| File: | ccv_dpm.c |
| Warning: | line 1293, column 3 Read function called when stream is in EOF state. Function has no effect |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include "ccv.h" | |||
| 2 | #include "ccv_internal.h" | |||
| 3 | #include <sys/time.h> | |||
| 4 | #ifdef HAVE_GSL1 | |||
| 5 | #include <gsl/gsl_rng.h> | |||
| 6 | #include <gsl/gsl_multifit.h> | |||
| 7 | #include <gsl/gsl_randist.h> | |||
| 8 | #endif | |||
| 9 | #ifdef USE_OPENMP | |||
| 10 | #include <omp.h> | |||
| 11 | #endif | |||
| 12 | #ifdef HAVE_LIBLINEAR1 | |||
| 13 | #include <linear.h> | |||
| 14 | #endif | |||
| 15 | ||||
| 16 | const ccv_dpm_param_t ccv_dpm_default_params = { | |||
| 17 | .interval = 8, | |||
| 18 | .min_neighbors = 1, | |||
| 19 | .flags = 0, | |||
| 20 | .threshold = 0.6, // 0.8 | |||
| 21 | }; | |||
| 22 | ||||
| 23 | #define CCV_DPM_WINDOW_SIZE(8) (8) | |||
| 24 | ||||
| 25 | static int _ccv_dpm_scale_upto(ccv_dense_matrix_t* a, ccv_dpm_mixture_model_t** _model, int count, int interval) | |||
| 26 | { | |||
| 27 | int c, i; | |||
| 28 | ccv_size_t size = ccv_size(a->cols, a->rows); | |||
| 29 | for (c = 0; c < count; c++) | |||
| 30 | { | |||
| 31 | ccv_dpm_mixture_model_t* model = _model[c]; | |||
| 32 | for (i = 0; i < model->count; i++) | |||
| 33 | { | |||
| 34 | size.width = ccv_min(model->root[i].root.w->cols * CCV_DPM_WINDOW_SIZE, size.width)({ typeof (model->root[i].root.w->cols * (8)) _a = (model ->root[i].root.w->cols * (8)); typeof (size.width) _b = (size.width); (_a < _b) ? _a : _b; }); | |||
| 35 | size.height = ccv_min(model->root[i].root.w->rows * CCV_DPM_WINDOW_SIZE, size.height)({ typeof (model->root[i].root.w->rows * (8)) _a = (model ->root[i].root.w->rows * (8)); typeof (size.height) _b = (size.height); (_a < _b) ? _a : _b; }); | |||
| 36 | } | |||
| 37 | } | |||
| 38 | int hr = a->rows / size.height; | |||
| 39 | int wr = a->cols / size.width; | |||
| 40 | double scale = pow(2.0, 1.0 / (interval + 1.0)); | |||
| 41 | int next = interval + 1; | |||
| 42 | return (int)(log((double)ccv_min(hr, wr)({ typeof (hr) _a = (hr); typeof (wr) _b = (wr); (_a < _b) ? _a : _b; })) / log(scale)) - next; | |||
| 43 | } | |||
| 44 | ||||
| 45 | static void _ccv_dpm_feature_pyramid(ccv_dense_matrix_t* a, ccv_dense_matrix_t** pyr, int scale_upto, int interval) | |||
| 46 | { | |||
| 47 | int next = interval + 1; | |||
| 48 | double scale = pow(2.0, 1.0 / (interval + 1.0)); | |||
| 49 | memset(pyr, 0, (scale_upto + next * 2) * sizeof(ccv_dense_matrix_t*)); | |||
| 50 | pyr[next] = a; | |||
| 51 | int i; | |||
| 52 | for (i = 1; i <= interval; i++) | |||
| 53 | ccv_resample(pyr[next], &pyr[next + i], 0, (double)(int)(pyr[next]->rows / pow(scale, i)) / (double)pyr[next]->rows, (double)(int)(pyr[next]->cols / pow(scale, i)) / (double)pyr[next]->cols, CCV_INTER_AREA); | |||
| 54 | for (i = next; i < scale_upto + next; i++) | |||
| 55 | ccv_sample_down(pyr[i], &pyr[i + next], 0, 0, 0); | |||
| 56 | ccv_dense_matrix_t* hog; | |||
| 57 | /* a more efficient way to generate up-scaled hog (using smaller size) */ | |||
| 58 | for (i = 0; i < next; i++) | |||
| 59 | { | |||
| 60 | hog = 0; | |||
| 61 | ccv_hog(pyr[i + next], &hog, 0, 9, CCV_DPM_WINDOW_SIZE(8) / 2 /* this is */); | |||
| 62 | pyr[i] = hog; | |||
| 63 | } | |||
| 64 | hog = 0; | |||
| 65 | ccv_hog(pyr[next], &hog, 0, 9, CCV_DPM_WINDOW_SIZE(8)); | |||
| 66 | pyr[next] = hog; | |||
| 67 | for (i = next + 1; i < scale_upto + next * 2; i++) | |||
| 68 | { | |||
| 69 | hog = 0; | |||
| 70 | ccv_hog(pyr[i], &hog, 0, 9, CCV_DPM_WINDOW_SIZE(8)); | |||
| 71 | ccv_matrix_free(pyr[i]); | |||
| 72 | pyr[i] = hog; | |||
| 73 | } | |||
| 74 | } | |||
| 75 | ||||
| 76 | static void _ccv_dpm_compute_score(ccv_dpm_root_classifier_t* root_classifier, ccv_dense_matrix_t* hog, ccv_dense_matrix_t* hog2x, ccv_dense_matrix_t** _response, ccv_dense_matrix_t** part_feature, ccv_dense_matrix_t** dx, ccv_dense_matrix_t** dy) | |||
| 77 | { | |||
| 78 | ccv_dense_matrix_t* response = 0; | |||
| 79 | ccv_filter(hog, root_classifier->root.w, &response, 0, CCV_NO_PADDING); | |||
| 80 | ccv_dense_matrix_t* root_feature = 0; | |||
| 81 | ccv_flatten(response, (ccv_matrix_t**)&root_feature, 0, 0); | |||
| 82 | ccv_matrix_free(response); | |||
| 83 | *_response = root_feature; | |||
| 84 | if (hog2x == 0) | |||
| 85 | return; | |||
| 86 | ccv_make_matrix_mutable(root_feature); | |||
| 87 | int rwh = (root_classifier->root.w->rows - 1) / 2, rww = (root_classifier->root.w->cols - 1) / 2; | |||
| 88 | int rwh_1 = root_classifier->root.w->rows / 2, rww_1 = root_classifier->root.w->cols / 2; | |||
| 89 | int i, x, y; | |||
| 90 | for (i = 0; i < root_classifier->count; i++) | |||
| 91 | { | |||
| 92 | ccv_dpm_part_classifier_t* part = root_classifier->part + i; | |||
| 93 | ccv_dense_matrix_t* response = 0; | |||
| 94 | ccv_filter(hog2x, part->w, &response, 0, CCV_NO_PADDING); | |||
| 95 | ccv_dense_matrix_t* feature = 0; | |||
| 96 | ccv_flatten(response, (ccv_matrix_t**)&feature, 0, 0); | |||
| 97 | ccv_matrix_free(response); | |||
| 98 | part_feature[i] = dx[i] = dy[i] = 0; | |||
| 99 | ccv_distance_transform(feature, &part_feature[i], 0, &dx[i], 0, &dy[i], 0, part->dx, part->dy, part->dxx, part->dyy, CCV_NEGATIVE | CCV_GSEDT); | |||
| 100 | ccv_matrix_free(feature); | |||
| 101 | int pwh = (part->w->rows - 1) / 2, pww = (part->w->cols - 1) / 2; | |||
| 102 | int offy = part->y + pwh - rwh * 2; | |||
| 103 | int miny = pwh, maxy = part_feature[i]->rows - part->w->rows + pwh; | |||
| 104 | int offx = part->x + pww - rww * 2; | |||
| 105 | int minx = pww, maxx = part_feature[i]->cols - part->w->cols + pww; | |||
| 106 | float* f_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | CCV_C1, root_feature, rwh, 0, 0)(((CCV_32F | CCV_C1) & CCV_32S) ? (void*)((root_feature)-> data.i32 + ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_32F ) ? (void*)((root_feature)->data.f32+ ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64S) ? (void*)((root_feature) ->data.i64+ ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64F ) ? (void*)((root_feature)->data.f64 + ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (void*)((root_feature)->data.u8 + (rwh) * (root_feature)-> step + (0) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)))))); | |||
| 107 | for (y = rwh; y < root_feature->rows - rwh_1; y++) | |||
| 108 | { | |||
| 109 | int iy = ccv_clamp(y * 2 + offy, miny, maxy)({ typeof (miny) _a = (miny); typeof (maxy) _b = (maxy); typeof (y * 2 + offy) _x = (y * 2 + offy); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 110 | for (x = rww; x < root_feature->cols - rww_1; x++) | |||
| 111 | { | |||
| 112 | int ix = ccv_clamp(x * 2 + offx, minx, maxx)({ typeof (minx) _a = (minx); typeof (maxx) _b = (maxx); typeof (x * 2 + offx) _x = (x * 2 + offx); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 113 | f_ptr[x] -= ccv_get_dense_matrix_cell_value_by(CCV_32F | CCV_C1, part_feature[i], iy, ix, 0)(((CCV_32F | CCV_C1) & CCV_32S) ? (part_feature[i])->data .i32[((iy) * (part_feature[i])->cols + (ix)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)] : (((CCV_32F | CCV_C1) & CCV_32F ) ? (part_feature[i])->data.f32[((iy) * (part_feature[i])-> cols + (ix)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)] : (((CCV_32F | CCV_C1) & CCV_64S) ? (part_feature[i])->data.i64[(( iy) * (part_feature[i])->cols + (ix)) * ((CCV_32F | CCV_C1 ) & 0xFFF) + (0)] : (((CCV_32F | CCV_C1) & CCV_64F) ? (part_feature[i])->data.f64[((iy) * (part_feature[i])-> cols + (ix)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)] : (part_feature [i])->data.u8[(iy) * (part_feature[i])->step + (ix) * ( (CCV_32F | CCV_C1) & 0xFFF) + (0)])))); | |||
| 114 | } | |||
| 115 | f_ptr += root_feature->cols; | |||
| 116 | } | |||
| 117 | } | |||
| 118 | } | |||
| 119 | ||||
| 120 | #ifdef HAVE_LIBLINEAR1 | |||
| 121 | #ifdef HAVE_GSL1 | |||
| 122 | ||||
| 123 | static uint64_t _ccv_dpm_time_measure() | |||
| 124 | { | |||
| 125 | struct timeval tv; | |||
| 126 | gettimeofday(&tv, 0); | |||
| 127 | return tv.tv_sec * 1000000 + tv.tv_usec; | |||
| 128 | } | |||
| 129 | ||||
| 130 | #define less_than(fn1, fn2, aux) ((fn1).value >= (fn2).value) | |||
| 131 | static CCV_IMPLEMENT_QSORT(_ccv_dpm_aspect_qsort, struct feature_node, less_than)void _ccv_dpm_aspect_qsort(struct feature_node *array, size_t total, int aux) { int isort_thresh = 7; struct feature_node t ; int sp = 0; struct { struct feature_node *lb; struct feature_node *ub; } stack[48]; if( total <= 1 ) return; stack[0].lb = array ; stack[0].ub = array + (total - 1); while( sp >= 0 ) { struct feature_node* left = stack[sp].lb; struct feature_node* right = stack[sp--].ub; for(;;) { int i, n = (int)(right - left) + 1, m; struct feature_node* ptr; struct feature_node* ptr2; if ( n <= isort_thresh ) { insert_sort: for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left && less_than(ptr2[0],ptr2[-1], aux); ptr2--) (((t)) = ((ptr2[0] )), ((ptr2[0])) = ((ptr2[-1])), ((ptr2[-1])) = ((t))); } break ; } else { struct feature_node* left0; struct feature_node* left1 ; struct feature_node* right0; struct feature_node* right1; struct feature_node* pivot; struct feature_node* a; struct feature_node * b; struct feature_node* c; int swap_cnt = 0; left0 = left; right0 = right; pivot = left + (n/2); if( n > 40 ) { int d = n / 8; a = left, b = left + d, c = left + 2*d; left = less_than( *a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, * c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than( *a, *c, aux) ? a : c)); a = pivot - d, b = pivot, c = pivot + d; pivot = less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux ) ? b : (less_than(*a, *c, aux) ? a : c)); a = right - 2*d, b = right - d, c = right; right = less_than(*a, *b, aux) ? (less_than (*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than (*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); } a = left , b = pivot, c = right; pivot = less_than(*a, *b, aux) ? (less_than (*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than (*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); if( pivot != left0 ) { (((t)) = ((*pivot)), ((*pivot)) = ((*left0)), ( (*left0)) = ((t))); pivot = left0; } left = left1 = left0 + 1 ; right = right1 = right0; for(;;) { while( left <= right && !less_than(*pivot, *left, aux) ) { if( !less_than(*left, *pivot , aux) ) { if( left > left1 ) (((t)) = ((*left1)), ((*left1 )) = ((*left)), ((*left)) = ((t))); swap_cnt = 1; left1++; } left ++; } while( left <= right && !less_than(*right, * pivot, aux) ) { if( !less_than(*pivot, *right, aux) ) { if( right < right1 ) (((t)) = ((*right1)), ((*right1)) = ((*right)) , ((*right)) = ((t))); swap_cnt = 1; right1--; } right--; } if ( left > right ) break; (((t)) = ((*left)), ((*left)) = (( *right)), ((*right)) = ((t))); swap_cnt = 1; left++; right--; } if( swap_cnt == 0 ) { left = left0, right = right0; goto insert_sort ; } n = ({ typeof ((int)(left1 - left0)) _a = ((int)(left1 - left0 )); typeof ((int)(left - left1)) _b = ((int)(left - left1)); ( _a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left0[i])), ((left0[i])) = ((left[i-n])), ((left[i-n])) = ((t))); n = ({ typeof ((int)(right0 - right1)) _a = ((int)(right0 - right1)); typeof ((int)(right1 - right)) _b = ((int)(right1 - right)); (_a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left[i])), ((left[i])) = ((right0[i-n+1])), ((right0[i-n+1])) = ((t))); n = (int)(left - left1); m = (int )(right1 - right); if( n > 1 ) { if( m > 1 ) { if( n > m ) { stack[++sp].lb = left0; stack[sp].ub = left0 + n - 1; left = right0 - m + 1, right = right0; } else { stack[++sp].lb = right0 - m + 1; stack[sp].ub = right0; left = left0, right = left0 + n - 1; } } else left = left0, right = left0 + n - 1; } else if ( m > 1 ) left = right0 - m + 1, right = right0; else break ; } } } } | |||
| 132 | #undef less_than | |||
| 133 | ||||
| 134 | #define less_than(a1, a2, aux) ((a1) < (a2)) | |||
| 135 | static CCV_IMPLEMENT_QSORT(_ccv_dpm_area_qsort, int, less_than)void _ccv_dpm_area_qsort(int *array, size_t total, int aux) { int isort_thresh = 7; int t; int sp = 0; struct { int *lb; int *ub; } stack[48]; if( total <= 1 ) return; stack[0].lb = array ; stack[0].ub = array + (total - 1); while( sp >= 0 ) { int * left = stack[sp].lb; int* right = stack[sp--].ub; for(;;) { int i, n = (int)(right - left) + 1, m; int* ptr; int* ptr2; if ( n <= isort_thresh ) { insert_sort: for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left && less_than(ptr2[0],ptr2[-1], aux); ptr2--) (((t)) = ((ptr2[0] )), ((ptr2[0])) = ((ptr2[-1])), ((ptr2[-1])) = ((t))); } break ; } else { int* left0; int* left1; int* right0; int* right1; int * pivot; int* a; int* b; int* c; int swap_cnt = 0; left0 = left ; right0 = right; pivot = left + (n/2); if( n > 40 ) { int d = n / 8; a = left, b = left + d, c = left + 2*d; left = less_than (*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, * c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than( *a, *c, aux) ? a : c)); a = pivot - d, b = pivot, c = pivot + d; pivot = less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux ) ? b : (less_than(*a, *c, aux) ? a : c)); a = right - 2*d, b = right - d, c = right; right = less_than(*a, *b, aux) ? (less_than (*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than (*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); } a = left , b = pivot, c = right; pivot = less_than(*a, *b, aux) ? (less_than (*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than (*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); if( pivot != left0 ) { (((t)) = ((*pivot)), ((*pivot)) = ((*left0)), ( (*left0)) = ((t))); pivot = left0; } left = left1 = left0 + 1 ; right = right1 = right0; for(;;) { while( left <= right && !less_than(*pivot, *left, aux) ) { if( !less_than(*left, *pivot , aux) ) { if( left > left1 ) (((t)) = ((*left1)), ((*left1 )) = ((*left)), ((*left)) = ((t))); swap_cnt = 1; left1++; } left ++; } while( left <= right && !less_than(*right, * pivot, aux) ) { if( !less_than(*pivot, *right, aux) ) { if( right < right1 ) (((t)) = ((*right1)), ((*right1)) = ((*right)) , ((*right)) = ((t))); swap_cnt = 1; right1--; } right--; } if ( left > right ) break; (((t)) = ((*left)), ((*left)) = (( *right)), ((*right)) = ((t))); swap_cnt = 1; left++; right--; } if( swap_cnt == 0 ) { left = left0, right = right0; goto insert_sort ; } n = ({ typeof ((int)(left1 - left0)) _a = ((int)(left1 - left0 )); typeof ((int)(left - left1)) _b = ((int)(left - left1)); ( _a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left0[i])), ((left0[i])) = ((left[i-n])), ((left[i-n])) = ((t))); n = ({ typeof ((int)(right0 - right1)) _a = ((int)(right0 - right1)); typeof ((int)(right1 - right)) _b = ((int)(right1 - right)); (_a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left[i])), ((left[i])) = ((right0[i-n+1])), ((right0[i-n+1])) = ((t))); n = (int)(left - left1); m = (int )(right1 - right); if( n > 1 ) { if( m > 1 ) { if( n > m ) { stack[++sp].lb = left0; stack[sp].ub = left0 + n - 1; left = right0 - m + 1, right = right0; } else { stack[++sp].lb = right0 - m + 1; stack[sp].ub = right0; left = left0, right = left0 + n - 1; } } else left = left0, right = left0 + n - 1; } else if ( m > 1 ) left = right0 - m + 1, right = right0; else break ; } } } } | |||
| 136 | #undef less_than | |||
| 137 | ||||
| 138 | #define less_than(s1, s2, aux) ((s1) < (s2)) | |||
| 139 | static CCV_IMPLEMENT_QSORT(_ccv_dpm_score_qsort, double, less_than)void _ccv_dpm_score_qsort(double *array, size_t total, int aux ) { int isort_thresh = 7; double t; int sp = 0; struct { double *lb; double *ub; } stack[48]; if( total <= 1 ) return; stack [0].lb = array; stack[0].ub = array + (total - 1); while( sp >= 0 ) { double* left = stack[sp].lb; double* right = stack[sp-- ].ub; for(;;) { int i, n = (int)(right - left) + 1, m; double * ptr; double* ptr2; if( n <= isort_thresh ) { insert_sort : for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left && less_than(ptr2[0],ptr2[-1], aux ); ptr2--) (((t)) = ((ptr2[0])), ((ptr2[0])) = ((ptr2[-1])), ( (ptr2[-1])) = ((t))); } break; } else { double* left0; double * left1; double* right0; double* right1; double* pivot; double * a; double* b; double* c; int swap_cnt = 0; left0 = left; right0 = right; pivot = left + (n/2); if( n > 40 ) { int d = n / 8; a = left, b = left + d, c = left + 2*d; left = less_than( *a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, * c, aux) ? c : a)) : (less_than(*c, *b, aux) ? b : (less_than( *a, *c, aux) ? a : c)); a = pivot - d, b = pivot, c = pivot + d; pivot = less_than(*a, *b, aux) ? (less_than(*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than(*c, *b, aux ) ? b : (less_than(*a, *c, aux) ? a : c)); a = right - 2*d, b = right - d, c = right; right = less_than(*a, *b, aux) ? (less_than (*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than (*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); } a = left , b = pivot, c = right; pivot = less_than(*a, *b, aux) ? (less_than (*b, *c, aux) ? b : (less_than(*a, *c, aux) ? c : a)) : (less_than (*c, *b, aux) ? b : (less_than(*a, *c, aux) ? a : c)); if( pivot != left0 ) { (((t)) = ((*pivot)), ((*pivot)) = ((*left0)), ( (*left0)) = ((t))); pivot = left0; } left = left1 = left0 + 1 ; right = right1 = right0; for(;;) { while( left <= right && !less_than(*pivot, *left, aux) ) { if( !less_than(*left, *pivot , aux) ) { if( left > left1 ) (((t)) = ((*left1)), ((*left1 )) = ((*left)), ((*left)) = ((t))); swap_cnt = 1; left1++; } left ++; } while( left <= right && !less_than(*right, * pivot, aux) ) { if( !less_than(*pivot, *right, aux) ) { if( right < right1 ) (((t)) = ((*right1)), ((*right1)) = ((*right)) , ((*right)) = ((t))); swap_cnt = 1; right1--; } right--; } if ( left > right ) break; (((t)) = ((*left)), ((*left)) = (( *right)), ((*right)) = ((t))); swap_cnt = 1; left++; right--; } if( swap_cnt == 0 ) { left = left0, right = right0; goto insert_sort ; } n = ({ typeof ((int)(left1 - left0)) _a = ((int)(left1 - left0 )); typeof ((int)(left - left1)) _b = ((int)(left - left1)); ( _a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left0[i])), ((left0[i])) = ((left[i-n])), ((left[i-n])) = ((t))); n = ({ typeof ((int)(right0 - right1)) _a = ((int)(right0 - right1)); typeof ((int)(right1 - right)) _b = ((int)(right1 - right)); (_a < _b) ? _a : _b; }); for( i = 0; i < n; i++ ) (((t)) = ((left[i])), ((left[i])) = ((right0[i-n+1])), ((right0[i-n+1])) = ((t))); n = (int)(left - left1); m = (int )(right1 - right); if( n > 1 ) { if( m > 1 ) { if( n > m ) { stack[++sp].lb = left0; stack[sp].ub = left0 + n - 1; left = right0 - m + 1, right = right0; } else { stack[++sp].lb = right0 - m + 1; stack[sp].ub = right0; left = left0, right = left0 + n - 1; } } else left = left0, right = left0 + n - 1; } else if ( m > 1 ) left = right0 - m + 1, right = right0; else break ; } } } } | |||
| 140 | #undef less_than | |||
| 141 | ||||
| 142 | static ccv_dpm_mixture_model_t* _ccv_dpm_model_copy(ccv_dpm_mixture_model_t* _model) | |||
| 143 | { | |||
| 144 | ccv_dpm_mixture_model_t* model = (ccv_dpm_mixture_model_t*)ccmallocmalloc(sizeof(ccv_dpm_mixture_model_t)); | |||
| 145 | model->count = _model->count; | |||
| 146 | model->root = (ccv_dpm_root_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_root_classifier_t) * model->count); | |||
| 147 | int i, j; | |||
| 148 | memcpy(model->root, _model->root, sizeof(ccv_dpm_root_classifier_t) * model->count); | |||
| 149 | for (i = 0; i < model->count; i++) | |||
| 150 | { | |||
| 151 | ccv_dpm_root_classifier_t* _root = _model->root + i; | |||
| 152 | ccv_dpm_root_classifier_t* root = model->root + i; | |||
| 153 | root->root.w = ccv_dense_matrix_new(_root->root.w->rows, _root->root.w->cols, CCV_32F | 31, 0, 0); | |||
| 154 | memcpy(root->root.w->data.u8, _root->root.w->data.u8, _root->root.w->rows * _root->root.w->step); | |||
| 155 | ccv_make_matrix_immutable(root->root.w); | |||
