensor_count; x++) | |||
520 | c->data.f32[x] = p / b->data.f32[x]; | |||
521 | return; | |||
522 | } | |||
523 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 523, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
524 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
525 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
526 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
527 | float* const bp = b->data.f32; | |||
528 | float* const cp = c->data.f32; | |||
529 | const int count = dim[2] * dim[3]; | |||
530 | if (bstride[2] == dim[3] && cstride[2] == dim[3]) | |||
531 | { | |||
532 | // Special casing if the ainc[3] is the same as dim[3] | |||
533 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
534 | { | |||
535 | float* bp0 = bp + i[0] * bstride[0]; | |||
536 | float* cp0 = cp + i[0] * cstride[0]; | |||
537 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
538 | { | |||
539 | for (x = 0; x < count; x++) | |||
540 | cp0[x] = p / bp0[x]; | |||
541 | bp0 += bstride[1]; | |||
542 | cp0 += cstride[1]; | |||
543 | } | |||
544 | } | |||
545 | return; | |||
546 | } | |||
547 | // Non-optimal case, need to do skip copy. | |||
548 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
549 | { | |||
550 | float* const bp0 = bp + i[0] * bstride[0]; | |||
551 | float* const cp0 = cp + i[0] * cstride[0]; | |||
552 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
553 | { | |||
554 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
555 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
556 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
557 | { | |||
558 | for (x = 0; x < dim[3]; x++) | |||
559 | cp1[x] = p / bp1[x]; | |||
560 | bp1 += bstride[2]; | |||
561 | cp1 += cstride[2]; | |||
562 | } | |||
563 | } | |||
564 | } | |||
565 | } else { | |||
566 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 566, __extension__ __PRETTY_FUNCTION__ ); })); | |||
567 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 567, __extension__ __PRETTY_FUNCTION__ ); })); | |||
568 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 568, __extension__ __PRETTY_FUNCTION__ ); })); | |||
569 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
570 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 570, __extension__ __PRETTY_FUNCTION__ ); })); | |||
571 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 571, __extension__ __PRETTY_FUNCTION__ ); })); | |||
572 | int x; | |||
573 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
574 | { | |||
575 | // Super optimal case, just do one for-loop for sum. | |||
576 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
577 | for (x = 0; x < tensor_count; x++) | |||
578 | c->data.f32[x] = p * a->data.f32[x] / b->data.f32[x]; | |||
579 | return; | |||
580 | } | |||
581 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 581, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
582 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
583 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
584 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
585 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
586 | float* const ap = a->data.f32; | |||
587 | float* const bp = b->data.f32; | |||
588 | float* const cp = c->data.f32; | |||
589 | const int count = dim[2] * dim[3]; | |||
590 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3]) | |||
591 | { | |||
592 | // Special casing if the ainc[3] is the same as dim[3] | |||
593 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
594 | { | |||
595 | float* ap0 = ap + i[0] * astride[0]; | |||
596 | float* bp0 = bp + i[0] * bstride[0]; | |||
597 | float* cp0 = cp + i[0] * cstride[0]; | |||
598 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
599 | { | |||
600 | for (x = 0; x < count; x++) | |||
601 | cp0[x] = p * ap0[x] / bp0[x]; | |||
602 | ap0 += astride[1]; | |||
603 | bp0 += bstride[1]; | |||
604 | cp0 += cstride[1]; | |||
605 | } | |||
606 | } | |||
607 | return; | |||
608 | } | |||
609 | // Non-optimal case, need to do skip copy. | |||
610 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
611 | { | |||
612 | float* const ap0 = ap + i[0] * astride[0]; | |||
613 | float* const bp0 = bp + i[0] * bstride[0]; | |||
614 | float* const cp0 = cp + i[0] * cstride[0]; | |||
615 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
616 | { | |||
617 | float* ap1 = ap0 + i[1] * astride[1]; | |||
618 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
619 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
620 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
621 | { | |||
622 | for (x = 0; x < dim[3]; x++) | |||
623 | cp1[x] = p * ap1[x] / bp1[x]; | |||
624 | ap1 += astride[2]; | |||
625 | bp1 += bstride[2]; | |||
626 | cp1 += cstride[2]; | |||
627 | } | |||
628 | } | |||
629 | } | |||
630 | } | |||
631 | } | |||
632 | ||||
633 | static int _ccv_nnc_ewdiv_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
634 | { | |||
635 | _ccv_nnc_ewdiv_forw_cpu_ref(1, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[1], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
636 | return CCV_NNC_EXEC_SUCCESS; | |||
637 | } | |||
638 | ||||
639 | static int _ccv_nnc_ewdiv_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
640 | { | |||
641 | // D[x / y, x] = 1 / y, D[x / y, y] = -x / y^2 | |||
642 | if (output_size == 1 || outputs[1] == 0) | |||
643 | { | |||
644 | // When we only need D[x / y, x] | |||
645 | _ccv_nnc_ewdiv_forw_cpu_ref(1, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[2], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
646 | return CCV_NNC_EXEC_SUCCESS; | |||
647 | } | |||
648 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
649 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
650 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
651 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
652 | int hastride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
653 | int hbstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
654 | ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
655 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[2]; | |||
656 | ccv_nnc_tensor_view_t* c = (ccv_nnc_tensor_view_t*)inputs[3]; | |||
657 | ccv_nnc_tensor_view_t* ha = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
658 | ccv_nnc_tensor_view_t* hb = (ccv_nnc_tensor_view_t*)outputs[1]; | |||
659 | if (g == 0) | |||
660 | { | |||
661 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 661, __extension__ __PRETTY_FUNCTION__ ); })); | |||
662 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 662, __extension__ __PRETTY_FUNCTION__ ); })); | |||
663 | assert(ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(hb->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(hb-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 663, __extension__ __PRETTY_FUNCTION__ ); })); | |||
664 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
665 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 665, __extension__ __PRETTY_FUNCTION__ ); })); | |||
666 | assert(ccv_nnc_tensor_view_check_dim(hb, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(hb, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(hb, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(hb, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 666, __extension__ __PRETTY_FUNCTION__ ); })); | |||
667 | if (ha) | |||
668 | { | |||
669 | assert(ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(ha->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(ha-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 669, __extension__ __PRETTY_FUNCTION__ ); })); | |||
670 | assert(ccv_nnc_tensor_view_check_dim(ha, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(ha, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(ha, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(ha, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 670, __extension__ __PRETTY_FUNCTION__ ); })); | |||
671 | } | |||
672 | int x; | |||
673 | if (!CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW) && (ha == 0 || !CCV_IS_TENSOR_VIEW(ha)((*(int*)(ha)) & CCV_TENSOR_VIEW)) && !CCV_IS_TENSOR_VIEW(hb)((*(int*)(hb)) & CCV_TENSOR_VIEW)) | |||
674 | { | |||
675 | // Super optimal case, just do one for-loop for sum. | |||
676 | const int tensor_count = ccv_nnc_tensor_count(b->info); | |||
677 | if (ha == 0) | |||
678 | { | |||
679 | for (x = 0; x < tensor_count; x++) | |||
680 | { | |||
681 | const float v = 1 / b->data.f32[x]; | |||
