| File: | nnc/ccv_nnc_tensor.c |
| Warning: | line 221, column 4 Null pointer passed to 1st parameter expecting 'nonnull' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include "ccv_nnc.h" | |||
| 2 | #include "ccv_nnc_easy.h" | |||
| 3 | #include "ccv_nnc_internal.h" | |||
| 4 | #ifdef HAVE_CUDA1 | |||
| 5 | #include "gpu/ccv_nnc_compat.h" | |||
| 6 | #elif defined(HAVE_MPS) | |||
| 7 | #include "mps/ccv_nnc_mps.h" | |||
| 8 | #endif | |||
| 9 | #include <fcntl.h> | |||
| 10 | #include <sys/mman.h> | |||
| 11 | ||||
| 12 | // MARK - Level-1 API | |||
| 13 | ||||
| 14 | const int ccv_nnc_no_ofs[CCV_NNC_MAX_DIM_ALLOC(12)] = {0}; | |||
| 15 | ||||
| 16 | ccv_nnc_tensor_t* ccv_nnc_tensor_new(const void* const ptr, const ccv_nnc_tensor_param_t params, const int flags) | |||
| 17 | { | |||
| 18 | ccv_nnc_tensor_t* tensor; | |||
| 19 | // this specific form can be toll-free bridging to ccv_dense_matrix_t (On CPU, and 3 dims (channels, rows, cols), and channels is smaller than max channels of ccv_dense_matrix_t). | |||
| 20 | const int tfb = (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY && params.format == CCV_TENSOR_FORMAT_NHWC && params.dim[2] > 0 && params.dim[2] <= CCV_MAX_CHANNEL(0xFFF) && params.dim[0] > 0 && params.dim[1] > 0 && params.dim[3] == 0); | |||
| 21 | if (ptr
| |||
| 22 | { | |||
| 23 | tensor = (ccv_nnc_tensor_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_t)); | |||
| 24 | tensor->dataof = 0; | |||
| 25 | tensor->alias_ref = 0; | |||
| 26 | tensor->sig = 0; | |||
| 27 | tensor->refcount = 1; | |||
| 28 | tensor->info = params; | |||
| 29 | if (tfb
| |||
| 30 | { | |||
| 31 | tensor->type = CCV_NO_DATA_ALLOC | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000) | params.dim[2]; | |||
| 32 | // This corresponding to mat->step | |||
| 33 | tensor->info.dim[4] = CCV_GET_STEP(params.dim[1], (CCV_GET_DATA_TYPE(params.datatype) | params.dim[2]))(((params.dim[1]) * _ccv_get_data_type_size[(((((params.datatype ) & 0xFF000) | params.dim[2])) & 0xFF000) >> 12 ] * (((((params.datatype) & 0xFF000) | params.dim[2])) & 0xFFF) + 3) & -4); | |||
| 34 | } else // This won't be recognized by ccv_dense_matrix_t | |||
| 35 | tensor->type = CCV_NO_DATA_ALLOC | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000); | |||
| 36 | tensor->data.u8 = (uint8_t*)ptr; | |||
| 37 | return tensor; | |||
| 38 | } | |||
| 39 | if (flags & CCV_TENSOR_CPU_MEMORY) | |||
| 40 | { | |||
| 41 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 41, __extension__ __PRETTY_FUNCTION__); })); | |||
| 42 | } else if (flags & CCV_TENSOR_GPU_MEMORY) { | |||
| 43 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_GPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_GPU_MEMORY" , "ccv_nnc_tensor.c", 43, __extension__ __PRETTY_FUNCTION__); })); | |||
| 44 | } | |||
| 45 | const size_t tensor_hdr_size = (sizeof(ccv_nnc_tensor_t) + 63) & -64; | |||
| 46 | const size_t size = ccv_nnc_tensor_data_size(params); | |||
| 47 | #ifdef HAVE_CUDA1 | |||
| 48 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 49 | { | |||
| 50 | tensor = (ccv_nnc_tensor_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_t)); | |||
| 51 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 51, __extension__ __PRETTY_FUNCTION__); })); | |||
| 52 | if (size > 0) | |||
| 53 | tensor->data.u8 = (uint8_t*)cumalloc(CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8), size); | |||
| 54 | else | |||
| 55 | tensor->data.u8 = 0; | |||
| 56 | } else { | |||
| 57 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 57, __extension__ __PRETTY_FUNCTION__); })); | |||
| 58 | ccmemalignposix_memalign((void **)&tensor, 64, tensor_hdr_size + size); | |||
| 59 | if (size > 0) | |||
| 60 | tensor->data.u8 = (uint8_t*)tensor + tensor_hdr_size; | |||
| 61 | else | |||
| 62 | tensor->data.u8 = 0; | |||
| 63 | } | |||
| 64 | #elif defined(HAVE_MPS) | |||
| 65 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 66 | { | |||
| 67 | tensor = (ccv_nnc_tensor_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_t)); | |||
| 68 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 68, __extension__ __PRETTY_FUNCTION__); })); | |||
| 69 | if (size > 0) | |||
| 70 | tensor->data.u8 = (uint8_t*)mpobjmalloc(CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8), size); | |||
| 71 | else | |||
| 72 | tensor->data.u8 = 0; | |||
| 73 | } else { | |||
| 74 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 74, __extension__ __PRETTY_FUNCTION__); })); | |||
| 75 | ccmemalignposix_memalign((void **)&tensor, 64, tensor_hdr_size + size); | |||
| 76 | if (size > 0) | |||
| 77 | tensor->data.u8 = (uint8_t*)tensor + tensor_hdr_size; | |||
| 78 | else | |||
| 79 | tensor->data.u8 = 0; | |||
| 80 | } | |||
| 81 | #else | |||
| 82 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 82, __extension__ __PRETTY_FUNCTION__); })); | |||
| 83 | ccmemalignposix_memalign((void **)&tensor, 64, tensor_hdr_size + size); | |||
| 84 | if (size > 0) | |||
| 85 | tensor->data.u8 = (uint8_t*)tensor + tensor_hdr_size; | |||
| 86 | else | |||
| 87 | tensor->data.u8 = 0; | |||
| 88 | #endif | |||
| 89 | tensor->dataof = 0; | |||
| 90 | tensor->alias_ref = 0; | |||
| 91 | tensor->data_size = size; | |||
| 92 | tensor->sig = 0; | |||
| 93 | tensor->refcount = 1; | |||
| 94 | tensor->info = params; | |||
| 95 | if (tfb) | |||
| 96 | { | |||
| 97 | tensor->type = CCV_UNMANAGED | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000) | params.dim[2]; | |||
| 98 | // This corresponding to mat->step | |||
| 99 | tensor->info.dim[4] = CCV_GET_STEP(params.dim[1], (CCV_GET_DATA_TYPE(params.datatype) | params.dim[2]))(((params.dim[1]) * _ccv_get_data_type_size[(((((params.datatype ) & 0xFF000) | params.dim[2])) & 0xFF000) >> 12 ] * (((((params.datatype) & 0xFF000) | params.dim[2])) & 0xFFF) + 3) & -4); | |||
| 100 | } else | |||
| 101 | tensor->type = CCV_UNMANAGED | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000); | |||
| 102 | return tensor; | |||
| 103 | } | |||
| 104 | ||||
| 105 | ccv_nnc_tensor_t* ccv_nnc_tensor_new_from_file(const ccv_nnc_tensor_param_t params, const char* const filename, const off_t offset, const int flags) | |||
| 106 | { | |||
| 107 | ccv_nnc_tensor_t* tensor; | |||
| 108 | // this specific form can be toll-free bridging to ccv_dense_matrix_t (On CPU, and 3 dims (channels, rows, cols), and channels is smaller than max channels of ccv_dense_matrix_t). | |||