| 156 | ccv_dpm_part_classifier_t* _part = _root->part; | |||
| 157 | ccv_dpm_part_classifier_t* part = root->part = (ccv_dpm_part_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_part_classifier_t) * root->count); | |||
| 158 | memcpy(part, _part, sizeof(ccv_dpm_part_classifier_t) * root->count); | |||
| 159 | for (j = 0; j < root->count; j++) | |||
| 160 | { | |||
| 161 | part[j].w = ccv_dense_matrix_new(_part[j].w->rows, _part[j].w->cols, CCV_32F | 31, 0, 0); | |||
| 162 | memcpy(part[j].w->data.u8, _part[j].w->data.u8, _part[j].w->rows * _part[j].w->step); | |||
| 163 | ccv_make_matrix_immutable(part[j].w); | |||
| 164 | } | |||
| 165 | } | |||
| 166 | return model; | |||
| 167 | } | |||
| 168 | ||||
| 169 | static void _ccv_dpm_write_checkpoint(ccv_dpm_mixture_model_t* model, int done, const char* dir) | |||
| 170 | { | |||
| 171 | char swpfile[1024]; | |||
| 172 | sprintf(swpfile, "%s.swp", dir); | |||
| 173 | FILE* w = fopen(swpfile, "w+"); | |||
| 174 | if (!w) | |||
| 175 | return; | |||
| 176 | if (done) | |||
| 177 | fprintf(w, ".\n"); | |||
| 178 | else | |||
| 179 | fprintf(w, ",\n"); | |||
| 180 | int i, j, x, y, ch, count = 0; | |||
| 181 | for (i = 0; i < model->count; i++) | |||
| 182 | { | |||
| 183 | if (model->root[i].root.w == 0) | |||
| 184 | break; | |||
| 185 | count++; | |||
| 186 | } | |||
| 187 | if (done) | |||
| 188 | fprintf(w, "%d\n", model->count); | |||
| 189 | else | |||
| 190 | fprintf(w, "%d %d\n", model->count, count); | |||
| 191 | for (i = 0; i < count; i++) | |||
| 192 | { | |||
| 193 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 194 | fprintf(w, "%d %d\n", root_classifier->root.w->rows, root_classifier->root.w->cols); | |||
| 195 | fprintf(w, "%a %a %a %a\n", root_classifier->beta, root_classifier->alpha[0], root_classifier->alpha[1], root_classifier->alpha[2]); | |||
| 196 | ch = CCV_GET_CHANNEL(root_classifier->root.w->type)((root_classifier->root.w->type) & 0xFFF); | |||
| 197 | for (y = 0; y < root_classifier->root.w->rows; y++) | |||
| 198 | { | |||
| 199 | for (x = 0; x < root_classifier->root.w->cols * ch; x++) | |||
| 200 | fprintf(w, "%a ", root_classifier->root.w->data.f32[y * root_classifier->root.w->cols * ch + x]); | |||
| 201 | fprintf(w, "\n"); | |||
| 202 | } | |||
| 203 | fprintf(w, "%d\n", root_classifier->count); | |||
| 204 | for (j = 0; j < root_classifier->count; j++) | |||
| 205 | { | |||
| 206 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + j; | |||
| 207 | fprintf(w, "%d %d %d\n", part_classifier->x, part_classifier->y, part_classifier->z); | |||
| 208 | fprintf(w, "%la %la %la %la\n", part_classifier->dx, part_classifier->dy, part_classifier->dxx, part_classifier->dyy); | |||
| 209 | fprintf(w, "%a %a %a %a %a %a\n", part_classifier->alpha[0], part_classifier->alpha[1], part_classifier->alpha[2], part_classifier->alpha[3], part_classifier->alpha[4], part_classifier->alpha[5]); | |||
| 210 | fprintf(w, "%d %d %d\n", part_classifier->w->rows, part_classifier->w->cols, part_classifier->counterpart); | |||
| 211 | ch = CCV_GET_CHANNEL(part_classifier->w->type)((part_classifier->w->type) & 0xFFF); | |||
| 212 | for (y = 0; y < part_classifier->w->rows; y++) | |||
| 213 | { | |||
| 214 | for (x = 0; x < part_classifier->w->cols * ch; x++) | |||
| 215 | fprintf(w, "%a ", part_classifier->w->data.f32[y * part_classifier->w->cols * ch + x]); | |||
| 216 | fprintf(w, "\n"); | |||
| 217 | } | |||
| 218 | } | |||
| 219 | } | |||
| 220 | fclose(w); | |||
| 221 | rename(swpfile, dir); | |||
| 222 | } | |||
| 223 | ||||
| 224 | static void _ccv_dpm_read_checkpoint(ccv_dpm_mixture_model_t* model, const char* dir) | |||
| 225 | { | |||
| 226 | FILE* r = fopen(dir, "r"); | |||
| 227 | if (!r) | |||
| 228 | return; | |||
| 229 | int count; | |||
| 230 | char flag; | |||
| 231 | fscanf(r, "%c", &flag); | |||
| 232 | assert(flag == ',')((void) sizeof ((flag == ',') ? 1 : 0), __extension__ ({ if ( flag == ',') ; else __assert_fail ("flag == ','", "ccv_dpm.c" , 232, __extension__ __PRETTY_FUNCTION__); })); | |||
| 233 | fscanf(r, "%d %d", &model->count, &count); | |||
| 234 | ccv_dpm_root_classifier_t* root_classifier = (ccv_dpm_root_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_root_classifier_t) * count); | |||
| 235 | memset(root_classifier, 0, sizeof(ccv_dpm_root_classifier_t) * count); | |||
| 236 | int i, j, k; | |||
| 237 | for (i = 0; i < count; i++) | |||
| 238 | { | |||
| 239 | int rows, cols; | |||
| 240 | fscanf(r, "%d %d", &rows, &cols); | |||
| 241 | fscanf(r, "%f %f %f %f", &root_classifier[i].beta, &root_classifier[i].alpha[0], &root_classifier[i].alpha[1], &root_classifier[i].alpha[2]); | |||
| 242 | root_classifier[i].root.w = ccv_dense_matrix_new(rows, cols, CCV_32F | 31, 0, 0); | |||
| 243 | for (j = 0; j < rows * cols * 31; j++) | |||
| 244 | fscanf(r, "%f", &root_classifier[i].root.w->data.f32[j]); | |||
| 245 | ccv_make_matrix_immutable(root_classifier[i].root.w); | |||
| 246 | fscanf(r, "%d", &root_classifier[i].count); | |||
| 247 | if (root_classifier[i].count <= 0) | |||
| 248 | { | |||
| 249 | root_classifier[i].part = 0; | |||
| 250 | continue; | |||
| 251 | } | |||
| 252 | ccv_dpm_part_classifier_t* part_classifier = (ccv_dpm_part_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_part_classifier_t) * root_classifier[i].count); | |||
| 253 | for (j = 0; j < root_classifier[i].count; j++) | |||
| 254 | { | |||
| 255 | fscanf(r, "%d %d %d", &part_classifier[j].x, &part_classifier[j].y, &part_classifier[j].z); | |||
| 256 | fscanf(r, "%lf %lf %lf %lf", &part_classifier[j].dx, &part_classifier[j].dy, &part_classifier[j].dxx, &part_classifier[j].dyy); | |||
| 257 | fscanf(r, "%f %f %f %f %f %f", &part_classifier[j].alpha[0], &part_classifier[j].alpha[1], &part_classifier[j].alpha[2], &part_classifier[j].alpha[3], &part_classifier[j].alpha[4], &part_classifier[j].alpha[5]); | |||
| 258 | fscanf(r, "%d %d %d", &rows, &cols, &part_classifier[j].counterpart); | |||
| 259 | part_classifier[j].w = ccv_dense_matrix_new(rows, cols, CCV_32F | 31, 0, 0); | |||
| 260 | for (k = 0; k < rows * cols * 31; k++) | |||
| 261 | fscanf(r, "%f", &part_classifier[j].w->data.f32[k]); | |||
| 262 | ccv_make_matrix_immutable(part_classifier[j].w); | |||
| 263 | } | |||
| 264 | root_classifier[i].part = part_classifier; | |||
| 265 | } | |||
| 266 | model->root = root_classifier; | |||
| 267 | fclose(r); | |||
| 268 | } | |||
| 269 | ||||
| 270 | static void _ccv_dpm_mixture_model_cleanup(ccv_dpm_mixture_model_t* model) | |||
| 271 | { | |||
| 272 | /* this is different because it doesn't compress to a continuous memory region */ | |||
| 273 | int i, j; | |||
| 274 | for (i = 0; i < model->count; i++) | |||
| 275 | { | |||
| 276 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 277 | for (j = 0; j < root_classifier->count; j++) | |||
| 278 | { | |||
| 279 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + j; | |||
| 280 | ccv_matrix_free(part_classifier->w); | |||
| 281 | } | |||
| 282 | if (root_classifier->count > 0) | |||
| 283 | ccfreefree(root_classifier->part); | |||
| 284 | if (root_classifier->root.w != 0) | |||
| 285 | ccv_matrix_free(root_classifier->root.w); | |||
| 286 | } | |||
| 287 | ccfreefree(model->root); | |||
| 288 | model->count = 0; | |||
| 289 | model->root = 0; | |||
| 290 | } | |||
| 291 | ||||
| 292 | static const int _ccv_dpm_sym_lut[] = { 2, 3, 0, 1, | |||
| 293 | 4 + 0, 4 + 8, 4 + 7, 4 + 6, 4 + 5, 4 + 4, 4 + 3, 4 + 2, 4 + 1, | |||
| 294 | 13 + 9, 13 + 8, 13 + 7, 13 + 6, 13 + 5, 13 + 4, 13 + 3, 13 + 2, 13 + 1, 13, 13 + 17, 13 + 16, 13 + 15, 13 + 14, 13 + 13, 13 + 12, 13 + 11, 13 + 10 }; | |||
| 295 | ||||
| 296 | static void _ccv_dpm_check_root_classifier_symmetry(ccv_dense_matrix_t* w) | |||
| 297 | { | |||
| 298 | assert(CCV_GET_CHANNEL(w->type) == 31 && CCV_GET_DATA_TYPE(w->type) == CCV_32F)((void) sizeof ((((w->type) & 0xFFF) == 31 && ( (w->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((w->type) & 0xFFF) == 31 && ((w->type ) & 0xFF000) == CCV_32F) ; else __assert_fail ("CCV_GET_CHANNEL(w->type) == 31 && CCV_GET_DATA_TYPE(w->type) == CCV_32F" , "ccv_dpm.c", 298, __extension__ __PRETTY_FUNCTION__); })); | |||
| 299 | float *w_ptr = w->data.f32; | |||
| 300 | int i, j, k; | |||
| 301 | for (i = 0; i < w->rows; i++) | |||
| 302 | { | |||
| 303 | for (j = 0; j < w->cols; j++) | |||
| 304 | { | |||
| 305 | for (k = 0; k < 31; k++) | |||
| 306 | { | |||
| 307 | double v = fabs(w_ptr[j * 31 + k] - w_ptr[(w->cols - 1 - j) * 31 + _ccv_dpm_sym_lut[k]]); | |||
| 308 | if (v > 0.002) | |||
| 309 | PRINT(CCV_CLI_INFO, "symmetric violation at (%d, %d, %d), off by: %f\n", i, j, k, v)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("symmetric violation at (%d, %d, %d), off by: %f\n", i, j, k , v); fflush(stdout); } } while (0); | |||
| 310 | } | |||
| 311 | } | |||
| 312 | w_ptr += w->cols * 31; | |||
| 313 | } | |||
| 314 | } | |||
| 315 | ||||
| 316 | typedef struct { | |||
| 317 | int id; | |||
| 318 | int count; | |||
| 319 | float score; | |||
| 320 | int x, y; | |||
| 321 | float scale_x, scale_y; | |||
| 322 | ccv_dpm_part_classifier_t root; | |||
| 323 | ccv_dpm_part_classifier_t* part; | |||
| 324 | } ccv_dpm_feature_vector_t; | |||
| 325 | ||||
| 326 | static void _ccv_dpm_collect_examples_randomly(gsl_rng* rng, ccv_array_t** negex, char** bgfiles, int bgnum, int negnum, int components, int* rows, int* cols, int grayscale) | |||
| 327 | { | |||
| 328 | int i, j; | |||
| 329 | for (i = 0; i < components; i++) | |||
| 330 | negex[i] = ccv_array_new(sizeof(ccv_dpm_feature_vector_t), negnum, 0); | |||
| 331 | int mrows = rows[0], mcols = cols[0]; | |||
| 332 | for (i = 1; i < components; i++) | |||
| 333 | { | |||
| 334 | mrows = ccv_max(mrows, rows[i])({ typeof (mrows) _a = (mrows); typeof (rows[i]) _b = (rows[i ]); (_a > _b) ? _a : _b; }); | |||
| 335 | mcols = ccv_max(mcols, cols[i])({ typeof (mcols) _a = (mcols); typeof (cols[i]) _b = (cols[i ]); (_a > _b) ? _a : _b; }); | |||
| 336 | } | |||
| 337 | FLUSH(CCV_CLI_INFO, " - generating negative examples for all models : 0 / %d", negnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - generating negative examples for all models : 0 / %d" , negnum); fflush(stdout); } } while (0); | |||
| 338 | while (negex[0]->rnum < negnum) | |||
| 339 | { | |||
| 340 | double p = (double)negnum / (double)bgnum; | |||
| 341 | for (i = 0; i < bgnum; i++) | |||
| 342 | if (gsl_rng_uniform(rng) < p) | |||
| 343 | { | |||
| 344 | ccv_dense_matrix_t* image = 0; | |||
| 345 | ccv_read(bgfiles[i], &image, (grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE)ccv_read_impl(bgfiles[i], &image, (grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE, 0, 0, 0); | |||
| 346 | assert(image != 0)((void) sizeof ((image != 0) ? 1 : 0), __extension__ ({ if (image != 0) ; else __assert_fail ("image != 0", "ccv_dpm.c", 346, __extension__ __PRETTY_FUNCTION__); })); | |||
| 347 | if (image->rows - mrows * CCV_DPM_WINDOW_SIZE(8) < 0 || | |||
| 348 | image->cols - mcols * CCV_DPM_WINDOW_SIZE(8) < 0) | |||
| 349 | { | |||
| 350 | ccv_matrix_free(image); | |||
| 351 | continue; | |||
| 352 | } | |||
| 353 | int y = gsl_rng_uniform_int(rng, image->rows - mrows * CCV_DPM_WINDOW_SIZE(8) + 1); | |||
| 354 | int x = gsl_rng_uniform_int(rng, image->cols - mcols * CCV_DPM_WINDOW_SIZE(8) + 1); | |||
| 355 | for (j = 0; j < components; j++) | |||
| 356 | { | |||
| 357 | ccv_dense_matrix_t* slice = 0; | |||
| 358 | ccv_slice(image, (ccv_matrix_t**)&slice, 0, y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE(8) + 1) / 2, x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE(8) + 1) / 2, rows[j] * CCV_DPM_WINDOW_SIZE(8), cols[j] * CCV_DPM_WINDOW_SIZE(8)); | |||
| 359 | assert(y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 &&((void) sizeof ((y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ? 1 : 0), __extension__ ({ if (y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image ->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ; else __assert_fail ("y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + rows[j] * CCV_DPM_WINDOW_SIZE <= image->rows && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + cols[j] * CCV_DPM_WINDOW_SIZE <= image->cols" , "ccv_dpm.c", 362, __extension__ __PRETTY_FUNCTION__); })) | |||
| 360 | y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + rows[j] * CCV_DPM_WINDOW_SIZE <= image->rows &&((void) sizeof ((y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ? 1 : 0), __extension__ ({ if (y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image ->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ; else __assert_fail ("y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + rows[j] * CCV_DPM_WINDOW_SIZE <= image->rows && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + cols[j] * CCV_DPM_WINDOW_SIZE <= image->cols" , "ccv_dpm.c", 362, __extension__ __PRETTY_FUNCTION__); })) | |||
| 361 | x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 &&((void) sizeof ((y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ? 1 : 0), __extension__ ({ if (y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image ->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ; else __assert_fail ("y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + rows[j] * CCV_DPM_WINDOW_SIZE <= image->rows && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + cols[j] * CCV_DPM_WINDOW_SIZE <= image->cols" , "ccv_dpm.c", 362, __extension__ __PRETTY_FUNCTION__); })) | |||
| 362 | x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + cols[j] * CCV_DPM_WINDOW_SIZE <= image->cols)((void) sizeof ((y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ? 1 : 0), __extension__ ({ if (y + ((mrows - rows[j]) * (8) + 1) / 2 >= 0 && y + ((mrows - rows[j]) * (8) + 1) / 2 + rows[j] * (8) <= image ->rows && x + ((mcols - cols[j]) * (8) + 1) / 2 >= 0 && x + ((mcols - cols[j]) * (8) + 1) / 2 + cols[j] * (8) <= image->cols) ; else __assert_fail ("y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && y + ((mrows - rows[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + rows[j] * CCV_DPM_WINDOW_SIZE <= image->rows && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 >= 0 && x + ((mcols - cols[j]) * CCV_DPM_WINDOW_SIZE + 1) / 2 + cols[j] * CCV_DPM_WINDOW_SIZE <= image->cols" , "ccv_dpm.c", 362, __extension__ __PRETTY_FUNCTION__); })); | |||
| 363 | ccv_dense_matrix_t* hog = 0; | |||
| 364 | ccv_hog(slice, &hog, 0, 9, CCV_DPM_WINDOW_SIZE(8)); | |||
| 365 | ccv_matrix_free(slice); | |||
| 366 | ccv_dpm_feature_vector_t vector = { | |||
| 367 | .id = j, | |||
| 368 | .count = 0, | |||
| 369 | .part = 0, | |||
| 370 | }; | |||
| 371 | ccv_make_matrix_mutable(hog); | |||
| 372 | assert(hog->rows == rows[j] && hog->cols == cols[j] && CCV_GET_CHANNEL(hog->type) == 31 && CCV_GET_DATA_TYPE(hog->type) == CCV_32F)((void) sizeof ((hog->rows == rows[j] && hog->cols == cols[j] && ((hog->type) & 0xFFF) == 31 && ((hog->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (hog->rows == rows[j] && hog->cols == cols [j] && ((hog->type) & 0xFFF) == 31 && ( (hog->type) & 0xFF000) == CCV_32F) ; else __assert_fail ("hog->rows == rows[j] && hog->cols == cols[j] && CCV_GET_CHANNEL(hog->type) == 31 && CCV_GET_DATA_TYPE(hog->type) == CCV_32F" , "ccv_dpm.c", 372, __extension__ __PRETTY_FUNCTION__); })); | |||
| 373 | vector.root.w = hog; | |||
| 374 | ccv_array_push(negex[j], &vector); | |||
| 375 | } | |||
| 376 | ccv_matrix_free(image); | |||
| 377 | FLUSH(CCV_CLI_INFO, " - generating negative examples for all models : %d / %d", negex[0]->rnum, negnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - generating negative examples for all models : %d / %d" , negex[0]->rnum, negnum); fflush(stdout); } } while (0); | |||
| 378 | if (negex[0]->rnum >= negnum) | |||
| 379 | break; | |||
| 380 | } | |||
| 381 | } | |||
| 382 | } | |||
| 383 | ||||
| 384 | static ccv_array_t* _ccv_dpm_summon_examples_by_rectangle(char** posfiles, ccv_rect_t* bboxes, int posnum, int id, int rows, int cols, int grayscale) | |||
| 385 | { | |||
| 386 | int i; | |||
| 387 | FLUSH(CCV_CLI_INFO, " - generating positive examples for model %d : 0 / %d", id, posnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - generating positive examples for model %d : 0 / %d" , id, posnum); fflush(stdout); } } while (0); | |||
| 388 | ccv_array_t* posv = ccv_array_new(sizeof(ccv_dpm_feature_vector_t), posnum, 0); | |||
| 389 | for (i = 0; i < posnum; i++) | |||
| 390 | { | |||
| 391 | ccv_rect_t bbox = bboxes[i]; | |||
| 392 | int mcols = (int)(sqrtf(bbox.width * bbox.height * cols / (float)rows) + 0.5); | |||
| 393 | int mrows = (int)(sqrtf(bbox.width * bbox.height * rows / (float)cols) + 0.5); | |||
| 394 | bbox.x = bbox.x + (bbox.width - mcols) / 2; | |||
| 395 | bbox.y = bbox.y + (bbox.height - mrows) / 2; | |||
| 396 | bbox.width = mcols; | |||
| 397 | bbox.height = mrows; | |||
| 398 | ccv_dpm_feature_vector_t vector = { | |||
| 399 | .id = id, | |||
| 400 | .count = 0, | |||
| 401 | .part = 0, | |||
| 402 | }; | |||
| 403 | // resolution is too low to be useful | |||
| 404 | if (mcols * 2 < cols * CCV_DPM_WINDOW_SIZE(8) || mrows * 2 < rows * CCV_DPM_WINDOW_SIZE(8)) | |||
| 405 | { | |||
| 406 | vector.root.w = 0; | |||
| 407 | ccv_array_push(posv, &vector); | |||
| 408 | continue; | |||
| 409 | } | |||
| 410 | ccv_dense_matrix_t* image = 0; | |||
| 411 | ccv_read(posfiles[i], &image, (grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE)ccv_read_impl(posfiles[i], &image, (grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE, 0, 0, 0); | |||
| 412 | assert(image != 0)((void) sizeof ((image != 0) ? 1 : 0), __extension__ ({ if (image != 0) ; else __assert_fail ("image != 0", "ccv_dpm.c", 412, __extension__ __PRETTY_FUNCTION__); })); | |||
| 413 | ccv_dense_matrix_t* up2x = 0; | |||
| 414 | ccv_sample_up(image, &up2x, 0, 0, 0); | |||
| 415 | ccv_matrix_free(image); | |||
| 416 | ccv_dense_matrix_t* slice = 0; | |||
| 417 | ccv_slice(up2x, (ccv_matrix_t**)&slice, 0, bbox.y * 2, bbox.x * 2, bbox.height * 2, bbox.width * 2); | |||
| 418 | ccv_matrix_free(up2x); | |||
| 419 | ccv_dense_matrix_t* resize = 0; | |||
| 420 | ccv_resample(slice, &resize, 0, (double)(rows * CCV_DPM_WINDOW_SIZE(8)) / (double)slice->rows, (double)(cols * CCV_DPM_WINDOW_SIZE(8)) / (double)slice->cols, CCV_INTER_AREA); | |||
| 421 | ccv_matrix_free(slice); | |||
| 422 | ccv_dense_matrix_t* hog = 0; | |||
| 423 | ccv_hog(resize, &hog, 0, 9, CCV_DPM_WINDOW_SIZE(8)); | |||
| 424 | ccv_matrix_free(resize); | |||
| 425 | ccv_make_matrix_mutable(hog); | |||
| 426 | assert(hog->rows == rows && hog->cols == cols && CCV_GET_CHANNEL(hog->type) == 31 && CCV_GET_DATA_TYPE(hog->type) == CCV_32F)((void) sizeof ((hog->rows == rows && hog->cols == cols && ((hog->type) & 0xFFF) == 31 && ((hog->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (hog->rows == rows && hog->cols == cols && ((hog->type) & 0xFFF) == 31 && ((hog->type ) & 0xFF000) == CCV_32F) ; else __assert_fail ("hog->rows == rows && hog->cols == cols && CCV_GET_CHANNEL(hog->type) == 31 && CCV_GET_DATA_TYPE(hog->type) == CCV_32F" , "ccv_dpm.c", 426, __extension__ __PRETTY_FUNCTION__); })); | |||
| 427 | vector.root.w = hog; | |||
| 428 | ccv_array_push(posv, &vector); | |||
| 429 | FLUSH(CCV_CLI_INFO, " - generating positive examples for model %d : %d / %d", id, i + 1, posnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - generating positive examples for model %d : %d / %d" , id, i + 1, posnum); fflush(stdout); } } while (0); | |||
| 430 | } | |||
| 431 | return posv; | |||
| 432 | } | |||
| 433 | ||||
| 434 | static void _ccv_dpm_initialize_root_classifier(gsl_rng* rng, ccv_dpm_root_classifier_t* root_classifier, int label, int cnum, int* poslabels, ccv_array_t* posex, int* neglabels, ccv_array_t* negex, double C, int symmetric, int grayscale) | |||
| 435 | { | |||
| 436 | int i, j, x, y, k, l; | |||
| 437 | int cols = root_classifier->root.w->cols; | |||