682 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
683 | } | |||
684 | } else { | |||
685 | for (x = 0; x < tensor_count; x++) | |||
686 | { | |||
687 | const float v = 1 / b->data.f32[x]; | |||
688 | ha->data.f32[x] = v; | |||
689 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
690 | } | |||
691 | } | |||
692 | return CCV_NNC_EXEC_SUCCESS; | |||
693 | } | |||
694 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 694, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
695 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
696 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
697 | ccv_nnc_tensor_view_get_stride(hb, hbstride); | |||
698 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
699 | float* const bp = b->data.f32; | |||
700 | float* const cp = c->data.f32; | |||
701 | float* const hbp = hb->data.f32; | |||
702 | const int count = dim[2] * dim[3]; | |||
703 | if (ha == 0) | |||
704 | { | |||
705 | if (bstride[2] == dim[3] && cstride[2] == dim[3] && hbstride[2] == dim[3]) | |||
706 | { | |||
707 | // Special casing if the ainc[3] is the same as dim[3] | |||
708 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
709 | { | |||
710 | float* bp0 = bp + i[0] * bstride[0]; | |||
711 | float* cp0 = cp + i[0] * cstride[0]; | |||
712 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
713 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
714 | { | |||
715 | for (x = 0; x < count; x++) | |||
716 | { | |||
717 | const float v = 1 / bp0[x]; | |||
718 | hbp0[x] = -cp0[x] * v; | |||
719 | } | |||
720 | bp0 += bstride[1]; | |||
721 | cp0 += cstride[1]; | |||
722 | hbp0 += hbstride[1]; | |||
723 | } | |||
724 | } | |||
725 | return CCV_NNC_EXEC_SUCCESS; | |||
726 | } | |||
727 | // Non-optimal case, need to do skip copy. | |||
728 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
729 | { | |||
730 | float* const bp0 = bp + i[0] * bstride[0]; | |||
731 | float* const cp0 = cp + i[0] * cstride[0]; | |||
732 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
733 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
734 | { | |||
735 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
736 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
737 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
738 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
739 | { | |||
740 | for (x = 0; x < dim[3]; x++) | |||
741 | { | |||
742 | const float v = 1 / bp1[x]; | |||
743 | hbp1[x] = -cp1[x] * v; | |||
744 | } | |||
745 | bp1 += bstride[2]; | |||
746 | cp1 += cstride[2]; | |||
747 | hbp1 += hbstride[2]; | |||
748 | } | |||
749 | } | |||
750 | } | |||
751 | } else { | |||
752 | float* const hap = ha->data.f32; | |||
753 | ccv_nnc_tensor_view_get_stride(ha, hastride); | |||
754 | if (bstride[2] == dim[3] && cstride[2] == dim[3] && hastride[2] == dim[3] && hbstride[2] == dim[3]) | |||
755 | { | |||
756 | // Special casing if the ainc[3] is the same as dim[3] | |||
757 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
758 | { | |||
759 | float* bp0 = bp + i[0] * bstride[0]; | |||
760 | float* cp0 = cp + i[0] * cstride[0]; | |||
761 | float* hap0 = hap + i[0] * hastride[0]; | |||
762 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
763 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
764 | { | |||
765 | for (x = 0; x < count; x++) | |||
766 | { | |||
767 | const float v = 1 / bp0[x]; | |||
768 | hap0[x] = v; | |||
769 | hbp0[x] = -cp0[x] * v; | |||
770 | } | |||
771 | bp0 += bstride[1]; | |||
772 | cp0 += cstride[1]; | |||
773 | hap0 += hastride[1]; | |||
774 | hbp0 += hbstride[1]; | |||
775 | } | |||
776 | } | |||
777 | return CCV_NNC_EXEC_SUCCESS; | |||
778 | } | |||
779 | // Non-optimal case, need to do skip copy. | |||
780 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
781 | { | |||
782 | float* const bp0 = bp + i[0] * bstride[0]; | |||
783 | float* const cp0 = cp + i[0] * cstride[0]; | |||
784 | float* const hap0 = hap + i[0] * hastride[0]; | |||
785 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
786 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
787 | { | |||
788 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
789 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
790 | float* hap1 = hap0 + i[1] * hastride[1]; | |||
791 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
792 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
793 | { | |||
794 | for (x = 0; x < dim[3]; x++) | |||
795 | { | |||
796 | const float v = 1 / bp1[x]; | |||
797 | hap1[x] = v; | |||
798 | hbp1[x] = -cp1[x] * v; | |||
799 | } | |||
800 | bp1 += bstride[2]; | |||
801 | cp1 += cstride[2]; | |||
802 | hap1 += hastride[2]; | |||
803 | hbp1 += hbstride[2]; | |||
804 | } | |||
805 | } | |||
806 | } | |||
807 | } | |||
808 | } else { | |||
809 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 809, __extension__ __PRETTY_FUNCTION__ ); })); | |||
810 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 810, __extension__ __PRETTY_FUNCTION__ ); })); | |||
811 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 811, __extension__ __PRETTY_FUNCTION__ ); })); | |||
812 | assert(ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(hb->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(hb-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 812, __extension__ __PRETTY_FUNCTION__ ); })); | |||
813 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
814 | assert(ccv_nnc_tensor_view_check_dim(g, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(g, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(g, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(g, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 814, __extension__ __PRETTY_FUNCTION__ ); })); | |||
815 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 815, __extension__ __PRETTY_FUNCTION__ ); })); | |||
816 | assert(ccv_nnc_tensor_view_check_dim(hb, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(hb, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(hb, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(hb, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 816, __extension__ __PRETTY_FUNCTION__ ); })); | |||
817 | if (ha) | |||
818 | { | |||
819 | assert(ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(ha->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(ha-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 819, __extension__ __PRETTY_FUNCTION__ ); })); | |||
820 | assert(ccv_nnc_tensor_view_check_dim(ha, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(ha, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(ha, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(ha, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 820, __extension__ __PRETTY_FUNCTION__ ); })); | |||
821 | } | |||
822 | int x; | |||
823 | if (!CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW) && (ha == 0 || !CCV_IS_TENSOR_VIEW(ha)((*(int*)(ha)) & CCV_TENSOR_VIEW)) && !CCV_IS_TENSOR_VIEW(hb)((*(int*)(hb)) & CCV_TENSOR_VIEW)) | |||
824 | { | |||
825 | // Super optimal case, just do one for-loop for sum. | |||
826 | const int tensor_count = ccv_nnc_tensor_count(g->info); | |||
827 | if (ha == 0) | |||
828 | { | |||
829 | for (x = 0; x < tensor_count; x++) | |||
830 | { | |||
831 | const float v = g->data.f32[x] / b->data.f32[x]; | |||
832 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
833 | } | |||
834 | } else { | |||
835 | for (x = 0; x < tensor_count; x++) | |||
836 | { | |||
837 | const float v = g->data.f32[x] / b->data.f32[x]; | |||
838 | ha->data.f32[x] = v; | |||
839 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
840 | } | |||
841 | } | |||
842 | return CCV_NNC_EXEC_SUCCESS; | |||
843 | } | |||
844 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 844, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
845 | ccv_nnc_tensor_view_get_stride(g, gstride); | |||
846 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
847 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
848 | ccv_nnc_tensor_view_get_stride(hb, hbstride); | |||
849 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
850 | float* const gp = g->data.f32; | |||
851 | float* const bp = b->data.f32; | |||
852 | float* const cp = c->data.f32; | |||
853 | float* const hbp = hb->data.f32; | |||
854 | const int count = dim[2] * dim[3]; | |||
855 | if (ha == 0) | |||
856 | { | |||
857 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && hbstride[2] == dim[3]) | |||
858 | { | |||