| 109 | const int tfb = (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY && params.format == CCV_TENSOR_FORMAT_NHWC && params.dim[2] > 0 && params.dim[2] <= CCV_MAX_CHANNEL(0xFFF) && params.dim[0] > 0 && params.dim[1] > 0 && params.dim[3] == 0); | |||
| 110 | tensor = (ccv_nnc_tensor_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_t)); | |||
| 111 | tensor->dataof = 0; | |||
| 112 | tensor->alias_ref = 0; | |||
| 113 | tensor->sig = 0; | |||
| 114 | tensor->refcount = 1; | |||
| 115 | tensor->info = params; | |||
| 116 | if (tfb) | |||
| 117 | { | |||
| 118 | tensor->type = CCV_NO_DATA_ALLOC | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000) | params.dim[2]; | |||
| 119 | // This corresponding to mat->step | |||
| 120 | tensor->info.dim[4] = CCV_GET_STEP(params.dim[1], (CCV_GET_DATA_TYPE(params.datatype) | params.dim[2]))(((params.dim[1]) * _ccv_get_data_type_size[(((((params.datatype ) & 0xFF000) | params.dim[2])) & 0xFF000) >> 12 ] * (((((params.datatype) & 0xFF000) | params.dim[2])) & 0xFFF) + 3) & -4); | |||
| 121 | } else // This won't be recognized by ccv_dense_matrix_t | |||
| 122 | tensor->type = CCV_NO_DATA_ALLOC | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000); | |||
| 123 | const size_t size = ccv_nnc_tensor_data_size(params); | |||
| 124 | #ifdef HAVE_CUDA1 | |||
| 125 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 126 | { | |||
| 127 | // Remove this flag so it can be deallocated as usual. | |||
| 128 | tensor->type &= ~CCV_NO_DATA_ALLOC; | |||
| 129 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 129, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 130 | if (size > 0) | |||
| 131 | { | |||
| 132 | void* ptr = 0; | |||
| 133 | // This is not supported yet on CUDA. | |||
| 134 | if (flags & CCV_NNC_TENSOR_MEMORY_MAP_ON_DEMAND) | |||
| 135 | ptr = cumallocmanaged(CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8), size); | |||
| 136 | if (ptr) // If allocated successfully. Otherwise we go through the fallback path. | |||
| 137 | { | |||
| 138 | tensor->data.u8 = (uint8_t*)ptr; | |||
| 139 | int fd = open(filename, O_RDONLY00, 0); | |||
| 140 | cufileread(fd, offset, tensor->data.u8, size); | |||
| 141 | close(fd); | |||
| 142 | cumemadvisereadmostly(CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8), tensor->data.u8, size); | |||
| 143 | tensor->type |= CCV_MAPPED_MEM; // This denotes the tensor is mapped to CPU, and would prefer a explicit prefetch call. | |||
| 144 | } else { | |||
| 145 | tensor->data.u8 = (uint8_t*)cumalloc(CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8), size); | |||
| 146 | int fd = open(filename, O_RDONLY00, 0); | |||
| 147 | cufileread(fd, offset, tensor->data.u8, size); | |||
| 148 | close(fd); | |||
| 149 | } | |||
| 150 | } else | |||
| 151 | tensor->data.u8 = 0; | |||
| 152 | } else { | |||
| 153 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 153, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 154 | if (size > 0) | |||
| 155 | { | |||
| 156 | int fd = open(filename, O_RDONLY00, 0); | |||
| 157 | void* bufptr = mmap(0, size, PROT_READ0x1, MAP_PRIVATE0x02, fd, offset); | |||
| 158 | close(fd); | |||
| 159 | madvise(bufptr, size, MADV_SEQUENTIAL2 | MADV_WILLNEED3); | |||
| 160 | tensor->data.u8 = bufptr; | |||
| 161 | tensor->type |= CCV_MAPPED_MEM; | |||
| 162 | } else | |||
| 163 | tensor->data.u8 = 0; | |||
| 164 | } | |||
| 165 | #elif defined(HAVE_MPS) | |||
| 166 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 167 | { | |||
| 168 | // Remove this flag so it can be deallocated as usual. | |||
| 169 | tensor->type &= ~CCV_NO_DATA_ALLOC; | |||
| 170 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 170, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 171 | if (size > 0) | |||
| 172 | tensor->data.u8 = (uint8_t*)mpmemmap(filename, size, offset, flags); | |||
| 173 | else | |||
| 174 | tensor->data.u8 = 0; | |||
| 175 | } else { | |||
| 176 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 176, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 177 | if (size > 0) | |||
| 178 | { | |||
| 179 | int fd = open(filename, O_RDONLY00, 0); | |||
| 180 | void* bufptr = mmap(0, size, PROT_READ0x1, MAP_PRIVATE0x02, fd, offset); | |||
| 181 | close(fd); | |||
| 182 | madvise(bufptr, size, MADV_SEQUENTIAL2 | MADV_WILLNEED3); | |||
| 183 | tensor->data.u8 = bufptr; | |||
| 184 | tensor->type |= CCV_MAPPED_MEM; | |||
| 185 | } else | |||
| 186 | tensor->data.u8 = 0; | |||
| 187 | } | |||
| 188 | #else | |||
| 189 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 189, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 190 | if (size > 0) | |||
| 191 | { | |||
| 192 | int fd = open(filename, O_RDONLY00, 0); | |||
| 193 | void* bufptr = mmap(0, size, PROT_READ0x1, MAP_PRIVATE0x02, fd, offset); | |||
| 194 | close(fd); | |||
| 195 | madvise(bufptr, size, MADV_SEQUENTIAL2 | MADV_WILLNEED3); | |||
| 196 | tensor->data.u8 = bufptr; | |||
| 197 | tensor->type |= CCV_MAPPED_MEM; | |||
| 198 | } else | |||
| 199 | tensor->data.u8 = 0; | |||
| 200 | #endif | |||
| 201 | return tensor; | |||
| 202 | } | |||
| 203 | ||||
| 204 | ccv_nnc_tensor_t* ccv_nnc_tensor_new_from_raw(const ccv_nnc_tensor_param_t params, const void* const bufptr, const size_t buf_size, const int flags) | |||
| 205 | { | |||
| 206 | ccv_nnc_tensor_t* tensor = ccv_nnc_tensor_new(0, params, flags); | |||
| ||||
| 207 | const size_t size = ccv_min(ccv_nnc_tensor_data_size_without_padding(params), buf_size)({ typeof (ccv_nnc_tensor_data_size_without_padding(params)) _a = (ccv_nnc_tensor_data_size_without_padding(params)); typeof (buf_size) _b = (buf_size); (_a < _b) ? _a : _b; }); | |||
| 208 | #ifdef HAVE_CUDA1 | |||
| 209 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 210 | { | |||
| 211 | // Remove this flag so it can be deallocated as usual. | |||
| 212 | tensor->type &= ~CCV_NO_DATA_ALLOC; | |||
| 213 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 213, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 214 | if (size > 0) | |||
| 215 | cumemcpy(tensor->data.u8, tensor->info.type, bufptr, CCV_TENSOR_CPU_MEMORY, size); | |||
| 216 | else | |||
| 217 | tensor->data.u8 = 0; | |||
| 218 | } else { | |||
| 219 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 219, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 220 | if (size > 0) | |||
| 221 | memcpy(tensor->data.u8, bufptr, size); | |||
| ||||
| 222 | else | |||
| 223 | tensor->data.u8 = 0; | |||
| 224 | } | |||
| 225 | #elif defined(HAVE_MPS) | |||
| 226 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 227 | { | |||
| 228 | // Remove this flag so it can be deallocated as usual. | |||