| 438 | int cols2c = (cols + 1) / 2; | |||
| 439 | int rows = root_classifier->root.w->rows; | |||
| 440 | PRINT(CCV_CLI_INFO, " - creating initial model %d at %dx%d\n", label + 1, cols, rows)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - creating initial model %d at %dx%d\n", label + 1, cols, rows ); fflush(stdout); } } while (0); | |||
| 441 | struct problem prob; | |||
| 442 | prob.n = symmetric ? 31 * cols2c * rows + 1 : 31 * cols * rows + 1; | |||
| 443 | prob.bias = symmetric ? 0.5 : 1.0; // for symmetric, since we only pass half features in, need to set bias to be half too | |||
| 444 | // new version (1.91) of liblinear uses double instead of int (1.8) for prob.y, cannot cast for that. | |||
| 445 | prob.y = malloc(sizeof(prob.y[0]) * (cnum + negex->rnum) * (!!symmetric + 1)); | |||
| 446 | prob.x = (struct feature_node**)malloc(sizeof(struct feature_node*) * (cnum + negex->rnum) * (!!symmetric + 1)); | |||
| 447 | FLUSH(CCV_CLI_INFO, " - converting examples to liblinear format: %d / %d", 0, (cnum + negex->rnum) * (!!symmetric + 1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - converting examples to liblinear format: %d / %d" , 0, (cnum + negex->rnum) * (!!symmetric + 1)); fflush(stdout ); } } while (0); | |||
| 448 | l = 0; | |||
| 449 | for (i = 0; i < posex->rnum; i++) | |||
| 450 | if (poslabels[i] == label) | |||
| 451 | { | |||
| 452 | ccv_dense_matrix_t* hog = ((ccv_dpm_feature_vector_t*)ccv_array_get(posex, i)((void*)(((char*)((posex)->data)) + (size_t)(posex)->rsize * (size_t)(i))))->root.w; | |||
| 453 | if (!hog) | |||
| 454 | continue; | |||
| 455 | struct feature_node* features; | |||
| 456 | if (symmetric) | |||
| 457 | { | |||
| 458 | features = (struct feature_node*)malloc(sizeof(struct feature_node) * (31 * cols2c * rows + 2)); | |||
| 459 | float* hptr = hog->data.f32; | |||
| 460 | j = 0; | |||
| 461 | for (y = 0; y < rows; y++) | |||
| 462 | { | |||
| 463 | for (x = 0; x < cols2c; x++) | |||
| 464 | for (k = 0; k < 31; k++) | |||
| 465 | { | |||
| 466 | features[j].index = j + 1; | |||
| 467 | features[j].value = hptr[x * 31 + k]; | |||
| 468 | ++j; | |||
| 469 | } | |||
| 470 | hptr += hog->cols * 31; | |||
| 471 | } | |||
| 472 | features[j].index = j + 1; | |||
| 473 | features[j].value = prob.bias; | |||
| 474 | features[j + 1].index = -1; | |||
| 475 | prob.x[l] = features; | |||
| 476 | prob.y[l] = 1; | |||
| 477 | ++l; | |||
| 478 | features = (struct feature_node*)malloc(sizeof(struct feature_node) * (31 * cols2c * rows + 2)); | |||
| 479 | hptr = hog->data.f32; | |||
| 480 | j = 0; | |||
| 481 | for (y = 0; y < rows; y++) | |||
| 482 | { | |||
| 483 | for (x = 0; x < cols2c; x++) | |||
| 484 | for (k = 0; k < 31; k++) | |||
| 485 | { | |||
| 486 | features[j].index = j + 1; | |||
| 487 | features[j].value = hptr[(cols - 1 - x) * 31 + _ccv_dpm_sym_lut[k]]; | |||
| 488 | ++j; | |||
| 489 | } | |||
| 490 | hptr += hog->cols * 31; | |||
| 491 | } | |||
| 492 | features[j].index = j + 1; | |||
| 493 | features[j].value = prob.bias; | |||
| 494 | features[j + 1].index = -1; | |||
| 495 | prob.x[l] = features; | |||
| 496 | prob.y[l] = 1; | |||
| 497 | ++l; | |||
| 498 | } else { | |||
| 499 | features = (struct feature_node*)malloc(sizeof(struct feature_node) * (31 * cols * rows + 2)); | |||
| 500 | for (j = 0; j < rows * cols * 31; j++) | |||
| 501 | { | |||
| 502 | features[j].index = j + 1; | |||
| 503 | features[j].value = hog->data.f32[j]; | |||
| 504 | } | |||
| 505 | features[31 * rows * cols].index = 31 * rows * cols + 1; | |||
| 506 | features[31 * rows * cols].value = prob.bias; | |||
| 507 | features[31 * rows * cols + 1].index = -1; | |||
| 508 | prob.x[l] = features; | |||
| 509 | prob.y[l] = 1; | |||
| 510 | ++l; | |||
| 511 | } | |||
| 512 | FLUSH(CCV_CLI_INFO, " - converting examples to liblinear format: %d / %d", l, (cnum + negex->rnum) * (!!symmetric + 1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - converting examples to liblinear format: %d / %d" , l, (cnum + negex->rnum) * (!!symmetric + 1)); fflush(stdout ); } } while (0); | |||
| 513 | } | |||
| 514 | for (i = 0; i < negex->rnum; i++) | |||
| 515 | if (neglabels[i] == label) | |||
| 516 | { | |||
| 517 | ccv_dense_matrix_t* hog = ((ccv_dpm_feature_vector_t*)ccv_array_get(negex, i)((void*)(((char*)((negex)->data)) + (size_t)(negex)->rsize * (size_t)(i))))->root.w; | |||
| 518 | struct feature_node* features; | |||
| 519 | if (symmetric) | |||
| 520 | { | |||
| 521 | features = (struct feature_node*)malloc(sizeof(struct feature_node) * (31 * cols2c * rows + 2)); | |||
| 522 | float* hptr = hog->data.f32; | |||
| 523 | j = 0; | |||
| 524 | for (y = 0; y < rows; y++) | |||
| 525 | { | |||
| 526 | for (x = 0; x < cols2c; x++) | |||
| 527 | for (k = 0; k < 31; k++) | |||
| 528 | { | |||
| 529 | features[j].index = j + 1; | |||
| 530 | features[j].value = hptr[x * 31 + k]; | |||
| 531 | ++j; | |||
| 532 | } | |||
| 533 | hptr += hog->cols * 31; | |||
| 534 | } | |||
| 535 | features[j].index = j + 1; | |||
| 536 | features[j].value = prob.bias; | |||
| 537 | features[j + 1].index = -1; | |||
| 538 | prob.x[l] = features; | |||
| 539 | prob.y[l] = -1; | |||
| 540 | ++l; | |||
| 541 | features = (struct feature_node*)malloc(sizeof(struct feature_node) * (31 * cols2c * rows + 2)); | |||
| 542 | hptr = hog->data.f32; | |||
| 543 | j = 0; | |||
| 544 | for (y = 0; y < rows; y++) | |||
| 545 | { | |||
| 546 | for (x = 0; x < cols2c; x++) | |||
| 547 | for (k = 0; k < 31; k++) | |||
| 548 | { | |||
| 549 | features[j].index = j + 1; | |||
| 550 | features[j].value = hptr[(cols - 1 - x) * 31 + _ccv_dpm_sym_lut[k]]; | |||
| 551 | ++j; | |||
| 552 | } | |||
| 553 | hptr += hog->cols * 31; | |||
| 554 | } | |||
| 555 | features[j].index = j + 1; | |||
| 556 | features[j].value = prob.bias; | |||
| 557 | features[j + 1].index = -1; | |||
| 558 | prob.x[l] = features; | |||
| 559 | prob.y[l] = -1; | |||
| 560 | ++l; | |||
| 561 | } else { | |||
| 562 | features = (struct feature_node*)malloc(sizeof(struct feature_node) * (31 * cols * rows + 2)); | |||
| 563 | for (j = 0; j < 31 * rows * cols; j++) | |||
| 564 | { | |||
| 565 | features[j].index = j + 1; | |||
| 566 | features[j].value = hog->data.f32[j]; | |||
| 567 | } | |||
| 568 | features[31 * rows * cols].index = 31 * rows * cols + 1; | |||
| 569 | features[31 * rows * cols].value = prob.bias; | |||
| 570 | features[31 * rows * cols + 1].index = -1; | |||
| 571 | prob.x[l] = features; | |||
| 572 | prob.y[l] = -1; | |||
| 573 | ++l; | |||
| 574 | } | |||
| 575 | FLUSH(CCV_CLI_INFO, " - converting examples to liblinear format: %d / %d", l, (cnum + negex->rnum) * (!!symmetric + 1))do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - converting examples to liblinear format: %d / %d" , l, (cnum + negex->rnum) * (!!symmetric + 1)); fflush(stdout ); } } while (0); | |||
| 576 | } | |||
| 577 | prob.l = l; | |||
| 578 | PRINT(CCV_CLI_INFO, "\n - generated %d examples with %d dimensions each\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n - generated %d examples with %d dimensions each\n" " - running liblinear for initial linear SVM model (L2-regularized, L1-loss)\n" , prob.l, prob.n); fflush(stdout); } } while (0) | |||
| 579 | " - running liblinear for initial linear SVM model (L2-regularized, L1-loss)\n", prob.l, prob.n)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n - generated %d examples with %d dimensions each\n" " - running liblinear for initial linear SVM model (L2-regularized, L1-loss)\n" , prob.l, prob.n); fflush(stdout); } } while (0); | |||
| 580 | struct parameter linear_parameters = { .solver_type = L2R_L1LOSS_SVC_DUAL, | |||
| 581 | .eps = 1e-1, | |||
| 582 | .C = C, | |||
| 583 | .nr_weight = 0, | |||
| 584 | .weight_label = 0, | |||
| 585 | .weight = 0 }; | |||
| 586 | const char* err = check_parameter(&prob, &linear_parameters); | |||
| 587 | if (err) | |||
| 588 | { | |||
| 589 | PRINT(CCV_CLI_ERROR, " - ERROR: cannot pass check parameter: %s\n", err)do { if ((CCV_CLI_ERROR & ccv_cli_get_output_levels())) { printf(" - ERROR: cannot pass check parameter: %s\n", err); fflush (stdout); } } while (0); | |||
| 590 | exit(-1); | |||
| 591 | } | |||
| 592 | struct model* linear = train(&prob, &linear_parameters); | |||
| 593 | assert(linear != 0)((void) sizeof ((linear != 0) ? 1 : 0), __extension__ ({ if ( linear != 0) ; else __assert_fail ("linear != 0", "ccv_dpm.c" , 593, __extension__ __PRETTY_FUNCTION__); })); | |||
| 594 | PRINT(CCV_CLI_INFO, " - model->label[0]: %d, model->nr_class: %d, model->nr_feature: %d\n", linear->label[0], linear->nr_class, linear->nr_feature)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - model->label[0]: %d, model->nr_class: %d, model->nr_feature: %d\n" , linear->label[0], linear->nr_class, linear->nr_feature ); fflush(stdout); } } while (0); | |||
| 595 | if (symmetric) | |||
| 596 | { | |||
| 597 | float* wptr = root_classifier->root.w->data.f32; | |||
| 598 | for (y = 0; y < rows; y++) | |||
| 599 | { | |||
| 600 | for (x = 0; x < cols2c; x++) | |||
| 601 | for (k = 0; k < 31; k++) | |||
| 602 | wptr[(cols - 1 - x) * 31 + _ccv_dpm_sym_lut[k]] = wptr[x * 31 + k] = linear->w[(y * cols2c + x) * 31 + k]; | |||
| 603 | wptr += cols * 31; | |||
| 604 | } | |||
| 605 | // since for symmetric, lsvm only computed half features, to compensate that, we doubled the constant. | |||
| 606 | root_classifier->beta = linear->w[31 * rows * cols2c] * 2.0; | |||
| 607 | } else { | |||
| 608 | for (j = 0; j < 31 * rows * cols; j++) | |||
| 609 | root_classifier->root.w->data.f32[j] = linear->w[j]; | |||
| 610 | root_classifier->beta = linear->w[31 * rows * cols]; | |||
| 611 | } | |||
| 612 | free_and_destroy_model(&linear); | |||
| 613 | free(prob.y); | |||
| 614 | for (j = 0; j < prob.l; j++) | |||
| 615 | free(prob.x[j]); | |||
| 616 | free(prob.x); | |||
| 617 | ccv_make_matrix_immutable(root_classifier->root.w); | |||
| 618 | } | |||
| 619 | ||||
| 620 | static void _ccv_dpm_initialize_part_classifiers(ccv_dpm_root_classifier_t* root_classifier, int parts, int symmetric) | |||
| 621 | { | |||
| 622 | int i, j, k, x, y; | |||
| 623 | ccv_dense_matrix_t* w = 0; | |||
| 624 | ccv_sample_up(root_classifier->root.w, &w, 0, 0, 0); | |||
| 625 | ccv_make_matrix_mutable(w); | |||
| 626 | root_classifier->count = parts; | |||
| 627 | root_classifier->part = (ccv_dpm_part_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_part_classifier_t) * parts); | |||
| 628 | memset(root_classifier->part, 0, sizeof(ccv_dpm_part_classifier_t) * parts); | |||
| 629 | double area = w->rows * w->cols / (double)parts; | |||
| 630 | for (i = 0; i < parts;) | |||
| 631 | { | |||
| 632 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + i; | |||
| 633 | int dx = 0, dy = 0, dw = 0, dh = 0, sym = 0; | |||
| 634 | double dsum = -1.0; // absolute value, thus, -1.0 is enough | |||
| 635 | #define slice_and_update_if_needed(y, x, l, n, s){ ccv_dense_matrix_t* slice = 0; ccv_slice(w, (ccv_matrix_t** )&slice, 0, y, x, l, n); double sum = ccv_sum(slice, CCV_UNSIGNED ) / (double)(l * n); if (sum > dsum) { dsum = sum; dx = x; dy = y; dw = n; dh = l; sym = s; } ccv_matrix_free(slice); } \ | |||
| 636 | { \ | |||
| 637 | ccv_dense_matrix_t* slice = 0; \ | |||
| 638 | ccv_slice(w, (ccv_matrix_t**)&slice, 0, y, x, l, n); \ | |||
| 639 | double sum = ccv_sum(slice, CCV_UNSIGNED) / (double)(l * n); \ | |||
| 640 | if (sum > dsum) \ | |||
| 641 | { \ | |||
| 642 | dsum = sum; \ | |||
| 643 | dx = x; \ | |||
| 644 | dy = y; \ | |||
| 645 | dw = n; \ | |||
| 646 | dh = l; \ | |||
| 647 | sym = s; \ | |||
| 648 | } \ | |||
| 649 | ccv_matrix_free(slice); \ | |||
| 650 | } | |||
| 651 | for (j = 1; (j < area + 1) && (j * 3 <= w->rows * 2); j++) | |||
| 652 | { | |||
| 653 | k = (int)(area / j + 0.5); | |||
| 654 | if (k < 1 || k * 3 > w->cols * 2) | |||
| 655 | continue; | |||
| 656 | if (j > k * 2 || k > j * 2) | |||
| 657 | continue; | |||
| 658 | if (symmetric) | |||
| 659 | { | |||
| 660 | if (k % 2 == w->cols % 2) // can be symmetric in horizontal center | |||
| 661 | { | |||
| 662 | x = (w->cols - k) / 2; | |||
| 663 | for (y = 0; y < w->rows - j + 1; y++) | |||
| 664 | slice_and_update_if_needed(y, x, j, k, 0){ ccv_dense_matrix_t* slice = 0; ccv_slice(w, (ccv_matrix_t** )&slice, 0, y, x, j, k); double sum = ccv_sum(slice, CCV_UNSIGNED ) / (double)(j * k); if (sum > dsum) { dsum = sum; dx = x; dy = y; dw = k; dh = j; sym = 0; } ccv_matrix_free(slice); }; | |||
| 665 | } | |||
| 666 | if (i < parts - 1) // have 2 locations | |||
| 667 | { | |||
| 668 | for (y = 0; y < w->rows - j + 1; y++) | |||
| 669 | for (x = 0; x <= w->cols / 2 - k /* to avoid overlapping */; x++) | |||
| 670 | slice_and_update_if_needed(y, x, j, k, 1){ ccv_dense_matrix_t* slice = 0; ccv_slice(w, (ccv_matrix_t** )&slice, 0, y, x, j, k); double sum = ccv_sum(slice, CCV_UNSIGNED ) / (double)(j * k); if (sum > dsum) { dsum = sum; dx = x; dy = y; dw = k; dh = j; sym = 1; } ccv_matrix_free(slice); }; | |||
| 671 | } | |||
| 672 | } else { | |||
| 673 | for (y = 0; y < w->rows - j + 1; y++) | |||
| 674 | for (x = 0; x < w->cols - k + 1; x++) | |||
| 675 | slice_and_update_if_needed(y, x, j, k, 0){ ccv_dense_matrix_t* slice = 0; ccv_slice(w, (ccv_matrix_t** )&slice, 0, y, x, j, k); double sum = ccv_sum(slice, CCV_UNSIGNED ) / (double)(j * k); if (sum > dsum) { dsum = sum; dx = x; dy = y; dw = k; dh = j; sym = 0; } ccv_matrix_free(slice); }; | |||
| 676 | } | |||
| 677 | } | |||
| 678 | PRINT(CCV_CLI_INFO, " ---- part %d(%d) %dx%d at (%d,%d), entropy: %lf\n", i + 1, parts, dw, dh, dx, dy, dsum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" ---- part %d(%d) %dx%d at (%d,%d), entropy: %lf\n", i + 1, parts, dw, dh, dx, dy, dsum); fflush(stdout); } } while (0); | |||
| 679 | part_classifier->dx = 0; | |||
| 680 | part_classifier->dy = 0; | |||
| 681 | part_classifier->dxx = 0.1f; | |||
| 682 | part_classifier->dyy = 0.1f; | |||
| 683 | part_classifier->x = dx; | |||
| 684 | part_classifier->y = dy; | |||
| 685 | part_classifier->z = 1; | |||
| 686 | part_classifier->w = 0; | |||
| 687 | ccv_slice(w, (ccv_matrix_t**)&part_classifier->w, 0, dy, dx, dh, dw); | |||
| 688 | ccv_make_matrix_immutable(part_classifier->w); | |||
| 689 | /* clean up the region we selected */ | |||
| 690 | float* w_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | 31, w, dy, dx, 0)(((CCV_32F | 31) & CCV_32S) ? (void*)((w)->data.i32 + ( (dy) * (w)->cols + (dx)) * ((CCV_32F | 31) & 0xFFF) + ( 0)) : (((CCV_32F | 31) & CCV_32F) ? (void*)((w)->data. f32+ ((dy) * (w)->cols + (dx)) * ((CCV_32F | 31) & 0xFFF ) + (0)) : (((CCV_32F | 31) & CCV_64S) ? (void*)((w)-> data.i64+ ((dy) * (w)->cols + (dx)) * ((CCV_32F | 31) & 0xFFF) + (0)) : (((CCV_32F | 31) & CCV_64F) ? (void*)((w )->data.f64 + ((dy) * (w)->cols + (dx)) * ((CCV_32F | 31 ) & 0xFFF) + (0)) : (void*)((w)->data.u8 + (dy) * (w)-> step + (dx) * ((CCV_32F | 31) & 0xFFF) + (0)))))); | |||
| 691 | for (y = 0; y < dh; y++) | |||
| 692 | { | |||
| 693 | for (x = 0; x < dw * 31; x++) | |||
| 694 | w_ptr[x] = 0; | |||
| 695 | w_ptr += w->cols * 31; | |||
| 696 | } | |||
| 697 | i++; | |||
| 698 | if (symmetric && sym) // add counter-part | |||
| 699 | { | |||
| 700 | dx = w->cols - (dx + dw); | |||
| 701 | PRINT(CCV_CLI_INFO, " ---- part %d(%d) %dx%d at (%d,%d), entropy: %lf\n", i + 1, parts, dw, dh, dx, dy, dsum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" ---- part %d(%d) %dx%d at (%d,%d), entropy: %lf\n", i + 1, parts, dw, dh, dx, dy, dsum); fflush(stdout); } } while (0); | |||
| 702 | part_classifier[1].dx = 0; | |||
| 703 | part_classifier[1].dy = 0; | |||
| 704 | part_classifier[1].dxx = 0.1f; | |||
| 705 | part_classifier[1].dyy = 0.1f; | |||
| 706 | part_classifier[1].x = dx; | |||
| 707 | part_classifier[1].y = dy; | |||
| 708 | part_classifier[1].z = 1; | |||
| 709 | part_classifier[1].w = 0; | |||
| 710 | ccv_slice(w, (ccv_matrix_t**)&part_classifier[1].w, 0, dy, dx, dh, dw); | |||
| 711 | ccv_make_matrix_immutable(part_classifier[1].w); | |||
| 712 | /* clean up the region we selected */ | |||
| 713 | float* w_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | 31, w, dy, dx, 0)(((CCV_32F | 31) & CCV_32S) ? (void*)((w)->data.i32 + ( (dy) * (w)->cols + (dx)) * ((CCV_32F | 31) & 0xFFF) + ( 0)) : (((CCV_32F | 31) & CCV_32F) ? (void*)((w)->data. f32+ ((dy) * (w)->cols + (dx)) * ((CCV_32F | 31) & 0xFFF ) + (0)) : (((CCV_32F | 31) & CCV_64S) ? (void*)((w)-> data.i64+ ((dy) * (w)->cols + (dx)) * ((CCV_32F | 31) & 0xFFF) + (0)) : (((CCV_32F | 31) & CCV_64F) ? (void*)((w )->data.f64 + ((dy) * (w)->cols + (dx)) * ((CCV_32F | 31 ) & 0xFFF) + (0)) : (void*)((w)->data.u8 + (dy) * (w)-> step + (dx) * ((CCV_32F | 31) & 0xFFF) + (0)))))); | |||
| 714 | for (y = 0; y < dh; y++) | |||
| 715 | { | |||
| 716 | for (x = 0; x < dw * 31; x++) | |||
| 717 | w_ptr[x] = 0; | |||
| 718 | w_ptr += w->cols * 31; | |||
| 719 | } | |||
| 720 | part_classifier[0].counterpart = i; | |||
| 721 | part_classifier[1].counterpart = i - 1; | |||
| 722 | i++; | |||
| 723 | } else { | |||
| 724 | part_classifier->counterpart = -1; | |||
| 725 | } | |||
| 726 | } | |||
| 727 | ccv_matrix_free(w); | |||
| 728 | } | |||
| 729 | ||||
| 730 | static void _ccv_dpm_initialize_feature_vector_on_pattern(ccv_dpm_feature_vector_t* vector, ccv_dpm_root_classifier_t* root, int id) | |||
| 731 | { | |||
| 732 | int i; | |||
| 733 | vector->id = id; | |||
| 734 | vector->count = root->count; | |||
| 735 | vector->part = (ccv_dpm_part_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_part_classifier_t) * root->count); | |||
| 736 | vector->root.w = ccv_dense_matrix_new(root->root.w->rows, root->root.w->cols, CCV_32F | 31, 0, 0); | |||
| 737 | for (i = 0; i < vector->count; i++) | |||
| 738 | { | |||
| 739 | vector->part[i].x = root->part[i].x; | |||
| 740 | vector->part[i].y = root->part[i].y; | |||
| 741 | vector->part[i].z = root->part[i].z; | |||
| 742 | vector->part[i].w = ccv_dense_matrix_new(root->part[i].w->rows, root->part[i].w->cols, CCV_32F | 31, 0, 0); | |||
| 743 | } | |||
| 744 | } | |||
| 745 | ||||
| 746 | static void _ccv_dpm_feature_vector_cleanup(ccv_dpm_feature_vector_t* vector) | |||
| 747 | { | |||
| 748 | int i; | |||
| 749 | if (vector->root.w) | |||
| 750 | ccv_matrix_free(vector->root.w); | |||
| 751 | for (i = 0; i < vector->count; i++) | |||
| 752 | ccv_matrix_free(vector->part[i].w); | |||
| 753 | if (vector->part) | |||
| 754 | ccfreefree(vector->part); | |||
| 755 | } | |||
| 756 | ||||
| 757 | static void _ccv_dpm_feature_vector_free(ccv_dpm_feature_vector_t* vector) | |||
| 758 | { | |||
| 759 | _ccv_dpm_feature_vector_cleanup(vector); | |||
| 760 | ccfreefree(vector); | |||
| 761 | } | |||
| 762 | ||||
| 763 | static double _ccv_dpm_vector_score(ccv_dpm_mixture_model_t* model, ccv_dpm_feature_vector_t* v) | |||
| 764 | { | |||
| 765 | if (v->id < 0 || v->id >= model->count) | |||
| 766 | return 0; | |||
| 767 | ccv_dpm_root_classifier_t* root_classifier = model->root + v->id; | |||
| 768 | double score = root_classifier->beta; | |||
| 769 | int i, k, ch = CCV_GET_CHANNEL(v->root.w->type)((v->root.w->type) & 0xFFF); | |||
| 770 | assert(ch == 31)((void) sizeof ((ch == 31) ? 1 : 0), __extension__ ({ if (ch == 31) ; else __assert_fail ("ch == 31", "ccv_dpm.c", 770, __extension__ __PRETTY_FUNCTION__); })); | |||
| 771 | float *vptr = v->root.w->data.f32; | |||
| 772 | float *wptr = root_classifier->root.w->data.f32; | |||
| 773 | for (i = 0; i < v->root.w->rows * v->root.w->cols * ch; i++) | |||
| 774 | score += wptr[i] * vptr[i]; | |||
| 775 | assert(v->count == root_classifier->count || (v->count == 0 && v->part == 0))((void) sizeof ((v->count == root_classifier->count || ( v->count == 0 && v->part == 0)) ? 1 : 0), __extension__ ({ if (v->count == root_classifier->count || (v->count == 0 && v->part == 0)) ; else __assert_fail ("v->count == root_classifier->count || (v->count == 0 && v->part == 0)" , "ccv_dpm.c", 775, __extension__ __PRETTY_FUNCTION__); })); | |||