859 | // Special casing if the ainc[3] is the same as dim[3] | |||
860 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
861 | { | |||
862 | float* gp0 = gp + i[0] * gstride[0]; | |||
863 | float* bp0 = bp + i[0] * bstride[0]; | |||
864 | float* cp0 = cp + i[0] * cstride[0]; | |||
865 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
866 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
867 | { | |||
868 | for (x = 0; x < count; x++) | |||
869 | { | |||
870 | const float v = gp0[x] / bp0[x]; | |||
871 | hbp0[x] = -cp0[x] * v; | |||
872 | } | |||
873 | gp0 += gstride[1]; | |||
874 | bp0 += bstride[1]; | |||
875 | cp0 += cstride[1]; | |||
876 | hbp0 += hbstride[1]; | |||
877 | } | |||
878 | } | |||
879 | return CCV_NNC_EXEC_SUCCESS; | |||
880 | } | |||
881 | // Non-optimal case, need to do skip copy. | |||
882 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
883 | { | |||
884 | float* const gp0 = gp + i[0] * gstride[0]; | |||
885 | float* const bp0 = bp + i[0] * bstride[0]; | |||
886 | float* const cp0 = cp + i[0] * cstride[0]; | |||
887 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
888 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
889 | { | |||
890 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
891 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
892 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
893 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
894 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
895 | { | |||
896 | for (x = 0; x < dim[3]; x++) | |||
897 | { | |||
898 | const float v = gp1[x] / bp1[x]; | |||
899 | hbp1[x] = -cp1[x] * v; | |||
900 | } | |||
901 | gp1 += gstride[2]; | |||
902 | bp1 += bstride[2]; | |||
903 | cp1 += cstride[2]; | |||
904 | hbp1 += hbstride[2]; | |||
905 | } | |||
906 | } | |||
907 | } | |||
908 | } else { | |||
909 | ccv_nnc_tensor_view_get_stride(ha, hastride); | |||
910 | float* const hap = ha->data.f32; | |||
911 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && hastride[2] == dim[3] && hbstride[2] == dim[3]) | |||
912 | { | |||
913 | // Special casing if the ainc[3] is the same as dim[3] | |||
914 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
915 | { | |||
916 | float* gp0 = gp + i[0] * gstride[0]; | |||
917 | float* bp0 = bp + i[0] * bstride[0]; | |||
918 | float* cp0 = cp + i[0] * cstride[0]; | |||
919 | float* hap0 = hap + i[0] * hastride[0]; | |||
920 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
921 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
922 | { | |||
923 | for (x = 0; x < count; x++) | |||
924 | { | |||
925 | const float v = gp0[x] / bp0[x]; | |||
926 | hap0[x] = v; | |||
927 | hbp0[x] = -cp0[x] * v; | |||
928 | } | |||
929 | gp0 += gstride[1]; | |||
930 | bp0 += bstride[1]; | |||
931 | cp0 += cstride[1]; | |||
932 | hap0 += hastride[1]; | |||
933 | hbp0 += hbstride[1]; | |||
934 | } | |||
935 | } | |||
936 | return CCV_NNC_EXEC_SUCCESS; | |||
937 | } | |||
938 | // Non-optimal case, need to do skip copy. | |||
939 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
940 | { | |||
941 | float* const gp0 = gp + i[0] * gstride[0]; | |||
942 | float* const bp0 = bp + i[0] * bstride[0]; | |||
943 | float* const cp0 = cp + i[0] * cstride[0]; | |||
944 | float* const hap0 = hap + i[0] * hastride[0]; | |||
945 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
946 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
947 | { | |||
948 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
949 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
950 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
951 | float* hap1 = hap0 + i[1] * hastride[1]; | |||
952 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
953 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
954 | { | |||
955 | for (x = 0; x < dim[3]; x++) | |||
956 | { | |||
957 | const float v = gp1[x] / bp1[x]; | |||
958 | hap1[x] = v; | |||
959 | hbp1[x] = -cp1[x] * v; | |||
960 | } | |||
961 | gp1 += gstride[2]; | |||
962 | bp1 += bstride[2]; | |||
963 | cp1 += cstride[2]; | |||
964 | hap1 += hastride[2]; | |||
965 | hbp1 += hbstride[2]; | |||
966 | } | |||
967 | } | |||
968 | } | |||
969 | } | |||
970 | } | |||
971 | return CCV_NNC_EXEC_SUCCESS; | |||
972 | } | |||
973 | ||||
974 | static int _ccv_nnc_ewexp_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
975 | { | |||
976 | // Assuming this is float 32. | |||
977 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
978 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
979 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
980 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
981 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
982 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 982, __extension__ __PRETTY_FUNCTION__ ); })); | |||
983 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 983, __extension__ __PRETTY_FUNCTION__ ); })); | |||
984 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
985 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 985, __extension__ __PRETTY_FUNCTION__ ); })); | |||
986 | int x; | |||
987 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
988 | { | |||
989 | // Super optimal case, just do one for-loop for sum. | |||
990 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
991 | for (x = 0; x < tensor_count; x++) | |||
992 | b->data.f32[x] = exp(a->data.f32[x]); | |||
993 | return CCV_NNC_EXEC_SUCCESS; | |||
994 | } | |||
995 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 995, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
996 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
997 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
998 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
999 | float* const ap = a->data.f32; | |||
1000 | float* const bp = b->data.f32; | |||
1001 | const int count = dim[2] * dim[3]; | |||
1002 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1003 | { | |||
1004 | // Special casing if the ainc[3] is the same as dim[3] | |||
1005 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1006 | { | |||
1007 | float* ap0 = ap + i[0] * astride[0]; | |||
1008 | float* bp0 = bp + i[0] * bstride[0]; | |||
1009 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1010 | { | |||
1011 | for (x = 0; x < count; x++) | |||
1012 | bp0[x] = exp(ap0[x]); | |||
1013 | ap0 += astride[1]; | |||
1014 | bp0 += bstride[1]; | |||
1015 | } | |||
1016 | } | |||
1017 | return CCV_NNC_EXEC_SUCCESS; | |||
1018 | } | |||
1019 | // Non-optimal case, need to do skip copy. | |||
1020 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1021 | { | |||
1022 | float* const ap0 = ap + i[0] * astride[0]; | |||
1023 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1024 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1025 | { | |||
1026 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1027 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1028 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1029 | { | |||
1030 | for (x = 0; x < dim[3]; x++) | |||
1031 | bp1[x] = exp(ap1[x]); | |||
1032 | ap1 += astride[2]; | |||
1033 | bp1 += bstride[2]; | |||
1034 | } | |||
1035 | } | |||
1036 | } | |||
1037 | return CCV_NNC_EXEC_SUCCESS; | |||
1038 | } | |||
1039 | ||||
1040 | static int _ccv_nnc_ewexp_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1041 | { | |||
1042 | // D[Exp[x], x] = Exp[x] | |||
1043 | if (inputs[0] == 0) | |||
1044 | _ccv_nnc_tensor_transfer_cpu_ref_f32((ccv_nnc_tensor_view_t*)inputs[2], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
1045 | else | |||
1046 | _ccv_nnc_ewprod_forw_cpu_ref((ccv_nnc_tensor_view_t*[]){ | |||
1047 | (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[2] | |||
1048 | }, 2, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
1049 | return CCV_NNC_EXEC_SUCCESS; | |||
1050 | } | |||
1051 | ||||
1052 | static int _ccv_nnc_ewlog_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1053 | { | |||
1054 | // Assuming this is float 32. | |||
1055 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1056 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1057 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1058 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
1059 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
1060 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1060, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1061 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1061, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1062 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