| 229 | tensor->type &= ~CCV_NO_DATA_ALLOC; | |||
| 230 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 230, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 231 | if (size > 0) | |||
| 232 | mpmemcpy(tensor->data.u8, tensor->dataof, tensor->info.type, bufptr, 0, CCV_TENSOR_CPU_MEMORY, size); | |||
| 233 | else | |||
| 234 | tensor->data.u8 = 0; | |||
| 235 | } else { | |||
| 236 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 236, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 237 | if (size > 0) | |||
| 238 | memcpy(tensor->data.u8, bufptr, size); | |||
| 239 | else | |||
| 240 | tensor->data.u8 = 0; | |||
| 241 | } | |||
| 242 | #else | |||
| 243 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 243, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 244 | if (size > 0) | |||
| 245 | memcpy(tensor->data.u8, bufptr, size); | |||
| 246 | else | |||
| 247 | tensor->data.u8 = 0; | |||
| 248 | #endif | |||
| 249 | return tensor; | |||
| 250 | } | |||
| 251 | ||||
| 252 | ccv_nnc_tensor_t* ccv_nnc_tensor_resize(ccv_nnc_tensor_t* const tensor, const ccv_nnc_tensor_param_t params) | |||
| 253 | { | |||
| 254 | assert(!CCV_IS_TENSOR_VIEW(tensor))((void) sizeof ((!((*(int*)(tensor)) & CCV_TENSOR_VIEW)) ? 1 : 0), __extension__ ({ if (!((*(int*)(tensor)) & CCV_TENSOR_VIEW )) ; else __assert_fail ("!CCV_IS_TENSOR_VIEW(tensor)", "ccv_nnc_tensor.c" , 254, __extension__ __PRETTY_FUNCTION__); })); | |||
| 255 | assert(tensor->type & CCV_UNMANAGED)((void) sizeof ((tensor->type & CCV_UNMANAGED) ? 1 : 0 ), __extension__ ({ if (tensor->type & CCV_UNMANAGED) ; else __assert_fail ("tensor->type & CCV_UNMANAGED", "ccv_nnc_tensor.c" , 255, __extension__ __PRETTY_FUNCTION__); })); | |||
| 256 | assert(tensor->data_size > 0)((void) sizeof ((tensor->data_size > 0) ? 1 : 0), __extension__ ({ if (tensor->data_size > 0) ; else __assert_fail ("tensor->data_size > 0" , "ccv_nnc_tensor.c", 256, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 257 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_GET_MEMORY(tensor->info.type))((void) sizeof ((((params.type) & 0x3) == ((tensor->info .type) & 0x3)) ? 1 : 0), __extension__ ({ if (((params.type ) & 0x3) == ((tensor->info.type) & 0x3)) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_GET_MEMORY(tensor->info.type)" , "ccv_nnc_tensor.c", 257, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 258 | assert(CCV_TENSOR_GET_DEVICE(params.type) == CCV_TENSOR_GET_DEVICE(tensor->info.type))((void) sizeof ((((params.type) & 0xfff00) == ((tensor-> info.type) & 0xfff00)) ? 1 : 0), __extension__ ({ if (((params .type) & 0xfff00) == ((tensor->info.type) & 0xfff00 )) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) == CCV_TENSOR_GET_DEVICE(tensor->info.type)" , "ccv_nnc_tensor.c", 258, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 259 | const size_t size = ccv_nnc_tensor_data_size(params); | |||
| 260 | const int tfb = (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY && params.format == CCV_TENSOR_FORMAT_NHWC && params.dim[2] > 0 && params.dim[2] <= CCV_MAX_CHANNEL(0xFFF) && params.dim[0] > 0 && params.dim[1] > 0 && params.dim[3] == 0); | |||
| 261 | tensor->info = params; | |||
| 262 | #ifdef HAVE_CUDA1 | |||
| 263 | const int pinned_mem = (tensor->type & CCV_PINNED_MEM); | |||
| 264 | #endif | |||
| 265 | if (tfb) | |||
| 266 | { | |||
| 267 | tensor->type = CCV_UNMANAGED | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000) | params.dim[2]; | |||
| 268 | // This corresponding to mat->step | |||
| 269 | tensor->info.dim[4] = CCV_GET_STEP(params.dim[1], (CCV_GET_DATA_TYPE(params.datatype) | params.dim[2]))(((params.dim[1]) * _ccv_get_data_type_size[(((((params.datatype ) & 0xFF000) | params.dim[2])) & 0xFF000) >> 12 ] * (((((params.datatype) & 0xFF000) | params.dim[2])) & 0xFFF) + 3) & -4); | |||
| 270 | } else | |||
| 271 | tensor->type = CCV_UNMANAGED | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000); | |||
| 272 | if (size <= tensor->data_size) // Nothing. | |||
| 273 | { | |||
| 274 | #ifdef HAVE_CUDA1 | |||
| 275 | if (pinned_mem) | |||
| 276 | tensor->type |= CCV_PINNED_MEM; | |||
| 277 | #endif | |||
| 278 | return tensor; | |||
| 279 | } | |||
| 280 | ccv_nnc_tensor_t* new_tensor = tensor; | |||
| 281 | const size_t tensor_hdr_size = (sizeof(ccv_nnc_tensor_t) + 63) & -64; | |||
| 282 | #ifdef HAVE_CUDA1 | |||
| 283 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 284 | { | |||
| 285 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 285, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 286 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8); | |||
| 287 | assert(device_id == CCV_TENSOR_GET_DEVICE_ID(tensor->info.type))((void) sizeof ((device_id == (((tensor->info.type) & 0xfff00 ) >> 8)) ? 1 : 0), __extension__ ({ if (device_id == (( (tensor->info.type) & 0xfff00) >> 8)) ; else __assert_fail ("device_id == CCV_TENSOR_GET_DEVICE_ID(tensor->info.type)" , "ccv_nnc_tensor.c", 287, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 288 | cufree(device_id, tensor->data.u8); | |||
| 289 | new_tensor->data.u8 = (uint8_t*)cumalloc(device_id, size); | |||
| 290 | } else { | |||
| 291 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 291, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 292 | assert(CCV_TENSOR_GET_MEMORY(tensor->info.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(tensor->info.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 292, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 293 | // pin memory again. | |||
| 294 | if (pinned_mem) | |||
| 295 | cuunregister(new_tensor->data.u8); | |||
| 296 | new_tensor = ccreallocrealloc(new_tensor, tensor_hdr_size + size); | |||
| 297 | new_tensor->data.u8 = (uint8_t*)new_tensor + tensor_hdr_size; | |||
| 298 | } | |||
| 299 | #elif defined(HAVE_MPS) | |||
| 300 | if (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) | |||
| 301 | { | |||
| 302 | assert(CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY)((void) sizeof ((((params.type) & 0xfff00) != CCV_COMPUTE_DEVICE_ANY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0xfff00 ) != CCV_COMPUTE_DEVICE_ANY) ; else __assert_fail ("CCV_TENSOR_GET_DEVICE(params.type) != CCV_COMPUTE_DEVICE_ANY" , "ccv_nnc_tensor.c", 302, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 303 | const int device_id = CCV_TENSOR_GET_DEVICE_ID(params.type)(((params.type) & 0xfff00) >> 8); | |||