| 776 | for (k = 0; k < v->count; k++) | |||
| 777 | { | |||
| 778 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + k; | |||
| 779 | ccv_dpm_part_classifier_t* part_vector = v->part + k; | |||
| 780 | score -= part_classifier->dx * part_vector->dx; | |||
| 781 | score -= part_classifier->dxx * part_vector->dxx; | |||
| 782 | score -= part_classifier->dy * part_vector->dy; | |||
| 783 | score -= part_classifier->dyy * part_vector->dyy; | |||
| 784 | vptr = part_vector->w->data.f32; | |||
| 785 | wptr = part_classifier->w->data.f32; | |||
| 786 | for (i = 0; i < part_vector->w->rows * part_vector->w->cols * ch; i++) | |||
| 787 | score += wptr[i] * vptr[i]; | |||
| 788 | } | |||
| 789 | return score; | |||
| 790 | } | |||
| 791 | ||||
| 792 | static void _ccv_dpm_collect_feature_vector(ccv_dpm_feature_vector_t* v, float score, int x, int y, ccv_dense_matrix_t* pyr, ccv_dense_matrix_t* detail, ccv_dense_matrix_t** dx, ccv_dense_matrix_t** dy) | |||
| 793 | { | |||
| 794 | v->score = score; | |||
| 795 | v->x = x; | |||
| 796 | v->y = y; | |||
| 797 | ccv_zero(v->root.w); | |||
| 798 | int rwh = (v->root.w->rows - 1) / 2, rww = (v->root.w->cols - 1) / 2; | |||
| 799 | int i, ix, iy, ch = CCV_GET_CHANNEL(v->root.w->type)((v->root.w->type) & 0xFFF); | |||
| 800 | float* h_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | ch, pyr, y - rwh, x - rww, 0)(((CCV_32F | ch) & CCV_32S) ? (void*)((pyr)->data.i32 + ((y - rwh) * (pyr)->cols + (x - rww)) * ((CCV_32F | ch) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_32F) ? (void*)((pyr )->data.f32+ ((y - rwh) * (pyr)->cols + (x - rww)) * (( CCV_32F | ch) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_64S ) ? (void*)((pyr)->data.i64+ ((y - rwh) * (pyr)->cols + (x - rww)) * ((CCV_32F | ch) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_64F) ? (void*)((pyr)->data.f64 + ((y - rwh ) * (pyr)->cols + (x - rww)) * ((CCV_32F | ch) & 0xFFF ) + (0)) : (void*)((pyr)->data.u8 + (y - rwh) * (pyr)-> step + (x - rww) * ((CCV_32F | ch) & 0xFFF) + (0)))))); | |||
| 801 | float* w_ptr = v->root.w->data.f32; | |||
| 802 | for (iy = 0; iy < v->root.w->rows; iy++) | |||
| 803 | { | |||
| 804 | memcpy(w_ptr, h_ptr, v->root.w->cols * ch * sizeof(float)); | |||
| 805 | h_ptr += pyr->cols * ch; | |||
| 806 | w_ptr += v->root.w->cols * ch; | |||
| 807 | } | |||
| 808 | for (i = 0; i < v->count; i++) | |||
| 809 | { | |||
| 810 | ccv_dpm_part_classifier_t* part = v->part + i; | |||
| 811 | int pww = (part->w->cols - 1) / 2, pwh = (part->w->rows - 1) / 2; | |||
| 812 | int offy = part->y + pwh - rwh * 2; | |||
| 813 | int offx = part->x + pww - rww * 2; | |||
| 814 | iy = ccv_clamp(y * 2 + offy, pwh, detail->rows - part->w->rows + pwh)({ typeof (pwh) _a = (pwh); typeof (detail->rows - part-> w->rows + pwh) _b = (detail->rows - part->w->rows + pwh); typeof (y * 2 + offy) _x = (y * 2 + offy); (_x < _a ) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 815 | ix = ccv_clamp(x * 2 + offx, pww, detail->cols - part->w->cols + pww)({ typeof (pww) _a = (pww); typeof (detail->cols - part-> w->cols + pww) _b = (detail->cols - part->w->cols + pww); typeof (x * 2 + offx) _x = (x * 2 + offx); (_x < _a ) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 816 | int ry = ccv_get_dense_matrix_cell_value_by(CCV_32S | CCV_C1, dy[i], iy, ix, 0)(((CCV_32S | CCV_C1) & CCV_32S) ? (dy[i])->data.i32[(( iy) * (dy[i])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)] : (((CCV_32S | CCV_C1) & CCV_32F) ? (dy[i])-> data.f32[((iy) * (dy[i])->cols + (ix)) * ((CCV_32S | CCV_C1 ) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64S) ? (dy[i])->data.i64[((iy) * (dy[i])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64F ) ? (dy[i])->data.f64[((iy) * (dy[i])->cols + (ix)) * ( (CCV_32S | CCV_C1) & 0xFFF) + (0)] : (dy[i])->data.u8[ (iy) * (dy[i])->step + (ix) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)])))); | |||
| 817 | int rx = ccv_get_dense_matrix_cell_value_by(CCV_32S | CCV_C1, dx[i], iy, ix, 0)(((CCV_32S | CCV_C1) & CCV_32S) ? (dx[i])->data.i32[(( iy) * (dx[i])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)] : (((CCV_32S | CCV_C1) & CCV_32F) ? (dx[i])-> data.f32[((iy) * (dx[i])->cols + (ix)) * ((CCV_32S | CCV_C1 ) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64S) ? (dx[i])->data.i64[((iy) * (dx[i])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64F ) ? (dx[i])->data.f64[((iy) * (dx[i])->cols + (ix)) * ( (CCV_32S | CCV_C1) & 0xFFF) + (0)] : (dx[i])->data.u8[ (iy) * (dx[i])->step + (ix) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)])))); | |||
| 818 | part->dx = rx; // I am not sure if I need to flip the sign or not (confirmed, it should be this way) | |||
| 819 | part->dy = ry; | |||
| 820 | part->dxx = rx * rx; | |||
| 821 | part->dyy = ry * ry; | |||
| 822 | // deal with out-of-bound error | |||
| 823 | int start_y = ccv_max(0, iy - ry - pwh)({ typeof (0) _a = (0); typeof (iy - ry - pwh) _b = (iy - ry - pwh); (_a > _b) ? _a : _b; }); | |||
| 824 | assert(start_y < detail->rows)((void) sizeof ((start_y < detail->rows) ? 1 : 0), __extension__ ({ if (start_y < detail->rows) ; else __assert_fail ("start_y < detail->rows" , "ccv_dpm.c", 824, __extension__ __PRETTY_FUNCTION__); })); | |||
| 825 | int start_x = ccv_max(0, ix - rx - pww)({ typeof (0) _a = (0); typeof (ix - rx - pww) _b = (ix - rx - pww); (_a > _b) ? _a : _b; }); | |||
| 826 | assert(start_x < detail->cols)((void) sizeof ((start_x < detail->cols) ? 1 : 0), __extension__ ({ if (start_x < detail->cols) ; else __assert_fail ("start_x < detail->cols" , "ccv_dpm.c", 826, __extension__ __PRETTY_FUNCTION__); })); | |||
| 827 | int end_y = ccv_min(detail->rows, iy - ry - pwh + part->w->rows)({ typeof (detail->rows) _a = (detail->rows); typeof (iy - ry - pwh + part->w->rows) _b = (iy - ry - pwh + part ->w->rows); (_a < _b) ? _a : _b; }); | |||
| 828 | assert(end_y >= 0)((void) sizeof ((end_y >= 0) ? 1 : 0), __extension__ ({ if (end_y >= 0) ; else __assert_fail ("end_y >= 0", "ccv_dpm.c" , 828, __extension__ __PRETTY_FUNCTION__); })); | |||
| 829 | int end_x = ccv_min(detail->cols, ix - rx - pww + part->w->cols)({ typeof (detail->cols) _a = (detail->cols); typeof (ix - rx - pww + part->w->cols) _b = (ix - rx - pww + part ->w->cols); (_a < _b) ? _a : _b; }); | |||
| 830 | assert(end_x >= 0)((void) sizeof ((end_x >= 0) ? 1 : 0), __extension__ ({ if (end_x >= 0) ; else __assert_fail ("end_x >= 0", "ccv_dpm.c" , 830, __extension__ __PRETTY_FUNCTION__); })); | |||
| 831 | h_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | ch, detail, start_y, start_x, 0)(((CCV_32F | ch) & CCV_32S) ? (void*)((detail)->data.i32 + ((start_y) * (detail)->cols + (start_x)) * ((CCV_32F | ch ) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_32F) ? (void *)((detail)->data.f32+ ((start_y) * (detail)->cols + (start_x )) * ((CCV_32F | ch) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_64S) ? (void*)((detail)->data.i64+ ((start_y) * (detail )->cols + (start_x)) * ((CCV_32F | ch) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_64F) ? (void*)((detail)->data .f64 + ((start_y) * (detail)->cols + (start_x)) * ((CCV_32F | ch) & 0xFFF) + (0)) : (void*)((detail)->data.u8 + ( start_y) * (detail)->step + (start_x) * ((CCV_32F | ch) & 0xFFF) + (0)))))); | |||
| 832 | ccv_zero(v->part[i].w); | |||
| 833 | w_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | ch, part->w, start_y - (iy - ry - pwh), start_x - (ix - rx - pww), 0)(((CCV_32F | ch) & CCV_32S) ? (void*)((part->w)->data .i32 + ((start_y - (iy - ry - pwh)) * (part->w)->cols + (start_x - (ix - rx - pww))) * ((CCV_32F | ch) & 0xFFF) + (0)) : (((CCV_32F | ch) & CCV_32F) ? (void*)((part->w )->data.f32+ ((start_y - (iy - ry - pwh)) * (part->w)-> cols + (start_x - (ix - rx - pww))) * ((CCV_32F | ch) & 0xFFF ) + (0)) : (((CCV_32F | ch) & CCV_64S) ? (void*)((part-> w)->data.i64+ ((start_y - (iy - ry - pwh)) * (part->w)-> cols + (start_x - (ix - rx - pww))) * ((CCV_32F | ch) & 0xFFF ) + (0)) : (((CCV_32F | ch) & CCV_64F) ? (void*)((part-> w)->data.f64 + ((start_y - (iy - ry - pwh)) * (part->w) ->cols + (start_x - (ix - rx - pww))) * ((CCV_32F | ch) & 0xFFF) + (0)) : (void*)((part->w)->data.u8 + (start_y - (iy - ry - pwh)) * (part->w)->step + (start_x - (ix - rx - pww)) * ((CCV_32F | ch) & 0xFFF) + (0)))))); | |||
| 834 | for (iy = start_y; iy < end_y; iy++) | |||
| 835 | { | |||
| 836 | memcpy(w_ptr, h_ptr, (end_x - start_x) * ch * sizeof(float)); | |||
| 837 | h_ptr += detail->cols * ch; | |||
| 838 | w_ptr += part->w->cols * ch; | |||
| 839 | } | |||
| 840 | } | |||
| 841 | } | |||
| 842 | ||||
| 843 | static ccv_dpm_feature_vector_t* _ccv_dpm_collect_best(ccv_dense_matrix_t* image, ccv_dpm_mixture_model_t* model, ccv_rect_t bbox, double overlap, ccv_dpm_param_t params) | |||
| 844 | { | |||
| 845 | int i, j, k, x, y; | |||
| 846 | double scale = pow(2.0, 1.0 / (params.interval + 1.0)); | |||
| 847 | int next = params.interval + 1; | |||
| 848 | int scale_upto = _ccv_dpm_scale_upto(image, &model, 1, params.interval); | |||
| 849 | if (scale_upto < 0) | |||
| 850 | return 0; | |||
| 851 | ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca((scale_upto + next * 2) * sizeof(ccv_dense_matrix_t*))__builtin_alloca ((scale_upto + next * 2) * sizeof(ccv_dense_matrix_t *)); | |||
| 852 | _ccv_dpm_feature_pyramid(image, pyr, scale_upto, params.interval); | |||
| 853 | float best = -FLT_MAX3.40282347e+38F; | |||
| 854 | ccv_dpm_feature_vector_t* v = 0; | |||
| 855 | for (i = 0; i < model->count; i++) | |||
| 856 | { | |||
| 857 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 858 | double scale_x = 1.0; | |||
| 859 | double scale_y = 1.0; | |||
| 860 | for (j = next; j < scale_upto + next * 2; j++) | |||
| 861 | { | |||
| 862 | ccv_size_t size = ccv_size((int)(root_classifier->root.w->cols * CCV_DPM_WINDOW_SIZE(8) * scale_x + 0.5), (int)(root_classifier->root.w->rows * CCV_DPM_WINDOW_SIZE(8) * scale_y + 0.5)); | |||
| 863 | if (ccv_min((double)(size.width * size.height), (double)(bbox.width * bbox.height))({ typeof ((double)(size.width * size.height)) _a = ((double) (size.width * size.height)); typeof ((double)(bbox.width * bbox .height)) _b = ((double)(bbox.width * bbox.height)); (_a < _b) ? _a : _b; }) / | |||
| 864 | ccv_max((double)(bbox.width * bbox.height), (double)(size.width * size.height))({ typeof ((double)(bbox.width * bbox.height)) _a = ((double) (bbox.width * bbox.height)); typeof ((double)(size.width * size .height)) _b = ((double)(size.width * size.height)); (_a > _b) ? _a : _b; }) < overlap) | |||
| 865 | { | |||
| 866 | scale_x *= scale; | |||
| 867 | scale_y *= scale; | |||
| 868 | continue; | |||
| 869 | } | |||
| 870 | ccv_dense_matrix_t* root_feature = 0; | |||
| 871 | ccv_dense_matrix_t* part_feature[CCV_DPM_PART_MAX(10)]; | |||
| 872 | ccv_dense_matrix_t* dx[CCV_DPM_PART_MAX(10)]; | |||
| 873 | ccv_dense_matrix_t* dy[CCV_DPM_PART_MAX(10)]; | |||
| 874 | _ccv_dpm_compute_score(root_classifier, pyr[j], pyr[j - next], &root_feature, part_feature, dx, dy); | |||
| 875 | int rwh = (root_classifier->root.w->rows - 1) / 2, rww = (root_classifier->root.w->cols - 1) / 2; | |||
| 876 | int rwh_1 = root_classifier->root.w->rows / 2, rww_1 = root_classifier->root.w->cols / 2; | |||
| 877 | float* f_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | CCV_C1, root_feature, rwh, 0, 0)(((CCV_32F | CCV_C1) & CCV_32S) ? (void*)((root_feature)-> data.i32 + ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_32F ) ? (void*)((root_feature)->data.f32+ ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64S) ? (void*)((root_feature) ->data.i64+ ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64F ) ? (void*)((root_feature)->data.f64 + ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (void*)((root_feature)->data.u8 + (rwh) * (root_feature)-> step + (0) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)))))); | |||
| 878 | for (y = rwh; y < root_feature->rows - rwh_1; y++) | |||
| 879 | { | |||
| 880 | for (x = rww; x < root_feature->cols - rww_1; x++) | |||
| 881 | { | |||
| 882 | ccv_rect_t rect = ccv_rect((int)((x - rww) * CCV_DPM_WINDOW_SIZE(8) * scale_x + 0.5), (int)((y - rwh) * CCV_DPM_WINDOW_SIZE(8) * scale_y + 0.5), (int)(root_classifier->root.w->cols * CCV_DPM_WINDOW_SIZE(8) * scale_x + 0.5), (int)(root_classifier->root.w->rows * CCV_DPM_WINDOW_SIZE(8) * scale_y + 0.5)); | |||
| 883 | if ((double)(ccv_max(0, ccv_min(rect.x + rect.width, bbox.x + bbox.width) - ccv_max(rect.x, bbox.x))({ typeof (0) _a = (0); typeof (({ typeof (rect.x + rect.width ) _a = (rect.x + rect.width); typeof (bbox.x + bbox.width) _b = (bbox.x + bbox.width); (_a < _b) ? _a : _b; }) - ({ typeof (rect.x) _a = (rect.x); typeof (bbox.x) _b = (bbox.x); (_a > _b) ? _a : _b; })) _b = (({ typeof (rect.x + rect.width) _a = (rect.x + rect.width); typeof (bbox.x + bbox.width) _b = (bbox .x + bbox.width); (_a < _b) ? _a : _b; }) - ({ typeof (rect .x) _a = (rect.x); typeof (bbox.x) _b = (bbox.x); (_a > _b ) ? _a : _b; })); (_a > _b) ? _a : _b; }) * | |||
| 884 | ccv_max(0, ccv_min(rect.y + rect.height, bbox.y + bbox.height) - ccv_max(rect.y, bbox.y))({ typeof (0) _a = (0); typeof (({ typeof (rect.y + rect.height ) _a = (rect.y + rect.height); typeof (bbox.y + bbox.height) _b = (bbox.y + bbox.height); (_a < _b) ? _a : _b; }) - ({ typeof (rect.y) _a = (rect.y); typeof (bbox.y) _b = (bbox.y); (_a > _b) ? _a : _b; })) _b = (({ typeof (rect.y + rect.height) _a = (rect.y + rect.height); typeof (bbox.y + bbox.height) _b = (bbox.y + bbox.height); (_a < _b) ? _a : _b; }) - ({ typeof (rect.y) _a = (rect.y); typeof (bbox.y) _b = (bbox.y); (_a > _b) ? _a : _b; })); (_a > _b) ? _a : _b; })) / | |||
| 885 | (double)ccv_max(rect.width * rect.height, bbox.width * bbox.height)({ typeof (rect.width * rect.height) _a = (rect.width * rect. height); typeof (bbox.width * bbox.height) _b = (bbox.width * bbox.height); (_a > _b) ? _a : _b; }) >= overlap && f_ptr[x] > best) | |||
| 886 | { | |||
| 887 | // initialize v | |||
| 888 | if (v == 0) | |||
| 889 | { | |||
| 890 | v = (ccv_dpm_feature_vector_t*)ccmallocmalloc(sizeof(ccv_dpm_feature_vector_t)); | |||
| 891 | _ccv_dpm_initialize_feature_vector_on_pattern(v, root_classifier, i); | |||
| 892 | } | |||
| 893 | // if it is another kind, cleanup and reinitialize | |||
| 894 | if (v->id != i) | |||
| 895 | { | |||
| 896 | _ccv_dpm_feature_vector_cleanup(v); | |||
| 897 | _ccv_dpm_initialize_feature_vector_on_pattern(v, root_classifier, i); | |||
| 898 | } | |||
| 899 | _ccv_dpm_collect_feature_vector(v, f_ptr[x] + root_classifier->beta, x, y, pyr[j], pyr[j - next], dx, dy); | |||
| 900 | v->scale_x = scale_x; | |||
| 901 | v->scale_y = scale_y; | |||
| 902 | best = f_ptr[x]; | |||
| 903 | } | |||
| 904 | } | |||
| 905 | f_ptr += root_feature->cols; | |||
| 906 | } | |||
| 907 | for (k = 0; k < root_classifier->count; k++) | |||
| 908 | { | |||
| 909 | ccv_matrix_free(part_feature[k]); | |||
| 910 | ccv_matrix_free(dx[k]); | |||
| 911 | ccv_matrix_free(dy[k]); | |||
| 912 | } | |||
| 913 | ccv_matrix_free(root_feature); | |||
| 914 | scale_x *= scale; | |||
| 915 | scale_y *= scale; | |||
| 916 | } | |||
| 917 | } | |||
| 918 | for (i = 0; i < scale_upto + next * 2; i++) | |||
| 919 | ccv_matrix_free(pyr[i]); | |||
| 920 | return v; | |||
| 921 | } | |||
| 922 | ||||
| 923 | static ccv_array_t* _ccv_dpm_collect_all(gsl_rng* rng, ccv_dense_matrix_t* image, ccv_dpm_mixture_model_t* model, ccv_dpm_param_t params, float threshold) | |||
| 924 | { | |||
| 925 | int i, j, k, x, y; | |||
| 926 | double scale = pow(2.0, 1.0 / (params.interval + 1.0)); | |||
| 927 | int next = params.interval + 1; | |||
| 928 | int scale_upto = _ccv_dpm_scale_upto(image, &model, 1, params.interval); | |||
| 929 | if (scale_upto < 0) | |||
| 930 | return 0; | |||
| 931 | ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca((scale_upto + next * 2) * sizeof(ccv_dense_matrix_t*))__builtin_alloca ((scale_upto + next * 2) * sizeof(ccv_dense_matrix_t *)); | |||
| 932 | _ccv_dpm_feature_pyramid(image, pyr, scale_upto, params.interval); | |||
| 933 | ccv_array_t* av = ccv_array_new(sizeof(ccv_dpm_feature_vector_t*), 64, 0); | |||
| 934 | int enough = 64 / model->count; | |||
| 935 | int* order = (int*)alloca(sizeof(int) * model->count)__builtin_alloca (sizeof(int) * model->count); | |||
| 936 | for (i = 0; i < model->count; i++) | |||
| 937 | order[i] = i; | |||
| 938 | gsl_ran_shuffle(rng, order, model->count, sizeof(int)); | |||
| 939 | for (i = 0; i < model->count; i++) | |||
| 940 | { | |||
| 941 | ccv_dpm_root_classifier_t* root_classifier = model->root + order[i]; | |||
| 942 | double scale_x = 1.0; | |||
| 943 | double scale_y = 1.0; | |||
| 944 | for (j = next; j < scale_upto + next * 2; j++) | |||
| 945 | { | |||
| 946 | ccv_dense_matrix_t* root_feature = 0; | |||
| 947 | ccv_dense_matrix_t* part_feature[CCV_DPM_PART_MAX(10)]; | |||
| 948 | ccv_dense_matrix_t* dx[CCV_DPM_PART_MAX(10)]; | |||
| 949 | ccv_dense_matrix_t* dy[CCV_DPM_PART_MAX(10)]; | |||
| 950 | _ccv_dpm_compute_score(root_classifier, pyr[j], pyr[j - next], &root_feature, part_feature, dx, dy); | |||
| 951 | int rwh = (root_classifier->root.w->rows - 1) / 2, rww = (root_classifier->root.w->cols - 1) / 2; | |||
| 952 | int rwh_1 = root_classifier->root.w->rows / 2, rww_1 = root_classifier->root.w->cols / 2; | |||
| 953 | float* f_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | CCV_C1, root_feature, rwh, 0, 0)(((CCV_32F | CCV_C1) & CCV_32S) ? (void*)((root_feature)-> data.i32 + ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_32F ) ? (void*)((root_feature)->data.f32+ ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64S) ? (void*)((root_feature) ->data.i64+ ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64F ) ? (void*)((root_feature)->data.f64 + ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (void*)((root_feature)->data.u8 + (rwh) * (root_feature)-> step + (0) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)))))); | |||
| 954 | for (y = rwh; y < root_feature->rows - rwh_1; y++) | |||
| 955 | { | |||
| 956 | for (x = rww; x < root_feature->cols - rww_1; x++) | |||
| 957 | if (f_ptr[x] + root_classifier->beta > threshold) | |||
| 958 | { | |||
| 959 | // initialize v | |||
| 960 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccmallocmalloc(sizeof(ccv_dpm_feature_vector_t)); | |||
| 961 | _ccv_dpm_initialize_feature_vector_on_pattern(v, root_classifier, order[i]); | |||
| 962 | _ccv_dpm_collect_feature_vector(v, f_ptr[x] + root_classifier->beta, x, y, pyr[j], pyr[j - next], dx, dy); | |||
| 963 | v->scale_x = scale_x; | |||
| 964 | v->scale_y = scale_y; | |||
| 965 | ccv_array_push(av, &v); | |||
| 966 | if (av->rnum >= enough * (i + 1)) | |||
| 967 | break; | |||
| 968 | } | |||
| 969 | f_ptr += root_feature->cols; | |||
| 970 | if (av->rnum >= enough * (i + 1)) | |||
| 971 | break; | |||
| 972 | } | |||
| 973 | for (k = 0; k < root_classifier->count; k++) | |||
| 974 | { | |||
| 975 | ccv_matrix_free(part_feature[k]); | |||
| 976 | ccv_matrix_free(dx[k]); | |||
| 977 | ccv_matrix_free(dy[k]); | |||
| 978 | } | |||
| 979 | ccv_matrix_free(root_feature); | |||
| 980 | scale_x *= scale; | |||
| 981 | scale_y *= scale; | |||
| 982 | if (av->rnum >= enough * (i + 1)) | |||
| 983 | break; | |||
| 984 | } | |||
| 985 | } | |||
| 986 | for (i = 0; i < scale_upto + next * 2; i++) | |||
| 987 | ccv_matrix_free(pyr[i]); | |||
| 988 | return av; | |||
| 989 | } | |||
| 990 | ||||
| 991 | static void _ccv_dpm_collect_from_background(ccv_array_t* av, gsl_rng* rng, char** bgfiles, int bgnum, ccv_dpm_mixture_model_t* model, ccv_dpm_new_param_t params, float threshold) | |||
| 992 | { | |||
| 993 | int i, j; | |||
| 994 | int* order = (int*)ccmallocmalloc(sizeof(int) * bgnum); | |||
| 995 | for (i = 0; i < bgnum; i++) | |||
| 996 | order[i] = i; | |||
| 997 | gsl_ran_shuffle(rng, order, bgnum, sizeof(int)); | |||
