| File: | nnc/cmd/ew/ccv_nnc_ew_cpu_ref.c |
| Warning: | line 1320, column 32 The right operand of '*' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include "ccv.h" | |||
| 2 | #include "ccv_internal.h" | |||
| 3 | #include "nnc/ccv_nnc.h" | |||
| 4 | #include "nnc/ccv_nnc_easy.h" | |||
| 5 | #include "nnc/ccv_nnc_internal.h" | |||
| 6 | #ifdef USE_OPENMP | |||
| 7 | #include <omp.h> | |||
| 8 | #endif | |||
| 9 | #ifdef USE_DISPATCH | |||
| 10 | #include <dispatch/dispatch.h> | |||
| 11 | #endif | |||
| 12 | ||||
| 13 | #include "../_ccv_nnc_cpu_ref.h" | |||
| 14 | ||||
| 15 | void _ccv_nnc_ewsum_forw_cpu_ref_f32(ccv_nnc_tensor_view_t* const* const inputs, const int input_size, ccv_nnc_tensor_view_t* const* const outputs, const int output_size) | |||
| 16 | { | |||
| 17 | if (input_size == 1 && output_size == 1) | |||
| 18 | { | |||
| 19 | _ccv_nnc_tensor_transfer_cpu_ref_f32(inputs[0], outputs[0]); | |||
| 20 | return; | |||
| 21 | } | |||
| 22 | // Assuming this is float 32. | |||
| 23 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 24 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 25 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 26 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 27 | int x, z; | |||
| 28 | int k = 0; | |||
| 29 | // Bad, I promised this can be inplace operation. Need to first find out if there are share the same pointer first. | |||
| 30 | for (z = 1; z < input_size; z++) | |||
| 31 | { | |||
| 32 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
| 33 | ccv_nnc_tensor_view_t* a = inputs[z]; | |||
| 34 | if (c->data.f32 == a->data.f32) | |||
| 35 | { | |||
| 36 | k = z; | |||
| 37 | break; | |||
| 38 | } | |||
| 39 | } | |||
| 40 | for (z = 0; z < input_size - 1; z++) | |||
| 41 | { | |||
| 42 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
| 43 | ccv_nnc_tensor_view_t* a = z > 0 ? c : inputs[k]; | |||
| 44 | ccv_nnc_tensor_view_t* b = z >= k ? inputs[z + 1] : inputs[z]; | |||
| 45 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 45, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 46 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 46, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 47 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 47, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 48 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 49 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 49, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 50 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 50, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 51 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
| 52 | { | |||
| 53 | // Super optimal case, just do one for-loop for sum. | |||
| 54 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 55 | for (x = 0; x < tensor_count; x++) | |||
| 56 | c->data.f32[x] = a->data.f32[x] + b->data.f32[x]; | |||
| 57 | continue; | |||
| 58 | } | |||
| 59 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 59, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 60 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 61 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 62 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 63 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 64 | float* const ap = a->data.f32; | |||
| 65 | float* const bp = b->data.f32; | |||
| 66 | float* const cp = c->data.f32; | |||
| 67 | const int count = dim[2] * dim[3]; | |||
| 68 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && astride[3] == 1 && bstride[3] == 1 && cstride[3] == 1) | |||
| 69 | { | |||
| 70 | // Special casing if the ainc[3] is the same as dim[3] (do memcpy for the last two dim) | |||
| 71 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 72 | { | |||
| 73 | float* ap0 = ap + i[0] * astride[0]; | |||
| 74 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 75 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 76 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 77 | { | |||
| 78 | for (x = 0; x < count; x++) | |||
| 79 | cp0[x] = ap0[x] + bp0[x]; | |||
| 80 | ap0 += astride[1]; | |||
| 81 | bp0 += bstride[1]; | |||
| 82 | cp0 += cstride[1]; | |||
| 83 | } | |||
| 84 | } | |||
| 85 | continue; | |||
| 86 | } | |||
| 87 | // Non-optimal case, need to do skip copy. | |||
| 88 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 89 | { | |||
| 90 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 91 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 92 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 93 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 94 | { | |||
| 95 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 96 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 97 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 98 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 99 | { | |||
| 100 | for (x = 0; x < dim[3]; x++) | |||
| 101 | cp1[x * cstride[3]] = ap1[x * astride[3]] + bp1[x * bstride[3]]; | |||
| 102 | ap1 += astride[2]; | |||
| 103 | bp1 += bstride[2]; | |||
| 104 | cp1 += cstride[2]; | |||
| 105 | } | |||
| 106 | } | |||
| 107 | } | |||
| 108 | } | |||
| 109 | } | |||
| 110 | ||||
| 111 | void _ccv_nnc_ewsum_forw_cpu_ref_i32(ccv_nnc_tensor_view_t* const* const inputs, const int input_size, ccv_nnc_tensor_view_t* const* const outputs, const int output_size) | |||
| 112 | { | |||
| 113 | if (input_size == 1 && output_size == 1) | |||
| 114 | { | |||
| 115 | _ccv_nnc_tensor_transfer_cpu_ref_f32(inputs[0], outputs[0]); | |||
| 116 | return; | |||
| 117 | } | |||
| 118 | // Assuming this is float 32. | |||
| 119 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 120 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 121 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 122 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 123 | int x, z; | |||
| 124 | int k = 0; | |||
| 125 | // Bad, I promised this can be inplace operation. Need to first find out if there are share the same pointer first. | |||
| 126 | for (z = 1; z < input_size; z++) | |||
| 127 | { | |||
| 128 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
| 129 | ccv_nnc_tensor_view_t* a = inputs[z]; | |||
| 130 | if (c->data.f32 == a->data.f32) | |||
| 131 | { | |||
| 132 | k = z; | |||
| 133 | break; | |||
| 134 | } | |||
| 135 | } | |||
| 136 | for (z = 0; z < input_size - 1; z++) | |||
| 137 | { | |||
| 138 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
| 139 | ccv_nnc_tensor_view_t* a = z > 0 ? c : inputs[k]; | |||
| 140 | ccv_nnc_tensor_view_t* b = z >= k ? inputs[z + 1] : inputs[z]; | |||
| 141 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 141, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 142 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 142, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 143 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 143, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 144 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 145 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 145, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 146 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 146, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 147 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
| 148 | { | |||
| 149 | // Super optimal case, just do one for-loop for sum. | |||
| 150 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 151 | for (x = 0; x < tensor_count; x++) | |||
| 152 | c->data.f32[x] = a->data.f32[x] + b->data.f32[x]; | |||
| 153 | continue; | |||
| 154 | } | |||
| 155 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 155, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 156 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 157 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 158 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 159 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 160 | int* const ap = a->data.i32; | |||
| 161 | int* const bp = b->data.i32; | |||
| 162 | int* const cp = c->data.i32; | |||
| 163 | const int count = dim[2] * dim[3]; | |||
| 164 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && astride[3] == 1 && bstride[3] == 1 && cstride[3] == 1) | |||
| 165 | { | |||
| 166 | // Special casing if the ainc[3] is the same as dim[3] (do memcpy for the last two dim) | |||
| 167 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 168 | { | |||
| 169 | int* ap0 = ap + i[0] * astride[0]; | |||
| 170 | int* bp0 = bp + i[0] * bstride[0]; | |||
| 171 | int* cp0 = cp + i[0] * cstride[0]; | |||
| 172 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 173 | { | |||
| 174 | for (x = 0; x < count; x++) | |||
| 175 | cp0[x] = ap0[x] + bp0[x]; | |||
| 176 | ap0 += astride[1]; | |||
| 177 | bp0 += bstride[1]; | |||
| 178 | cp0 += cstride[1]; | |||
| 179 | } | |||
| 180 | } | |||
| 181 | continue; | |||
| 182 | } | |||
| 183 | // Non-optimal case, need to do skip copy. | |||
| 184 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 185 | { | |||
| 186 | int* const ap0 = ap + i[0] * astride[0]; | |||
| 187 | int* const bp0 = bp + i[0] * bstride[0]; | |||
| 188 | int* const cp0 = cp + i[0] * cstride[0]; | |||
| 189 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 190 | { | |||
| 191 | int* ap1 = ap0 + i[1] * astride[1]; | |||
| 192 | int* bp1 = bp0 + i[1] * bstride[1]; | |||
| 193 | int* cp1 = cp0 + i[1] * cstride[1]; | |||
| 194 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 195 | { | |||
| 196 | for (x = 0; x < dim[3]; x++) | |||
| 197 | cp1[x * cstride[3]] = ap1[x * astride[3]] + bp1[x * bstride[3]]; | |||
| 198 | ap1 += astride[2]; | |||
| 199 | bp1 += bstride[2]; | |||
| 200 | cp1 += cstride[2]; | |||
| 201 | } | |||
| 202 | } | |||
| 203 | } | |||
| 204 | } | |||
| 205 | } | |||
| 206 | ||||
| 207 | static int _ccv_nnc_ewsum_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 208 | { | |||
| 209 | if (outputs[0]->info.datatype == CCV_32S) | |||
| 210 | _ccv_nnc_ewsum_forw_cpu_ref_i32((ccv_nnc_tensor_view_t**)inputs, input_size, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
| 211 | else | |||
| 212 | _ccv_nnc_ewsum_forw_cpu_ref_f32((ccv_nnc_tensor_view_t**)inputs, input_size, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
| 213 | return CCV_NNC_EXEC_SUCCESS; | |||
| 214 | } | |||
| 215 | ||||
| 216 | static int _ccv_nnc_ewsum_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 217 | { | |||
| 218 | // D[x + y + z, x] = 1 | |||
| 219 | int i; | |||
| 220 | if (inputs[0] == 0) | |||
| 221 | { | |||
| 222 | // Set them to 1. | |||
| 223 | for (i = 0; i < output_size; i++) | |||
| 224 | if (outputs[i]) | |||
| 225 | _ccv_nnc_tensor_set_cpu_ref_f32((ccv_nnc_tensor_view_t*)outputs[i], 1); | |||
| 226 | } else { | |||
| 227 | // Copy over the gradient (If they are not pointing to the same tensor already). | |||
| 228 | for (i = 0; i < output_size; i++) | |||
| 229 | if (outputs[i] && inputs[0]->data.f32 != outputs[i]->data.f32) | |||
| 230 | _ccv_nnc_tensor_transfer_cpu_ref_f32((ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)outputs[i]); | |||
| 231 | } | |||
| 232 | return CCV_NNC_EXEC_SUCCESS; | |||
| 233 | } | |||
| 234 | ||||
| 235 | void _ccv_nnc_ewprod_forw_cpu_ref(ccv_nnc_tensor_view_t* const* const inputs, const int input_size, ccv_nnc_tensor_view_t* const* const outputs, const int output_size) | |||
| 236 | { | |||
| 237 | if (input_size == 1 && output_size == 1) | |||
| 238 | { | |||
| 239 | _ccv_nnc_tensor_transfer_cpu_ref_f32(inputs[0], outputs[0]); | |||
| 240 | return; | |||
| 241 | } | |||
| 242 | // Assuming this is float 32. | |||
| 243 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 244 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 245 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 246 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 247 | int x, z; | |||
| 248 | int k = 0; | |||
| 249 | // Bad, I promised this can be inplace operation. Need to first find out if there are share the same pointer first. | |||
| 250 | for (z = 1; z < input_size; z++) | |||
| 251 | { | |||
| 252 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
| 253 | ccv_nnc_tensor_view_t* a = inputs[z]; | |||
| 254 | if (c->data.f32 == a->data.f32) | |||
| 255 | { | |||
| 256 | k = z; | |||
| 257 | break; | |||
| 258 | } | |||
| 259 | } | |||
| 260 | for (z = 0; z < input_size - 1; z++) | |||
| 261 | { | |||
| 262 | ccv_nnc_tensor_view_t* c = outputs[0]; | |||