1063 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1063, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1064 | int x; | |||
1065 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
1066 | { | |||
1067 | // Super optimal case, just do one for-loop for sum. | |||
1068 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
1069 | for (x = 0; x < tensor_count; x++) | |||
1070 | b->data.f32[x] = log(a->data.f32[x]); | |||
1071 | return CCV_NNC_EXEC_SUCCESS; | |||
1072 | } | |||
1073 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1073, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1074 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
1075 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1076 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1077 | float* const ap = a->data.f32; | |||
1078 | float* const bp = b->data.f32; | |||
1079 | const int count = dim[2] * dim[3]; | |||
1080 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1081 | { | |||
1082 | // Special casing if the ainc[3] is the same as dim[3] | |||
1083 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1084 | { | |||
1085 | float* ap0 = ap + i[0] * astride[0]; | |||
1086 | float* bp0 = bp + i[0] * bstride[0]; | |||
1087 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1088 | { | |||
1089 | for (x = 0; x < count; x++) | |||
1090 | bp0[x] = log(ap0[x]); | |||
1091 | ap0 += astride[1]; | |||
1092 | bp0 += bstride[1]; | |||
1093 | } | |||
1094 | } | |||
1095 | return CCV_NNC_EXEC_SUCCESS; | |||
1096 | } | |||
1097 | // Non-optimal case, need to do skip copy. | |||
1098 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1099 | { | |||
1100 | float* const ap0 = ap + i[0] * astride[0]; | |||
1101 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1102 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1103 | { | |||
1104 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1105 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1106 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1107 | { | |||
1108 | for (x = 0; x < dim[3]; x++) | |||
1109 | bp1[x] = log(ap1[x]); | |||
1110 | ap1 += astride[2]; | |||
1111 | bp1 += bstride[2]; | |||
1112 | } | |||
1113 | } | |||
1114 | } | |||
1115 | return CCV_NNC_EXEC_SUCCESS; | |||
1116 | } | |||
1117 | ||||
1118 | static int _ccv_nnc_ewlog_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1119 | { | |||
1120 | // D[Log[x], x] = 1 / x | |||
1121 | _ccv_nnc_ewdiv_forw_cpu_ref(1, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[1], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
1122 | return CCV_NNC_EXEC_SUCCESS; | |||
1123 | } | |||
1124 | ||||
1125 | static int _ccv_nnc_ewsqrt_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1126 | { | |||
1127 | // Assuming this is float 32. | |||
1128 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1129 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1130 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1131 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
1132 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
1133 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1133, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1134 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1134, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1135 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
1136 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1136, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1137 | int x; | |||
1138 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
1139 | { | |||
1140 | // Super optimal case, just do one for-loop for sum. | |||
1141 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
1142 | for (x = 0; x < tensor_count; x++) | |||
1143 | b->data.f32[x] = sqrt(a->data.f32[x]); | |||
1144 | return CCV_NNC_EXEC_SUCCESS; | |||
1145 | } | |||
1146 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1146, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1147 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
1148 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1149 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1150 | float* const ap = a->data.f32; | |||
1151 | float* const bp = b->data.f32; | |||
1152 | const int count = dim[2] * dim[3]; | |||
1153 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1154 | { | |||
1155 | // Special casing if the ainc[3] is the same as dim[3] | |||
1156 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1157 | { | |||
1158 | float* ap0 = ap + i[0] * astride[0]; | |||
1159 | float* bp0 = bp + i[0] * bstride[0]; | |||
1160 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1161 | { | |||
1162 | for (x = 0; x < count; x++) | |||
1163 | bp0[x] = sqrt(ap0[x]); | |||
1164 | ap0 += astride[1]; | |||
1165 | bp0 += bstride[1]; | |||
1166 | } | |||
1167 | } | |||
1168 | return CCV_NNC_EXEC_SUCCESS; | |||
1169 | } | |||
1170 | // Non-optimal case, need to do skip copy. | |||
1171 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1172 | { | |||
1173 | float* const ap0 = ap + i[0] * astride[0]; | |||
1174 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1175 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1176 | { | |||
1177 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1178 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1179 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1180 | { | |||
1181 | for (x = 0; x < dim[3]; x++) | |||
1182 | bp1[x] = sqrt(ap1[x]); | |||
1183 | ap1 += astride[2]; | |||
1184 | bp1 += bstride[2]; | |||
1185 | } | |||
1186 | } | |||
1187 | } | |||
1188 | return CCV_NNC_EXEC_SUCCESS; | |||
1189 | } | |||
1190 | ||||
1191 | static int _ccv_nnc_ewsqrt_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1192 | { | |||
1193 | // D[Sqrt[x], x] = 0.5 / Sqrt[x] | |||
1194 | _ccv_nnc_ewdiv_forw_cpu_ref(0.5, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[2], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
1195 | return CCV_NNC_EXEC_SUCCESS; | |||
1196 | } | |||
1197 | ||||
1198 | static int _ccv_nnc_ewabs_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1199 | { | |||
1200 | // Assuming this is float 32. | |||
1201 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1202 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1203 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1204 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
1205 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
1206 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1206, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1207 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1207, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1208 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
1209 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1209, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1210 | int x; | |||
1211 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
1212 | { | |||
1213 | // Super optimal case, just do one for-loop for sum. | |||
1214 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
1215 | for (x = 0; x < tensor_count; x++) | |||
1216 | b->data.f32[x] = fabs(a->data.f32[x]); | |||
1217 | return CCV_NNC_EXEC_SUCCESS; | |||
1218 | } | |||
1219 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1219, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1220 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
1221 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1222 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1223 | float* const ap = a->data.f32; | |||
1224 | float* const bp = b->data.f32; | |||
1225 | const int count = dim[2] * dim[3]; | |||
1226 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1227 | { | |||
1228 | // Special casing if the ainc[3] is the same as dim[3] | |||
1229 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1230 | { | |||
1231 | float* ap0 = ap + i[0] * astride[0]; | |||
1232 | float* bp0 = bp + i[0] * bstride[0]; | |||
1233 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1234 | { | |||
1235 | for (x = 0; x < count; x++) | |||
1236 | bp0[x] = fabs(ap0[x]); | |||
1237 | ap0 += astride[1]; | |||
1238 | bp0 += bstride[1]; | |||
1239 | } | |||
1240 | } | |||
1241 | return CCV_NNC_EXEC_SUCCESS; | |||
1242 | } | |||
1243 | // Non-optimal case, need to do skip copy. | |||