| 998 | for (i = 0; i < bgnum; i++) | |||
| 999 | { | |||
| 1000 | FLUSH(CCV_CLI_INFO, " - collecting negative examples -- (%d%%)", av->rnum * 100 / params.negative_cache_size)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting negative examples -- (%d%%)" , av->rnum * 100 / params.negative_cache_size); fflush(stdout ); } } while (0); | |||
| 1001 | ccv_dense_matrix_t* image = 0; | |||
| 1002 | ccv_read(bgfiles[order[i]], &image, (params.grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE)ccv_read_impl(bgfiles[order[i]], &image, (params.grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE, 0, 0, 0); | |||
| 1003 | ccv_array_t* at = _ccv_dpm_collect_all(rng, image, model, params.detector, threshold); | |||
| 1004 | if (at) | |||
| 1005 | { | |||
| 1006 | for (j = 0; j < at->rnum; j++) | |||
| 1007 | ccv_array_push(av, ccv_array_get(at, j)((void*)(((char*)((at)->data)) + (size_t)(at)->rsize * ( size_t)(j)))); | |||
| 1008 | ccv_array_free(at); | |||
| 1009 | } | |||
| 1010 | ccv_matrix_free(image); | |||
| 1011 | if (av->rnum >= params.negative_cache_size) | |||
| 1012 | break; | |||
| 1013 | } | |||
| 1014 | ccfreefree(order); | |||
| 1015 | } | |||
| 1016 | ||||
| 1017 | static void _ccv_dpm_initialize_root_rectangle_estimator(ccv_dpm_mixture_model_t* model, char** posfiles, ccv_rect_t* bboxes, int posnum, ccv_dpm_new_param_t params) | |||
| 1018 | { | |||
| 1019 | int i, j, k, c; | |||
| 1020 | ccv_dpm_feature_vector_t** posv = (ccv_dpm_feature_vector_t**)ccmallocmalloc(sizeof(ccv_dpm_feature_vector_t*) * posnum); | |||
| 1021 | int* num_per_model = (int*)alloca(sizeof(int) * model->count)__builtin_alloca (sizeof(int) * model->count); | |||
| 1022 | memset(num_per_model, 0, sizeof(int) * model->count); | |||
| 1023 | FLUSH(CCV_CLI_INFO, " - collecting responses from positive examples : 0%%")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting responses from positive examples : 0%%" ); fflush(stdout); } } while (0); | |||
| 1024 | for (i = 0; i < posnum; i++) | |||
| 1025 | { | |||
| 1026 | FLUSH(CCV_CLI_INFO, " - collecting responses from positive examples : %d%%", i * 100 / posnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting responses from positive examples : %d%%" , i * 100 / posnum); fflush(stdout); } } while (0); | |||
| 1027 | ccv_dense_matrix_t* image = 0; | |||
| 1028 | ccv_read(posfiles[i], &image, (params.grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE)ccv_read_impl(posfiles[i], &image, (params.grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE, 0, 0, 0); | |||
| 1029 | posv[i] = _ccv_dpm_collect_best(image, model, bboxes[i], params.include_overlap, params.detector); | |||
| 1030 | if (posv[i]) | |||
| 1031 | ++num_per_model[posv[i]->id]; | |||
| 1032 | ccv_matrix_free(image); | |||
| 1033 | } | |||
| 1034 | // this will estimate new x, y, and scale | |||
| 1035 | PRINT(CCV_CLI_INFO, "\n - linear regression for x, y, and scale drifting\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n - linear regression for x, y, and scale drifting\n"); fflush (stdout); } } while (0); | |||
| 1036 | for (i = 0; i < model->count; i++) | |||
| 1037 | { | |||
| 1038 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 1039 | gsl_matrix* X = gsl_matrix_alloc(num_per_model[i], root_classifier->count * 2 + 1); | |||
| 1040 | gsl_vector* y[3]; | |||
| 1041 | y[0] = gsl_vector_alloc(num_per_model[i]); | |||
| 1042 | y[1] = gsl_vector_alloc(num_per_model[i]); | |||
| 1043 | y[2] = gsl_vector_alloc(num_per_model[i]); | |||
| 1044 | gsl_vector* z = gsl_vector_alloc(root_classifier->count * 2 + 1); | |||
| 1045 | gsl_matrix* cov = gsl_matrix_alloc(root_classifier->count * 2 + 1, root_classifier->count * 2 + 1);; | |||
| 1046 | c = 0; | |||
| 1047 | for (j = 0; j < posnum; j++) | |||
| 1048 | { | |||
| 1049 | ccv_dpm_feature_vector_t* v = posv[j]; | |||
| 1050 | if (v && v->id == i) | |||
| 1051 | { | |||
| 1052 | gsl_matrix_set(X, c, 0, 1.0); | |||
| 1053 | for (k = 0; k < v->count; k++) | |||
| 1054 | { | |||
| 1055 | gsl_matrix_set(X, c, k * 2 + 1, v->part[k].dx); | |||
| 1056 | gsl_matrix_set(X, c, k * 2 + 2, v->part[k].dy); | |||
| 1057 | } | |||
| 1058 | ccv_rect_t bbox = bboxes[j]; | |||
| 1059 | gsl_vector_set(y[0], c, (bbox.x + bbox.width * 0.5) / (v->scale_x * CCV_DPM_WINDOW_SIZE(8)) - v->x); | |||
| 1060 | gsl_vector_set(y[1], c, (bbox.y + bbox.height * 0.5) / (v->scale_y * CCV_DPM_WINDOW_SIZE(8)) - v->y); | |||
| 1061 | gsl_vector_set(y[2], c, sqrt((bbox.width * bbox.height) / (root_classifier->root.w->rows * v->scale_x * CCV_DPM_WINDOW_SIZE(8) * root_classifier->root.w->cols * v->scale_y * CCV_DPM_WINDOW_SIZE(8))) - 1.0); | |||
| 1062 | ++c; | |||
| 1063 | } | |||
| 1064 | } | |||
| 1065 | gsl_multifit_linear_workspace* workspace = gsl_multifit_linear_alloc(num_per_model[i], root_classifier->count * 2 + 1); | |||
| 1066 | double chisq; | |||
| 1067 | for (j = 0; j < 3; j++) | |||
| 1068 | { | |||
| 1069 | gsl_multifit_linear(X, y[j], z, cov, &chisq, workspace); | |||
| 1070 | root_classifier->alpha[j] = params.discard_estimating_constant ? 0 : gsl_vector_get(z, 0); | |||
| 1071 | for (k = 0; k < root_classifier->count; k++) | |||
| 1072 | { | |||
| 1073 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + k; | |||
| 1074 | part_classifier->alpha[j * 2] = gsl_vector_get(z, k * 2 + 1); | |||
| 1075 | part_classifier->alpha[j * 2 + 1] = gsl_vector_get(z, k * 2 + 2); | |||
| 1076 | } | |||
| 1077 | } | |||
| 1078 | gsl_multifit_linear_free(workspace); | |||
| 1079 | gsl_matrix_free(cov); | |||
| 1080 | gsl_vector_free(z); | |||
| 1081 | gsl_vector_free(y[0]); | |||
| 1082 | gsl_vector_free(y[1]); | |||
| 1083 | gsl_vector_free(y[2]); | |||
| 1084 | gsl_matrix_free(X); | |||
| 1085 | } | |||
| 1086 | for (i = 0; i < posnum; i++) | |||
| 1087 | if (posv[i]) | |||
| 1088 | _ccv_dpm_feature_vector_free(posv[i]); | |||
| 1089 | ccfreefree(posv); | |||
| 1090 | } | |||
| 1091 | ||||
| 1092 | static void _ccv_dpm_regularize_mixture_model(ccv_dpm_mixture_model_t* model, int i, double regz) | |||
| 1093 | { | |||
| 1094 | int k; | |||
| 1095 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 1096 | int ch = CCV_GET_CHANNEL(root_classifier->root.w->type)((root_classifier->root.w->type) & 0xFFF); | |||
| 1097 | ccv_make_matrix_mutable(root_classifier->root.w); | |||
| 1098 | float *wptr = root_classifier->root.w->data.f32; | |||
| 1099 | for (i = 0; i < root_classifier->root.w->rows * root_classifier->root.w->cols * ch; i++) | |||
| 1100 | wptr[i] -= regz * wptr[i]; | |||
| 1101 | ccv_make_matrix_immutable(root_classifier->root.w); | |||
| 1102 | root_classifier->beta -= regz * root_classifier->beta; | |||
| 1103 | for (k = 0; k < root_classifier->count; k++) | |||
| 1104 | { | |||
| 1105 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + k; | |||
| 1106 | ccv_make_matrix_mutable(part_classifier->w); | |||
| 1107 | wptr = part_classifier->w->data.f32; | |||
| 1108 | for (i = 0; i < part_classifier->w->rows * part_classifier->w->cols * ch; i++) | |||
| 1109 | wptr[i] -= regz * wptr[i]; | |||
| 1110 | ccv_make_matrix_immutable(part_classifier->w); | |||
| 1111 | part_classifier->dx -= regz * part_classifier->dx; | |||
| 1112 | part_classifier->dxx -= regz * part_classifier->dxx; | |||
| 1113 | part_classifier->dy -= regz * part_classifier->dy; | |||
| 1114 | part_classifier->dyy -= regz * part_classifier->dyy; | |||
| 1115 | part_classifier->dxx = ccv_max(0.01, part_classifier->dxx)({ typeof (0.01) _a = (0.01); typeof (part_classifier->dxx ) _b = (part_classifier->dxx); (_a > _b) ? _a : _b; }); | |||
| 1116 | part_classifier->dyy = ccv_max(0.01, part_classifier->dyy)({ typeof (0.01) _a = (0.01); typeof (part_classifier->dyy ) _b = (part_classifier->dyy); (_a > _b) ? _a : _b; }); | |||
| 1117 | } | |||
| 1118 | } | |||
| 1119 | ||||
| 1120 | static void _ccv_dpm_stochastic_gradient_descent(ccv_dpm_mixture_model_t* model, ccv_dpm_feature_vector_t* v, double y, double alpha, double Cn, int symmetric) | |||
| 1121 | { | |||
| 1122 | if (v->id < 0 || v->id >= model->count) | |||
| 1123 | return; | |||
| 1124 | ccv_dpm_root_classifier_t* root_classifier = model->root + v->id; | |||
| 1125 | int i, j, k, c, ch = CCV_GET_CHANNEL(v->root.w->type)((v->root.w->type) & 0xFFF); | |||
| 1126 | assert(ch == 31)((void) sizeof ((ch == 31) ? 1 : 0), __extension__ ({ if (ch == 31) ; else __assert_fail ("ch == 31", "ccv_dpm.c", 1126, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1127 | assert(v->root.w->rows == root_classifier->root.w->rows && v->root.w->cols == root_classifier->root.w->cols)((void) sizeof ((v->root.w->rows == root_classifier-> root.w->rows && v->root.w->cols == root_classifier ->root.w->cols) ? 1 : 0), __extension__ ({ if (v->root .w->rows == root_classifier->root.w->rows && v->root.w->cols == root_classifier->root.w->cols ) ; else __assert_fail ("v->root.w->rows == root_classifier->root.w->rows && v->root.w->cols == root_classifier->root.w->cols" , "ccv_dpm.c", 1127, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1128 | float *vptr = v->root.w->data.f32; | |||
| 1129 | ccv_make_matrix_mutable(root_classifier->root.w); | |||
| 1130 | float *wptr = root_classifier->root.w->data.f32; | |||
| 1131 | if (symmetric) | |||
| 1132 | { | |||
| 1133 | for (i = 0; i < v->root.w->rows; i++) | |||
| 1134 | { | |||
| 1135 | for (j = 0; j < v->root.w->cols; j++) | |||
| 1136 | for (c = 0; c < ch; c++) | |||
| 1137 | { | |||
| 1138 | wptr[j * ch + c] += alpha * y * Cn * vptr[j * ch + c]; | |||
| 1139 | wptr[j * ch + c] += alpha * y * Cn * vptr[(v->root.w->cols - 1 - j) * ch + _ccv_dpm_sym_lut[c]]; | |||
| 1140 | } | |||
| 1141 | vptr += v->root.w->cols * ch; | |||
| 1142 | wptr += root_classifier->root.w->cols * ch; | |||
| 1143 | } | |||
| 1144 | root_classifier->beta += alpha * y * Cn * 2.0; | |||
| 1145 | } else { | |||
| 1146 | for (i = 0; i < v->root.w->rows * v->root.w->cols * ch; i++) | |||
| 1147 | wptr[i] += alpha * y * Cn * vptr[i]; | |||
| 1148 | root_classifier->beta += alpha * y * Cn; | |||
| 1149 | } | |||
| 1150 | ccv_make_matrix_immutable(root_classifier->root.w); | |||
| 1151 | assert(v->count == root_classifier->count)((void) sizeof ((v->count == root_classifier->count) ? 1 : 0), __extension__ ({ if (v->count == root_classifier-> count) ; else __assert_fail ("v->count == root_classifier->count" , "ccv_dpm.c", 1151, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1152 | for (k = 0; k < v->count; k++) | |||
| 1153 | { | |||
| 1154 | ccv_dpm_part_classifier_t* part_classifier = root_classifier->part + k; | |||
| 1155 | ccv_make_matrix_mutable(part_classifier->w); | |||
| 1156 | ccv_dpm_part_classifier_t* part_vector = v->part + k; | |||
| 1157 | assert(part_vector->w->rows == part_classifier->w->rows && part_vector->w->cols == part_classifier->w->cols)((void) sizeof ((part_vector->w->rows == part_classifier ->w->rows && part_vector->w->cols == part_classifier ->w->cols) ? 1 : 0), __extension__ ({ if (part_vector-> w->rows == part_classifier->w->rows && part_vector ->w->cols == part_classifier->w->cols) ; else __assert_fail ("part_vector->w->rows == part_classifier->w->rows && part_vector->w->cols == part_classifier->w->cols" , "ccv_dpm.c", 1157, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1158 | part_classifier->dx -= alpha * y * Cn * part_vector->dx; | |||
| 1159 | part_classifier->dxx -= alpha * y * Cn * part_vector->dxx; | |||
| 1160 | part_classifier->dxx = ccv_max(part_classifier->dxx, 0.01)({ typeof (part_classifier->dxx) _a = (part_classifier-> dxx); typeof (0.01) _b = (0.01); (_a > _b) ? _a : _b; }); | |||
| 1161 | part_classifier->dy -= alpha * y * Cn * part_vector->dy; | |||
| 1162 | part_classifier->dyy -= alpha * y * Cn * part_vector->dyy; | |||
| 1163 | part_classifier->dyy = ccv_max(part_classifier->dyy, 0.01)({ typeof (part_classifier->dyy) _a = (part_classifier-> dyy); typeof (0.01) _b = (0.01); (_a > _b) ? _a : _b; }); | |||
| 1164 | vptr = part_vector->w->data.f32; | |||
| 1165 | wptr = part_classifier->w->data.f32; | |||
| 1166 | if (symmetric) | |||
| 1167 | { | |||
| 1168 | // 2x converge on everything for symmetric feature | |||
| 1169 | if (part_classifier->counterpart == -1) | |||
| 1170 | { | |||
| 1171 | part_classifier->dx += /* flip the sign on x-axis (symmetric) */ alpha * y * Cn * part_vector->dx; | |||
| 1172 | part_classifier->dxx -= alpha * y * Cn * part_vector->dxx; | |||
| 1173 | part_classifier->dxx = ccv_max(part_classifier->dxx, 0.01)({ typeof (part_classifier->dxx) _a = (part_classifier-> dxx); typeof (0.01) _b = (0.01); (_a > _b) ? _a : _b; }); | |||
| 1174 | part_classifier->dy -= alpha * y * Cn * part_vector->dy; | |||
| 1175 | part_classifier->dyy -= alpha * y * Cn * part_vector->dyy; | |||
| 1176 | part_classifier->dyy = ccv_max(part_classifier->dyy, 0.01)({ typeof (part_classifier->dyy) _a = (part_classifier-> dyy); typeof (0.01) _b = (0.01); (_a > _b) ? _a : _b; }); | |||
| 1177 | for (i = 0; i < part_vector->w->rows; i++) | |||
| 1178 | { | |||
| 1179 | for (j = 0; j < part_vector->w->cols; j++) | |||
| 1180 | for (c = 0; c < ch; c++) | |||
| 1181 | { | |||
| 1182 | wptr[j * ch + c] += alpha * y * Cn * vptr[j * ch + c]; | |||
| 1183 | wptr[j * ch + c] += alpha * y * Cn * vptr[(part_vector->w->cols - 1 - j) * ch + _ccv_dpm_sym_lut[c]]; | |||
| 1184 | } | |||
| 1185 | vptr += part_vector->w->cols * ch; | |||
| 1186 | wptr += part_classifier->w->cols * ch; | |||
| 1187 | } | |||
| 1188 | } else { | |||
| 1189 | ccv_dpm_part_classifier_t* other_part_classifier = root_classifier->part + part_classifier->counterpart; | |||
| 1190 | assert(part_vector->w->rows == other_part_classifier->w->rows && part_vector->w->cols == other_part_classifier->w->cols)((void) sizeof ((part_vector->w->rows == other_part_classifier ->w->rows && part_vector->w->cols == other_part_classifier ->w->cols) ? 1 : 0), __extension__ ({ if (part_vector-> w->rows == other_part_classifier->w->rows && part_vector->w->cols == other_part_classifier->w-> cols) ; else __assert_fail ("part_vector->w->rows == other_part_classifier->w->rows && part_vector->w->cols == other_part_classifier->w->cols" , "ccv_dpm.c", 1190, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1191 | other_part_classifier->dx += /* flip the sign on x-axis (symmetric) */ alpha * y * Cn * part_vector->dx; | |||
| 1192 | other_part_classifier->dxx -= alpha * y * Cn * part_vector->dxx; | |||
| 1193 | other_part_classifier->dxx = ccv_max(other_part_classifier->dxx, 0.01)({ typeof (other_part_classifier->dxx) _a = (other_part_classifier ->dxx); typeof (0.01) _b = (0.01); (_a > _b) ? _a : _b; }); | |||
| 1194 | other_part_classifier->dy -= alpha * y * Cn * part_vector->dy; | |||
| 1195 | other_part_classifier->dyy -= alpha * y * Cn * part_vector->dyy; | |||
| 1196 | other_part_classifier->dyy = ccv_max(other_part_classifier->dyy, 0.01)({ typeof (other_part_classifier->dyy) _a = (other_part_classifier ->dyy); typeof (0.01) _b = (0.01); (_a > _b) ? _a : _b; }); | |||
| 1197 | for (i = 0; i < part_vector->w->rows; i++) | |||
| 1198 | { | |||
| 1199 | for (j = 0; j < part_vector->w->cols * ch; j++) | |||
| 1200 | wptr[j] += alpha * y * Cn * vptr[j]; | |||
| 1201 | vptr += part_vector->w->cols * ch; | |||
| 1202 | wptr += part_classifier->w->cols * ch; | |||
| 1203 | } | |||
| 1204 | vptr = part_vector->w->data.f32; | |||
| 1205 | wptr = other_part_classifier->w->data.f32; | |||
| 1206 | for (i = 0; i < part_vector->w->rows; i++) | |||
| 1207 | { | |||
| 1208 | for (j = 0; j < part_vector->w->cols; j++) | |||
| 1209 | for (c = 0; c < ch; c++) | |||
| 1210 | wptr[j * ch + c] += alpha * y * Cn * vptr[(part_vector->w->cols - 1 - j) * ch + _ccv_dpm_sym_lut[c]]; | |||
| 1211 | vptr += part_vector->w->cols * ch; | |||
| 1212 | wptr += other_part_classifier->w->cols * ch; | |||
| 1213 | } | |||
| 1214 | } | |||
| 1215 | } else { | |||
| 1216 | for (i = 0; i < part_vector->w->rows * part_vector->w->cols * ch; i++) | |||
| 1217 | wptr[i] += alpha * y * Cn * vptr[i]; | |||
| 1218 | } | |||
| 1219 | ccv_make_matrix_immutable(part_classifier->w); | |||
| 1220 | } | |||
| 1221 | } | |||
| 1222 | ||||
| 1223 | static void _ccv_dpm_write_gradient_descent_progress(int i, int j, const char* dir) | |||
| 1224 | { | |||
| 1225 | char swpfile[1024]; | |||
| 1226 | sprintf(swpfile, "%s.swp", dir); | |||
| 1227 | FILE* w = fopen(swpfile, "w+"); | |||
| 1228 | if (!w) | |||
| 1229 | return; | |||
| 1230 | fprintf(w, "%d %d\n", i, j); | |||
| 1231 | fclose(w); | |||
| 1232 | rename(swpfile, dir); | |||
| 1233 | } | |||
| 1234 | ||||
| 1235 | static void _ccv_dpm_read_gradient_descent_progress(int* i, int* j, const char* dir) | |||
| 1236 | { | |||
| 1237 | FILE* r = fopen(dir, "r"); | |||
| 1238 | if (!r) | |||
| 1239 | return; | |||
| 1240 | fscanf(r, "%d %d", i, j); | |||
| 1241 | fclose(r); | |||
| 1242 | } | |||
| 1243 | ||||
| 1244 | static void _ccv_dpm_write_feature_vector(FILE* w, ccv_dpm_feature_vector_t* v) | |||
| 1245 | { | |||
| 1246 | int j, x, y, ch; | |||
| 1247 | if (v) | |||
| 1248 | { | |||
| 1249 | fprintf(w, "%d %d %d\n", v->id, v->root.w->rows, v->root.w->cols); | |||
| 1250 | ch = CCV_GET_CHANNEL(v->root.w->type)((v->root.w->type) & 0xFFF); | |||
| 1251 | for (y = 0; y < v->root.w->rows; y++) | |||
| 1252 | { | |||
| 1253 | for (x = 0; x < v->root.w->cols * ch; x++) | |||
| 1254 | fprintf(w, "%a ", v->root.w->data.f32[y * v->root.w->cols * ch + x]); | |||
| 1255 | fprintf(w, "\n"); | |||
| 1256 | } | |||
| 1257 | fprintf(w, "%d %a\n", v->count, v->score); | |||
| 1258 | for (j = 0; j < v->count; j++) | |||
| 1259 | { | |||
| 1260 | ccv_dpm_part_classifier_t* part_classifier = v->part + j; | |||
| 1261 | fprintf(w, "%la %la %la %la\n", part_classifier->dx, part_classifier->dy, part_classifier->dxx, part_classifier->dyy); | |||
| 1262 | fprintf(w, "%d %d %d\n", part_classifier->x, part_classifier->y, part_classifier->z); | |||
| 1263 | fprintf(w, "%d %d\n", part_classifier->w->rows, part_classifier->w->cols); | |||
| 1264 | ch = CCV_GET_CHANNEL(part_classifier->w->type)((part_classifier->w->type) & 0xFFF); | |||
| 1265 | for (y = 0; y < part_classifier->w->rows; y++) | |||
| 1266 | { | |||
| 1267 | for (x = 0; x < part_classifier->w->cols * ch; x++) | |||
| 1268 | fprintf(w, "%a ", part_classifier->w->data.f32[y * part_classifier->w->cols * ch + x]); | |||
| 1269 | fprintf(w, "\n"); | |||
| 1270 | } | |||
| 1271 | } | |||
| 1272 | } else { | |||
| 1273 | fprintf(w, "0 0 0\n"); | |||
| 1274 | } | |||
| 1275 | } | |||
| 1276 | ||||
| 1277 | static ccv_dpm_feature_vector_t* _ccv_dpm_read_feature_vector(FILE* r) | |||
| 1278 | { | |||
| 1279 | int id, rows, cols, j, k; | |||
| 1280 | fscanf(r, "%d %d %d", &id, &rows, &cols); | |||
| 1281 | if (rows == 0 && cols == 0) | |||
| 1282 | return 0; | |||
| 1283 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccmallocmalloc(sizeof(ccv_dpm_feature_vector_t)); | |||
| 1284 | v->id = id; | |||
| 1285 | v->root.w = ccv_dense_matrix_new(rows, cols, CCV_32F | 31, 0, 0); | |||
| 1286 | for (j = 0; j < rows * cols * 31; j++) | |||
| 1287 | fscanf(r, "%f", &v->root.w->data.f32[j]); | |||
| 1288 | fscanf(r, "%d %f", &v->count, &v->score); | |||
| 1289 | v->part = (ccv_dpm_part_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_part_classifier_t) * v->count); | |||
| 1290 | for (j = 0; j < v->count; j++) | |||
| 1291 | { | |||
| 1292 | ccv_dpm_part_classifier_t* part_classifier = v->part + j; | |||
| 1293 | fscanf(r, "%lf %lf %lf %lf", &part_classifier->dx, &part_classifier->dy, &part_classifier->dxx, &part_classifier->dyy); | |||
| ||||
| 1294 | fscanf(r, "%d %d %d", &part_classifier->x, &part_classifier->y, &part_classifier->z); | |||
| 1295 | fscanf(r, "%d %d", &rows, &cols); | |||
| 1296 | part_classifier->w = ccv_dense_matrix_new(rows, cols, CCV_32F | 31, 0, 0); | |||
| 1297 | for (k = 0; k < rows * cols * 31; k++) | |||
| 1298 | fscanf(r, "%f", &part_classifier->w->data.f32[k]); | |||
| 1299 | } | |||