| 263 | ccv_nnc_tensor_view_t* a = z > 0 ? c : inputs[k]; | |||
| 264 | ccv_nnc_tensor_view_t* b = z >= k ? inputs[z + 1] : inputs[z]; | |||
| 265 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 265, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 266 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 266, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 267 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 267, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 268 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 269 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 269, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 270 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 270, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 271 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
| 272 | { | |||
| 273 | // Super optimal case, just do one for-loop for sum. | |||
| 274 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 275 | for (x = 0; x < tensor_count; x++) | |||
| 276 | c->data.f32[x] = a->data.f32[x] * b->data.f32[x]; | |||
| 277 | continue; | |||
| 278 | } | |||
| 279 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 279, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 280 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 281 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 282 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 283 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 284 | float* const ap = a->data.f32; | |||
| 285 | float* const bp = b->data.f32; | |||
| 286 | float* const cp = c->data.f32; | |||
| 287 | const int count = dim[2] * dim[3]; | |||
| 288 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3]) | |||
| 289 | { | |||
| 290 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 291 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 292 | { | |||
| 293 | float* ap0 = ap + i[0] * astride[0]; | |||
| 294 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 295 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 296 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 297 | { | |||
| 298 | for (x = 0; x < count; x++) | |||
| 299 | cp0[x] = ap0[x] * bp0[x]; | |||
| 300 | ap0 += astride[1]; | |||
| 301 | bp0 += bstride[1]; | |||
| 302 | cp0 += cstride[1]; | |||
| 303 | } | |||
| 304 | } | |||
| 305 | continue; | |||
| 306 | } | |||
| 307 | // Non-optimal case, need to do skip copy. | |||
| 308 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 309 | { | |||
| 310 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 311 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 312 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 313 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 314 | { | |||
| 315 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 316 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 317 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 318 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 319 | { | |||
| 320 | for (x = 0; x < dim[3]; x++) | |||
| 321 | cp1[x] = ap1[x] * bp1[x]; | |||
| 322 | ap1 += astride[2]; | |||
| 323 | bp1 += bstride[2]; | |||
| 324 | cp1 += cstride[2]; | |||
| 325 | } | |||
| 326 | } | |||
| 327 | } | |||
| 328 | } | |||
| 329 | } | |||
| 330 | ||||
| 331 | static int _ccv_nnc_ewprod_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 332 | { | |||
| 333 | _ccv_nnc_ewprod_forw_cpu_ref((ccv_nnc_tensor_view_t**)inputs, input_size, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
| 334 | return CCV_NNC_EXEC_SUCCESS; | |||
| 335 | } | |||
| 336 | ||||
| 337 | static int _ccv_nnc_ewprod_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 338 | { | |||
| 339 | // D[x * y * z, x] = y * z | |||
| 340 | // Assuming this is float 32. | |||
| 341 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 342 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 343 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 344 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 345 | int hstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 346 | int x, z; | |||
| 347 | ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 348 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[output_size + 1]; | |||
| 349 | if (g == 0) | |||
| 350 | { | |||
| 351 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 351, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 352 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
| 353 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 354 | for (z = 0; z < output_size; z++) | |||
| 355 | { | |||
| 356 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[z + 1]; | |||
| 357 | ccv_nnc_tensor_view_t* h = (ccv_nnc_tensor_view_t*)outputs[z]; | |||
| 358 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 358, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 359 | assert(ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(h->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(h->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 359, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 360 | assert(ccv_nnc_tensor_view_check_dim(a, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(a, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(a, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(a, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 360, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 361 | assert(ccv_nnc_tensor_view_check_dim(h, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(h, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(h, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(h, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 361, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 362 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 363 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
| 364 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW)) | |||
| 365 | { | |||
| 366 | // Super optimal case, just do one for-loop for sum. | |||
| 367 | const int tensor_count = ccv_nnc_tensor_count(b->info); | |||
| 368 | for (x = 0; x < tensor_count; x++) | |||
| 369 | h->data.f32[x] = b->data.f32[x] / a->data.f32[x]; | |||
| 370 | continue; | |||
| 371 | } | |||
| 372 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 372, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 373 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 374 | float* const ap = a->data.f32; | |||
| 375 | float* const bp = b->data.f32; | |||
| 376 | float* const hp = h->data.f32; | |||
| 377 | const int count = dim[2] * dim[3]; | |||
| 378 | if (astride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 379 | { | |||
| 380 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 381 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 382 | { | |||
| 383 | float* ap0 = ap + i[0] * astride[0]; | |||
| 384 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 385 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 386 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 387 | { | |||
| 388 | for (x = 0; x < count; x++) | |||
| 389 | hp0[x] = bp0[x] / ap0[x]; | |||
| 390 | ap0 += astride[1]; | |||
| 391 | bp0 += bstride[1]; | |||
| 392 | hp0 += hstride[1]; | |||
| 393 | } | |||
| 394 | } | |||
| 395 | continue; | |||
| 396 | } | |||
| 397 | // Non-optimal case, need to do skip copy. | |||
| 398 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 399 | { | |||
| 400 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 401 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 402 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 403 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 404 | { | |||
| 405 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 406 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 407 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 408 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 409 | { | |||
| 410 | for (x = 0; x < dim[3]; x++) | |||
| 411 | hp1[x] = bp1[x] / ap1[x]; | |||
| 412 | ap1 += astride[2]; | |||
| 413 | bp1 += bstride[2]; | |||
| 414 | hp1 += hstride[2]; | |||
| 415 | } | |||
| 416 | } | |||
| 417 | } | |||
| 418 | } | |||
| 419 | } else { | |||
| 420 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 420, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 421 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 421, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 422 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
| 423 | assert(ccv_nnc_tensor_view_check_dim(g, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(g, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(g, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(g, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 423, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 424 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 425 | ccv_nnc_tensor_view_get_stride(g, gstride); | |||
| 426 | for (z = 0; z < output_size; z++) | |||
| 427 | { | |||
| 428 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[z + 1]; | |||
| 429 | ccv_nnc_tensor_view_t* h = (ccv_nnc_tensor_view_t*)outputs[z]; | |||
| 430 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 430, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 431 | assert(ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(h->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(h->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 431, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 432 | assert(ccv_nnc_tensor_view_check_dim(a, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(a, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(a, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(a, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 432, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 433 | assert(ccv_nnc_tensor_view_check_dim(h, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(h, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(h, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(h, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 433, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 434 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 435 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
| 436 | if (!CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW)) | |||
| 437 | { | |||
| 438 | // Super optimal case, just do one for-loop for sum. | |||
| 439 | const int tensor_count = ccv_nnc_tensor_count(g->info); | |||
| 440 | for (x = 0; x < tensor_count; x++) | |||
| 441 | h->data.f32[x] = g->data.f32[x] * b->data.f32[x] / a->data.f32[x]; | |||
| 442 | continue; | |||
| 443 | } | |||
| 444 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 444, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 445 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 446 | float* const gp = g->data.f32; | |||
| 447 | float* const ap = a->data.f32; | |||
| 448 | float* const bp = b->data.f32; | |||
| 449 | float* const hp = h->data.f32; | |||
| 450 | const int count = dim[2] * dim[3]; | |||
| 451 | if (gstride[2] == dim[3] && astride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 452 | { | |||
| 453 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 454 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 455 | { | |||
| 456 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 457 | float* ap0 = ap + i[0] * astride[0]; | |||
| 458 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 459 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 460 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 461 | { | |||
| 462 | for (x = 0; x < count; x++) | |||
| 463 | hp0[x] = gp0[x] * bp0[x] / ap0[x]; | |||
| 464 | gp0 += gstride[1]; | |||
| 465 | ap0 += astride[1]; | |||
| 466 | bp0 += bstride[1]; | |||
| 467 | hp0 += hstride[1]; | |||
| 468 | } | |||
| 469 | } | |||
| 470 | continue; | |||
| 471 | } | |||
| 472 | // Non-optimal case, need to do skip copy. | |||
| 473 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 474 | { | |||
| 475 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| 476 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 477 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 478 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 479 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 480 | { | |||