| 304 | assert(device_id == CCV_TENSOR_GET_DEVICE_ID(tensor->info.type))((void) sizeof ((device_id == (((tensor->info.type) & 0xfff00 ) >> 8)) ? 1 : 0), __extension__ ({ if (device_id == (( (tensor->info.type) & 0xfff00) >> 8)) ; else __assert_fail ("device_id == CCV_TENSOR_GET_DEVICE_ID(tensor->info.type)" , "ccv_nnc_tensor.c", 304, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 305 | mpobjfree(device_id, tensor->data.u8); | |||
| 306 | new_tensor->data.u8 = (uint8_t*)mpobjmalloc(device_id, size); | |||
| 307 | } else { | |||
| 308 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 308, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 309 | assert(CCV_TENSOR_GET_MEMORY(tensor->info.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(tensor->info.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 309, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 310 | new_tensor = ccreallocrealloc(new_tensor, tensor_hdr_size + size); | |||
| 311 | new_tensor->data.u8 = (uint8_t*)new_tensor + tensor_hdr_size; | |||
| 312 | } | |||
| 313 | #else | |||
| 314 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 314, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 315 | new_tensor = ccreallocrealloc(new_tensor, tensor_hdr_size + size); | |||
| 316 | new_tensor->data.u8 = (uint8_t*)new_tensor + tensor_hdr_size; | |||
| 317 | #endif | |||
| 318 | new_tensor->data_size = size; | |||
| 319 | #ifdef HAVE_CUDA1 | |||
| 320 | if (pinned_mem) | |||
| 321 | ccv_nnc_tensor_pin_memory(new_tensor); | |||
| 322 | #endif | |||
| 323 | return new_tensor; | |||
| 324 | } | |||
| 325 | ||||
| 326 | ccv_nnc_tensor_t ccv_nnc_tensor(const void* const ptr, const ccv_nnc_tensor_param_t params, const int flags) | |||
| 327 | { | |||
| 328 | // this specific form can be toll-free bridging to ccv_dense_matrix_t | |||
| 329 | const int tfb = (CCV_TENSOR_GET_MEMORY(params.type)((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY && params.format == CCV_TENSOR_FORMAT_NHWC && params.dim[2] > 0 && params.dim[2] <= CCV_MAX_CHANNEL(0xFFF) && params.dim[0] > 0 && params.dim[1] > 0 && params.dim[3] == 0); | |||
| 330 | ccv_nnc_tensor_t tensor; | |||
| 331 | tensor.dataof = 0; | |||
| 332 | tensor.alias_ref = 0; | |||
| 333 | tensor.sig = 0; | |||
| 334 | tensor.refcount = 1; | |||
| 335 | tensor.info = params; | |||
| 336 | if (flags & CCV_TENSOR_CPU_MEMORY) | |||
| 337 | { | |||
| 338 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 338, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 339 | } else if (flags & CCV_TENSOR_GPU_MEMORY) { | |||
| 340 | assert(CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_GPU_MEMORY)((void) sizeof ((((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((params.type) & 0x3) == CCV_TENSOR_GPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(params.type) == CCV_TENSOR_GPU_MEMORY" , "ccv_nnc_tensor.c", 340, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 341 | } | |||
| 342 | if (tfb) | |||
| 343 | { | |||
| 344 | tensor.type = CCV_NO_DATA_ALLOC | CCV_UNMANAGED | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000) | params.dim[2]; | |||
| 345 | // This corresponding to mat->step | |||
| 346 | tensor.info.dim[4] = CCV_GET_STEP(params.dim[1], (CCV_GET_DATA_TYPE(params.datatype) | params.dim[2]))(((params.dim[1]) * _ccv_get_data_type_size[(((((params.datatype ) & 0xFF000) | params.dim[2])) & 0xFF000) >> 12 ] * (((((params.datatype) & 0xFF000) | params.dim[2])) & 0xFFF) + 3) & -4); | |||
| 347 | } else // This won't be recognized by ccv_dense_matrix_t | |||
| 348 | tensor.type = CCV_NO_DATA_ALLOC | CCV_UNMANAGED | CCV_MATRIX_DENSE | CCV_GET_DATA_TYPE(params.datatype)((params.datatype) & 0xFF000); | |||
| 349 | if (params.dim[0] > 0) | |||
| 350 | tensor.data.u8 = (uint8_t*)ptr; | |||
| 351 | else | |||
| 352 | tensor.data.u8 = 0; | |||
| 353 | tensor.data_size = 0; | |||
| 354 | return tensor; | |||
| 355 | } | |||
| 356 | ||||
| 357 | int ccv_nnc_tensor_pin_memory(ccv_nnc_tensor_t* const tensor) | |||
| 358 | { | |||
| 359 | #ifdef HAVE_CUDA1 | |||
| 360 | assert(CCV_TENSOR_GET_MEMORY(tensor->info.type) == CCV_TENSOR_CPU_MEMORY)((void) sizeof ((((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY ) ? 1 : 0), __extension__ ({ if (((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY) ; else __assert_fail ("CCV_TENSOR_GET_MEMORY(tensor->info.type) == CCV_TENSOR_CPU_MEMORY" , "ccv_nnc_tensor.c", 360, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 361 | if (!(tensor->type & CCV_PINNED_MEM) && tensor->data_size) | |||
| 362 | { | |||
| 363 | const int success = curegister(tensor->data.u8, tensor->data_size); | |||
| 364 | if (success) | |||
| 365 | tensor->type |= CCV_PINNED_MEM; | |||
| 366 | return success ? 0 : -1; | |||
| 367 | } | |||
| 368 | #endif | |||
| 369 | return 0; | |||
| 370 | } | |||
| 371 | ||||
| 372 | void ccv_nnc_tensor_free(ccv_nnc_tensor_t* const tensor) | |||
| 373 | { | |||
| 374 | if (CCV_TENSOR_GET_MEMORY(tensor->info.type)((tensor->info.type) & 0x3) == CCV_TENSOR_CPU_MEMORY && (tensor->type & CCV_MAPPED_MEM)) | |||
| 375 | { | |||
| 376 | // The size might be different than the ones when we allocated (for example, the tensor might rewrite its size to be smaller). | |||
| 377 | // This might cause issues in the future. | |||
| 378 | const size_t size = ccv_nnc_tensor_data_size(tensor->info); | |||
| 379 | munmap(tensor->data.u8, size); | |||
| 380 | } | |||
| 381 | #ifdef HAVE_CUDA1 | |||
| 382 | if (tensor->type & CCV_PINNED_MEM) | |||
| 383 | cuunregister(tensor->data.u8); | |||
| 384 | if (CCV_TENSOR_GET_MEMORY(tensor->info.type)((tensor->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY && | |||
| 385 | !(tensor->type & CCV_NO_DATA_ALLOC)) // If this is GPU memory and it is allocated, free. | |||
| 386 | cufree(CCV_TENSOR_GET_DEVICE_ID(tensor->info.type)(((tensor->info.type) & 0xfff00) >> 8), tensor->data.u8); | |||
| 387 | #elif defined(HAVE_MPS) | |||
| 388 | if (CCV_TENSOR_GET_MEMORY(tensor->info.type)((tensor->info.type) & 0x3) == CCV_TENSOR_GPU_MEMORY && | |||
| 389 | !(tensor->type & CCV_NO_DATA_ALLOC)) // If this is GPU memory and it is allocated, free. | |||
| 390 | mpobjfree(CCV_TENSOR_GET_DEVICE_ID(tensor->info.type)(((tensor->info.type) & 0xfff00) >> 8), tensor->data.u8); | |||
| 391 | #endif | |||
| 392 | ccfreefree(tensor); | |||
| 393 | } | |||
| 394 | ||||
| 395 | static inline void _ccv_nnc_tensor_view_set(ccv_nnc_tensor_view_t* const tv, const ccv_nnc_tensor_t* const tensor, const int dim[CCV_NNC_MAX_DIM_ALLOC(12)], const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int stride[CCV_NNC_MAX_DIM_ALLOC(12)]) | |||
| 396 | { | |||
| 397 | memcpy(tv->stride, stride, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)); | |||