1244 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1245 | { | |||
1246 | float* const ap0 = ap + i[0] * astride[0]; | |||
1247 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1248 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1249 | { | |||
1250 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1251 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1252 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1253 | { | |||
1254 | for (x = 0; x < dim[3]; x++) | |||
1255 | bp1[x] = fabs(ap1[x]); | |||
1256 | ap1 += astride[2]; | |||
1257 | bp1 += bstride[2]; | |||
1258 | } | |||
1259 | } | |||
1260 | } | |||
1261 | return CCV_NNC_EXEC_SUCCESS; | |||
1262 | } | |||
1263 | ||||
1264 | static int _ccv_nnc_ewabs_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1265 | { | |||
1266 | // Assuming this is float 32. | |||
1267 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1268 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1269 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1270 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1271 | ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
1272 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[1]; | |||
1273 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
1274 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1274, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| ||||
1275 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1275, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1276 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1276, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1277 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
1278 | assert(ccv_nnc_tensor_view_check_dim(g, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(g, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(g, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(g, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1278, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1279 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1279, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1280 | int x; | |||
1281 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW)) | |||
1282 | { | |||
1283 | // Super optimal case, just do one for-loop for sum. | |||
1284 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
1285 | for (x = 0; x < tensor_count; x++) | |||
1286 | b->data.f32[x] = a->data.f32[x] >= 0 ? g->data.f32[x] : -g->data.f32[x]; | |||
1287 | return CCV_NNC_EXEC_SUCCESS; | |||
1288 | } | |||
1289 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1289, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1290 | ccv_nnc_tensor_view_get_stride(g, astride); | |||
1291 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
1292 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1293 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1294 | float* const gp = g->data.f32; | |||
1295 | float* const ap = a->data.f32; | |||
1296 | float* const bp = b->data.f32; | |||
1297 | const int count = dim[2] * dim[3]; | |||
1298 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1299 | { | |||
1300 | // Special casing if the ainc[3] is the same as dim[3] | |||
1301 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1302 | { | |||
1303 | float* gp0 = gp + i[0] * gstride[0]; | |||
| ||||
1304 | float* ap0 = ap + i[0] * astride[0]; | |||
1305 | float* bp0 = bp + i[0] * bstride[0]; | |||
1306 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1307 | { | |||
1308 | for (x = 0; x < count; x++) | |||
1309 | bp0[x] = ap0[x] >= 0 ? gp0[x] : -gp0[x]; | |||
1310 | gp0 += gstride[1]; | |||
1311 | ap0 += astride[1]; | |||
1312 | bp0 += bstride[1]; | |||
1313 | } | |||
1314 | } | |||
1315 | return CCV_NNC_EXEC_SUCCESS; | |||
1316 | } | |||
1317 | // Non-optimal case, need to do skip copy. | |||
1318 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1319 | { | |||
1320 | float* const gp0 = gp + i[0] * gstride[0]; | |||
1321 | float* const ap0 = ap + i[0] * astride[0]; | |||
1322 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1323 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1324 | { | |||
1325 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
1326 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1327 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1328 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1329 | { | |||
1330 | for (x = 0; x < dim[3]; x++) | |||
1331 | bp1[x] = ap1[x] >= 0 ? gp1[x] : -gp1[x]; | |||
1332 | gp1 += gstride[2]; | |||
1333 | ap1 += astride[2]; | |||
1334 | bp1 += bstride[2]; | |||
1335 | } | |||
1336 | } | |||
1337 | } | |||
1338 | return CCV_NNC_EXEC_SUCCESS; | |||
1339 | } | |||
1340 | ||||
1341 | static int _ccv_nnc_clamp_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1342 | { | |||
1343 | // Assuming this is float 32. | |||
1344 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1345 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1346 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1347 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
1348 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
1349 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1349, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1350 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1350, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1351 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
1352 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1352, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1353 | int x; | |||
1354 | const float min = cmd.info.clamp.min; | |||
1355 | const float max = cmd.info.clamp.max; | |||
1356 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1356, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1357 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
1358 | { | |||
1359 | // Super optimal case, just do one for-loop for sum. | |||
1360 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
1361 | if (isnan(min)__builtin_isnan (min)) | |||
1362 | { | |||
1363 | for (x = 0; x < tensor_count; x++) | |||
1364 | b->data.f32[x] = ccv_min(a->data.f32[x], max)({ typeof (a->data.f32[x]) _a = (a->data.f32[x]); typeof (max) _b = (max); (_a < _b) ? _a : _b; }); | |||
1365 | } else if (isnan(max)__builtin_isnan (max)) { | |||
1366 | for (x = 0; x < tensor_count; x++) | |||
1367 | b->data.f32[x] = ccv_max(a->data.f32[x], min)({ typeof (a->data.f32[x]) _a = (a->data.f32[x]); typeof (min) _b = (min); (_a > _b) ? _a : _b; }); | |||
1368 | } else { | |||
1369 | for (x = 0; x < tensor_count; x++) | |||
1370 | b->data.f32[x] = ccv_clamp(a->data.f32[x], min, max)({ typeof (min) _a = (min); typeof (max) _b = (max); typeof ( a->data.f32[x]) _x = (a->data.f32[x]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
1371 | } | |||
1372 | return CCV_NNC_EXEC_SUCCESS; | |||
1373 | } | |||
1374 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1374, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1375 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
1376 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1377 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1378 | float* const ap = a->data.f32; | |||
1379 | float* const bp = b->data.f32; | |||
1380 | const int count = dim[2] * dim[3]; | |||
1381 | if (isnan(min)__builtin_isnan (min)) | |||
1382 | { | |||
1383 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1384 | { | |||
1385 | // Special casing if the ainc[3] is the same as dim[3] | |||
1386 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1387 | { | |||
1388 | float* ap0 = ap + i[0] * astride[0]; | |||
1389 | float* bp0 = bp + i[0] * bstride[0]; | |||
1390 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1391 | { | |||
1392 | for (x = 0; x < count; x++) | |||
1393 | bp0[x] = ccv_min(ap0[x], max)({ typeof (ap0[x]) _a = (ap0[x]); typeof (max) _b = (max); (_a < _b) ? _a : _b; }); | |||
1394 | ap0 += astride[1]; | |||
1395 | bp0 += bstride[1]; | |||
1396 | } | |||
1397 | } | |||
1398 | return CCV_NNC_EXEC_SUCCESS; | |||
1399 | } | |||
1400 | // Non-optimal case, need to do skip copy. | |||
1401 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1402 | { | |||
1403 | float* const ap0 = ap + i[0] * astride[0]; | |||
1404 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1405 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1406 | { | |||