| 481 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 482 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 483 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 484 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 485 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 486 | { | |||
| 487 | for (x = 0; x < dim[3]; x++) | |||
| 488 | hp1[x] = gp1[x] * bp1[x] / ap1[x]; | |||
| 489 | gp1 += gstride[2]; | |||
| 490 | ap1 += astride[2]; | |||
| 491 | bp1 += bstride[2]; | |||
| 492 | hp1 += hstride[2]; | |||
| 493 | } | |||
| 494 | } | |||
| 495 | } | |||
| 496 | } | |||
| 497 | } | |||
| 498 | return CCV_NNC_EXEC_SUCCESS; | |||
| 499 | } | |||
| 500 | ||||
| 501 | static void _ccv_nnc_ewdiv_forw_cpu_ref(const float p, ccv_nnc_tensor_view_t* const a, ccv_nnc_tensor_view_t* const b, ccv_nnc_tensor_view_t* const c) | |||
| 502 | { | |||
| 503 | // Assuming this is float 32. | |||
| 504 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 505 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 506 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 507 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 508 | if (a == 0) // Take 0 as all ones tensor. | |||
| 509 | { | |||
| 510 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 510, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 511 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 511, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 512 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
| 513 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 513, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 514 | int x; | |||
| 515 | if (!CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
| 516 | { | |||
| 517 | // Super optimal case, just do one for-loop for sum. | |||
| 518 | const int tensor_count = ccv_nnc_tensor_count(b->info); | |||
| 519 | for (x = 0; x < tensor_count; x++) | |||
| 520 | c->data.f32[x] = p / b->data.f32[x]; | |||
| 521 | return; | |||
| 522 | } | |||
| 523 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 523, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 524 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 525 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 526 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 527 | float* const bp = b->data.f32; | |||
| 528 | float* const cp = c->data.f32; | |||
| 529 | const int count = dim[2] * dim[3]; | |||
| 530 | if (bstride[2] == dim[3] && cstride[2] == dim[3]) | |||
| 531 | { | |||
| 532 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 533 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 534 | { | |||
| 535 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 536 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 537 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 538 | { | |||
| 539 | for (x = 0; x < count; x++) | |||
| 540 | cp0[x] = p / bp0[x]; | |||
| 541 | bp0 += bstride[1]; | |||
| 542 | cp0 += cstride[1]; | |||
| 543 | } | |||
| 544 | } | |||
| 545 | return; | |||
| 546 | } | |||
| 547 | // Non-optimal case, need to do skip copy. | |||
| 548 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 549 | { | |||
| 550 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 551 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 552 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 553 | { | |||
| 554 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 555 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 556 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 557 | { | |||
| 558 | for (x = 0; x < dim[3]; x++) | |||
| 559 | cp1[x] = p / bp1[x]; | |||
| 560 | bp1 += bstride[2]; | |||
| 561 | cp1 += cstride[2]; | |||
| 562 | } | |||
| 563 | } | |||
| 564 | } | |||
| 565 | } else { | |||
| 566 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 566, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 567 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 567, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 568 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 568, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 569 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 570 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 570, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 571 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 571, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 572 | int x; | |||
| 573 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW)) | |||
| 574 | { | |||
| 575 | // Super optimal case, just do one for-loop for sum. | |||
| 576 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 577 | for (x = 0; x < tensor_count; x++) | |||
| 578 | c->data.f32[x] = p * a->data.f32[x] / b->data.f32[x]; | |||
| 579 | return; | |||
| 580 | } | |||
| 581 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 581, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 582 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 583 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 584 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 585 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 586 | float* const ap = a->data.f32; | |||
| 587 | float* const bp = b->data.f32; | |||
| 588 | float* const cp = c->data.f32; | |||
| 589 | const int count = dim[2] * dim[3]; | |||
| 590 | if (astride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3]) | |||
| 591 | { | |||
| 592 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 593 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 594 | { | |||
| 595 | float* ap0 = ap + i[0] * astride[0]; | |||
| 596 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 597 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 598 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 599 | { | |||
| 600 | for (x = 0; x < count; x++) | |||
| 601 | cp0[x] = p * ap0[x] / bp0[x]; | |||
| 602 | ap0 += astride[1]; | |||
| 603 | bp0 += bstride[1]; | |||
| 604 | cp0 += cstride[1]; | |||
| 605 | } | |||
| 606 | } | |||
| 607 | return; | |||
| 608 | } | |||
| 609 | // Non-optimal case, need to do skip copy. | |||
| 610 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 611 | { | |||
| 612 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 613 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 614 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 615 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 616 | { | |||
| 617 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 618 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 619 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 620 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 621 | { | |||
| 622 | for (x = 0; x < dim[3]; x++) | |||
| 623 | cp1[x] = p * ap1[x] / bp1[x]; | |||
| 624 | ap1 += astride[2]; | |||
| 625 | bp1 += bstride[2]; | |||
| 626 | cp1 += cstride[2]; | |||
| 627 | } | |||
| 628 | } | |||
| 629 | } | |||
| 630 | } | |||
| 631 | } | |||
| 632 | ||||
| 633 | static int _ccv_nnc_ewdiv_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 634 | { | |||
| 635 | _ccv_nnc_ewdiv_forw_cpu_ref(1, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[1], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
| 636 | return CCV_NNC_EXEC_SUCCESS; | |||
| 637 | } | |||
| 638 | ||||
| 639 | static int _ccv_nnc_ewdiv_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 640 | { | |||
| 641 | // D[x / y, x] = 1 / y, D[x / y, y] = -x / y^2 | |||
| 642 | if (output_size == 1 || outputs[1] == 0) | |||
| 643 | { | |||
| 644 | // When we only need D[x / y, x] | |||
| 645 | _ccv_nnc_ewdiv_forw_cpu_ref(1, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[2], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
| 646 | return CCV_NNC_EXEC_SUCCESS; | |||
| 647 | } | |||
| 648 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 649 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 650 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 651 | int cstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 652 | int hastride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 653 | int hbstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 654 | ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 655 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[2]; | |||
| 656 | ccv_nnc_tensor_view_t* c = (ccv_nnc_tensor_view_t*)inputs[3]; | |||
| 657 | ccv_nnc_tensor_view_t* ha = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 658 | ccv_nnc_tensor_view_t* hb = (ccv_nnc_tensor_view_t*)outputs[1]; | |||
| 659 | if (g == 0) | |||
| 660 | { | |||
| 661 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 661, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 662 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 662, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 663 | assert(ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(hb->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(hb-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 663, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 664 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
| 665 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 665, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 666 | assert(ccv_nnc_tensor_view_check_dim(hb, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(hb, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(hb, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(hb, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 666, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 667 | if (ha) | |||
| 668 | { | |||
| 669 | assert(ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(ha->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(ha-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 669, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 670 | assert(ccv_nnc_tensor_view_check_dim(ha, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(ha, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(ha, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(ha, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 670, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 671 | } | |||
| 672 | int x; | |||
| 673 | if (!CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW) && (ha == 0 || !CCV_IS_TENSOR_VIEW(ha)((*(int*)(ha)) & CCV_TENSOR_VIEW)) && !CCV_IS_TENSOR_VIEW(hb)((*(int*)(hb)) & CCV_TENSOR_VIEW)) | |||
| 674 | { | |||
| 675 | // Super optimal case, just do one for-loop for sum. | |||
| 676 | const int tensor_count = ccv_nnc_tensor_count(b->info); | |||
| 677 | if (ha == 0) | |||
| 678 | { | |||
| 679 | for (x = 0; x < tensor_count; x++) | |||
| 680 | { | |||
| 681 | const float v = 1 / b->data.f32[x]; | |||
| 682 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
| 683 | } | |||
| 684 | } else { | |||
| 685 | for (x = 0; x < tensor_count; x++) | |||
| 686 | { | |||
| 687 | const float v = 1 / b->data.f32[x]; | |||
| 688 | ha->data.f32[x] = v; | |||
| 689 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
| 690 | } | |||
| 691 | } | |||
| 692 | return CCV_NNC_EXEC_SUCCESS; | |||
| 693 | } | |||
| 694 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 694, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 695 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 696 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 697 | ccv_nnc_tensor_view_get_stride(hb, hbstride); | |||
| 698 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 699 | float* const bp = b->data.f32; | |||
| 700 | float* const cp = c->data.f32; | |||
| 701 | float* const hbp = hb->data.f32; | |||
| 702 | const int count = dim[2] * dim[3]; | |||
| 703 | if (ha == 0) | |||
| 704 | { | |||
| 705 | if (bstride[2] == dim[3] && cstride[2] == dim[3] && hbstride[2] == dim[3]) | |||
| 706 | { | |||
| 707 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 708 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 709 | { | |||
| 710 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 711 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 712 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
| 713 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 714 | { | |||
| 715 | for (x = 0; x < count; x++) | |||
| 716 | { | |||
| 717 | const float v = 1 / bp0[x]; | |||
| 718 | hbp0[x] = -cp0[x] * v; | |||
| 719 | } | |||
| 720 | bp0 += bstride[1]; | |||
| 721 | cp0 += cstride[1]; | |||
| 722 | hbp0 += hbstride[1]; | |||
| 723 | } | |||
| 724 | } | |||
| 725 | return CCV_NNC_EXEC_SUCCESS; | |||
| 726 | } | |||