| 398 | memcpy(tv->info.dim, dim, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)); | |||
| 399 | uint8_t* const p = tensor->data.u8; | |||
| 400 | const off_t off = tv->off = ccv_nnc_tensor_view_offset(tv->info.datatype, stride, ofs); | |||
| 401 | tv->contiguous = ccv_nnc_tensor_view_is_contiguous(dim, stride); | |||
| 402 | assert(off + CCV_GET_DATA_TYPE_SIZE(tv->info.datatype) * ccv_nnc_dimension_upper_bound(tv->info.dim, tv->stride) <= CCV_GET_DATA_TYPE_SIZE(tensor->info.datatype) * ccv_nnc_tensor_count(tensor->info))((void) sizeof ((off + _ccv_get_data_type_size[((tv->info. datatype) & 0xFF000) >> 12] * ccv_nnc_dimension_upper_bound (tv->info.dim, tv->stride) <= _ccv_get_data_type_size [((tensor->info.datatype) & 0xFF000) >> 12] * ccv_nnc_tensor_count (tensor->info)) ? 1 : 0), __extension__ ({ if (off + _ccv_get_data_type_size [((tv->info.datatype) & 0xFF000) >> 12] * ccv_nnc_dimension_upper_bound (tv->info.dim, tv->stride) <= _ccv_get_data_type_size [((tensor->info.datatype) & 0xFF000) >> 12] * ccv_nnc_tensor_count (tensor->info)) ; else __assert_fail ("off + CCV_GET_DATA_TYPE_SIZE(tv->info.datatype) * ccv_nnc_dimension_upper_bound(tv->info.dim, tv->stride) <= CCV_GET_DATA_TYPE_SIZE(tensor->info.datatype) * ccv_nnc_tensor_count(tensor->info)" , "ccv_nnc_tensor.c", 402, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 403 | ccv_nnc_tensor_data(tv->info, p, off + tensor->dataof, &tv->data, &tv->dataof); | |||
| 404 | } | |||
| 405 | ||||
| 406 | ccv_nnc_tensor_view_t* ccv_nnc_tensor_view_new(const ccv_nnc_tensor_t* const tensor, const ccv_nnc_tensor_param_t params, const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int stride[CCV_NNC_MAX_DIM_ALLOC(12)]) | |||
| 407 | { | |||
| 408 | ccv_nnc_tensor_view_t* tv = (ccv_nnc_tensor_view_t*)ccmallocmalloc(sizeof(ccv_nnc_tensor_view_t)); | |||
| 409 | tv->type = (tensor->type & ~0xfff) | CCV_TENSOR_VIEW; | |||
| 410 | tv->dataof = 0; | |||
| 411 | tv->alias_ref = (uintptr_t)tensor; | |||
| 412 | tv->refcount = 1; | |||
| 413 | tv->sig = 0; | |||
| 414 | tv->data_size = 0; | |||
| 415 | assert(params.type == tensor->info.type)((void) sizeof ((params.type == tensor->info.type) ? 1 : 0 ), __extension__ ({ if (params.type == tensor->info.type) ; else __assert_fail ("params.type == tensor->info.type", "ccv_nnc_tensor.c" , 415, __extension__ __PRETTY_FUNCTION__); })); | |||
| 416 | assert(params.datatype == tensor->info.datatype)((void) sizeof ((params.datatype == tensor->info.datatype) ? 1 : 0), __extension__ ({ if (params.datatype == tensor-> info.datatype) ; else __assert_fail ("params.datatype == tensor->info.datatype" , "ccv_nnc_tensor.c", 416, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 417 | tv->info = params; | |||
| 418 | _ccv_nnc_tensor_view_set(tv, tensor, params.dim, ofs, stride); | |||
| 419 | return tv; | |||
| 420 | } | |||
| 421 | ||||
| 422 | ccv_nnc_tensor_view_t ccv_nnc_tensor_view(const ccv_nnc_tensor_t* const tensor, const ccv_nnc_tensor_param_t params, const int ofs[CCV_NNC_MAX_DIM_ALLOC(12)], const int stride[CCV_NNC_MAX_DIM_ALLOC(12)]) | |||
| 423 | { | |||
| 424 | assert(!CCV_IS_TENSOR_VIEW(tensor))((void) sizeof ((!((*(int*)(tensor)) & CCV_TENSOR_VIEW)) ? 1 : 0), __extension__ ({ if (!((*(int*)(tensor)) & CCV_TENSOR_VIEW )) ; else __assert_fail ("!CCV_IS_TENSOR_VIEW(tensor)", "ccv_nnc_tensor.c" , 424, __extension__ __PRETTY_FUNCTION__); })); | |||
| 425 | assert(params.type == tensor->info.type)((void) sizeof ((params.type == tensor->info.type) ? 1 : 0 ), __extension__ ({ if (params.type == tensor->info.type) ; else __assert_fail ("params.type == tensor->info.type", "ccv_nnc_tensor.c" , 425, __extension__ __PRETTY_FUNCTION__); })); | |||
| 426 | assert(params.datatype == tensor->info.datatype)((void) sizeof ((params.datatype == tensor->info.datatype) ? 1 : 0), __extension__ ({ if (params.datatype == tensor-> info.datatype) ; else __assert_fail ("params.datatype == tensor->info.datatype" , "ccv_nnc_tensor.c", 426, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 427 | ccv_nnc_tensor_view_t tv = { | |||
| 428 | .dataof = 0, | |||
| 429 | .alias_ref = (uintptr_t)tensor, | |||
| 430 | .type = (tensor->type & ~0xfff) | CCV_TENSOR_VIEW, // clean up the channel bits, and then add CCV_TENSOR_VIEW identifier | |||
| 431 | .refcount = 1, | |||
| 432 | .sig = 0, | |||
| 433 | .info = params, | |||
| 434 | .data_size = 0, | |||
| 435 | }; | |||
| 436 | _ccv_nnc_tensor_view_set(&tv, tensor, params.dim, ofs, stride); | |||
| 437 | return tv; | |||
| 438 | } | |||
| 439 | ||||
| 440 | void ccv_nnc_tensor_view_free(ccv_nnc_tensor_view_t* const tensor_view) | |||
| 441 | { | |||
| 442 | ccfreefree(tensor_view); | |||
| 443 | } | |||
| 444 | ||||
| 445 | void _ccv_nnc_tensor_set_zero(unsigned char* u8, const int nd, const int* const dim, const int* const stride, const size_t data_size) | |||
| 446 | { | |||
| 447 | if (nd == 1) | |||
| 448 | { | |||
| 449 | if (stride[0] == 1) | |||
| 450 | { | |||
| 451 | memset(u8, 0, data_size * dim[0]); | |||
| 452 | return; | |||
| 453 | } | |||
| 454 | int i; | |||
| 455 | for (i = 0; i < dim[0]; i++) | |||
| 456 | memset(u8 + i * stride[0] * data_size, 0, data_size); | |||
| 457 | } else if (nd == 2) { | |||
| 458 | if (stride[1] == 1 && stride[0] == dim[1]) | |||
| 459 | { | |||
| 460 | memset(u8, 0, data_size * dim[1] * dim[0]); | |||
| 461 | return; | |||
| 462 | } | |||
| 463 | int x, y; | |||
| 464 | for (y = 0; y < dim[0]; y++) | |||
| 465 | { | |||
| 466 | unsigned char* const u8y = u8 + y * stride[0] * data_size; | |||
| 467 | for (x = 0; x < dim[1]; x++) | |||
| 468 | memset(u8y + x * stride[1] * data_size, 0, data_size); | |||
| 469 | } | |||
| 470 | } else if (nd == 3) { | |||
| 471 | if (stride[2] == 1 && stride[1] == dim[2] && stride[0] == dim[1] * dim[2]) | |||
| 472 | { | |||
| 473 | memset(u8, 0, data_size * dim[2] * dim[1] * dim[0]); | |||
| 474 | return; | |||
| 475 | } | |||
| 476 | int x, y, z; | |||
| 477 | for (z = 0; z < dim[0]; z++) | |||
| 478 | { | |||
| 479 | unsigned char* const u8z = u8 + z * stride[0] * data_size; | |||
| 480 | for (y = 0; y < dim[1]; y++) | |||
| 481 | { | |||
| 482 | unsigned char* const u8y = u8z + y * stride[1] * data_size; | |||
| 483 | for (x = 0; x < dim[2]; x++) | |||
| 484 | memset(u8y + x * stride[2] * data_size, 0, data_size); | |||
| 485 | } | |||
| 486 | } | |||
| 487 | } else if (nd == 4) { | |||
| 488 | if (stride[3] == 1 && stride[2] == dim[3] && stride[1] == dim[2] * dim[3] && stride[0] == dim[1] * dim[2] * dim[3]) | |||