1407 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1408 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1409 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1410 | { | |||
1411 | for (x = 0; x < dim[3]; x++) | |||
1412 | bp1[x] = ccv_min(ap1[x], max)({ typeof (ap1[x]) _a = (ap1[x]); typeof (max) _b = (max); (_a < _b) ? _a : _b; }); | |||
1413 | ap1 += astride[2]; | |||
1414 | bp1 += bstride[2]; | |||
1415 | } | |||
1416 | } | |||
1417 | } | |||
1418 | } else if (isnan(max)__builtin_isnan (max)) { | |||
1419 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1420 | { | |||
1421 | // Special casing if the ainc[3] is the same as dim[3] | |||
1422 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1423 | { | |||
1424 | float* ap0 = ap + i[0] * astride[0]; | |||
1425 | float* bp0 = bp + i[0] * bstride[0]; | |||
1426 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1427 | { | |||
1428 | for (x = 0; x < count; x++) | |||
1429 | bp0[x] = ccv_max(ap0[x], min)({ typeof (ap0[x]) _a = (ap0[x]); typeof (min) _b = (min); (_a > _b) ? _a : _b; }); | |||
1430 | ap0 += astride[1]; | |||
1431 | bp0 += bstride[1]; | |||
1432 | } | |||
1433 | } | |||
1434 | return CCV_NNC_EXEC_SUCCESS; | |||
1435 | } | |||
1436 | // Non-optimal case, need to do skip copy. | |||
1437 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1438 | { | |||
1439 | float* const ap0 = ap + i[0] * astride[0]; | |||
1440 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1441 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1442 | { | |||
1443 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1444 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1445 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1446 | { | |||
1447 | for (x = 0; x < dim[3]; x++) | |||
1448 | bp1[x] = ccv_max(ap1[x], min)({ typeof (ap1[x]) _a = (ap1[x]); typeof (min) _b = (min); (_a > _b) ? _a : _b; }); | |||
1449 | ap1 += astride[2]; | |||
1450 | bp1 += bstride[2]; | |||
1451 | } | |||
1452 | } | |||
1453 | } | |||
1454 | } else { | |||
1455 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
1456 | { | |||
1457 | // Special casing if the ainc[3] is the same as dim[3] | |||
1458 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1459 | { | |||
1460 | float* ap0 = ap + i[0] * astride[0]; | |||
1461 | float* bp0 = bp + i[0] * bstride[0]; | |||
1462 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1463 | { | |||
1464 | for (x = 0; x < count; x++) | |||
1465 | bp0[x] = ccv_clamp(ap0[x], min, max)({ typeof (min) _a = (min); typeof (max) _b = (max); typeof ( ap0[x]) _x = (ap0[x]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
1466 | ap0 += astride[1]; | |||
1467 | bp0 += bstride[1]; | |||
1468 | } | |||
1469 | } | |||
1470 | return CCV_NNC_EXEC_SUCCESS; | |||
1471 | } | |||
1472 | // Non-optimal case, need to do skip copy. | |||
1473 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1474 | { | |||
1475 | float* const ap0 = ap + i[0] * astride[0]; | |||
1476 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1477 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1478 | { | |||
1479 | float* ap1 = ap0 + i[1] * astride[1]; | |||
1480 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1481 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1482 | { | |||
1483 | for (x = 0; x < dim[3]; x++) | |||
1484 | bp1[x] = ccv_clamp(ap1[x], min, max)({ typeof (min) _a = (min); typeof (max) _b = (max); typeof ( ap1[x]) _x = (ap1[x]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
1485 | ap1 += astride[2]; | |||
1486 | bp1 += bstride[2]; | |||
1487 | } | |||
1488 | } | |||
1489 | } | |||
1490 | } | |||
1491 | return CCV_NNC_EXEC_SUCCESS; | |||
1492 | } | |||
1493 | ||||
1494 | static int _ccv_nnc_clamp_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
1495 | { | |||
1496 | assert(input_size == 3)((void) sizeof ((input_size == 3) ? 1 : 0), __extension__ ({ if (input_size == 3) ; else __assert_fail ("input_size == 3", "ew/ccv_nnc_ew_cpu_ref.c" , 1496, __extension__ __PRETTY_FUNCTION__); })); | |||
1497 | const ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; // gradient | |||
1498 | const ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[2]; | |||
1499 | assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({ if (output_size == 1) ; else __assert_fail ("output_size == 1" , "ew/ccv_nnc_ew_cpu_ref.c", 1499, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1500 | ccv_nnc_tensor_view_t* h = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
1501 | // Assuming this is float 32. | |||
1502 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1503 | int hstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1504 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1505 | assert(ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(h->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(h->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1505, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1506 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1506, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1507 | ccv_nnc_tensor_view_get_dim(g, dim); | |||
1508 | ccv_nnc_tensor_view_get_dim(h, dim); | |||
1509 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1509, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1510 | int x; | |||
1511 | const float min = cmd.info.clamp.min; | |||
1512 | const float max = cmd.info.clamp.max; | |||
1513 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1513, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1514 | if (g) | |||
1515 | { | |||
1516 | if (!CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
1517 | { | |||
1518 | // Super optimal case, just do one for-loop for sum. | |||
1519 | const int tensor_count = ccv_nnc_tensor_count(g->info); | |||
1520 | if (isnan(min)__builtin_isnan (min)) | |||
1521 | { | |||
1522 | for (x = 0; x < tensor_count; x++) | |||
1523 | h->data.f32[x] = b->data.f32[x] >= max ? 0 : g->data.f32[x]; | |||
1524 | } else if (isnan(max)__builtin_isnan (max)) { | |||
1525 | for (x = 0; x < tensor_count; x++) | |||
1526 | h->data.f32[x] = b->data.f32[x] <= min ? 0 : g->data.f32[x]; | |||
1527 | } else { | |||
1528 | for (x = 0; x < tensor_count; x++) | |||
1529 | h->data.f32[x] = (b->data.f32[x] >= max || b->data.f32[x] <= min) ? 0 : g->data.f32[x]; | |||
1530 | } | |||
1531 | return CCV_NNC_EXEC_SUCCESS; | |||
1532 | } | |||
1533 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
1534 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1534, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1535 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1535, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1536 | ccv_nnc_tensor_view_get_stride(g, gstride); | |||
1537 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1538 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
1539 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1540 | float* const gp = g->data.f32; | |||
1541 | float* const bp = b->data.f32; | |||
1542 | float* const hp = h->data.f32; | |||
1543 | const int count = dim[2] * dim[3]; | |||
1544 | const float min = cmd.info.clamp.min; | |||
1545 | const float max = cmd.info.clamp.max; | |||
1546 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1546, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1547 | if (isnan(min)__builtin_isnan (min)) | |||
1548 | { | |||
1549 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
1550 | { | |||
1551 | // Special casing if the ginc[3] is the same as dim[3] | |||
1552 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1553 | { | |||
1554 | float* gp0 = gp + i[0] * gstride[0]; | |||
1555 | float* bp0 = bp + i[0] * bstride[0]; | |||
1556 | float* hp0 = hp + i[0] * hstride[0]; | |||
1557 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1558 | { | |||
1559 | for (x = 0; x < count; x++) | |||
1560 | hp0[x] = bp0[x] >= max ? 0 : gp0[x]; | |||
1561 | gp0 += gstride[1]; | |||
1562 | bp0 += bstride[1]; | |||
1563 | hp0 += hstride[1]; | |||
1564 | } | |||
1565 | } | |||
1566 | return CCV_NNC_EXEC_SUCCESS; | |||
1567 | } | |||
1568 | // Non-optimal case, need to do skip copy. | |||
1569 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1570 | { | |||
1571 | float* const gp0 = gp + i[0] * gstride[0]; | |||
1572 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1573 | float* const hp0 = hp + i[0] * hstride[0]; | |||
1574 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1575 | { | |||
1576 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