| 727 | // Non-optimal case, need to do skip copy. | |||
| 728 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 729 | { | |||
| 730 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 731 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 732 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
| 733 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 734 | { | |||
| 735 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 736 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 737 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
| 738 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 739 | { | |||
| 740 | for (x = 0; x < dim[3]; x++) | |||
| 741 | { | |||
| 742 | const float v = 1 / bp1[x]; | |||
| 743 | hbp1[x] = -cp1[x] * v; | |||
| 744 | } | |||
| 745 | bp1 += bstride[2]; | |||
| 746 | cp1 += cstride[2]; | |||
| 747 | hbp1 += hbstride[2]; | |||
| 748 | } | |||
| 749 | } | |||
| 750 | } | |||
| 751 | } else { | |||
| 752 | float* const hap = ha->data.f32; | |||
| 753 | ccv_nnc_tensor_view_get_stride(ha, hastride); | |||
| 754 | if (bstride[2] == dim[3] && cstride[2] == dim[3] && hastride[2] == dim[3] && hbstride[2] == dim[3]) | |||
| 755 | { | |||
| 756 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 757 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 758 | { | |||
| 759 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 760 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 761 | float* hap0 = hap + i[0] * hastride[0]; | |||
| 762 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
| 763 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 764 | { | |||
| 765 | for (x = 0; x < count; x++) | |||
| 766 | { | |||
| 767 | const float v = 1 / bp0[x]; | |||
| 768 | hap0[x] = v; | |||
| 769 | hbp0[x] = -cp0[x] * v; | |||
| 770 | } | |||
| 771 | bp0 += bstride[1]; | |||
| 772 | cp0 += cstride[1]; | |||
| 773 | hap0 += hastride[1]; | |||
| 774 | hbp0 += hbstride[1]; | |||
| 775 | } | |||
| 776 | } | |||
| 777 | return CCV_NNC_EXEC_SUCCESS; | |||
| 778 | } | |||
| 779 | // Non-optimal case, need to do skip copy. | |||
| 780 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 781 | { | |||
| 782 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 783 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 784 | float* const hap0 = hap + i[0] * hastride[0]; | |||
| 785 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
| 786 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 787 | { | |||
| 788 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 789 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 790 | float* hap1 = hap0 + i[1] * hastride[1]; | |||
| 791 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
| 792 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 793 | { | |||
| 794 | for (x = 0; x < dim[3]; x++) | |||
| 795 | { | |||
| 796 | const float v = 1 / bp1[x]; | |||
| 797 | hap1[x] = v; | |||
| 798 | hbp1[x] = -cp1[x] * v; | |||
| 799 | } | |||
| 800 | bp1 += bstride[2]; | |||
| 801 | cp1 += cstride[2]; | |||
| 802 | hap1 += hastride[2]; | |||
| 803 | hbp1 += hbstride[2]; | |||
| 804 | } | |||
| 805 | } | |||
| 806 | } | |||
| 807 | } | |||
| 808 | } else { | |||
| 809 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 809, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 810 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 810, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 811 | assert(ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(c->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(c->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(c->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 811, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 812 | assert(ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(hb->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(hb-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(hb->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 812, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 813 | ccv_nnc_tensor_view_get_dim(b, dim); | |||
| 814 | assert(ccv_nnc_tensor_view_check_dim(g, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(g, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(g, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(g, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 814, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 815 | assert(ccv_nnc_tensor_view_check_dim(c, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(c, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(c, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(c, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 815, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 816 | assert(ccv_nnc_tensor_view_check_dim(hb, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(hb, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(hb, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(hb, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 816, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 817 | if (ha) | |||
| 818 | { | |||
| 819 | assert(ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(ha->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(ha-> info.dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(ha->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 819, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 820 | assert(ccv_nnc_tensor_view_check_dim(ha, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(ha, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(ha, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(ha, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 820, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 821 | } | |||
| 822 | int x; | |||
| 823 | if (!CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(c)((*(int*)(c)) & CCV_TENSOR_VIEW) && (ha == 0 || !CCV_IS_TENSOR_VIEW(ha)((*(int*)(ha)) & CCV_TENSOR_VIEW)) && !CCV_IS_TENSOR_VIEW(hb)((*(int*)(hb)) & CCV_TENSOR_VIEW)) | |||
| 824 | { | |||
| 825 | // Super optimal case, just do one for-loop for sum. | |||
| 826 | const int tensor_count = ccv_nnc_tensor_count(g->info); | |||
| 827 | if (ha == 0) | |||
| 828 | { | |||
| 829 | for (x = 0; x < tensor_count; x++) | |||
| 830 | { | |||
| 831 | const float v = g->data.f32[x] / b->data.f32[x]; | |||
| 832 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
| 833 | } | |||
| 834 | } else { | |||
| 835 | for (x = 0; x < tensor_count; x++) | |||
| 836 | { | |||
| 837 | const float v = g->data.f32[x] / b->data.f32[x]; | |||
| 838 | ha->data.f32[x] = v; | |||
| 839 | hb->data.f32[x] = -c->data.f32[x] * v; | |||
| 840 | } | |||
| 841 | } | |||
| 842 | return CCV_NNC_EXEC_SUCCESS; | |||
| 843 | } | |||
| 844 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 844, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 845 | ccv_nnc_tensor_view_get_stride(g, gstride); | |||
| 846 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 847 | ccv_nnc_tensor_view_get_stride(c, cstride); | |||
| 848 | ccv_nnc_tensor_view_get_stride(hb, hbstride); | |||
| 849 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 850 | float* const gp = g->data.f32; | |||
| 851 | float* const bp = b->data.f32; | |||
| 852 | float* const cp = c->data.f32; | |||
| 853 | float* const hbp = hb->data.f32; | |||
| 854 | const int count = dim[2] * dim[3]; | |||
| 855 | if (ha == 0) | |||
| 856 | { | |||
| 857 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && hbstride[2] == dim[3]) | |||
| 858 | { | |||
| 859 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 860 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 861 | { | |||
| 862 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 863 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 864 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 865 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
| 866 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 867 | { | |||
| 868 | for (x = 0; x < count; x++) | |||
| 869 | { | |||
| 870 | const float v = gp0[x] / bp0[x]; | |||
| 871 | hbp0[x] = -cp0[x] * v; | |||
| 872 | } | |||
| 873 | gp0 += gstride[1]; | |||
| 874 | bp0 += bstride[1]; | |||
| 875 | cp0 += cstride[1]; | |||
| 876 | hbp0 += hbstride[1]; | |||
| 877 | } | |||
| 878 | } | |||
| 879 | return CCV_NNC_EXEC_SUCCESS; | |||
| 880 | } | |||
| 881 | // Non-optimal case, need to do skip copy. | |||
| 882 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 883 | { | |||
| 884 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| 885 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 886 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 887 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
| 888 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 889 | { | |||
| 890 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 891 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 892 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 893 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
| 894 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 895 | { | |||
| 896 | for (x = 0; x < dim[3]; x++) | |||
| 897 | { | |||
| 898 | const float v = gp1[x] / bp1[x]; | |||
| 899 | hbp1[x] = -cp1[x] * v; | |||
| 900 | } | |||
| 901 | gp1 += gstride[2]; | |||
| 902 | bp1 += bstride[2]; | |||
| 903 | cp1 += cstride[2]; | |||
| 904 | hbp1 += hbstride[2]; | |||
| 905 | } | |||
| 906 | } | |||
| 907 | } | |||
| 908 | } else { | |||
| 909 | ccv_nnc_tensor_view_get_stride(ha, hastride); | |||
| 910 | float* const hap = ha->data.f32; | |||
| 911 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && cstride[2] == dim[3] && hastride[2] == dim[3] && hbstride[2] == dim[3]) | |||
| 912 | { | |||
| 913 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 914 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 915 | { | |||
| 916 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 917 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 918 | float* cp0 = cp + i[0] * cstride[0]; | |||
| 919 | float* hap0 = hap + i[0] * hastride[0]; | |||
| 920 | float* hbp0 = hbp + i[0] * hbstride[0]; | |||
| 921 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 922 | { | |||
| 923 | for (x = 0; x < count; x++) | |||
| 924 | { | |||
| 925 | const float v = gp0[x] / bp0[x]; | |||
| 926 | hap0[x] = v; | |||
| 927 | hbp0[x] = -cp0[x] * v; | |||
| 928 | } | |||
| 929 | gp0 += gstride[1]; | |||
| 930 | bp0 += bstride[1]; | |||
| 931 | cp0 += cstride[1]; | |||
| 932 | hap0 += hastride[1]; | |||
| 933 | hbp0 += hbstride[1]; | |||
| 934 | } | |||
| 935 | } | |||
| 936 | return CCV_NNC_EXEC_SUCCESS; | |||
| 937 | } | |||
| 938 | // Non-optimal case, need to do skip copy. | |||
| 939 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 940 | { | |||
| 941 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| 942 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 943 | float* const cp0 = cp + i[0] * cstride[0]; | |||
| 944 | float* const hap0 = hap + i[0] * hastride[0]; | |||
| 945 | float* const hbp0 = hbp + i[0] * hbstride[0]; | |||
| 946 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 947 | { | |||
| 948 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 949 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 950 | float* cp1 = cp0 + i[1] * cstride[1]; | |||
| 951 | float* hap1 = hap0 + i[1] * hastride[1]; | |||
| 952 | float* hbp1 = hbp0 + i[1] * hbstride[1]; | |||
| 953 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 954 | { | |||
| 955 | for (x = 0; x < dim[3]; x++) | |||
| 956 | { | |||
| 957 | const float v = gp1[x] / bp1[x]; | |||
| 958 | hap1[x] = v; | |||
| 959 | hbp1[x] = -cp1[x] * v; | |||
| 960 | } | |||
| 961 | gp1 += gstride[2]; | |||
| 962 | bp1 += bstride[2]; | |||
| 963 | cp1 += cstride[2]; | |||
| 964 | hap1 += hastride[2]; | |||
| 965 | hbp1 += hbstride[2]; | |||
| 966 | } | |||
| 967 | } | |||
| 968 | } | |||
| 969 | } | |||
| 970 | } | |||
| 971 | return CCV_NNC_EXEC_SUCCESS; | |||
| 972 | } | |||
| 973 | ||||
| 974 | static int _ccv_nnc_ewexp_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 975 | { | |||
| 976 | // Assuming this is float 32. | |||