| 1300 | return v; | |||
| 1301 | } | |||
| 1302 | ||||
| 1303 | static void _ccv_dpm_write_positive_feature_vectors(ccv_dpm_feature_vector_t** vs, int n, const char* dir) | |||
| 1304 | { | |||
| 1305 | FILE* w = fopen(dir, "w+"); | |||
| 1306 | if (!w) | |||
| 1307 | return; | |||
| 1308 | fprintf(w, "%d\n", n); | |||
| 1309 | int i; | |||
| 1310 | for (i = 0; i < n; i++) | |||
| 1311 | _ccv_dpm_write_feature_vector(w, vs[i]); | |||
| 1312 | fclose(w); | |||
| 1313 | } | |||
| 1314 | ||||
| 1315 | static int _ccv_dpm_read_positive_feature_vectors(ccv_dpm_feature_vector_t** vs, int _n, const char* dir) | |||
| 1316 | { | |||
| 1317 | FILE* r = fopen(dir, "r"); | |||
| 1318 | if (!r) | |||
| 1319 | return -1; | |||
| 1320 | int n; | |||
| 1321 | fscanf(r, "%d", &n); | |||
| 1322 | assert(n == _n)((void) sizeof ((n == _n) ? 1 : 0), __extension__ ({ if (n == _n) ; else __assert_fail ("n == _n", "ccv_dpm.c", 1322, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1323 | int i; | |||
| 1324 | for (i = 0; i < n; i++) | |||
| 1325 | vs[i] = _ccv_dpm_read_feature_vector(r); | |||
| 1326 | fclose(r); | |||
| 1327 | return 0; | |||
| 1328 | } | |||
| 1329 | ||||
| 1330 | static void _ccv_dpm_write_negative_feature_vectors(ccv_array_t* negv, int negative_cache_size, const char* dir) | |||
| 1331 | { | |||
| 1332 | FILE* w = fopen(dir, "w+"); | |||
| 1333 | if (!w) | |||
| 1334 | return; | |||
| 1335 | fprintf(w, "%d %d\n", negative_cache_size, negv->rnum); | |||
| 1336 | int i; | |||
| 1337 | for (i = 0; i < negv->rnum; i++) | |||
| 1338 | { | |||
| 1339 | ccv_dpm_feature_vector_t* v = *(ccv_dpm_feature_vector_t**)ccv_array_get(negv, i)((void*)(((char*)((negv)->data)) + (size_t)(negv)->rsize * (size_t)(i))); | |||
| 1340 | _ccv_dpm_write_feature_vector(w, v); | |||
| 1341 | } | |||
| 1342 | fclose(w); | |||
| 1343 | } | |||
| 1344 | ||||
| 1345 | static int _ccv_dpm_read_negative_feature_vectors(ccv_array_t** _negv, int _negative_cache_size, const char* dir) | |||
| 1346 | { | |||
| 1347 | FILE* r = fopen(dir, "r"); | |||
| 1348 | if (!r
| |||
| 1349 | return -1; | |||
| 1350 | int negative_cache_size, negnum; | |||
| 1351 | fscanf(r, "%d %d", &negative_cache_size, &negnum); | |||
| 1352 | assert(negative_cache_size == _negative_cache_size)((void) sizeof ((negative_cache_size == _negative_cache_size) ? 1 : 0), __extension__ ({ if (negative_cache_size == _negative_cache_size ) ; else __assert_fail ("negative_cache_size == _negative_cache_size" , "ccv_dpm.c", 1352, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1353 | ccv_array_t* negv = *_negv = ccv_array_new(sizeof(ccv_dpm_feature_vector_t*), negnum, 0); | |||
| 1354 | int i; | |||
| 1355 | for (i = 0; i < negnum; i++) | |||
| 1356 | { | |||
| 1357 | ccv_dpm_feature_vector_t* v = _ccv_dpm_read_feature_vector(r); | |||
| 1358 | assert(v)((void) sizeof ((v) ? 1 : 0), __extension__ ({ if (v) ; else __assert_fail ("v", "ccv_dpm.c", 1358, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1359 | ccv_array_push(negv, &v); | |||
| 1360 | } | |||
| 1361 | fclose(r); | |||
| 1362 | return 0; | |||
| 1363 | } | |||
| 1364 | ||||
| 1365 | static void _ccv_dpm_adjust_model_constant(ccv_dpm_mixture_model_t* model, int k, ccv_dpm_feature_vector_t** posv, int posnum, double percentile) | |||
| 1366 | { | |||
| 1367 | int i, j; | |||
| 1368 | double* scores = (double*)ccmallocmalloc(posnum * sizeof(double)); | |||
| 1369 | j = 0; | |||
| 1370 | for (i = 0; i < posnum; i++) | |||
| 1371 | if (posv[i] && posv[i]->id == k) | |||
| 1372 | { | |||
| 1373 | scores[j] = _ccv_dpm_vector_score(model, posv[i]); | |||
| 1374 | j++; | |||
| 1375 | } | |||
| 1376 | _ccv_dpm_score_qsort(scores, j, 0); | |||
| 1377 | float adjust = scores[ccv_clamp((int)(percentile * j), 0, j - 1)({ typeof (0) _a = (0); typeof (j - 1) _b = (j - 1); typeof ( (int)(percentile * j)) _x = ((int)(percentile * j)); (_x < _a) ? _a : ((_x > _b) ? _b : _x); })]; | |||
| 1378 | // adjust to percentile | |||
| 1379 | model->root[k].beta -= adjust; | |||
| 1380 | PRINT(CCV_CLI_INFO, " - tune model %d constant for %f\n", k + 1, -adjust)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - tune model %d constant for %f\n", k + 1, -adjust); fflush (stdout); } } while (0); | |||
| 1381 | ccfreefree(scores); | |||
| 1382 | } | |||
| 1383 | ||||
| 1384 | static void _ccv_dpm_check_params(ccv_dpm_new_param_t params) | |||
| 1385 | { | |||
| 1386 | assert(params.components > 0)((void) sizeof ((params.components > 0) ? 1 : 0), __extension__ ({ if (params.components > 0) ; else __assert_fail ("params.components > 0" , "ccv_dpm.c", 1386, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1387 | assert(params.parts > 0)((void) sizeof ((params.parts > 0) ? 1 : 0), __extension__ ({ if (params.parts > 0) ; else __assert_fail ("params.parts > 0" , "ccv_dpm.c", 1387, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1388 | assert(params.grayscale == 0 || params.grayscale == 1)((void) sizeof ((params.grayscale == 0 || params.grayscale == 1) ? 1 : 0), __extension__ ({ if (params.grayscale == 0 || params .grayscale == 1) ; else __assert_fail ("params.grayscale == 0 || params.grayscale == 1" , "ccv_dpm.c", 1388, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1389 | assert(params.symmetric == 0 || params.symmetric == 1)((void) sizeof ((params.symmetric == 0 || params.symmetric == 1) ? 1 : 0), __extension__ ({ if (params.symmetric == 0 || params .symmetric == 1) ; else __assert_fail ("params.symmetric == 0 || params.symmetric == 1" , "ccv_dpm.c", 1389, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1390 | assert(params.min_area > 100)((void) sizeof ((params.min_area > 100) ? 1 : 0), __extension__ ({ if (params.min_area > 100) ; else __assert_fail ("params.min_area > 100" , "ccv_dpm.c", 1390, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1391 | assert(params.max_area > params.min_area)((void) sizeof ((params.max_area > params.min_area) ? 1 : 0 ), __extension__ ({ if (params.max_area > params.min_area) ; else __assert_fail ("params.max_area > params.min_area" , "ccv_dpm.c", 1391, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1392 | assert(params.iterations >= 0)((void) sizeof ((params.iterations >= 0) ? 1 : 0), __extension__ ({ if (params.iterations >= 0) ; else __assert_fail ("params.iterations >= 0" , "ccv_dpm.c", 1392, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1393 | assert(params.data_minings >= 0)((void) sizeof ((params.data_minings >= 0) ? 1 : 0), __extension__ ({ if (params.data_minings >= 0) ; else __assert_fail ("params.data_minings >= 0" , "ccv_dpm.c", 1393, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1394 | assert(params.relabels >= 0)((void) sizeof ((params.relabels >= 0) ? 1 : 0), __extension__ ({ if (params.relabels >= 0) ; else __assert_fail ("params.relabels >= 0" , "ccv_dpm.c", 1394, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1395 | assert(params.negative_cache_size > 0)((void) sizeof ((params.negative_cache_size > 0) ? 1 : 0), __extension__ ({ if (params.negative_cache_size > 0) ; else __assert_fail ("params.negative_cache_size > 0", "ccv_dpm.c" , 1395, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1396 | assert(params.include_overlap > 0.1)((void) sizeof ((params.include_overlap > 0.1) ? 1 : 0), __extension__ ({ if (params.include_overlap > 0.1) ; else __assert_fail ("params.include_overlap > 0.1", "ccv_dpm.c", 1396, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1397 | assert(params.alpha > 0 && params.alpha < 1)((void) sizeof ((params.alpha > 0 && params.alpha < 1) ? 1 : 0), __extension__ ({ if (params.alpha > 0 && params.alpha < 1) ; else __assert_fail ("params.alpha > 0 && params.alpha < 1" , "ccv_dpm.c", 1397, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1398 | assert(params.alpha_ratio > 0 && params.alpha_ratio < 1)((void) sizeof ((params.alpha_ratio > 0 && params. alpha_ratio < 1) ? 1 : 0), __extension__ ({ if (params.alpha_ratio > 0 && params.alpha_ratio < 1) ; else __assert_fail ("params.alpha_ratio > 0 && params.alpha_ratio < 1" , "ccv_dpm.c", 1398, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1399 | assert(params.C > 0)((void) sizeof ((params.C > 0) ? 1 : 0), __extension__ ({ if (params.C > 0) ; else __assert_fail ("params.C > 0", "ccv_dpm.c" , 1399, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1400 | assert(params.balance > 0)((void) sizeof ((params.balance > 0) ? 1 : 0), __extension__ ({ if (params.balance > 0) ; else __assert_fail ("params.balance > 0" , "ccv_dpm.c", 1400, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1401 | assert(params.percentile_breakdown > 0 && params.percentile_breakdown <= 1)((void) sizeof ((params.percentile_breakdown > 0 && params.percentile_breakdown <= 1) ? 1 : 0), __extension__ ({ if (params.percentile_breakdown > 0 && params. percentile_breakdown <= 1) ; else __assert_fail ("params.percentile_breakdown > 0 && params.percentile_breakdown <= 1" , "ccv_dpm.c", 1401, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1402 | assert(params.detector.interval > 0)((void) sizeof ((params.detector.interval > 0) ? 1 : 0), __extension__ ({ if (params.detector.interval > 0) ; else __assert_fail ("params.detector.interval > 0", "ccv_dpm.c", 1402, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1403 | } | |||
| 1404 | ||||
| 1405 | #define MINI_BATCH(10) (10) | |||
| 1406 | #define REGQ(100) (100) | |||
| 1407 | ||||
| 1408 | static ccv_dpm_mixture_model_t* _ccv_dpm_optimize_root_mixture_model(gsl_rng* rng, ccv_dpm_mixture_model_t* model, ccv_array_t** posex, ccv_array_t** negex, int relabels, double balance, double C, double previous_alpha, double alpha_ratio, int iterations, int symmetric) | |||
| 1409 | { | |||
| 1410 | int i, j, k, t, c; | |||
| 1411 | for (i = 0; i < model->count - 1; i++) | |||
| 1412 | assert(posex[i]->rnum == posex[i + 1]->rnum && negex[i]->rnum == negex[i + 1]->rnum)((void) sizeof ((posex[i]->rnum == posex[i + 1]->rnum && negex[i]->rnum == negex[i + 1]->rnum) ? 1 : 0), __extension__ ({ if (posex[i]->rnum == posex[i + 1]->rnum && negex[i]->rnum == negex[i + 1]->rnum) ; else __assert_fail ("posex[i]->rnum == posex[i + 1]->rnum && negex[i]->rnum == negex[i + 1]->rnum" , "ccv_dpm.c", 1412, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1413 | int posnum = posex[0]->rnum; | |||
| 1414 | int negnum = negex[0]->rnum; | |||
| 1415 | int* label = (int*)ccmallocmalloc(sizeof(int) * (posnum + negnum)); | |||
| 1416 | int* order = (int*)ccmallocmalloc(sizeof(int) * (posnum + negnum)); | |||
| 1417 | double previous_positive_loss = 0, previous_negative_loss = 0, positive_loss = 0, negative_loss = 0, loss = 0; | |||
| 1418 | double regz_rate = C; | |||
| 1419 | for (c = 0; c < relabels; c++) | |||
| 1420 | { | |||
| 1421 | int* pos_prog = (int*)alloca(sizeof(int) * model->count)__builtin_alloca (sizeof(int) * model->count); | |||
| 1422 | memset(pos_prog, 0, sizeof(int) * model->count); | |||
| 1423 | for (i = 0; i < posnum; i++) | |||
| 1424 | { | |||
| 1425 | int best = -1; | |||
| 1426 | double best_score = -DBL_MAX1.7976931348623157e+308; | |||
| 1427 | for (k = 0; k < model->count; k++) | |||
| 1428 | { | |||
| 1429 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccv_array_get(posex[k], i)((void*)(((char*)((posex[k])->data)) + (size_t)(posex[k])-> rsize * (size_t)(i))); | |||
| 1430 | if (v->root.w == 0) | |||
| 1431 | continue; | |||
| 1432 | double score = _ccv_dpm_vector_score(model, v); // the loss for mini-batch method (computed on model) | |||
| 1433 | if (score > best_score) | |||
| 1434 | { | |||
| 1435 | best = k; | |||
| 1436 | best_score = score; | |||
| 1437 | } | |||
| 1438 | } | |||
| 1439 | label[i] = best; | |||
| 1440 | if (best >= 0) | |||
| 1441 | ++pos_prog[best]; | |||
| 1442 | } | |||
| 1443 | PRINT(CCV_CLI_INFO, " - positive examples divided by components for root model optimizing : %d", pos_prog[0])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - positive examples divided by components for root model optimizing : %d" , pos_prog[0]); fflush(stdout); } } while (0); | |||
| 1444 | for (i = 1; i < model->count; i++) | |||
| 1445 | PRINT(CCV_CLI_INFO, ", %d", pos_prog[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (", %d", pos_prog[i]); fflush(stdout); } } while (0); | |||
| 1446 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1447 | int* neg_prog = (int*)alloca(sizeof(int) * model->count)__builtin_alloca (sizeof(int) * model->count); | |||
| 1448 | memset(neg_prog, 0, sizeof(int) * model->count); | |||
| 1449 | for (i = 0; i < negnum; i++) | |||
| 1450 | { | |||
| 1451 | int best = gsl_rng_uniform_int(rng, model->count); | |||
| 1452 | label[i + posnum] = best; | |||
| 1453 | ++neg_prog[best]; | |||
| 1454 | } | |||
| 1455 | PRINT(CCV_CLI_INFO, " - negative examples divided by components for root model optimizing : %d", neg_prog[0])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - negative examples divided by components for root model optimizing : %d" , neg_prog[0]); fflush(stdout); } } while (0); | |||
| 1456 | for (i = 1; i < model->count; i++) | |||
| 1457 | PRINT(CCV_CLI_INFO, ", %d", neg_prog[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (", %d", neg_prog[i]); fflush(stdout); } } while (0); | |||
| 1458 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1459 | ccv_dpm_mixture_model_t* _model; | |||
| 1460 | double alpha = previous_alpha; | |||
| 1461 | previous_positive_loss = previous_negative_loss = 0; | |||
| 1462 | for (t = 0; t < iterations; t++) | |||
| 1463 | { | |||
| 1464 | for (i = 0; i < posnum + negnum; i++) | |||
| 1465 | order[i] = i; | |||
| 1466 | gsl_ran_shuffle(rng, order, posnum + negnum, sizeof(int)); | |||
| 1467 | for (j = 0; j < model->count; j++) | |||
| 1468 | { | |||
| 1469 | double pos_weight = sqrt((double)neg_prog[j] / pos_prog[j] * balance); // positive weight | |||
| 1470 | double neg_weight = sqrt((double)pos_prog[j] / neg_prog[j] / balance); // negative weight | |||
| 1471 | _model = _ccv_dpm_model_copy(model); | |||
| 1472 | int l = 0; | |||
| 1473 | for (i = 0; i < posnum + negnum; i++) | |||
| 1474 | { | |||
| 1475 | k = order[i]; | |||
| 1476 | if (label[k] == j) | |||
| 1477 | { | |||
| 1478 | assert(label[k] < model->count)((void) sizeof ((label[k] < model->count) ? 1 : 0), __extension__ ({ if (label[k] < model->count) ; else __assert_fail ( "label[k] < model->count", "ccv_dpm.c", 1478, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1479 | if (k < posnum) | |||
| 1480 | { | |||
| 1481 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccv_array_get(posex[label[k]], k)((void*)(((char*)((posex[label[k]])->data)) + (size_t)(posex [label[k]])->rsize * (size_t)(k))); | |||
| 1482 | assert(v->root.w)((void) sizeof ((v->root.w) ? 1 : 0), __extension__ ({ if ( v->root.w) ; else __assert_fail ("v->root.w", "ccv_dpm.c" , 1482, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1483 | double score = _ccv_dpm_vector_score(model, v); // the loss for mini-batch method (computed on model) | |||
| 1484 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1484, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1485 | assert(v->id == j)((void) sizeof ((v->id == j) ? 1 : 0), __extension__ ({ if (v->id == j) ; else __assert_fail ("v->id == j", "ccv_dpm.c" , 1485, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1486 | if (score <= 1) | |||
| 1487 | _ccv_dpm_stochastic_gradient_descent(_model, v, 1, alpha * pos_weight, regz_rate, symmetric); | |||
| 1488 | } else { | |||
| 1489 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccv_array_get(negex[label[k]], k - posnum)((void*)(((char*)((negex[label[k]])->data)) + (size_t)(negex [label[k]])->rsize * (size_t)(k - posnum))); | |||
| 1490 | double score = _ccv_dpm_vector_score(model, v); | |||
| 1491 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1491, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1492 | assert(v->id == j)((void) sizeof ((v->id == j) ? 1 : 0), __extension__ ({ if (v->id == j) ; else __assert_fail ("v->id == j", "ccv_dpm.c" , 1492, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1493 | if (score >= -1) | |||
| 1494 | _ccv_dpm_stochastic_gradient_descent(_model, v, -1, alpha * neg_weight, regz_rate, symmetric); | |||
| 1495 | } | |||
| 1496 | ++l; | |||
| 1497 | if (l % REGQ(100) == REGQ(100) - 1) | |||
| 1498 | _ccv_dpm_regularize_mixture_model(_model, j, 1.0 - pow(1.0 - alpha / (double)((pos_prog[j] + neg_prog[j]) * (!!symmetric + 1)), REGQ(100))); | |||
| 1499 | if (l % MINI_BATCH(10) == MINI_BATCH(10) - 1) | |||
| 1500 | { | |||
| 1501 | // mimicking mini-batch way of doing things | |||
| 1502 | _ccv_dpm_mixture_model_cleanup(model); | |||
| 1503 | ccfreefree(model); | |||
| 1504 | model = _model; | |||
| 1505 | _model = _ccv_dpm_model_copy(model); | |||
| 1506 | } | |||
| 1507 | } | |||
| 1508 | } | |||
| 1509 | _ccv_dpm_regularize_mixture_model(_model, j, 1.0 - pow(1.0 - alpha / (double)((pos_prog[j] + neg_prog[j]) * (!!symmetric + 1)), (((pos_prog[j] + neg_prog[j]) % REGQ(100)) + 1) % (REGQ(100) + 1))); | |||
| 1510 | _ccv_dpm_mixture_model_cleanup(model); | |||
| 1511 | ccfreefree(model); | |||
| 1512 | model = _model; | |||
| 1513 | } | |||
| 1514 | // compute the loss | |||
| 1515 | positive_loss = negative_loss = loss = 0; | |||
| 1516 | int posvn = 0; | |||
| 1517 | for (i = 0; i < posnum; i++) | |||
| 1518 | { | |||
| 1519 | if (label[i] < 0) | |||
| 1520 | continue; | |||
| 1521 | assert(label[i] < model->count)((void) sizeof ((label[i] < model->count) ? 1 : 0), __extension__ ({ if (label[i] < model->count) ; else __assert_fail ( "label[i] < model->count", "ccv_dpm.c", 1521, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1522 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccv_array_get(posex[label[i]], i)((void*)(((char*)((posex[label[i]])->data)) + (size_t)(posex [label[i]])->rsize * (size_t)(i))); | |||
| 1523 | if (v->root.w) | |||
| 1524 | { | |||
| 1525 | double score = _ccv_dpm_vector_score(model, v); | |||
| 1526 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1526, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1527 | double hinge_loss = ccv_max(0, 1.0 - score)({ typeof (0) _a = (0); typeof (1.0 - score) _b = (1.0 - score ); (_a > _b) ? _a : _b; }); | |||
| 1528 | positive_loss += hinge_loss; | |||
| 1529 | double pos_weight = sqrt((double)neg_prog[v->id] / pos_prog[v->id] * balance); // positive weight | |||
| 1530 | loss += pos_weight * hinge_loss; | |||
| 1531 | ++posvn; | |||
| 1532 | } | |||
| 1533 | } | |||
| 1534 | for (i = 0; i < negnum; i++) | |||
| 1535 | { | |||
| 1536 | if (label[i + posnum] < 0) | |||
| 1537 | continue; | |||
| 1538 | assert(label[i + posnum] < model->count)((void) sizeof ((label[i + posnum] < model->count) ? 1 : 0), __extension__ ({ if (label[i + posnum] < model->count ) ; else __assert_fail ("label[i + posnum] < model->count" , "ccv_dpm.c", 1538, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1539 | ccv_dpm_feature_vector_t* v = (ccv_dpm_feature_vector_t*)ccv_array_get(negex[label[i + posnum]], i)((void*)(((char*)((negex[label[i + posnum]])->data)) + (size_t )(negex[label[i + posnum]])->rsize * (size_t)(i))); | |||
| 1540 | double score = _ccv_dpm_vector_score(model, v); | |||
| 1541 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1541, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1542 | double hinge_loss = ccv_max(0, 1.0 + score)({ typeof (0) _a = (0); typeof (1.0 + score) _b = (1.0 + score ); (_a > _b) ? _a : _b; }); | |||
| 1543 | negative_loss += hinge_loss; | |||
| 1544 | double neg_weight = sqrt((double)pos_prog[v->id] / neg_prog[v->id] / balance); // negative weight | |||
| 1545 | loss += neg_weight * hinge_loss; | |||
| 1546 | } | |||
| 1547 | loss = loss / (posvn + negnum); | |||
| 1548 | positive_loss = positive_loss / posvn; | |||
| 1549 | negative_loss = negative_loss / negnum; | |||