1577 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1578 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
1579 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1580 | { | |||
1581 | for (x = 0; x < dim[3]; x++) | |||
1582 | hp1[x] = bp1[x] >= max ? 0 : gp1[x]; | |||
1583 | gp1 += gstride[2]; | |||
1584 | bp1 += bstride[2]; | |||
1585 | hp1 += hstride[2]; | |||
1586 | } | |||
1587 | } | |||
1588 | } | |||
1589 | } else if (isnan(max)__builtin_isnan (max)) { | |||
1590 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
1591 | { | |||
1592 | // Special casing if the ginc[3] is the same as dim[3] | |||
1593 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1594 | { | |||
1595 | float* gp0 = gp + i[0] * gstride[0]; | |||
1596 | float* bp0 = bp + i[0] * bstride[0]; | |||
1597 | float* hp0 = hp + i[0] * hstride[0]; | |||
1598 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1599 | { | |||
1600 | for (x = 0; x < count; x++) | |||
1601 | hp0[x] = bp0[x] <= min ? 0 : gp0[x]; | |||
1602 | gp0 += gstride[1]; | |||
1603 | bp0 += bstride[1]; | |||
1604 | hp0 += hstride[1]; | |||
1605 | } | |||
1606 | } | |||
1607 | return CCV_NNC_EXEC_SUCCESS; | |||
1608 | } | |||
1609 | // Non-optimal case, need to do skip copy. | |||
1610 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1611 | { | |||
1612 | float* const gp0 = gp + i[0] * gstride[0]; | |||
1613 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1614 | float* const hp0 = hp + i[0] * hstride[0]; | |||
1615 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1616 | { | |||
1617 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
1618 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1619 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
1620 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1621 | { | |||
1622 | for (x = 0; x < dim[3]; x++) | |||
1623 | hp1[x] = bp1[x] <= min ? 0 : gp1[x]; | |||
1624 | gp1 += gstride[2]; | |||
1625 | bp1 += bstride[2]; | |||
1626 | hp1 += hstride[2]; | |||
1627 | } | |||
1628 | } | |||
1629 | } | |||
1630 | } else { | |||
1631 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
1632 | { | |||
1633 | // Special casing if the ginc[3] is the same as dim[3] | |||
1634 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1635 | { | |||
1636 | float* gp0 = gp + i[0] * gstride[0]; | |||
1637 | float* bp0 = bp + i[0] * bstride[0]; | |||
1638 | float* hp0 = hp + i[0] * hstride[0]; | |||
1639 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1640 | { | |||
1641 | for (x = 0; x < count; x++) | |||
1642 | hp0[x] = (bp0[x] >= max || bp0[x] <= min) ? 0 : gp0[x]; | |||
1643 | gp0 += gstride[1]; | |||
1644 | bp0 += bstride[1]; | |||
1645 | hp0 += hstride[1]; | |||
1646 | } | |||
1647 | } | |||
1648 | return CCV_NNC_EXEC_SUCCESS; | |||
1649 | } | |||
1650 | // Non-optimal case, need to do skip copy. | |||
1651 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1652 | { | |||
1653 | float* const gp0 = gp + i[0] * gstride[0]; | |||
1654 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1655 | float* const hp0 = hp + i[0] * hstride[0]; | |||
1656 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1657 | { | |||
1658 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
1659 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1660 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
1661 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1662 | { | |||
1663 | for (x = 0; x < dim[3]; x++) | |||
1664 | hp1[x] = (bp1[x] >= max || bp1[x] <= min) ? 0 : gp1[x]; | |||
1665 | gp1 += gstride[2]; | |||
1666 | bp1 += bstride[2]; | |||
1667 | hp1 += hstride[2]; | |||
1668 | } | |||
1669 | } | |||
1670 | } | |||
1671 | } | |||
1672 | } else { | |||
1673 | if (!CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
1674 | { | |||
1675 | // Super optimal case, just do one for-loop for sum. | |||
1676 | const int tensor_count = ccv_nnc_tensor_count(h->info); | |||
1677 | if (isnan(min)__builtin_isnan (min)) | |||
1678 | { | |||
1679 | for (x = 0; x < tensor_count; x++) | |||
1680 | h->data.f32[x] = b->data.f32[x] >= max ? 0 : 1; | |||
1681 | } else if (isnan(max)__builtin_isnan (max)) { | |||
1682 | for (x = 0; x < tensor_count; x++) | |||
1683 | h->data.f32[x] = b->data.f32[x] <= min ? 0 : 1; | |||
1684 | } else { | |||
1685 | for (x = 0; x < tensor_count; x++) | |||
1686 | h->data.f32[x] = (b->data.f32[x] >= max || b->data.f32[x] <= min) ? 0 : 1; | |||
1687 | } | |||
1688 | return CCV_NNC_EXEC_SUCCESS; | |||
1689 | } | |||
1690 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1690, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
1691 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
1692 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
1693 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
1694 | float* const bp = b->data.f32; | |||
1695 | float* const hp = h->data.f32; | |||
1696 | const int count = dim[2] * dim[3]; | |||
1697 | const float min = cmd.info.clamp.min; | |||
1698 | const float max = cmd.info.clamp.max; | |||
1699 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1699, __extension__ __PRETTY_FUNCTION__ ); })); | |||
1700 | if (isnan(min)__builtin_isnan (min)) | |||
1701 | { | |||
1702 | if (bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
1703 | { | |||
1704 | // Special casing if the binc[3] is the same as dim[3] | |||
1705 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1706 | { | |||
1707 | float* bp0 = bp + i[0] * bstride[0]; | |||
1708 | float* hp0 = hp + i[0] * hstride[0]; | |||
1709 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1710 | { | |||
1711 | for (x = 0; x < count; x++) | |||
1712 | hp0[x] = bp0[x] >= max ? 0 : 1; | |||
1713 | bp0 += bstride[1]; | |||
1714 | hp0 += hstride[1]; | |||
1715 | } | |||
1716 | } | |||
1717 | return CCV_NNC_EXEC_SUCCESS; | |||
1718 | } | |||
1719 | // Non-optimal case, need to do skip copy. | |||
1720 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1721 | { | |||
1722 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1723 | float* const hp0 = hp + i[0] * hstride[0]; | |||
1724 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1725 | { | |||
1726 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1727 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
1728 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1729 | { | |||
1730 | for (x = 0; x < dim[3]; x++) | |||
1731 | hp1[x] = bp1[x] >= max ? 0 : 1; | |||
1732 | bp1 += bstride[2]; | |||
1733 | hp1 += hstride[2]; | |||
1734 | } | |||
1735 | } | |||
1736 | } | |||
1737 | } else if (isnan(max)__builtin_isnan (max)) { | |||
1738 | if (bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
1739 | { | |||
1740 | // Special casing if the binc[3] is the same as dim[3] | |||
1741 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1742 | { | |||
1743 | float* bp0 = bp + i[0] * bstride[0]; | |||
1744 | float* hp0 = hp + i[0] * hstride[0]; | |||
1745 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1746 | { | |||
1747 | for (x = 0; x < count; x++) | |||
1748 | hp0[x] = bp0[x] <= min ? 0 : 1; | |||
1749 | bp0 += bstride[1]; | |||
1750 | hp0 += hstride[1]; | |||
1751 | } | |||
1752 | } | |||
1753 | return CCV_NNC_EXEC_SUCCESS; | |||
1754 | } | |||
1755 | // Non-optimal case, need to do skip copy. | |||
1756 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1757 | { | |||
1758 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1759 | float* const hp0 = hp + i[0] * hstride[0]; | |||
1760 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1761 | { | |||
1762 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1763 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
1764 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1765 | { | |||
1766 | for (x = 0; x < dim[3]; x++) | |||
1767 | hp1[x] = bp1[x] <= min ? 0 : 1; | |||
1768 | bp1 += bstride[2]; | |||
1769 | hp1 += hstride[2]; | |||
1770 | } | |||
1771 | } | |||
1772 | } | |||
1773 | } else { | |||
1774 | if (bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
1775 | { | |||
1776 | // Special casing if the binc[3] is the same as dim[3] | |||
1777 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1778 | { | |||
1779 | float* bp0 = bp + i[0] * bstride[0]; | |||
1780 | float* hp0 = hp + i[0] * hstride[0]; | |||
1781 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1782 | { | |||
1783 | for (x = 0; x < count; x++) | |||
1784 | hp0[x] = (bp0[x] >= max || bp0[x] <= min) ? 0 : 1; | |||
1785 | bp0 += bstride[1]; | |||