| 977 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 978 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 979 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 980 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 981 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 982 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 982, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 983 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 983, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 984 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 985 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 985, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 986 | int x; | |||
| 987 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 988 | { | |||
| 989 | // Super optimal case, just do one for-loop for sum. | |||
| 990 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 991 | for (x = 0; x < tensor_count; x++) | |||
| 992 | b->data.f32[x] = exp(a->data.f32[x]); | |||
| 993 | return CCV_NNC_EXEC_SUCCESS; | |||
| 994 | } | |||
| 995 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 995, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 996 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 997 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 998 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 999 | float* const ap = a->data.f32; | |||
| 1000 | float* const bp = b->data.f32; | |||
| 1001 | const int count = dim[2] * dim[3]; | |||
| 1002 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1003 | { | |||
| 1004 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1005 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1006 | { | |||
| 1007 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1008 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1009 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1010 | { | |||
| 1011 | for (x = 0; x < count; x++) | |||
| 1012 | bp0[x] = exp(ap0[x]); | |||
| 1013 | ap0 += astride[1]; | |||
| 1014 | bp0 += bstride[1]; | |||
| 1015 | } | |||
| 1016 | } | |||
| 1017 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1018 | } | |||
| 1019 | // Non-optimal case, need to do skip copy. | |||
| 1020 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1021 | { | |||
| 1022 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1023 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1024 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1025 | { | |||
| 1026 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1027 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1028 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1029 | { | |||
| 1030 | for (x = 0; x < dim[3]; x++) | |||
| 1031 | bp1[x] = exp(ap1[x]); | |||
| 1032 | ap1 += astride[2]; | |||
| 1033 | bp1 += bstride[2]; | |||
| 1034 | } | |||
| 1035 | } | |||
| 1036 | } | |||
| 1037 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1038 | } | |||
| 1039 | ||||
| 1040 | static int _ccv_nnc_ewexp_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1041 | { | |||
| 1042 | // D[Exp[x], x] = Exp[x] | |||
| 1043 | if (inputs[0] == 0) | |||
| 1044 | _ccv_nnc_tensor_transfer_cpu_ref_f32((ccv_nnc_tensor_view_t*)inputs[2], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
| 1045 | else | |||
| 1046 | _ccv_nnc_ewprod_forw_cpu_ref((ccv_nnc_tensor_view_t*[]){ | |||
| 1047 | (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[2] | |||
| 1048 | }, 2, (ccv_nnc_tensor_view_t**)outputs, output_size); | |||
| 1049 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1050 | } | |||
| 1051 | ||||
| 1052 | static int _ccv_nnc_ewlog_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1053 | { | |||
| 1054 | // Assuming this is float 32. | |||
| 1055 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1056 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1057 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1058 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 1059 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 1060 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1060, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1061 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1061, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1062 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 1063 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1063, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1064 | int x; | |||
| 1065 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 1066 | { | |||
| 1067 | // Super optimal case, just do one for-loop for sum. | |||
| 1068 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 1069 | for (x = 0; x < tensor_count; x++) | |||
| 1070 | b->data.f32[x] = log(a->data.f32[x]); | |||
| 1071 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1072 | } | |||
| 1073 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1073, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1074 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 1075 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1076 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1077 | float* const ap = a->data.f32; | |||
| 1078 | float* const bp = b->data.f32; | |||
| 1079 | const int count = dim[2] * dim[3]; | |||
| 1080 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1081 | { | |||
| 1082 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1083 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1084 | { | |||
| 1085 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1086 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1087 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1088 | { | |||
| 1089 | for (x = 0; x < count; x++) | |||
| 1090 | bp0[x] = log(ap0[x]); | |||
| 1091 | ap0 += astride[1]; | |||
| 1092 | bp0 += bstride[1]; | |||
| 1093 | } | |||
| 1094 | } | |||
| 1095 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1096 | } | |||
| 1097 | // Non-optimal case, need to do skip copy. | |||
| 1098 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1099 | { | |||
| 1100 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1101 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1102 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1103 | { | |||
| 1104 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1105 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1106 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1107 | { | |||
| 1108 | for (x = 0; x < dim[3]; x++) | |||
| 1109 | bp1[x] = log(ap1[x]); | |||
| 1110 | ap1 += astride[2]; | |||
| 1111 | bp1 += bstride[2]; | |||
| 1112 | } | |||
| 1113 | } | |||
| 1114 | } | |||
| 1115 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1116 | } | |||
| 1117 | ||||
| 1118 | static int _ccv_nnc_ewlog_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1119 | { | |||
| 1120 | // D[Log[x], x] = 1 / x | |||
| 1121 | _ccv_nnc_ewdiv_forw_cpu_ref(1, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[1], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
| 1122 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1123 | } | |||
| 1124 | ||||
| 1125 | static int _ccv_nnc_ewsqrt_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1126 | { | |||
| 1127 | // Assuming this is float 32. | |||
| 1128 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1129 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1130 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1131 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 1132 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 1133 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1133, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1134 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1134, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1135 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 1136 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1136, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1137 | int x; | |||
| 1138 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 1139 | { | |||
| 1140 | // Super optimal case, just do one for-loop for sum. | |||
| 1141 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 1142 | for (x = 0; x < tensor_count; x++) | |||
| 1143 | b->data.f32[x] = sqrt(a->data.f32[x]); | |||
| 1144 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1145 | } | |||
| 1146 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1146, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1147 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 1148 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1149 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1150 | float* const ap = a->data.f32; | |||
| 1151 | float* const bp = b->data.f32; | |||
| 1152 | const int count = dim[2] * dim[3]; | |||
| 1153 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1154 | { | |||
| 1155 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1156 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1157 | { | |||
| 1158 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1159 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1160 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1161 | { | |||
| 1162 | for (x = 0; x < count; x++) | |||
| 1163 | bp0[x] = sqrt(ap0[x]); | |||
| 1164 | ap0 += astride[1]; | |||
| 1165 | bp0 += bstride[1]; | |||
| 1166 | } | |||
| 1167 | } | |||
| 1168 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1169 | } | |||
| 1170 | // Non-optimal case, need to do skip copy. | |||
| 1171 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1172 | { | |||
| 1173 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1174 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1175 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1176 | { | |||
| 1177 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1178 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1179 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1180 | { | |||
| 1181 | for (x = 0; x < dim[3]; x++) | |||
| 1182 | bp1[x] = sqrt(ap1[x]); | |||
| 1183 | ap1 += astride[2]; | |||
| 1184 | bp1 += bstride[2]; | |||
| 1185 | } | |||
| 1186 | } | |||
| 1187 | } | |||
| 1188 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1189 | } | |||
| 1190 | ||||
| 1191 | static int _ccv_nnc_ewsqrt_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1192 | { | |||
| 1193 | // D[Sqrt[x], x] = 0.5 / Sqrt[x] | |||
| 1194 | _ccv_nnc_ewdiv_forw_cpu_ref(0.5, (ccv_nnc_tensor_view_t*)inputs[0], (ccv_nnc_tensor_view_t*)inputs[2], (ccv_nnc_tensor_view_t*)outputs[0]); | |||
| 1195 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1196 | } | |||
| 1197 | ||||
| 1198 | static int _ccv_nnc_ewabs_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1199 | { | |||
| 1200 | // Assuming this is float 32. | |||
| 1201 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1202 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1203 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1204 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 1205 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 1206 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1206, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1207 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1207, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1208 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 1209 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1209, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1210 | int x; | |||
| 1211 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 1212 | { | |||
| 1213 | // Super optimal case, just do one for-loop for sum. | |||
| 1214 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 1215 | for (x = 0; x < tensor_count; x++) | |||
| 1216 | b->data.f32[x] = fabs(a->data.f32[x]); | |||
| 1217 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1218 | } | |||
| 1219 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1219, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1220 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 1221 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1222 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1223 | float* const ap = a->data.f32; | |||
| 1224 | float* const bp = b->data.f32; | |||
| 1225 | const int count = dim[2] * dim[3]; | |||
| 1226 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1227 | { | |||
| 1228 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1229 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1230 | { | |||
| 1231 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1232 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1233 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1234 | { | |||
| 1235 | for (x = 0; x < count; x++) | |||