| 489 | { | |||
| 490 | memset(u8, 0, data_size * dim[3] * dim[2] * dim[1] * dim[0]); | |||
| 491 | return; | |||
| 492 | } | |||
| 493 | int x, y, z, s; | |||
| 494 | for (s = 0; s < dim[0]; s++) | |||
| 495 | { | |||
| 496 | unsigned char* const u8s = u8 + s * stride[0] * data_size; | |||
| 497 | for (z = 0; z < dim[1]; z++) | |||
| 498 | { | |||
| 499 | unsigned char* const u8z = u8s + z * stride[1] * data_size; | |||
| 500 | for (y = 0; y < dim[2]; y++) | |||
| 501 | { | |||
| 502 | unsigned char* const u8y = u8z + y * stride[2] * data_size; | |||
| 503 | for (x = 0; x < dim[3]; x++) | |||
| 504 | memset(u8y + x * stride[3] * data_size, 0, data_size); | |||
| 505 | } | |||
| 506 | } | |||
| 507 | } | |||
| 508 | } else { | |||
| 509 | int i; | |||
| 510 | for (i = 0; i < dim[0]; i++) | |||
| 511 | _ccv_nnc_tensor_set_zero(u8 + i * stride[0] * data_size, nd - 1, dim + 1, stride + 1, data_size); | |||
| 512 | } | |||
| 513 | } | |||
| 514 | ||||
| 515 | void ccv_nnc_tensor_zero(void* const tensor) | |||
| 516 | { | |||
| 517 | ccv_nnc_tensor_view_t* tv = (ccv_nnc_tensor_view_t*)tensor; | |||
| 518 | const size_t data_size = CCV_GET_DATA_TYPE_SIZE(tv->info.datatype)_ccv_get_data_type_size[((tv->info.datatype) & 0xFF000 ) >> 12]; | |||
| 519 | if (CCV_IS_TENSOR_CONTIGUOUS(tv)(!((*(int*)(tv)) & CCV_TENSOR_VIEW) || (((ccv_nnc_tensor_view_t *)tv)->contiguous == 1))) | |||
| 520 | { | |||
| 521 | memset(tv->data.u8, 0, data_size * ccv_nnc_tensor_count(tv->info)); | |||
| 522 | return; | |||
| 523 | } | |||
| 524 | const int nd = ccv_nnc_tensor_nd(tv->info.dim); | |||
| 525 | assert(nd >= 1)((void) sizeof ((nd >= 1) ? 1 : 0), __extension__ ({ if (nd >= 1) ; else __assert_fail ("nd >= 1", "ccv_nnc_tensor.c" , 525, __extension__ __PRETTY_FUNCTION__); })); | |||
| 526 | const int* const tvstride = tv->stride; | |||
| 527 | // Go through this recursively. | |||
| 528 | _ccv_nnc_tensor_set_zero(tv->data.u8, nd, tv->info.dim, tvstride, data_size); | |||
| 529 | } | |||
| 530 | ||||
| 531 | int ccv_nnc_tensor_eq(const ccv_nnc_tensor_t* const a, const ccv_nnc_tensor_t* const b) | |||
| 532 | { | |||
| 533 | assert(!CCV_IS_TENSOR_VIEW(a))((void) sizeof ((!((*(int*)(a)) & CCV_TENSOR_VIEW)) ? 1 : 0), __extension__ ({ if (!((*(int*)(a)) & CCV_TENSOR_VIEW )) ; else __assert_fail ("!CCV_IS_TENSOR_VIEW(a)", "ccv_nnc_tensor.c" , 533, __extension__ __PRETTY_FUNCTION__); })); | |||
| 534 | assert(!CCV_IS_TENSOR_VIEW(b))((void) sizeof ((!((*(int*)(b)) & CCV_TENSOR_VIEW)) ? 1 : 0), __extension__ ({ if (!((*(int*)(b)) & CCV_TENSOR_VIEW )) ; else __assert_fail ("!CCV_IS_TENSOR_VIEW(b)", "ccv_nnc_tensor.c" , 534, __extension__ __PRETTY_FUNCTION__); })); | |||
| 535 | // If a is a dense matrix, just use ccv_matrix_eq | |||
| 536 | if (CCV_TENSOR_IS_DENSE_MATRIX(a->type)(((a->type) & 0xFFF) > 0)) | |||
| 537 | return ccv_matrix_eq((ccv_matrix_t*)a, (ccv_matrix_t*)b); | |||
| 538 | // Otherwise, do our own thing. | |||
| 539 | if (CCV_GET_DATA_TYPE(a->type)((a->type) & 0xFF000) != CCV_GET_DATA_TYPE(b->type)((b->type) & 0xFF000)) | |||
| 540 | return -1; | |||
| 541 | int i, c = 1; | |||
| 542 | for (i = 0; i < CCV_NNC_MAX_DIM_ALLOC(12); i++) | |||
| 543 | { | |||
| 544 | if (!a->info.dim[i] && !b->info.dim[i]) | |||
| 545 | break; | |||
| 546 | if (a->info.dim[i] != b->info.dim[i]) | |||
| 547 | return -1; | |||
| 548 | c *= a->info.dim[i]; | |||
| 549 | } | |||
| 550 | if (CCV_GET_DATA_TYPE(a->type)((a->type) & 0xFF000) == CCV_32S) | |||
| 551 | return memcmp(a->data.i32, b->data.i32, sizeof(int) * c) == 0 ? 0 : -1; | |||
| 552 | // Only support 32F at this point. | |||
| 553 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F || CCV_GET_DATA_TYPE(a->type) == CCV_64F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F || ( (a->type) & 0xFF000) == CCV_64F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F || ((a->type ) & 0xFF000) == CCV_64F) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F || CCV_GET_DATA_TYPE(a->type) == CCV_64F" , "ccv_nnc_tensor.c", 553, __extension__ __PRETTY_FUNCTION__) ; })); | |||
| 554 | // Read: http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm | |||
| 555 | // http://floating-point-gui.de/errors/comparison/ | |||
| 556 | if (CCV_GET_DATA_TYPE(a->type)((a->type) & 0xFF000) == CCV_32F) | |||
| 557 | { | |||
| 558 | static const float epsi = FLT_EPSILON1.19209290e-7F; | |||
| 559 | static const int32_t ulps = 128; // so that for 1 and 1.000015 will be treated as the same. | |||
| 560 | for (i = 0; i < c; i++) | |||
| 561 | { | |||
| 562 | // Although this is float point, I use integer as a way to compare. | |||
| 563 | int32_t i32a = a->data.i32[i]; | |||
| 564 | if (i32a < 0) | |||
| 565 | i32a = 0x80000000 - i32a; | |||
| 566 | int32_t i32b = b->data.i32[i]; | |||
| 567 | if (i32b < 0) | |||
| 568 | i32b = 0x80000000 - i32b; | |||
| 569 | if (abs(i32a - i32b) > ulps && fabsf(a->data.f32[i] - b->data.f32[i]) > epsi) | |||
| 570 | return -1; | |||
| 571 | } | |||
| 572 | } else if (CCV_GET_DATA_TYPE(a->type)((a->type) & 0xFF000) == CCV_64F) { | |||
| 573 | typedef union { | |||
| 574 | double f64; | |||
| 575 | int64_t i64; | |||
| 576 | } Float64; | |||
| 577 | static const double epsi = DBL_EPSILON2.2204460492503131e-16; | |||
| 578 | static const int64_t ulps = 128; // so that for 1 and 1.000015 will be treated as the same. | |||
| 579 | for (i = 0; i < c; i++) | |||
| 580 | { | |||
| 581 | // Although this is float point, I use integer as a way to compare. | |||
| 582 | Float64 f64a, f64b; | |||
| 583 | f64a.f64 = a->data.f64[i]; | |||
| 584 | f64b.f64 = b->data.f64[i]; | |||
| 585 | if (f64a.i64 < 0) | |||
| 586 | f64a.i64 = 0x8000000000000000 - f64a.i64; | |||
| 587 | if (f64b.i64 < 0) | |||
| 588 | f64b.i64 = 0x8000000000000000 - f64b.i64; | |||
| 589 | if (llabs(f64a.i64 - f64b.i64) > ulps && fabs(a->data.f64[i] - b->data.f64[i]) > epsi) | |||
| 590 | return -1; | |||
| 591 | } | |||
| 592 | } | |||
| 593 | return 0; | |||
| 594 | } | |||
| 595 | ||||
| 596 | static void _strcat(char** str, int* written, size_t* len, char* from, int from_size) | |||
| 597 | { | |||
| 598 | if (*len - *written < from_size) | |||
| 599 | { | |||
| 600 | *len += from_size * 2; | |||
| 601 | *str = (char*)ccreallocrealloc(*str, *len); | |||
| 602 | } | |||
| 603 | memcpy(*str + *written, from, from_size); | |||
| 604 | *written += from_size; | |||
| 605 | } | |||
| 606 | ||||