1786 | hp0 += hstride[1]; | |||
1787 | } | |||
1788 | } | |||
1789 | return CCV_NNC_EXEC_SUCCESS; | |||
1790 | } | |||
1791 | // Non-optimal case, need to do skip copy. | |||
1792 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
1793 | { | |||
1794 | float* const bp0 = bp + i[0] * bstride[0]; | |||
1795 | float* const hp0 = hp + i[0] * hstride[0]; | |||
1796 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
1797 | { | |||
1798 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
1799 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
1800 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
1801 | { | |||
1802 | for (x = 0; x < dim[3]; x++) | |||
1803 | hp1[x] = (bp1[x] >= max || bp1[x] <= min) ? 0 : 1; | |||
1804 | bp1 += bstride[2]; | |||
1805 | hp1 += hstride[2]; | |||
1806 | } | |||
1807 | } | |||
1808 | } | |||
1809 | } | |||
1810 | } | |||
1811 | return CCV_NNC_EXEC_SUCCESS; | |||
1812 | } | |||
1813 | ||||
1814 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSUM_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSUM_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1815 | { | |||
1816 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1817 | registry->tensor_datatypes = CCV_32F; | |||
1818 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1819 | registry->algorithms = 1; | |||
1820 | registry->exec = _ccv_nnc_ewsum_forw; | |||
1821 | } | |||
1822 | ||||
1823 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSUM_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSUM_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1824 | { | |||
1825 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1826 | registry->tensor_datatypes = CCV_32F; | |||
1827 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1828 | registry->algorithms = 1; | |||
1829 | registry->exec = _ccv_nnc_ewsum_back; | |||
1830 | } | |||
1831 | ||||
1832 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWPROD_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWPROD_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1833 | { | |||
1834 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1835 | registry->tensor_datatypes = CCV_32F; | |||
1836 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1837 | registry->algorithms = 1; | |||
1838 | registry->exec = _ccv_nnc_ewprod_forw; | |||
1839 | } | |||
1840 | ||||
1841 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWPROD_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWPROD_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1842 | { | |||
1843 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1844 | registry->tensor_datatypes = CCV_32F; | |||
1845 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1846 | registry->algorithms = 1; | |||
1847 | registry->exec = _ccv_nnc_ewprod_back; | |||
1848 | } | |||
1849 | ||||
1850 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWDIV_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWDIV_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1851 | { | |||
1852 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1853 | registry->tensor_datatypes = CCV_32F; | |||
1854 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1855 | registry->algorithms = 1; | |||
1856 | registry->exec = _ccv_nnc_ewdiv_forw; | |||
1857 | } | |||
1858 | ||||
1859 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWDIV_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWDIV_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1860 | { | |||
1861 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1862 | registry->tensor_datatypes = CCV_32F; | |||
1863 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1864 | registry->algorithms = 1; | |||
1865 | registry->exec = _ccv_nnc_ewdiv_back; | |||
1866 | } | |||
1867 | ||||
1868 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWEXP_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWEXP_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1869 | { | |||
1870 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1871 | registry->tensor_datatypes = CCV_32F; | |||
1872 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1873 | registry->algorithms = 1; | |||
1874 | registry->exec = _ccv_nnc_ewexp_forw; | |||
1875 | } | |||
1876 | ||||
1877 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWEXP_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWEXP_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1878 | { | |||
1879 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1880 | registry->tensor_datatypes = CCV_32F; | |||
1881 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1882 | registry->algorithms = 1; | |||
1883 | registry->exec = _ccv_nnc_ewexp_back; | |||
1884 | } | |||
1885 | ||||
1886 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWLOG_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWLOG_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1887 | { | |||
1888 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1889 | registry->tensor_datatypes = CCV_32F; | |||
1890 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1891 | registry->algorithms = 1; | |||
1892 | registry->exec = _ccv_nnc_ewlog_forw; | |||
1893 | } | |||
1894 | ||||
1895 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWLOG_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWLOG_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1896 | { | |||
1897 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1898 | registry->tensor_datatypes = CCV_32F; | |||
1899 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1900 | registry->algorithms = 1; | |||
1901 | registry->exec = _ccv_nnc_ewlog_back; | |||
1902 | } | |||
1903 | ||||
1904 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSQRT_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSQRT_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1905 | { | |||
1906 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1907 | registry->tensor_datatypes = CCV_32F; | |||
1908 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1909 | registry->algorithms = 1; | |||
1910 | registry->exec = _ccv_nnc_ewsqrt_forw; | |||
1911 | } | |||
1912 | ||||
1913 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSQRT_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSQRT_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1914 | { | |||
1915 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1916 | registry->tensor_datatypes = CCV_32F; | |||
1917 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1918 | registry->algorithms = 1; | |||
1919 | registry->exec = _ccv_nnc_ewsqrt_back; | |||
1920 | } | |||
1921 | ||||
1922 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWABS_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWABS_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1923 | { | |||
1924 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1925 | registry->tensor_datatypes = CCV_32F; | |||
1926 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1927 | registry->algorithms = 1; | |||
1928 | registry->exec = _ccv_nnc_ewabs_forw; | |||
1929 | } | |||
1930 | ||||
1931 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWABS_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWABS_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1932 | { | |||
1933 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1934 | registry->tensor_datatypes = CCV_32F; | |||
1935 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1936 | registry->algorithms = 1; | |||
1937 | registry->exec = _ccv_nnc_ewabs_back; | |||
1938 | } | |||
1939 | ||||
1940 | REGISTER_COMMAND_BACKEND(CCV_NNC_CLAMP_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_CLAMP_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1941 | { | |||
1942 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1943 | registry->tensor_datatypes = CCV_32F; | |||
1944 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1945 | registry->algorithms = 1; | |||
1946 | registry->exec = _ccv_nnc_clamp_forw; | |||
1947 | } | |||
1948 | ||||
1949 | REGISTER_COMMAND_BACKEND(CCV_NNC_CLAMP_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_CLAMP_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
1950 | { | |||
1951 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
1952 | registry->tensor_datatypes = CCV_32F; | |||
1953 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
1954 | registry->algorithms = 1; | |||
1955 | registry->exec = _ccv_nnc_clamp_back; | |||
1956 | } |