| 1236 | bp0[x] = fabs(ap0[x]); | |||
| 1237 | ap0 += astride[1]; | |||
| 1238 | bp0 += bstride[1]; | |||
| 1239 | } | |||
| 1240 | } | |||
| 1241 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1242 | } | |||
| 1243 | // Non-optimal case, need to do skip copy. | |||
| 1244 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1245 | { | |||
| 1246 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1247 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1248 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1249 | { | |||
| 1250 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1251 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1252 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1253 | { | |||
| 1254 | for (x = 0; x < dim[3]; x++) | |||
| 1255 | bp1[x] = fabs(ap1[x]); | |||
| 1256 | ap1 += astride[2]; | |||
| 1257 | bp1 += bstride[2]; | |||
| 1258 | } | |||
| 1259 | } | |||
| 1260 | } | |||
| 1261 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1262 | } | |||
| 1263 | ||||
| 1264 | static int _ccv_nnc_ewabs_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1265 | { | |||
| 1266 | // Assuming this is float 32. | |||
| 1267 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1268 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1269 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1270 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1271 | ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 1272 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[1]; | |||
| 1273 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 1274 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1274, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| ||||
| 1275 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1275, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1276 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1276, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1277 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 1278 | assert(ccv_nnc_tensor_view_check_dim(g, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(g, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(g, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(g, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1278, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1279 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1279, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1280 | int x; | |||
| 1281 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW)) | |||
| 1282 | { | |||
| 1283 | // Super optimal case, just do one for-loop for sum. | |||
| 1284 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 1285 | for (x = 0; x < tensor_count; x++) | |||
| 1286 | b->data.f32[x] = a->data.f32[x] >= 0 ? g->data.f32[x] : -g->data.f32[x]; | |||
| 1287 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1288 | } | |||
| 1289 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1289, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1290 | ccv_nnc_tensor_view_get_stride(g, astride); | |||
| 1291 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 1292 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1293 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1294 | float* const gp = g->data.f32; | |||
| 1295 | float* const ap = a->data.f32; | |||
| 1296 | float* const bp = b->data.f32; | |||
| 1297 | const int count = dim[2] * dim[3]; | |||
| 1298 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1299 | { | |||
| 1300 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1301 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1302 | { | |||
| 1303 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 1304 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1305 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1306 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1307 | { | |||
| 1308 | for (x = 0; x < count; x++) | |||
| 1309 | bp0[x] = ap0[x] >= 0 ? gp0[x] : -gp0[x]; | |||
| 1310 | gp0 += gstride[1]; | |||
| 1311 | ap0 += astride[1]; | |||
| 1312 | bp0 += bstride[1]; | |||
| 1313 | } | |||
| 1314 | } | |||
| 1315 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1316 | } | |||
| 1317 | // Non-optimal case, need to do skip copy. | |||
| 1318 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1319 | { | |||
| 1320 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| ||||
| 1321 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1322 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1323 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1324 | { | |||
| 1325 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 1326 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1327 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1328 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1329 | { | |||
| 1330 | for (x = 0; x < dim[3]; x++) | |||
| 1331 | bp1[x] = ap1[x] >= 0 ? gp1[x] : -gp1[x]; | |||
| 1332 | gp1 += gstride[2]; | |||
| 1333 | ap1 += astride[2]; | |||
| 1334 | bp1 += bstride[2]; | |||
| 1335 | } | |||
| 1336 | } | |||
| 1337 | } | |||
| 1338 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1339 | } | |||
| 1340 | ||||
| 1341 | static int _ccv_nnc_clamp_forw(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1342 | { | |||
| 1343 | // Assuming this is float 32. | |||
| 1344 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1345 | int astride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1346 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1347 | ccv_nnc_tensor_view_t* a = (ccv_nnc_tensor_view_t*)inputs[0]; | |||
| 1348 | ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 1349 | assert(ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(a->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(a->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(a->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1349, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1350 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1350, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1351 | ccv_nnc_tensor_view_get_dim(a, dim); | |||
| 1352 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1352, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1353 | int x; | |||
| 1354 | const float min = cmd.info.clamp.min; | |||
| 1355 | const float max = cmd.info.clamp.max; | |||
| 1356 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1356, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1357 | if (!CCV_IS_TENSOR_VIEW(a)((*(int*)(a)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 1358 | { | |||
| 1359 | // Super optimal case, just do one for-loop for sum. | |||
| 1360 | const int tensor_count = ccv_nnc_tensor_count(a->info); | |||
| 1361 | if (isnan(min)__builtin_isnan (min)) | |||
| 1362 | { | |||
| 1363 | for (x = 0; x < tensor_count; x++) | |||
| 1364 | b->data.f32[x] = ccv_min(a->data.f32[x], max)({ typeof (a->data.f32[x]) _a = (a->data.f32[x]); typeof (max) _b = (max); (_a < _b) ? _a : _b; }); | |||
| 1365 | } else if (isnan(max)__builtin_isnan (max)) { | |||
| 1366 | for (x = 0; x < tensor_count; x++) | |||
| 1367 | b->data.f32[x] = ccv_max(a->data.f32[x], min)({ typeof (a->data.f32[x]) _a = (a->data.f32[x]); typeof (min) _b = (min); (_a > _b) ? _a : _b; }); | |||
| 1368 | } else { | |||
| 1369 | for (x = 0; x < tensor_count; x++) | |||
| 1370 | b->data.f32[x] = ccv_clamp(a->data.f32[x], min, max)({ typeof (min) _a = (min); typeof (max) _b = (max); typeof ( a->data.f32[x]) _x = (a->data.f32[x]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 1371 | } | |||
| 1372 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1373 | } | |||
| 1374 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1374, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1375 | ccv_nnc_tensor_view_get_stride(a, astride); | |||
| 1376 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1377 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1378 | float* const ap = a->data.f32; | |||
| 1379 | float* const bp = b->data.f32; | |||
| 1380 | const int count = dim[2] * dim[3]; | |||
| 1381 | if (isnan(min)__builtin_isnan (min)) | |||
| 1382 | { | |||
| 1383 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1384 | { | |||
| 1385 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1386 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1387 | { | |||
| 1388 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1389 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1390 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1391 | { | |||
| 1392 | for (x = 0; x < count; x++) | |||
| 1393 | bp0[x] = ccv_min(ap0[x], max)({ typeof (ap0[x]) _a = (ap0[x]); typeof (max) _b = (max); (_a < _b) ? _a : _b; }); | |||
| 1394 | ap0 += astride[1]; | |||
| 1395 | bp0 += bstride[1]; | |||
| 1396 | } | |||
| 1397 | } | |||
| 1398 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1399 | } | |||
| 1400 | // Non-optimal case, need to do skip copy. | |||
| 1401 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1402 | { | |||
| 1403 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1404 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1405 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1406 | { | |||
| 1407 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1408 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1409 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1410 | { | |||
| 1411 | for (x = 0; x < dim[3]; x++) | |||
| 1412 | bp1[x] = ccv_min(ap1[x], max)({ typeof (ap1[x]) _a = (ap1[x]); typeof (max) _b = (max); (_a < _b) ? _a : _b; }); | |||
| 1413 | ap1 += astride[2]; | |||
| 1414 | bp1 += bstride[2]; | |||
| 1415 | } | |||
| 1416 | } | |||
| 1417 | } | |||
| 1418 | } else if (isnan(max)__builtin_isnan (max)) { | |||
| 1419 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1420 | { | |||
| 1421 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1422 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1423 | { | |||
| 1424 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1425 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1426 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1427 | { | |||
| 1428 | for (x = 0; x < count; x++) | |||
| 1429 | bp0[x] = ccv_max(ap0[x], min)({ typeof (ap0[x]) _a = (ap0[x]); typeof (min) _b = (min); (_a > _b) ? _a : _b; }); | |||
| 1430 | ap0 += astride[1]; | |||
| 1431 | bp0 += bstride[1]; | |||
| 1432 | } | |||
| 1433 | } | |||
| 1434 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1435 | } | |||
| 1436 | // Non-optimal case, need to do skip copy. | |||
| 1437 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1438 | { | |||
| 1439 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1440 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1441 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1442 | { | |||
| 1443 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1444 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1445 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1446 | { | |||
| 1447 | for (x = 0; x < dim[3]; x++) | |||
| 1448 | bp1[x] = ccv_max(ap1[x], min)({ typeof (ap1[x]) _a = (ap1[x]); typeof (min) _b = (min); (_a > _b) ? _a : _b; }); | |||
| 1449 | ap1 += astride[2]; | |||
| 1450 | bp1 += bstride[2]; | |||
| 1451 | } | |||
| 1452 | } | |||
| 1453 | } | |||
| 1454 | } else { | |||
| 1455 | if (astride[2] == dim[3] && bstride[2] == dim[3]) | |||
| 1456 | { | |||
| 1457 | // Special casing if the ainc[3] is the same as dim[3] | |||
| 1458 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1459 | { | |||
| 1460 | float* ap0 = ap + i[0] * astride[0]; | |||
| 1461 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1462 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1463 | { | |||
| 1464 | for (x = 0; x < count; x++) | |||
| 1465 | bp0[x] = ccv_clamp(ap0[x], min, max)({ typeof (min) _a = (min); typeof (max) _b = (max); typeof ( ap0[x]) _x = (ap0[x]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 1466 | ap0 += astride[1]; | |||
| 1467 | bp0 += bstride[1]; | |||
| 1468 | } | |||
| 1469 | } | |||
| 1470 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1471 | } | |||
| 1472 | // Non-optimal case, need to do skip copy. | |||
| 1473 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1474 | { | |||
| 1475 | float* const ap0 = ap + i[0] * astride[0]; | |||
| 1476 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1477 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1478 | { | |||