| 607 | #define _STRPRINTF(str, written, len, format, ...)do { const int newly_written = snprintf((str) + (written), (len ) - (written), format, ...); if ((len) - (written) < newly_written ) { (len) += newly_written * 2; (str) = (char*)realloc((str), (len)); (written) += snprintf((str) + (written), (len) - (written ), format, ...); } else (written) += newly_written; } while ( 0) \ | |||
| 608 | do { \ | |||
| 609 | const int newly_written = snprintf((str) + (written), (len) - (written), format, ## __VA_ARGS__); \ | |||
| 610 | if ((len) - (written) < newly_written) \ | |||
| 611 | { \ | |||
| 612 | (len) += newly_written * 2; \ | |||
| 613 | (str) = (char*)ccreallocrealloc((str), (len)); \ | |||
| 614 | (written) += snprintf((str) + (written), (len) - (written), format, ## __VA_ARGS__); \ | |||
| 615 | } else \ | |||
| 616 | (written) += newly_written; \ | |||
| 617 | } while (0) | |||
| 618 | ||||
| 619 | static void _strv(char** str, int* written, size_t* len, const ccv_nnc_tensor_t* const a, int i) | |||
| 620 | { | |||
| 621 | if (a->info.datatype == CCV_32F) | |||
| 622 | _STRPRINTF(*str, *written, *len, "%10.5g", a->data.f32[i])do { const int newly_written = snprintf((*str) + (*written), ( *len) - (*written), "%10.5g", a->data.f32[i]); if ((*len) - (*written) < newly_written) { (*len) += newly_written * 2 ; (*str) = (char*)realloc((*str), (*len)); (*written) += snprintf ((*str) + (*written), (*len) - (*written), "%10.5g", a->data .f32[i]); } else (*written) += newly_written; } while (0); | |||
| 623 | else if (a->info.datatype == CCV_64F) | |||
| 624 | _STRPRINTF(*str, *written, *len, "%10.5g", a->data.f64[i])do { const int newly_written = snprintf((*str) + (*written), ( *len) - (*written), "%10.5g", a->data.f64[i]); if ((*len) - (*written) < newly_written) { (*len) += newly_written * 2 ; (*str) = (char*)realloc((*str), (*len)); (*written) += snprintf ((*str) + (*written), (*len) - (*written), "%10.5g", a->data .f64[i]); } else (*written) += newly_written; } while (0); | |||
| 625 | else if (a->info.datatype == CCV_16F) { | |||
| 626 | float v; | |||
| 627 | ccv_half_precision_to_float((uint16_t*)(a->data.f16 + i), &v, 1); | |||
| 628 | _STRPRINTF(*str, *written, *len, "%10.5g", v)do { const int newly_written = snprintf((*str) + (*written), ( *len) - (*written), "%10.5g", v); if ((*len) - (*written) < newly_written) { (*len) += newly_written * 2; (*str) = (char *)realloc((*str), (*len)); (*written) += snprintf((*str) + (* written), (*len) - (*written), "%10.5g", v); } else (*written ) += newly_written; } while (0); | |||
| 629 | } else if (a->info.datatype == CCV_32S) | |||
| 630 | _STRPRINTF(*str, *written, *len, "%10d", a->data.i32[i])do { const int newly_written = snprintf((*str) + (*written), ( *len) - (*written), "%10d", a->data.i32[i]); if ((*len) - ( *written) < newly_written) { (*len) += newly_written * 2; ( *str) = (char*)realloc((*str), (*len)); (*written) += snprintf ((*str) + (*written), (*len) - (*written), "%10d", a->data .i32[i]); } else (*written) += newly_written; } while (0); | |||
| 631 | else if (a->info.datatype == CCV_64S) | |||
| 632 | _STRPRINTF(*str, *written, *len, "%12lld", (long long int)a->data.i64[i])do { const int newly_written = snprintf((*str) + (*written), ( *len) - (*written), "%12lld", (long long int)a->data.i64[i ]); if ((*len) - (*written) < newly_written) { (*len) += newly_written * 2; (*str) = (char*)realloc((*str), (*len)); (*written) += snprintf ((*str) + (*written), (*len) - (*written), "%12lld", (long long int)a->data.i64[i]); } else (*written) += newly_written; } while (0); | |||
| 633 | else if (a->info.datatype == CCV_8U) | |||
| 634 | _STRPRINTF(*str, *written, *len, "%3d", (int)a->data.u8[i])do { const int newly_written = snprintf((*str) + (*written), ( *len) - (*written), "%3d", (int)a->data.u8[i]); if ((*len) - (*written) < newly_written) { (*len) += newly_written * 2; (*str) = (char*)realloc((*str), (*len)); (*written) += snprintf ((*str) + (*written), (*len) - (*written), "%3d", (int)a-> data.u8[i]); } else (*written) += newly_written; } while (0); | |||
| 635 | } | |||
| 636 | ||||
| 637 | static void _strt(char** str, int* written, size_t* len, const ccv_nnc_tensor_t* const a, int nd, int spacer, const int* const dim, const int* const stride, int idx) | |||
| 638 | { | |||
| 639 | assert(nd != 1)((void) sizeof ((nd != 1) ? 1 : 0), __extension__ ({ if (nd != 1) ; else __assert_fail ("nd != 1", "ccv_nnc_tensor.c", 639, __extension__ __PRETTY_FUNCTION__); })); | |||
| 640 | if (nd == 2) | |||
| 641 | { | |||
| 642 | // Print columns and the rows. | |||
| 643 | int i, j, k; | |||
| 644 | if (dim[0] <= 8) | |||
| 645 | { | |||
| 646 | for (i = 0; i < dim[0]; i++) | |||
| 647 | { | |||
| 648 | if (i != 0) | |||
| 649 | { | |||
| 650 | _strcat(str, written, len, " ", 2); | |||
| 651 | for (k = 0; k < spacer; k++) | |||
| 652 | _strcat(str, written, len, " ", 1); | |||
| 653 | } | |||
| 654 | _strcat(str, written, len, "[", 1); | |||
| 655 | if (dim[1] <= 8) | |||
| 656 | { | |||
| 657 | for (j = 0; j < dim[1]; j++) | |||
| 658 | { | |||
| 659 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 660 | if (j < dim[1] - 1) | |||
| 661 | _strcat(str, written, len, ", ", 2); | |||
| 662 | } | |||
| 663 | if (i < dim[0] - 1) | |||
| 664 | _strcat(str, written, len, "],\n", 3); | |||
| 665 | } else { | |||
| 666 | for (j = 0; j < 3; j++) | |||
| 667 | { | |||
| 668 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 669 | _strcat(str, written, len, ", ", 2); | |||
| 670 | } | |||
| 671 | _strcat(str, written, len, " ..., ", 6); | |||
| 672 | for (j = dim[1] - 3; j < dim[1]; j++) | |||
| 673 | { | |||
| 674 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 675 | if (j < dim[1] - 1) | |||
| 676 | _strcat(str, written, len, ", ", 2); | |||
| 677 | } | |||
| 678 | if (i < dim[0] - 1) | |||
| 679 | _strcat(str, written, len, "],\n", 3); | |||
| 680 | } | |||
| 681 | } | |||
| 682 | _strcat(str, written, len, "]", 1); | |||
| 683 | } else { | |||
| 684 | for (i = 0; i < 3; i++) | |||
| 685 | { | |||
| 686 | if (i != 0) | |||
| 687 | { | |||
| 688 | _strcat(str, written, len, " ", 2); | |||
| 689 | for (k = 0; k < spacer; k++) | |||
| 690 | _strcat(str, written, len, " ", 1); | |||
| 691 | } | |||
| 692 | _strcat(str, written, len, "[", 1); | |||
| 693 | if (dim[1] <= 8) | |||
| 694 | { | |||
| 695 | for (j = 0; j < dim[1]; j++) | |||
| 696 | { | |||
| 697 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 698 | if (j < dim[1] - 1) | |||
| 699 | _strcat(str, written, len, ", ", 2); | |||
| 700 | } | |||
| 701 | _strcat(str, written, len, "],\n", 3); | |||
| 702 | } else { | |||
| 703 | for (j = 0; j < 3; j++) | |||