| 1550 | FLUSH(CCV_CLI_INFO, " - with loss %.5lf (positive %.5lf, negative %.5f) at rate %.5lf %d | %d -- %d%%", loss, positive_loss, negative_loss, alpha, posvn, negnum, (t + 1) * 100 / iterations)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - with loss %.5lf (positive %.5lf, negative %.5f) at rate %.5lf %d | %d -- %d%%" , loss, positive_loss, negative_loss, alpha, posvn, negnum, ( t + 1) * 100 / iterations); fflush(stdout); } } while (0); | |||
| 1551 | // check symmetric property of generated root feature | |||
| 1552 | if (symmetric) | |||
| 1553 | for (i = 0; i < model->count; i++) | |||
| 1554 | { | |||
| 1555 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 1556 | _ccv_dpm_check_root_classifier_symmetry(root_classifier->root.w); | |||
| 1557 | } | |||
| 1558 | if (fabs(previous_positive_loss - positive_loss) < 1e-5 && | |||
| 1559 | fabs(previous_negative_loss - negative_loss) < 1e-5) | |||
| 1560 | { | |||
| 1561 | PRINT(CCV_CLI_INFO, "\n - aborting iteration at %d because we didn't gain much", t + 1)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n - aborting iteration at %d because we didn't gain much", t + 1); fflush(stdout); } } while (0); | |||
| 1562 | break; | |||
| 1563 | } | |||
| 1564 | previous_positive_loss = positive_loss; | |||
| 1565 | previous_negative_loss = negative_loss; | |||
| 1566 | alpha *= alpha_ratio; // it will decrease with each iteration | |||
| 1567 | } | |||
| 1568 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1569 | } | |||
| 1570 | ccfreefree(order); | |||
| 1571 | ccfreefree(label); | |||
| 1572 | return model; | |||
| 1573 | } | |||
| 1574 | ||||
| 1575 | void ccv_dpm_mixture_model_new(char** posfiles, ccv_rect_t* bboxes, int posnum, char** bgfiles, int bgnum, int negnum, const char* dir, ccv_dpm_new_param_t params) | |||
| 1576 | { | |||
| 1577 | int t, d, c, i, j, k, p; | |||
| 1578 | _ccv_dpm_check_params(params); | |||
| 1579 | assert(params.negative_cache_size <= negnum && params.negative_cache_size > REGQ && params.negative_cache_size > MINI_BATCH)((void) sizeof ((params.negative_cache_size <= negnum && params.negative_cache_size > (100) && params.negative_cache_size > (10)) ? 1 : 0), __extension__ ({ if (params.negative_cache_size <= negnum && params.negative_cache_size > (100 ) && params.negative_cache_size > (10)) ; else __assert_fail ("params.negative_cache_size <= negnum && params.negative_cache_size > REGQ && params.negative_cache_size > MINI_BATCH" , "ccv_dpm.c", 1579, __extension__ __PRETTY_FUNCTION__); })); | |||
| ||||
| 1580 | PRINT(CCV_CLI_INFO, "with %d positive examples and %d negative examples\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("with %d positive examples and %d negative examples\n" "negative examples are are going to be collected from %d background images\n" , posnum, negnum, bgnum); fflush(stdout); } } while (0) | |||
| 1581 | "negative examples are are going to be collected from %d background images\n",do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("with %d positive examples and %d negative examples\n" "negative examples are are going to be collected from %d background images\n" , posnum, negnum, bgnum); fflush(stdout); } } while (0) | |||
| 1582 | posnum, negnum, bgnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("with %d positive examples and %d negative examples\n" "negative examples are are going to be collected from %d background images\n" , posnum, negnum, bgnum); fflush(stdout); } } while (0); | |||
| 1583 | PRINT(CCV_CLI_INFO, "use symmetric property? %s\n", params.symmetric ? "yes" : "no")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("use symmetric property? %s\n", params.symmetric ? "yes" : "no" ); fflush(stdout); } } while (0); | |||
| 1584 | PRINT(CCV_CLI_INFO, "use color? %s\n", params.grayscale ? "no" : "yes")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("use color? %s\n", params.grayscale ? "no" : "yes"); fflush( stdout); } } while (0); | |||
| 1585 | PRINT(CCV_CLI_INFO, "negative examples cache size : %d\n", params.negative_cache_size)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("negative examples cache size : %d\n", params.negative_cache_size ); fflush(stdout); } } while (0); | |||
| 1586 | PRINT(CCV_CLI_INFO, "%d components and %d parts\n", params.components, params.parts)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("%d components and %d parts\n", params.components, params.parts ); fflush(stdout); } } while (0); | |||
| 1587 | PRINT(CCV_CLI_INFO, "expected %d root relabels, %d relabels, %d data minings and %d iterations\n", params.root_relabels, params.relabels, params.data_minings, params.iterations)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("expected %d root relabels, %d relabels, %d data minings and %d iterations\n" , params.root_relabels, params.relabels, params.data_minings, params.iterations); fflush(stdout); } } while (0); | |||
| 1588 | PRINT(CCV_CLI_INFO, "include overlap : %lf\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0) | |||
| 1589 | "alpha : %lf\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0) | |||
| 1590 | "alpha decreasing ratio : %lf\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0) | |||
| 1591 | "C : %lf\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0) | |||
| 1592 | "balance ratio : %lf\n"do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0) | |||
| 1593 | "------------------------\n",do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0) | |||
| 1594 | params.include_overlap, params.alpha, params.alpha_ratio, params.C, params.balance)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("include overlap : %lf\n" "alpha : %lf\n" "alpha decreasing ratio : %lf\n" "C : %lf\n" "balance ratio : %lf\n" "------------------------\n" , params.include_overlap, params.alpha, params.alpha_ratio, params .C, params.balance); fflush(stdout); } } while (0); | |||
| 1595 | gsl_rng_env_setup(); | |||
| 1596 | gsl_rng* rng = gsl_rng_alloc(gsl_rng_default); | |||
| 1597 | gsl_rng_set(rng, *(unsigned long int*)¶ms); | |||
| 1598 | ccv_dpm_mixture_model_t* model = (ccv_dpm_mixture_model_t*)ccmallocmalloc(sizeof(ccv_dpm_mixture_model_t)); | |||
| 1599 | memset(model, 0, sizeof(ccv_dpm_mixture_model_t)); | |||
| 1600 | struct feature_node* fn = (struct feature_node*)ccmallocmalloc(sizeof(struct feature_node) * posnum); | |||
| 1601 | for (i = 0; i < posnum; i++) | |||
| 1602 | { | |||
| 1603 | assert(bboxes[i].width > 0 && bboxes[i].height > 0)((void) sizeof ((bboxes[i].width > 0 && bboxes[i]. height > 0) ? 1 : 0), __extension__ ({ if (bboxes[i].width > 0 && bboxes[i].height > 0) ; else __assert_fail ("bboxes[i].width > 0 && bboxes[i].height > 0" , "ccv_dpm.c", 1603, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1604 | fn[i].value = (float)bboxes[i].width / (float)bboxes[i].height; | |||
| 1605 | fn[i].index = i; | |||
| 1606 | } | |||
| 1607 | char checkpoint[512]; | |||
| 1608 | char initcheckpoint[512]; | |||
| 1609 | sprintf(checkpoint, "%s/model", dir); | |||
| 1610 | sprintf(initcheckpoint, "%s/init.model", dir); | |||
| 1611 | _ccv_dpm_aspect_qsort(fn, posnum, 0); | |||
| 1612 | double mean = 0; | |||
| 1613 | for (i = 0; i
| |||
| 1614 | mean += fn[i].value; | |||
| 1615 | mean /= posnum; | |||
| 1616 | double variance = 0; | |||
| 1617 | for (i = 0; i
| |||
| 1618 | variance += (fn[i].value - mean) * (fn[i].value - mean); | |||
| 1619 | variance /= posnum; | |||
| 1620 | PRINT(CCV_CLI_INFO, "global mean: %lf, & variance: %lf\ninterclass mean(variance):", mean, variance)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("global mean: %lf, & variance: %lf\ninterclass mean(variance):" , mean, variance); fflush(stdout); } } while (0); | |||
| 1621 | int* mnum = (int*)alloca(sizeof(int) * params.components)__builtin_alloca (sizeof(int) * params.components); | |||
| 1622 | int outnum = posnum, innum = 0; | |||
| 1623 | for (i = 0; i
| |||
| 1624 | { | |||
| 1625 | mnum[i] = (int)((double)outnum / (double)(params.components - i) + 0.5); | |||
| 1626 | double mean = 0; | |||
| 1627 | for (j = innum; j < innum + mnum[i]; j++) | |||
| 1628 | mean += fn[j].value; | |||
| 1629 | mean /= mnum[i]; | |||
| 1630 | double variance = 0; | |||
| 1631 | for (j = innum; j < innum + mnum[i]; j++) | |||
| 1632 | variance += (fn[j].value - mean) * (fn[j].value - mean); | |||
| 1633 | variance /= mnum[i]; | |||
| 1634 | PRINT(CCV_CLI_INFO, " %lf(%lf)", mean, variance)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" %lf(%lf)", mean, variance); fflush(stdout); } } while (0); | |||
| 1635 | outnum -= mnum[i]; | |||
| 1636 | innum += mnum[i]; | |||
| 1637 | } | |||
| 1638 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1639 | int* areas = (int*)ccmallocmalloc(sizeof(int) * posnum); | |||
| 1640 | for (i = 0; i
| |||
| 1641 | areas[i] = bboxes[i].width * bboxes[i].height; | |||
| 1642 | _ccv_dpm_area_qsort(areas, posnum, 0); | |||
| 1643 | // so even the object is 1/4 in size, we can still detect them (in detection phase, we start at 2x image) | |||
| 1644 | int area = ccv_clamp(areas[(int)(posnum * 0.2 + 0.5)], params.min_area, params.max_area)({ typeof (params.min_area) _a = (params.min_area); typeof (params .max_area) _b = (params.max_area); typeof (areas[(int)(posnum * 0.2 + 0.5)]) _x = (areas[(int)(posnum * 0.2 + 0.5)]); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 1645 | ccfreefree(areas); | |||
| 1646 | innum = 0; | |||
| 1647 | _ccv_dpm_read_checkpoint(model, checkpoint); | |||
| 1648 | if (model->count
| |||
| 1649 | { | |||
| 1650 | /* initialize root mixture model with liblinear */ | |||
| 1651 | model->count = params.components; | |||
| 1652 | model->root = (ccv_dpm_root_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_root_classifier_t) * model->count); | |||
| 1653 | memset(model->root, 0, sizeof(ccv_dpm_root_classifier_t) * model->count); | |||
| 1654 | } | |||
| 1655 | PRINT(CCV_CLI_INFO, "computing root mixture model dimensions: ")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("computing root mixture model dimensions: "); fflush(stdout) ; } } while (0); | |||
| 1656 | fflush(stdoutstdout); | |||
| 1657 | int* poslabels = (int*)ccmallocmalloc(sizeof(int) * posnum); | |||
| 1658 | int* rows = (int*)alloca(sizeof(int) * params.components)__builtin_alloca (sizeof(int) * params.components); | |||
| 1659 | int* cols = (int*)alloca(sizeof(int) * params.components)__builtin_alloca (sizeof(int) * params.components); | |||
| 1660 | for (i = 0; i < params.components; i++) | |||
| 1661 | { | |||
| 1662 | double aspect = 0; | |||
| 1663 | for (j = innum; j < innum + mnum[i]; j++) | |||
| 1664 | { | |||
| 1665 | aspect += fn[j].value; | |||
| 1666 | poslabels[fn[j].index] = i; // setup labels | |||
| 1667 | } | |||
| 1668 | aspect /= mnum[i]; | |||
| 1669 | cols[i] = ccv_max((int)(sqrtf(area / aspect) * aspect / CCV_DPM_WINDOW_SIZE + 0.5), 1)({ typeof ((int)(sqrtf(area / aspect) * aspect / (8) + 0.5)) _a = ((int)(sqrtf(area / aspect) * aspect / (8) + 0.5)); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); | |||
| 1670 | rows[i] = ccv_max((int)(sqrtf(area / aspect) / CCV_DPM_WINDOW_SIZE + 0.5), 1)({ typeof ((int)(sqrtf(area / aspect) / (8) + 0.5)) _a = ((int )(sqrtf(area / aspect) / (8) + 0.5)); typeof (1) _b = (1); (_a > _b) ? _a : _b; }); | |||
| 1671 | if (i < params.components - 1) | |||
| 1672 | PRINT(CCV_CLI_INFO, "%dx%d, ", cols[i], rows[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("%dx%d, ", cols[i], rows[i]); fflush(stdout); } } while (0); | |||
| 1673 | else | |||
| 1674 | PRINT(CCV_CLI_INFO, "%dx%d\n", cols[i], rows[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("%dx%d\n", cols[i], rows[i]); fflush(stdout); } } while (0); | |||
| 1675 | fflush(stdoutstdout); | |||
| 1676 | innum += mnum[i]; | |||
| 1677 | } | |||
| 1678 | ccfreefree(fn); | |||
| 1679 | int corrupted = 1; | |||
| 1680 | for (i = 0; i < params.components; i++) | |||
| 1681 | if (model->root[i].root.w
| |||
| 1682 | { | |||
| 1683 | PRINT(CCV_CLI_INFO, "skipping root mixture model initialization for model %d(%d)\n", i + 1, params.components)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("skipping root mixture model initialization for model %d(%d)\n" , i + 1, params.components); fflush(stdout); } } while (0); | |||
| 1684 | corrupted = 0; | |||
| 1685 | } else | |||
| 1686 | break; | |||
| 1687 | if (corrupted
| |||
| 1688 | { | |||
| 1689 | PRINT(CCV_CLI_INFO, "root mixture model initialization corrupted, reboot\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("root mixture model initialization corrupted, reboot\n"); fflush (stdout); } } while (0); | |||
| 1690 | ccv_array_t** posex = (ccv_array_t**)alloca(sizeof(ccv_array_t*) * params.components)__builtin_alloca (sizeof(ccv_array_t*) * params.components); | |||
| 1691 | for (i = 0; i < params.components; i++) | |||
| 1692 | posex[i] = _ccv_dpm_summon_examples_by_rectangle(posfiles, bboxes, posnum, i, rows[i], cols[i], params.grayscale); | |||
| 1693 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1694 | ccv_array_t** negex = (ccv_array_t**)alloca(sizeof(ccv_array_t*) * params.components)__builtin_alloca (sizeof(ccv_array_t*) * params.components); | |||
| 1695 | _ccv_dpm_collect_examples_randomly(rng, negex, bgfiles, bgnum, negnum, params.components, rows, cols, params.grayscale); | |||
| 1696 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1697 | int* neglabels = (int*)ccmallocmalloc(sizeof(int) * negex[0]->rnum); | |||
| 1698 | for (i = 0; i < negex[0]->rnum; i++) | |||
| 1699 | neglabels[i] = gsl_rng_uniform_int(rng, params.components); | |||
| 1700 | for (i = 0; i < params.components; i++) | |||
| 1701 | { | |||
| 1702 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 1703 | root_classifier->root.w = ccv_dense_matrix_new(rows[i], cols[i], CCV_32F | 31, 0, 0); | |||
| 1704 | PRINT(CCV_CLI_INFO, "initializing root mixture model for model %d(%d)\n", i + 1, params.components)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("initializing root mixture model for model %d(%d)\n", i + 1, params.components); fflush(stdout); } } while (0); | |||
| 1705 | _ccv_dpm_initialize_root_classifier(rng, root_classifier, i, mnum[i], poslabels, posex[i], neglabels, negex[i], params.C, params.symmetric, params.grayscale); | |||
| 1706 | } | |||
| 1707 | ccfreefree(neglabels); | |||
| 1708 | ccfreefree(poslabels); | |||
| 1709 | // check symmetric property of generated root feature | |||
| 1710 | if (params.symmetric
| |||
| 1711 | for (i = 0; i < params.components; i++) | |||
| 1712 | { | |||
| 1713 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 1714 | _ccv_dpm_check_root_classifier_symmetry(root_classifier->root.w); | |||
| 1715 | } | |||
| 1716 | if (params.components
| |||
| 1717 | { | |||
| 1718 | /* TODO: coordinate-descent for lsvm */ | |||
| 1719 | PRINT(CCV_CLI_INFO, "optimizing root mixture model with coordinate-descent approach\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("optimizing root mixture model with coordinate-descent approach\n" ); fflush(stdout); } } while (0); | |||
| 1720 | model = _ccv_dpm_optimize_root_mixture_model(rng, model, posex, negex, params.root_relabels, params.balance, params.C, params.alpha, params.alpha_ratio, params.iterations, params.symmetric); | |||
| 1721 | } else { | |||
| 1722 | PRINT(CCV_CLI_INFO, "components == 1, skipped coordinate-descent to optimize root mixture model\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("components == 1, skipped coordinate-descent to optimize root mixture model\n" ); fflush(stdout); } } while (0); | |||
| 1723 | } | |||
| 1724 | for (i = 0; i < params.components; i++) | |||
| 1725 | { | |||
| 1726 | for (j = 0; j < posex[i]->rnum; j++) | |||
| 1727 | _ccv_dpm_feature_vector_cleanup((ccv_dpm_feature_vector_t*)ccv_array_get(posex[i], j)((void*)(((char*)((posex[i])->data)) + (size_t)(posex[i])-> rsize * (size_t)(j)))); | |||
| 1728 | ccv_array_free(posex[i]); | |||
| 1729 | for (j = 0; j < negex[i]->rnum; j++) | |||
| 1730 | _ccv_dpm_feature_vector_cleanup((ccv_dpm_feature_vector_t*)ccv_array_get(negex[i], j)((void*)(((char*)((negex[i])->data)) + (size_t)(negex[i])-> rsize * (size_t)(j)))); | |||
| 1731 | ccv_array_free(negex[i]); | |||
| 1732 | } | |||
| 1733 | } else { | |||
| 1734 | ccfreefree(poslabels); | |||
| 1735 | } | |||
| 1736 | _ccv_dpm_write_checkpoint(model, 0, checkpoint); | |||
| 1737 | /* initialize part filter */ | |||
| 1738 | PRINT(CCV_CLI_INFO, "initializing part filters\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("initializing part filters\n"); fflush(stdout); } } while (0 ); | |||
| 1739 | for (i = 0; i < params.components; i++) | |||
| 1740 | { | |||
| 1741 | if (model->root[i].count > 0) | |||
| 1742 | { | |||
| 1743 | PRINT(CCV_CLI_INFO, " - skipping part filters initialization for model %d(%d)\n", i + 1, params.components)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - skipping part filters initialization for model %d(%d)\n" , i + 1, params.components); fflush(stdout); } } while (0); | |||
| 1744 | } else { | |||
| 1745 | PRINT(CCV_CLI_INFO, " - initializing part filters for model %d(%d)\n", i + 1, params.components)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - initializing part filters for model %d(%d)\n", i + 1, params .components); fflush(stdout); } } while (0); | |||
| 1746 | _ccv_dpm_initialize_part_classifiers(model->root + i, params.parts, params.symmetric); | |||
| 1747 | _ccv_dpm_write_checkpoint(model, 0, checkpoint); | |||
| 1748 | _ccv_dpm_write_checkpoint(model, 0, initcheckpoint); | |||
| 1749 | } | |||
| 1750 | } | |||
| 1751 | _ccv_dpm_write_checkpoint(model, 0, checkpoint); | |||
| 1752 | /* optimize both root filter and part filters with stochastic gradient descent */ | |||
| 1753 | PRINT(CCV_CLI_INFO, "optimizing root filter & part filters with stochastic gradient descent\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("optimizing root filter & part filters with stochastic gradient descent\n" ); fflush(stdout); } } while (0); | |||
| 1754 | char gradient_progress_checkpoint[512]; | |||
| 1755 | sprintf(gradient_progress_checkpoint, "%s/gradient_descent_progress", dir); | |||
| 1756 | char feature_vector_checkpoint[512]; | |||
| 1757 | sprintf(feature_vector_checkpoint, "%s/positive_vectors", dir); | |||
| 1758 | char neg_vector_checkpoint[512]; | |||
| 1759 | sprintf(neg_vector_checkpoint, "%s/negative_vectors", dir); | |||
| 1760 | ccv_dpm_feature_vector_t** posv = (ccv_dpm_feature_vector_t**)ccmallocmalloc(posnum * sizeof(ccv_dpm_feature_vector_t*)); | |||
| 1761 | int* order = (int*)ccmallocmalloc(sizeof(int) * (posnum + params.negative_cache_size + 64 /* the magical number for maximum negative examples collected per image */)); | |||
| 1762 | double previous_positive_loss = 0, previous_negative_loss = 0, positive_loss = 0, negative_loss = 0, loss = 0; | |||
| 1763 | // need to re-weight for each examples | |||
| 1764 | c = d = t = 0; | |||
| 1765 | ccv_array_t* negv = 0; | |||
| 1766 | if (0 == _ccv_dpm_read_negative_feature_vectors(&negv, params.negative_cache_size, neg_vector_checkpoint)) | |||
| 1767 | PRINT(CCV_CLI_INFO, " - read collected negative responses from last interrupted process\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - read collected negative responses from last interrupted process\n" ); fflush(stdout); } } while (0); | |||
| 1768 | _ccv_dpm_read_gradient_descent_progress(&c, &d, gradient_progress_checkpoint); | |||
| 1769 | for (; c < params.relabels; c++) | |||
| 1770 | { | |||
| 1771 | double regz_rate = params.C; | |||
| 1772 | ccv_dpm_mixture_model_t* _model; | |||
| 1773 | if (0 == _ccv_dpm_read_positive_feature_vectors(posv, posnum, feature_vector_checkpoint)) | |||
| 1774 | { | |||
| 1775 | PRINT(CCV_CLI_INFO, " - read collected positive responses from last interrupted process\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - read collected positive responses from last interrupted process\n" ); fflush(stdout); } } while (0); | |||