| 1479 | float* ap1 = ap0 + i[1] * astride[1]; | |||
| 1480 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1481 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1482 | { | |||
| 1483 | for (x = 0; x < dim[3]; x++) | |||
| 1484 | bp1[x] = ccv_clamp(ap1[x], min, max)({ typeof (min) _a = (min); typeof (max) _b = (max); typeof ( ap1[x]) _x = (ap1[x]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 1485 | ap1 += astride[2]; | |||
| 1486 | bp1 += bstride[2]; | |||
| 1487 | } | |||
| 1488 | } | |||
| 1489 | } | |||
| 1490 | } | |||
| 1491 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1492 | } | |||
| 1493 | ||||
| 1494 | static int _ccv_nnc_clamp_back(const ccv_nnc_cmd_t cmd, const ccv_nnc_hint_t hint, const int flags, ccv_nnc_tensor_t* const* const inputs, const int input_size, ccv_nnc_tensor_t* const* const outputs, const int output_size, ccv_nnc_stream_context_t* const stream_context) | |||
| 1495 | { | |||
| 1496 | assert(input_size == 3)((void) sizeof ((input_size == 3) ? 1 : 0), __extension__ ({ if (input_size == 3) ; else __assert_fail ("input_size == 3", "ew/ccv_nnc_ew_cpu_ref.c" , 1496, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1497 | const ccv_nnc_tensor_view_t* g = (ccv_nnc_tensor_view_t*)inputs[0]; // gradient | |||
| 1498 | const ccv_nnc_tensor_view_t* b = (ccv_nnc_tensor_view_t*)inputs[2]; | |||
| 1499 | assert(output_size == 1)((void) sizeof ((output_size == 1) ? 1 : 0), __extension__ ({ if (output_size == 1) ; else __assert_fail ("output_size == 1" , "ew/ccv_nnc_ew_cpu_ref.c", 1499, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1500 | ccv_nnc_tensor_view_t* h = (ccv_nnc_tensor_view_t*)outputs[0]; | |||
| 1501 | // Assuming this is float 32. | |||
| 1502 | int dim[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1503 | int hstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1504 | int bstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1505 | assert(ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(h->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(h->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(h->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1505, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1506 | assert(ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(b->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(b->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(b->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1506, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1507 | ccv_nnc_tensor_view_get_dim(g, dim); | |||
| 1508 | ccv_nnc_tensor_view_get_dim(h, dim); | |||
| 1509 | assert(ccv_nnc_tensor_view_check_dim(b, dim))((void) sizeof ((ccv_nnc_tensor_view_check_dim(b, dim)) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_view_check_dim(b, dim )) ; else __assert_fail ("ccv_nnc_tensor_view_check_dim(b, dim)" , "ew/ccv_nnc_ew_cpu_ref.c", 1509, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1510 | int x; | |||
| 1511 | const float min = cmd.info.clamp.min; | |||
| 1512 | const float max = cmd.info.clamp.max; | |||
| 1513 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1513, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1514 | if (g) | |||
| 1515 | { | |||
| 1516 | if (!CCV_IS_TENSOR_VIEW(g)((*(int*)(g)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 1517 | { | |||
| 1518 | // Super optimal case, just do one for-loop for sum. | |||
| 1519 | const int tensor_count = ccv_nnc_tensor_count(g->info); | |||
| 1520 | if (isnan(min)__builtin_isnan (min)) | |||
| 1521 | { | |||
| 1522 | for (x = 0; x < tensor_count; x++) | |||
| 1523 | h->data.f32[x] = b->data.f32[x] >= max ? 0 : g->data.f32[x]; | |||
| 1524 | } else if (isnan(max)__builtin_isnan (max)) { | |||
| 1525 | for (x = 0; x < tensor_count; x++) | |||
| 1526 | h->data.f32[x] = b->data.f32[x] <= min ? 0 : g->data.f32[x]; | |||
| 1527 | } else { | |||
| 1528 | for (x = 0; x < tensor_count; x++) | |||
| 1529 | h->data.f32[x] = (b->data.f32[x] >= max || b->data.f32[x] <= min) ? 0 : g->data.f32[x]; | |||
| 1530 | } | |||
| 1531 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1532 | } | |||
| 1533 | int gstride[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1534 | assert(ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2)((void) sizeof ((ccv_nnc_tensor_nd(g->info.dim) <= (2) + 2) ? 1 : 0), __extension__ ({ if (ccv_nnc_tensor_nd(g->info .dim) <= (2) + 2) ; else __assert_fail ("ccv_nnc_tensor_nd(g->info.dim) <= CCV_NNC_MAX_DIM + 2" , "ew/ccv_nnc_ew_cpu_ref.c", 1534, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1535 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1535, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1536 | ccv_nnc_tensor_view_get_stride(g, gstride); | |||
| 1537 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1538 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
| 1539 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1540 | float* const gp = g->data.f32; | |||
| 1541 | float* const bp = b->data.f32; | |||
| 1542 | float* const hp = h->data.f32; | |||
| 1543 | const int count = dim[2] * dim[3]; | |||
| 1544 | const float min = cmd.info.clamp.min; | |||
| 1545 | const float max = cmd.info.clamp.max; | |||
| 1546 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1546, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1547 | if (isnan(min)__builtin_isnan (min)) | |||
| 1548 | { | |||
| 1549 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 1550 | { | |||
| 1551 | // Special casing if the ginc[3] is the same as dim[3] | |||
| 1552 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1553 | { | |||
| 1554 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 1555 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1556 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 1557 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1558 | { | |||
| 1559 | for (x = 0; x < count; x++) | |||
| 1560 | hp0[x] = bp0[x] >= max ? 0 : gp0[x]; | |||
| 1561 | gp0 += gstride[1]; | |||
| 1562 | bp0 += bstride[1]; | |||
| 1563 | hp0 += hstride[1]; | |||
| 1564 | } | |||
| 1565 | } | |||
| 1566 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1567 | } | |||
| 1568 | // Non-optimal case, need to do skip copy. | |||
| 1569 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1570 | { | |||
| 1571 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| 1572 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1573 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 1574 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1575 | { | |||
| 1576 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 1577 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1578 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 1579 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1580 | { | |||
| 1581 | for (x = 0; x < dim[3]; x++) | |||
| 1582 | hp1[x] = bp1[x] >= max ? 0 : gp1[x]; | |||
| 1583 | gp1 += gstride[2]; | |||
| 1584 | bp1 += bstride[2]; | |||
| 1585 | hp1 += hstride[2]; | |||
| 1586 | } | |||
| 1587 | } | |||
| 1588 | } | |||
| 1589 | } else if (isnan(max)__builtin_isnan (max)) { | |||
| 1590 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 1591 | { | |||
| 1592 | // Special casing if the ginc[3] is the same as dim[3] | |||
| 1593 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1594 | { | |||
| 1595 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 1596 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1597 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 1598 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1599 | { | |||
| 1600 | for (x = 0; x < count; x++) | |||
| 1601 | hp0[x] = bp0[x] <= min ? 0 : gp0[x]; | |||
| 1602 | gp0 += gstride[1]; | |||
| 1603 | bp0 += bstride[1]; | |||
| 1604 | hp0 += hstride[1]; | |||
| 1605 | } | |||
| 1606 | } | |||
| 1607 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1608 | } | |||
| 1609 | // Non-optimal case, need to do skip copy. | |||
| 1610 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1611 | { | |||
| 1612 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| 1613 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1614 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 1615 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1616 | { | |||
| 1617 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 1618 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1619 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 1620 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1621 | { | |||
| 1622 | for (x = 0; x < dim[3]; x++) | |||
| 1623 | hp1[x] = bp1[x] <= min ? 0 : gp1[x]; | |||
| 1624 | gp1 += gstride[2]; | |||
| 1625 | bp1 += bstride[2]; | |||
| 1626 | hp1 += hstride[2]; | |||
| 1627 | } | |||
| 1628 | } | |||
| 1629 | } | |||
| 1630 | } else { | |||
| 1631 | if (gstride[2] == dim[3] && bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 1632 | { | |||
| 1633 | // Special casing if the ginc[3] is the same as dim[3] | |||
| 1634 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1635 | { | |||
| 1636 | float* gp0 = gp + i[0] * gstride[0]; | |||
| 1637 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1638 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 1639 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1640 | { | |||
| 1641 | for (x = 0; x < count; x++) | |||
| 1642 | hp0[x] = (bp0[x] >= max || bp0[x] <= min) ? 0 : gp0[x]; | |||
| 1643 | gp0 += gstride[1]; | |||
| 1644 | bp0 += bstride[1]; | |||
| 1645 | hp0 += hstride[1]; | |||
| 1646 | } | |||
| 1647 | } | |||
| 1648 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1649 | } | |||
| 1650 | // Non-optimal case, need to do skip copy. | |||
| 1651 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1652 | { | |||
| 1653 | float* const gp0 = gp + i[0] * gstride[0]; | |||
| 1654 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1655 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 1656 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1657 | { | |||
| 1658 | float* gp1 = gp0 + i[1] * gstride[1]; | |||
| 1659 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1660 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 1661 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1662 | { | |||
| 1663 | for (x = 0; x < dim[3]; x++) | |||
| 1664 | hp1[x] = (bp1[x] >= max || bp1[x] <= min) ? 0 : gp1[x]; | |||
| 1665 | gp1 += gstride[2]; | |||
| 1666 | bp1 += bstride[2]; | |||
| 1667 | hp1 += hstride[2]; | |||
| 1668 | } | |||
| 1669 | } | |||
| 1670 | } | |||
| 1671 | } | |||
| 1672 | } else { | |||
| 1673 | if (!CCV_IS_TENSOR_VIEW(h)((*(int*)(h)) & CCV_TENSOR_VIEW) && !CCV_IS_TENSOR_VIEW(b)((*(int*)(b)) & CCV_TENSOR_VIEW)) | |||
| 1674 | { | |||
| 1675 | // Super optimal case, just do one for-loop for sum. | |||
| 1676 | const int tensor_count = ccv_nnc_tensor_count(h->info); | |||
| 1677 | if (isnan(min)__builtin_isnan (min)) | |||
| 1678 | { | |||
| 1679 | for (x = 0; x < tensor_count; x++) | |||
| 1680 | h->data.f32[x] = b->data.f32[x] >= max ? 0 : 1; | |||
| 1681 | } else if (isnan(max)__builtin_isnan (max)) { | |||
| 1682 | for (x = 0; x < tensor_count; x++) | |||
| 1683 | h->data.f32[x] = b->data.f32[x] <= min ? 0 : 1; | |||
| 1684 | } else { | |||
| 1685 | for (x = 0; x < tensor_count; x++) | |||
| 1686 | h->data.f32[x] = (b->data.f32[x] >= max || b->data.f32[x] <= min) ? 0 : 1; | |||
| 1687 | } | |||
| 1688 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1689 | } | |||
| 1690 | assert(CCV_NNC_MAX_DIM == 2)((void) sizeof (((2) == 2) ? 1 : 0), __extension__ ({ if ((2) == 2) ; else __assert_fail ("CCV_NNC_MAX_DIM == 2", "ew/ccv_nnc_ew_cpu_ref.c" , 1690, __extension__ __PRETTY_FUNCTION__); })); // Need to change this logic for CCV_NNC_MAX_DIM == other number. | |||
| 1691 | ccv_nnc_tensor_view_get_stride(b, bstride); | |||
| 1692 | ccv_nnc_tensor_view_get_stride(h, hstride); | |||
| 1693 | int i[CCV_NNC_MAX_DIM(2) + 2]; | |||
| 1694 | float* const bp = b->data.f32; | |||
| 1695 | float* const hp = h->data.f32; | |||
| 1696 | const int count = dim[2] * dim[3]; | |||
| 1697 | const float min = cmd.info.clamp.min; | |||
| 1698 | const float max = cmd.info.clamp.max; | |||
| 1699 | assert(!isnan(min) || !isnan(max))((void) sizeof ((!__builtin_isnan (min) || !__builtin_isnan ( max)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (min) || !__builtin_isnan (max)) ; else __assert_fail ("!isnan(min) || !isnan(max)" , "ew/ccv_nnc_ew_cpu_ref.c", 1699, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1700 | if (isnan(min)__builtin_isnan (min)) | |||