| 704 | { | |||
| 705 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 706 | _strcat(str, written, len, ", ", 2); | |||
| 707 | } | |||
| 708 | _strcat(str, written, len, " ..., ", 6); | |||
| 709 | for (j = dim[1] - 3; j < dim[1]; j++) | |||
| 710 | { | |||
| 711 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 712 | if (j < dim[1] - 1) | |||
| 713 | _strcat(str, written, len, ", ", 2); | |||
| 714 | } | |||
| 715 | _strcat(str, written, len, "],\n", 3); | |||
| 716 | } | |||
| 717 | } | |||
| 718 | _strcat(str, written, len, " ", 2); | |||
| 719 | for (k = 0; k < spacer; k++) | |||
| 720 | _strcat(str, written, len, " ", 1); | |||
| 721 | _strcat(str, written, len, "...,\n", 5); | |||
| 722 | for (i = dim[0] - 3; i < dim[0]; i++) | |||
| 723 | { | |||
| 724 | _strcat(str, written, len, " ", 2); | |||
| 725 | for (k = 0; k < spacer; k++) | |||
| 726 | _strcat(str, written, len, " ", 1); | |||
| 727 | _strcat(str, written, len, "[", 1); | |||
| 728 | if (dim[1] < 8) | |||
| 729 | { | |||
| 730 | for (j = 0; j < dim[1]; j++) | |||
| 731 | { | |||
| 732 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 733 | if (j < dim[1] - 1) | |||
| 734 | _strcat(str, written, len, ", ", 2); | |||
| 735 | } | |||
| 736 | if (i < dim[0] - 1) | |||
| 737 | _strcat(str, written, len, "],\n", 3); | |||
| 738 | } else { | |||
| 739 | for (j = 0; j < 3; j++) | |||
| 740 | { | |||
| 741 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 742 | _strcat(str, written, len, ", ", 2); | |||
| 743 | } | |||
| 744 | _strcat(str, written, len, " ..., ", 6); | |||
| 745 | for (j = dim[1] - 3; j < dim[1]; j++) | |||
| 746 | { | |||
| 747 | _strv(str, written, len, a, idx + i * stride[0] + j * stride[1]); | |||
| 748 | if (j < dim[1] - 1) | |||
| 749 | _strcat(str, written, len, ", ", 2); | |||
| 750 | } | |||
| 751 | if (i < dim[0] - 1) | |||
| 752 | _strcat(str, written, len, "],\n", 3); | |||
| 753 | } | |||
| 754 | } | |||
| 755 | _strcat(str, written, len, "]", 1); | |||
| 756 | } | |||
| 757 | return; | |||
| 758 | } | |||
| 759 | int i, j; | |||
| 760 | if (dim[0] > 4) | |||
| 761 | { | |||
| 762 | for (i = 0; i < 2; i++) | |||
| 763 | { | |||
| 764 | _strcat(str, written, len, "[", 1); | |||
| 765 | _strt(str, written, len, a, nd - 1, spacer + 1, dim + 1, stride + 1, idx + stride[0] * i); | |||
| 766 | _strcat(str, written, len, "],\n ", 5); | |||
| 767 | for (j = 0; j < spacer; j++) | |||
| 768 | _strcat(str, written, len, " ", 1); | |||
| 769 | } | |||
| 770 | _strcat(str, written, len, "...,\n", 5); | |||
| 771 | _strcat(str, written, len, " ", 2); | |||
| 772 | for (j = 0; j < spacer; j++) | |||
| 773 | _strcat(str, written, len, " ", 1); | |||
| 774 | for (i = dim[0] - 2; i < dim[0]; i++) | |||
| 775 | { | |||
| 776 | _strcat(str, written, len, "[", 1); | |||
| 777 | _strt(str, written, len, a, nd - 1, spacer + 1, dim + 1, stride + 1, idx + stride[0] * i); | |||
| 778 | if (i < dim[0] - 1) | |||
| 779 | { | |||
| 780 | _strcat(str, written, len, "],\n ", 5); | |||
| 781 | for (j = 0; j < spacer; j++) | |||
| 782 | _strcat(str, written, len, " ", 1); | |||
| 783 | } | |||
| 784 | } | |||
| 785 | _strcat(str, written, len, "]", 1); | |||
| 786 | } else { | |||
| 787 | for (i = 0; i < dim[0]; i++) | |||
| 788 | { | |||
| 789 | _strcat(str, written, len, "[", 1); | |||
| 790 | _strt(str, written, len, a, nd - 1, spacer + 1, dim + 1, stride + 1, idx + stride[0] * i); | |||
| 791 | if (i < dim[0] - 1) | |||
| 792 | { | |||
| 793 | _strcat(str, written, len, "],\n", 3); | |||
| 794 | _strcat(str, written, len, " ", 2); | |||
| 795 | for (j = 0; j < spacer; j++) | |||
| 796 | _strcat(str, written, len, " ", 1); | |||
| 797 | } | |||
| 798 | } | |||
| 799 | _strcat(str, written, len, "]", 1); | |||
| 800 | } | |||
| 801 | } | |||
| 802 | ||||
| 803 | char* ccv_nnc_tensor_format_new(const ccv_nnc_tensor_t* const a) | |||
| 804 | { | |||
| 805 | const int nd = ccv_nnc_tensor_nd(a->info.dim); | |||
| 806 | int i; | |||
| 807 | int rows = 8; // 8 rows for the first one, and then just first and last. | |||
| 808 | for (i = 2; i < nd; i++) | |||
| 809 | rows *= 5; // Maximum 3 rows beyond the first two. | |||
| 810 | int columns = nd * 2 + 16 * 8; | |||
| 811 | size_t len = sizeof(char) * columns * rows; | |||
| 812 | // Allocate return string buffer. | |||
| 813 | char* str = (char*)ccmallocmalloc(len); | |||
| 814 | int written = 0; | |||
| 815 | int stride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 816 | if (CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW)) | |||
| 817 | memcpy(stride, ((ccv_nnc_tensor_view_t*)a)->stride, sizeof(int) * CCV_NNC_MAX_DIM_ALLOC(12)); | |||
| 818 | else | |||
| 819 | ccv_nnc_tensor_get_stride(a->info.dim, stride); | |||
| 820 | _strcat(&str, &written, &len, "[\n ", 4); | |||
| 821 | if (nd == 1) | |||
| 822 | { | |||
| 823 | // Special casing for vector. | |||
| 824 | if (a->info.dim[0] <= 64) | |||
| 825 | for (i = 0; i < a->info.dim[0]; i++) | |||
| 826 | { | |||
| 827 | _strv(&str, &written, &len, a, i * stride[0]); | |||
| 828 | if (i < a->info.dim[0] - 1) | |||
| 829 | { | |||
| 830 | if ((i + 1) % 8 == 0) | |||
| 831 | _strcat(&str, &written, &len, ",\n ", 4); | |||
| 832 | else | |||
| 833 | _strcat(&str, &written, &len, ", ", 2); | |||
| 834 | } | |||
| 835 | } | |||
| 836 | else { | |||
| 837 | // First 3 rows. | |||
| 838 | for (i = 0; i < 24; i++) | |||
| 839 | { | |||
| 840 | _strv(&str, &written, &len, a, i * stride[0]); | |||
| 841 | if ((i + 1) % 8 == 0) | |||
| 842 | _strcat(&str, &written, &len, ",\n ", 4); | |||
| 843 | else | |||
| 844 | _strcat(&str, &written, &len, ", ", 2); | |||
| 845 | } | |||
| 846 | _strcat(&str, &written, &len, "...,\n ", 7); | |||
| 847 | // Last 3 rows (aligned to 8 items per row). | |||
| 848 | int start = ((a->info.dim[0] + 7) / 8 - 3) * 8; | |||
| 849 | for (i = start; i < a->info.dim[0]; i++) | |||
| 850 | { | |||
| 851 | _strv(&str, &written, &len, a, i * stride[0]); | |||
| 852 | if (i < a->info.dim[0] - 1) | |||
| 853 | { | |||
| 854 | if ((i + 1) % 8 == 0) | |||
| 855 | _strcat(&str, &written, &len, ",\n ", 4); | |||
| 856 | else | |||
| 857 | _strcat(&str, &written, &len, ", ", 2); | |||
| 858 | } | |||
| 859 | } | |||
| 860 | } | |||
| 861 | } else { | |||
| 862 | _strt(&str, &written, &len, a, nd, 0, a->info.dim, stride, 0); | |||
| 863 | } | |||
| 864 | _strcat(&str, &written, &len, "\n]", 3); // Including the terminal \0. | |||
| 865 | str = (char*)ccreallocrealloc(str, written); // Don't need the extra spaces. | |||
| 866 | return str; | |||
| 867 | } |