| 1701 | { | |||
| 1702 | if (bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 1703 | { | |||
| 1704 | // Special casing if the binc[3] is the same as dim[3] | |||
| 1705 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1706 | { | |||
| 1707 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1708 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 1709 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1710 | { | |||
| 1711 | for (x = 0; x < count; x++) | |||
| 1712 | hp0[x] = bp0[x] >= max ? 0 : 1; | |||
| 1713 | bp0 += bstride[1]; | |||
| 1714 | hp0 += hstride[1]; | |||
| 1715 | } | |||
| 1716 | } | |||
| 1717 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1718 | } | |||
| 1719 | // Non-optimal case, need to do skip copy. | |||
| 1720 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1721 | { | |||
| 1722 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1723 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 1724 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1725 | { | |||
| 1726 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1727 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 1728 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1729 | { | |||
| 1730 | for (x = 0; x < dim[3]; x++) | |||
| 1731 | hp1[x] = bp1[x] >= max ? 0 : 1; | |||
| 1732 | bp1 += bstride[2]; | |||
| 1733 | hp1 += hstride[2]; | |||
| 1734 | } | |||
| 1735 | } | |||
| 1736 | } | |||
| 1737 | } else if (isnan(max)__builtin_isnan (max)) { | |||
| 1738 | if (bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 1739 | { | |||
| 1740 | // Special casing if the binc[3] is the same as dim[3] | |||
| 1741 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1742 | { | |||
| 1743 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1744 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 1745 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1746 | { | |||
| 1747 | for (x = 0; x < count; x++) | |||
| 1748 | hp0[x] = bp0[x] <= min ? 0 : 1; | |||
| 1749 | bp0 += bstride[1]; | |||
| 1750 | hp0 += hstride[1]; | |||
| 1751 | } | |||
| 1752 | } | |||
| 1753 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1754 | } | |||
| 1755 | // Non-optimal case, need to do skip copy. | |||
| 1756 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1757 | { | |||
| 1758 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1759 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 1760 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1761 | { | |||
| 1762 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1763 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 1764 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1765 | { | |||
| 1766 | for (x = 0; x < dim[3]; x++) | |||
| 1767 | hp1[x] = bp1[x] <= min ? 0 : 1; | |||
| 1768 | bp1 += bstride[2]; | |||
| 1769 | hp1 += hstride[2]; | |||
| 1770 | } | |||
| 1771 | } | |||
| 1772 | } | |||
| 1773 | } else { | |||
| 1774 | if (bstride[2] == dim[3] && hstride[2] == dim[3]) | |||
| 1775 | { | |||
| 1776 | // Special casing if the binc[3] is the same as dim[3] | |||
| 1777 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1778 | { | |||
| 1779 | float* bp0 = bp + i[0] * bstride[0]; | |||
| 1780 | float* hp0 = hp + i[0] * hstride[0]; | |||
| 1781 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1782 | { | |||
| 1783 | for (x = 0; x < count; x++) | |||
| 1784 | hp0[x] = (bp0[x] >= max || bp0[x] <= min) ? 0 : 1; | |||
| 1785 | bp0 += bstride[1]; | |||
| 1786 | hp0 += hstride[1]; | |||
| 1787 | } | |||
| 1788 | } | |||
| 1789 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1790 | } | |||
| 1791 | // Non-optimal case, need to do skip copy. | |||
| 1792 | for (i[0] = 0; i[0] < dim[0]; i[0]++) | |||
| 1793 | { | |||
| 1794 | float* const bp0 = bp + i[0] * bstride[0]; | |||
| 1795 | float* const hp0 = hp + i[0] * hstride[0]; | |||
| 1796 | for (i[1] = 0; i[1] < dim[1]; i[1]++) | |||
| 1797 | { | |||
| 1798 | float* bp1 = bp0 + i[1] * bstride[1]; | |||
| 1799 | float* hp1 = hp0 + i[1] * hstride[1]; | |||
| 1800 | for (i[2] = 0; i[2] < dim[2]; i[2]++) | |||
| 1801 | { | |||
| 1802 | for (x = 0; x < dim[3]; x++) | |||
| 1803 | hp1[x] = (bp1[x] >= max || bp1[x] <= min) ? 0 : 1; | |||
| 1804 | bp1 += bstride[2]; | |||
| 1805 | hp1 += hstride[2]; | |||
| 1806 | } | |||
| 1807 | } | |||
| 1808 | } | |||
| 1809 | } | |||
| 1810 | } | |||
| 1811 | return CCV_NNC_EXEC_SUCCESS; | |||
| 1812 | } | |||
| 1813 | ||||
| 1814 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSUM_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSUM_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1815 | { | |||
| 1816 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1817 | registry->tensor_datatypes = CCV_32F; | |||
| 1818 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1819 | registry->algorithms = 1; | |||
| 1820 | registry->exec = _ccv_nnc_ewsum_forw; | |||
| 1821 | } | |||
| 1822 | ||||
| 1823 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSUM_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSUM_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1824 | { | |||
| 1825 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1826 | registry->tensor_datatypes = CCV_32F; | |||
| 1827 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1828 | registry->algorithms = 1; | |||
| 1829 | registry->exec = _ccv_nnc_ewsum_back; | |||
| 1830 | } | |||
| 1831 | ||||
| 1832 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWPROD_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWPROD_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1833 | { | |||
| 1834 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1835 | registry->tensor_datatypes = CCV_32F; | |||
| 1836 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1837 | registry->algorithms = 1; | |||
| 1838 | registry->exec = _ccv_nnc_ewprod_forw; | |||
| 1839 | } | |||
| 1840 | ||||
| 1841 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWPROD_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWPROD_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1842 | { | |||
| 1843 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1844 | registry->tensor_datatypes = CCV_32F; | |||
| 1845 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1846 | registry->algorithms = 1; | |||
| 1847 | registry->exec = _ccv_nnc_ewprod_back; | |||
| 1848 | } | |||
| 1849 | ||||
| 1850 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWDIV_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWDIV_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1851 | { | |||
| 1852 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1853 | registry->tensor_datatypes = CCV_32F; | |||
| 1854 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1855 | registry->algorithms = 1; | |||
| 1856 | registry->exec = _ccv_nnc_ewdiv_forw; | |||
| 1857 | } | |||
| 1858 | ||||
| 1859 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWDIV_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWDIV_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1860 | { | |||
| 1861 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1862 | registry->tensor_datatypes = CCV_32F; | |||
| 1863 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1864 | registry->algorithms = 1; | |||
| 1865 | registry->exec = _ccv_nnc_ewdiv_back; | |||
| 1866 | } | |||
| 1867 | ||||
| 1868 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWEXP_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWEXP_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1869 | { | |||
| 1870 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1871 | registry->tensor_datatypes = CCV_32F; | |||
| 1872 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1873 | registry->algorithms = 1; | |||
| 1874 | registry->exec = _ccv_nnc_ewexp_forw; | |||
| 1875 | } | |||
| 1876 | ||||
| 1877 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWEXP_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWEXP_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1878 | { | |||
| 1879 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1880 | registry->tensor_datatypes = CCV_32F; | |||
| 1881 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1882 | registry->algorithms = 1; | |||
| 1883 | registry->exec = _ccv_nnc_ewexp_back; | |||
| 1884 | } | |||
| 1885 | ||||
| 1886 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWLOG_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWLOG_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1887 | { | |||
| 1888 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1889 | registry->tensor_datatypes = CCV_32F; | |||
| 1890 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1891 | registry->algorithms = 1; | |||
| 1892 | registry->exec = _ccv_nnc_ewlog_forw; | |||
| 1893 | } | |||
| 1894 | ||||
| 1895 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWLOG_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWLOG_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1896 | { | |||
| 1897 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1898 | registry->tensor_datatypes = CCV_32F; | |||
| 1899 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1900 | registry->algorithms = 1; | |||
| 1901 | registry->exec = _ccv_nnc_ewlog_back; | |||
| 1902 | } | |||
| 1903 | ||||
| 1904 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSQRT_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSQRT_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1905 | { | |||
| 1906 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1907 | registry->tensor_datatypes = CCV_32F; | |||
| 1908 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1909 | registry->algorithms = 1; | |||
| 1910 | registry->exec = _ccv_nnc_ewsqrt_forw; | |||
| 1911 | } | |||
| 1912 | ||||
| 1913 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWSQRT_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWSQRT_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1914 | { | |||
| 1915 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1916 | registry->tensor_datatypes = CCV_32F; | |||
| 1917 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1918 | registry->algorithms = 1; | |||
| 1919 | registry->exec = _ccv_nnc_ewsqrt_back; | |||
| 1920 | } | |||
| 1921 | ||||
| 1922 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWABS_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWABS_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1923 | { | |||
| 1924 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1925 | registry->tensor_datatypes = CCV_32F; | |||
| 1926 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1927 | registry->algorithms = 1; | |||
| 1928 | registry->exec = _ccv_nnc_ewabs_forw; | |||
| 1929 | } | |||
| 1930 | ||||
| 1931 | REGISTER_COMMAND_BACKEND(CCV_NNC_EWABS_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_EWABS_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1932 | { | |||
| 1933 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1934 | registry->tensor_datatypes = CCV_32F; | |||
| 1935 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1936 | registry->algorithms = 1; | |||
| 1937 | registry->exec = _ccv_nnc_ewabs_back; | |||
| 1938 | } | |||
| 1939 | ||||
| 1940 | REGISTER_COMMAND_BACKEND(CCV_NNC_CLAMP_FORWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_CLAMP_FORWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1941 | { | |||
| 1942 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1943 | registry->tensor_datatypes = CCV_32F; | |||
| 1944 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1945 | registry->algorithms = 1; | |||
| 1946 | registry->exec = _ccv_nnc_clamp_forw; | |||
| 1947 | } | |||
| 1948 | ||||
| 1949 | REGISTER_COMMAND_BACKEND(CCV_NNC_CLAMP_BACKWARD, CCV_NNC_BACKEND_CPU_REF)void _register_command_CCV_NNC_CLAMP_BACKWARD_backend_CCV_NNC_BACKEND_CPU_REF(ccv_nnc_cmd_backend_registry_t* const registry) | |||
| 1950 | { | |||
| 1951 | registry->tensor_formats = CCV_TENSOR_FORMAT_NHWC | CCV_TENSOR_FORMAT_NCHW | CCV_TENSOR_FORMAT_CHWN; | |||
| 1952 | registry->tensor_datatypes = CCV_32F; | |||
| 1953 | registry->tensor_memory = CCV_TENSOR_CPU_MEMORY; | |||
| 1954 | registry->algorithms = 1; | |||
| 1955 | registry->exec = _ccv_nnc_clamp_back; | |||
| 1956 | } |