| 1776 | } else { | |||
| 1777 | FLUSH(CCV_CLI_INFO, " - collecting responses from positive examples : 0%%")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting responses from positive examples : 0%%" ); fflush(stdout); } } while (0); | |||
| 1778 | for (i = 0; i < posnum; i++) | |||
| 1779 | { | |||
| 1780 | FLUSH(CCV_CLI_INFO, " - collecting responses from positive examples : %d%%", i * 100 / posnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting responses from positive examples : %d%%" , i * 100 / posnum); fflush(stdout); } } while (0); | |||
| 1781 | ccv_dense_matrix_t* image = 0; | |||
| 1782 | ccv_read(posfiles[i], &image, (params.grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE)ccv_read_impl(posfiles[i], &image, (params.grayscale ? CCV_IO_GRAY : 0) | CCV_IO_ANY_FILE, 0, 0, 0); | |||
| 1783 | posv[i] = _ccv_dpm_collect_best(image, model, bboxes[i], params.include_overlap, params.detector); | |||
| 1784 | ccv_matrix_free(image); | |||
| 1785 | } | |||
| 1786 | FLUSH(CCV_CLI_INFO, " - collecting responses from positive examples : 100%%\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting responses from positive examples : 100%%\n" ); fflush(stdout); } } while (0); | |||
| 1787 | _ccv_dpm_write_positive_feature_vectors(posv, posnum, feature_vector_checkpoint); | |||
| 1788 | } | |||
| 1789 | int* posvnum = (int*)alloca(sizeof(int) * model->count)__builtin_alloca (sizeof(int) * model->count); | |||
| 1790 | memset(posvnum, 0, sizeof(int) * model->count); | |||
| 1791 | for (i = 0; i < posnum; i++) | |||
| 1792 | if (posv[i]) | |||
| 1793 | { | |||
| 1794 | assert(posv[i]->id >= 0 && posv[i]->id < model->count)((void) sizeof ((posv[i]->id >= 0 && posv[i]-> id < model->count) ? 1 : 0), __extension__ ({ if (posv[ i]->id >= 0 && posv[i]->id < model->count ) ; else __assert_fail ("posv[i]->id >= 0 && posv[i]->id < model->count" , "ccv_dpm.c", 1794, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1795 | ++posvnum[posv[i]->id]; | |||
| 1796 | } | |||
| 1797 | PRINT(CCV_CLI_INFO, " - positive examples divided by components : %d", posvnum[0])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - positive examples divided by components : %d", posvnum[0 ]); fflush(stdout); } } while (0); | |||
| 1798 | for (i = 1; i < model->count; i++) | |||
| 1799 | PRINT(CCV_CLI_INFO, ", %d", posvnum[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (", %d", posvnum[i]); fflush(stdout); } } while (0); | |||
| 1800 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1801 | params.detector.threshold = 0; | |||
| 1802 | for (; d < params.data_minings; d++) | |||
| 1803 | { | |||
| 1804 | // the cache is used up now, collect again | |||
| 1805 | _ccv_dpm_write_gradient_descent_progress(c, d, gradient_progress_checkpoint); | |||
| 1806 | double alpha = params.alpha; | |||
| 1807 | if (negv) | |||
| 1808 | { | |||
| 1809 | ccv_array_t* av = ccv_array_new(sizeof(ccv_dpm_feature_vector_t*), 64, 0); | |||
| 1810 | for (j = 0; j < negv->rnum; j++) | |||
| 1811 | { | |||
| 1812 | ccv_dpm_feature_vector_t* v = *(ccv_dpm_feature_vector_t**)ccv_array_get(negv, j)((void*)(((char*)((negv)->data)) + (size_t)(negv)->rsize * (size_t)(j))); | |||
| 1813 | double score = _ccv_dpm_vector_score(model, v); | |||
| 1814 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1814, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1815 | if (score >= -1) | |||
| 1816 | ccv_array_push(av, &v); | |||
| 1817 | else | |||
| 1818 | _ccv_dpm_feature_vector_free(v); | |||
| 1819 | } | |||
| 1820 | ccv_array_free(negv); | |||
| 1821 | negv = av; | |||
| 1822 | } else { | |||
| 1823 | negv = ccv_array_new(sizeof(ccv_dpm_feature_vector_t*), 64, 0); | |||
| 1824 | } | |||
| 1825 | FLUSH(CCV_CLI_INFO, " - collecting negative examples -- (0%%)")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting negative examples -- (0%%)" ); fflush(stdout); } } while (0); | |||
| 1826 | if (negv->rnum < params.negative_cache_size) | |||
| 1827 | _ccv_dpm_collect_from_background(negv, rng, bgfiles, bgnum, model, params, 0); | |||
| 1828 | _ccv_dpm_write_negative_feature_vectors(negv, params.negative_cache_size, neg_vector_checkpoint); | |||
| 1829 | FLUSH(CCV_CLI_INFO, " - collecting negative examples -- (100%%)\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - collecting negative examples -- (100%%)\n" ); fflush(stdout); } } while (0); | |||
| 1830 | int* negvnum = (int*)alloca(sizeof(int) * model->count)__builtin_alloca (sizeof(int) * model->count); | |||
| 1831 | memset(negvnum, 0, sizeof(int) * model->count); | |||
| 1832 | for (i = 0; i < negv->rnum; i++) | |||
| 1833 | { | |||
| 1834 | ccv_dpm_feature_vector_t* v = *(ccv_dpm_feature_vector_t**)ccv_array_get(negv, i)((void*)(((char*)((negv)->data)) + (size_t)(negv)->rsize * (size_t)(i))); | |||
| 1835 | assert(v->id >= 0 && v->id < model->count)((void) sizeof ((v->id >= 0 && v->id < model ->count) ? 1 : 0), __extension__ ({ if (v->id >= 0 && v->id < model->count) ; else __assert_fail ("v->id >= 0 && v->id < model->count" , "ccv_dpm.c", 1835, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1836 | ++negvnum[v->id]; | |||
| 1837 | } | |||
| 1838 | if (negv->rnum <= ccv_max(params.negative_cache_size / 2, ccv_max(REGQ, MINI_BATCH))({ typeof (params.negative_cache_size / 2) _a = (params.negative_cache_size / 2); typeof (({ typeof ((100)) _a = ((100)); typeof ((10)) _b = ((10)); (_a > _b) ? _a : _b; })) _b = (({ typeof ((100) ) _a = ((100)); typeof ((10)) _b = ((10)); (_a > _b) ? _a : _b; })); (_a > _b) ? _a : _b; })) | |||
| 1839 | { | |||
| 1840 | for (i = 0; i < model->count; i++) | |||
| 1841 | // we cannot get sufficient negatives, adjust constant and abort for next round | |||
| 1842 | _ccv_dpm_adjust_model_constant(model, i, posv, posnum, params.percentile_breakdown); | |||
| 1843 | continue; | |||
| 1844 | } | |||
| 1845 | PRINT(CCV_CLI_INFO, " - negative examples divided by components : %d", negvnum[0])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - negative examples divided by components : %d", negvnum[0 ]); fflush(stdout); } } while (0); | |||
| 1846 | for (i = 1; i < model->count; i++) | |||
| 1847 | PRINT(CCV_CLI_INFO, ", %d", negvnum[i])do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (", %d", negvnum[i]); fflush(stdout); } } while (0); | |||
| 1848 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1849 | previous_positive_loss = previous_negative_loss = 0; | |||
| 1850 | uint64_t elapsed_time = _ccv_dpm_time_measure(); | |||
| 1851 | assert(negv->rnum < params.negative_cache_size + 64)((void) sizeof ((negv->rnum < params.negative_cache_size + 64) ? 1 : 0), __extension__ ({ if (negv->rnum < params .negative_cache_size + 64) ; else __assert_fail ("negv->rnum < params.negative_cache_size + 64" , "ccv_dpm.c", 1851, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1852 | for (t = 0; t < params.iterations; t++) | |||
| 1853 | { | |||
| 1854 | for (p = 0; p < model->count; p++) | |||
| 1855 | { | |||
| 1856 | // if don't have enough negnum or posnum, aborting | |||
| 1857 | if (negvnum[p] <= ccv_max(params.negative_cache_size / (model->count * 3), ccv_max(REGQ, MINI_BATCH))({ typeof (params.negative_cache_size / (model->count * 3) ) _a = (params.negative_cache_size / (model->count * 3)); typeof (({ typeof ((100)) _a = ((100)); typeof ((10)) _b = ((10)); ( _a > _b) ? _a : _b; })) _b = (({ typeof ((100)) _a = ((100 )); typeof ((10)) _b = ((10)); (_a > _b) ? _a : _b; })); ( _a > _b) ? _a : _b; }) || | |||
| 1858 | posvnum[p] <= ccv_max(REGQ, MINI_BATCH)({ typeof ((100)) _a = ((100)); typeof ((10)) _b = ((10)); (_a > _b) ? _a : _b; })) | |||
| 1859 | continue; | |||
| 1860 | double pos_weight = sqrt((double)negvnum[p] / posvnum[p] * params.balance); // positive weight | |||
| 1861 | double neg_weight = sqrt((double)posvnum[p] / negvnum[p] / params.balance); // negative weight | |||
| 1862 | _model = _ccv_dpm_model_copy(model); | |||
| 1863 | for (i = 0; i < posnum + negv->rnum; i++) | |||
| 1864 | order[i] = i; | |||
| 1865 | gsl_ran_shuffle(rng, order, posnum + negv->rnum, sizeof(int)); | |||
| 1866 | int l = 0; | |||
| 1867 | for (i = 0; i < posnum + negv->rnum; i++) | |||
| 1868 | { | |||
| 1869 | k = order[i]; | |||
| 1870 | if (k < posnum) | |||
| 1871 | { | |||
| 1872 | if (posv[k] == 0 || posv[k]->id != p) | |||
| 1873 | continue; | |||
| 1874 | double score = _ccv_dpm_vector_score(model, posv[k]); // the loss for mini-batch method (computed on model) | |||
| 1875 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1875, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1876 | if (score <= 1) | |||
| 1877 | _ccv_dpm_stochastic_gradient_descent(_model, posv[k], 1, alpha * pos_weight, regz_rate, params.symmetric); | |||
| 1878 | } else { | |||
| 1879 | ccv_dpm_feature_vector_t* v = *(ccv_dpm_feature_vector_t**)ccv_array_get(negv, k - posnum)((void*)(((char*)((negv)->data)) + (size_t)(negv)->rsize * (size_t)(k - posnum))); | |||
| 1880 | if (v->id != p) | |||
| 1881 | continue; | |||
| 1882 | double score = _ccv_dpm_vector_score(model, v); | |||
| 1883 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1883, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1884 | if (score >= -1) | |||
| 1885 | _ccv_dpm_stochastic_gradient_descent(_model, v, -1, alpha * neg_weight, regz_rate, params.symmetric); | |||
| 1886 | } | |||
| 1887 | ++l; | |||
| 1888 | if (l % REGQ(100) == REGQ(100) - 1) | |||
| 1889 | _ccv_dpm_regularize_mixture_model(_model, p, 1.0 - pow(1.0 - alpha / (double)((posvnum[p] + negvnum[p]) * (!!params.symmetric + 1)), REGQ(100))); | |||
| 1890 | if (l % MINI_BATCH(10) == MINI_BATCH(10) - 1) | |||
| 1891 | { | |||
| 1892 | // mimicking mini-batch way of doing things | |||
| 1893 | _ccv_dpm_mixture_model_cleanup(model); | |||
| 1894 | ccfreefree(model); | |||
| 1895 | model = _model; | |||
| 1896 | _model = _ccv_dpm_model_copy(model); | |||
| 1897 | } | |||
| 1898 | } | |||
| 1899 | _ccv_dpm_regularize_mixture_model(_model, p, 1.0 - pow(1.0 - alpha / (double)((posvnum[p] + negvnum[p]) * (!!params.symmetric + 1)), (((posvnum[p] + negvnum[p]) % REGQ(100)) + 1) % (REGQ(100) + 1))); | |||
| 1900 | _ccv_dpm_mixture_model_cleanup(model); | |||
| 1901 | ccfreefree(model); | |||
| 1902 | model = _model; | |||
| 1903 | } | |||
| 1904 | // compute the loss | |||
| 1905 | int posvn = 0; | |||
| 1906 | positive_loss = negative_loss = loss = 0; | |||
| 1907 | for (i = 0; i < posnum; i++) | |||
| 1908 | if (posv[i] != 0) | |||
| 1909 | { | |||
| 1910 | double score = _ccv_dpm_vector_score(model, posv[i]); | |||
| 1911 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1911, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1912 | double hinge_loss = ccv_max(0, 1.0 - score)({ typeof (0) _a = (0); typeof (1.0 - score) _b = (1.0 - score ); (_a > _b) ? _a : _b; }); | |||
| 1913 | positive_loss += hinge_loss; | |||
| 1914 | double pos_weight = sqrt((double)negvnum[posv[i]->id] / posvnum[posv[i]->id] * params.balance); // positive weight | |||
| 1915 | loss += pos_weight * hinge_loss; | |||
| 1916 | ++posvn; | |||
| 1917 | } | |||
| 1918 | for (i = 0; i < negv->rnum; i++) | |||
| 1919 | { | |||
| 1920 | ccv_dpm_feature_vector_t* v = *(ccv_dpm_feature_vector_t**)ccv_array_get(negv, i)((void*)(((char*)((negv)->data)) + (size_t)(negv)->rsize * (size_t)(i))); | |||
| 1921 | double score = _ccv_dpm_vector_score(model, v); | |||
| 1922 | assert(!isnan(score))((void) sizeof ((!__builtin_isnan (score)) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (score)) ; else __assert_fail ("!isnan(score)" , "ccv_dpm.c", 1922, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1923 | double hinge_loss = ccv_max(0, 1.0 + score)({ typeof (0) _a = (0); typeof (1.0 + score) _b = (1.0 + score ); (_a > _b) ? _a : _b; }); | |||
| 1924 | negative_loss += hinge_loss; | |||
| 1925 | double neg_weight = sqrt((double)posvnum[v->id] / negvnum[v->id] / params.balance); // negative weight | |||
| 1926 | loss += neg_weight * hinge_loss; | |||
| 1927 | } | |||
| 1928 | loss = loss / (posvn + negv->rnum); | |||
| 1929 | positive_loss = positive_loss / posvn; | |||
| 1930 | negative_loss = negative_loss / negv->rnum; | |||
| 1931 | FLUSH(CCV_CLI_INFO, " - with loss %.5lf (positive %.5lf, negative %.5f) at rate %.5lf %d | %d -- %d%%", loss, positive_loss, negative_loss, alpha, posvn, negv->rnum, (t + 1) * 100 / params.iterations)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - with loss %.5lf (positive %.5lf, negative %.5f) at rate %.5lf %d | %d -- %d%%" , loss, positive_loss, negative_loss, alpha, posvn, negv-> rnum, (t + 1) * 100 / params.iterations); fflush(stdout); } } while (0); | |||
| 1932 | // check symmetric property of generated root feature | |||
| 1933 | if (params.symmetric) | |||
| 1934 | for (i = 0; i < params.components; i++) | |||
| 1935 | { | |||
| 1936 | ccv_dpm_root_classifier_t* root_classifier = model->root + i; | |||
| 1937 | _ccv_dpm_check_root_classifier_symmetry(root_classifier->root.w); | |||
| 1938 | } | |||
| 1939 | if (fabs(previous_positive_loss - positive_loss) < 1e-5 && | |||
| 1940 | fabs(previous_negative_loss - negative_loss) < 1e-5) | |||
| 1941 | { | |||
| 1942 | PRINT(CCV_CLI_INFO, "\n - aborting iteration at %d because we didn't gain much", t + 1)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n - aborting iteration at %d because we didn't gain much", t + 1); fflush(stdout); } } while (0); | |||
| 1943 | break; | |||
| 1944 | } | |||
| 1945 | previous_positive_loss = positive_loss; | |||
| 1946 | previous_negative_loss = negative_loss; | |||
| 1947 | alpha *= params.alpha_ratio; // it will decrease with each iteration | |||
| 1948 | } | |||
| 1949 | _ccv_dpm_write_checkpoint(model, 0, checkpoint); | |||
| 1950 | PRINT(CCV_CLI_INFO, "\n - data mining %d takes %.2lf seconds at loss %.5lf, %d more to go (%d of %d)\n", d + 1, (double)(_ccv_dpm_time_measure() - elapsed_time) / 1000000.0, loss, params.data_minings - d - 1, c + 1, params.relabels)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n - data mining %d takes %.2lf seconds at loss %.5lf, %d more to go (%d of %d)\n" , d + 1, (double)(_ccv_dpm_time_measure() - elapsed_time) / 1000000.0 , loss, params.data_minings - d - 1, c + 1, params.relabels); fflush(stdout); } } while (0); | |||
| 1951 | j = 0; | |||
| 1952 | double* scores = (double*)ccmallocmalloc(posnum * sizeof(double)); | |||
| 1953 | for (i = 0; i < posnum; i++) | |||
| 1954 | if (posv[i]) | |||
| 1955 | { | |||
| 1956 | scores[j] = _ccv_dpm_vector_score(model, posv[i]); | |||
| 1957 | assert(!isnan(scores[j]))((void) sizeof ((!__builtin_isnan (scores[j])) ? 1 : 0), __extension__ ({ if (!__builtin_isnan (scores[j])) ; else __assert_fail ("!isnan(scores[j])" , "ccv_dpm.c", 1957, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1958 | j++; | |||
| 1959 | } | |||
| 1960 | _ccv_dpm_score_qsort(scores, j, 0); | |||
| 1961 | ccfreefree(scores); | |||
| 1962 | double breakdown; | |||
| 1963 | PRINT(CCV_CLI_INFO, " - threshold breakdown by percentile")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" - threshold breakdown by percentile"); fflush(stdout); } } while (0); | |||
| 1964 | for (breakdown = params.percentile_breakdown; breakdown < 1.0; breakdown += params.percentile_breakdown) | |||
| 1965 | PRINT(CCV_CLI_INFO, " %0.2lf(%.1f%%)", scores[ccv_clamp((int)(breakdown * j), 0, j - 1)], (1.0 - breakdown) * 100)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf (" %0.2lf(%.1f%%)", scores[({ typeof (0) _a = (0); typeof (j - 1) _b = (j - 1); typeof ((int)(breakdown * j)) _x = ((int)(breakdown * j)); (_x < _a) ? _a : ((_x > _b) ? _b : _x); })], (1.0 - breakdown) * 100); fflush(stdout); } } while (0); | |||
| 1966 | PRINT(CCV_CLI_INFO, "\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("\n"); fflush(stdout); } } while (0); | |||
| 1967 | char persist[512]; | |||
| 1968 | sprintf(persist, "%s/model.%d.%d", dir, c, d); | |||
| 1969 | _ccv_dpm_write_checkpoint(model, 0, persist); | |||
| 1970 | } | |||
| 1971 | d = 0; | |||
| 1972 | // if abort, means that we cannot find enough negative examples, try to adjust constant | |||
| 1973 | for (i = 0; i < posnum; i++) | |||
| 1974 | if (posv[i]) | |||
| 1975 | _ccv_dpm_feature_vector_free(posv[i]); | |||
| 1976 | remove(feature_vector_checkpoint); | |||
| 1977 | } | |||
| 1978 | if (negv) | |||
| 1979 | { | |||
| 1980 | for (i = 0; i < negv->rnum; i++) | |||
| 1981 | { | |||
| 1982 | ccv_dpm_feature_vector_t* v = *(ccv_dpm_feature_vector_t**)ccv_array_get(negv, i)((void*)(((char*)((negv)->data)) + (size_t)(negv)->rsize * (size_t)(i))); | |||
| 1983 | _ccv_dpm_feature_vector_free(v); | |||
| 1984 | } | |||
| 1985 | ccv_array_free(negv); | |||
| 1986 | } | |||
| 1987 | remove(neg_vector_checkpoint); | |||
| 1988 | ccfreefree(order); | |||
| 1989 | ccfreefree(posv); | |||
| 1990 | PRINT(CCV_CLI_INFO, "root rectangle prediction with linear regression\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("root rectangle prediction with linear regression\n"); fflush (stdout); } } while (0); | |||
| 1991 | _ccv_dpm_initialize_root_rectangle_estimator(model, posfiles, bboxes, posnum, params); | |||
| 1992 | _ccv_dpm_write_checkpoint(model, 1, checkpoint); | |||
| 1993 | PRINT(CCV_CLI_INFO, "done\n")do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { printf ("done\n"); fflush(stdout); } } while (0); | |||
| 1994 | remove(gradient_progress_checkpoint); | |||
| 1995 | _ccv_dpm_mixture_model_cleanup(model); | |||
| 1996 | ccfreefree(model); | |||
| 1997 | gsl_rng_free(rng); | |||
| 1998 | } | |||
| 1999 | #else | |||
| 2000 | void ccv_dpm_mixture_model_new(char** posfiles, ccv_rect_t* bboxes, int posnum, char** bgfiles, int bgnum, int negnum, const char* dir, ccv_dpm_new_param_t params) | |||
| 2001 | { | |||
| 2002 | fprintf(stderrstderr, " ccv_dpm_classifier_cascade_new requires libgsl and liblinear support, please compile ccv with them.\n"); | |||
| 2003 | } | |||
| 2004 | #endif | |||
| 2005 | #else | |||
| 2006 | void ccv_dpm_mixture_model_new(char** posfiles, ccv_rect_t* bboxes, int posnum, char** bgfiles, int bgnum, int negnum, const char* dir, ccv_dpm_new_param_t params) | |||
| 2007 | { | |||
| 2008 | fprintf(stderrstderr, " ccv_dpm_classifier_cascade_new requires libgsl and liblinear support, please compile ccv with them.\n"); | |||
| 2009 | } | |||
| 2010 | #endif | |||
| 2011 | ||||
| 2012 | static int _ccv_is_equal(const void* _r1, const void* _r2, void* data) | |||
| 2013 | { | |||
| 2014 | const ccv_root_comp_t* r1 = (const ccv_root_comp_t*)_r1; | |||
| 2015 | const ccv_root_comp_t* r2 = (const ccv_root_comp_t*)_r2; | |||
| 2016 | int distance = (int)(ccv_min(r1->rect.width, r1->rect.height)({ typeof (r1->rect.width) _a = (r1->rect.width); typeof (r1->rect.height) _b = (r1->rect.height); (_a < _b) ? _a : _b; }) * 0.25 + 0.5); | |||
| 2017 | ||||
| 2018 | return r2->rect.x <= r1->rect.x + distance && | |||
| 2019 | r2->rect.x >= r1->rect.x - distance && | |||
| 2020 | r2->rect.y <= r1->rect.y + distance && | |||
| 2021 | r2->rect.y >= r1->rect.y - distance && | |||
| 2022 | r2->rect.width <= (int)(r1->rect.width * 1.5 + 0.5) && | |||
| 2023 | (int)(r2->rect.width * 1.5 + 0.5) >= r1->rect.width && | |||
| 2024 | r2->rect.height <= (int)(r1->rect.height * 1.5 + 0.5) && | |||
| 2025 | (int)(r2->rect.height * 1.5 + 0.5) >= r1->rect.height; | |||
| 2026 | } | |||
| 2027 | ||||
| 2028 | static int _ccv_is_equal_same_class(const void* _r1, const void* _r2, void* data) | |||
| 2029 | { | |||
| 2030 | const ccv_root_comp_t* r1 = (const ccv_root_comp_t*)_r1; | |||
| 2031 | const ccv_root_comp_t* r2 = (const ccv_root_comp_t*)_r2; | |||
| 2032 | int distance = (int)(ccv_min(r1->rect.width, r1->rect.height)({ typeof (r1->rect.width) _a = (r1->rect.width); typeof (r1->rect.height) _b = (r1->rect.height); (_a < _b) ? _a : _b; }) * 0.25 + 0.5); | |||
| 2033 | ||||
| 2034 | return r2->classification.id == r1->classification.id && | |||
| 2035 | r2->rect.x <= r1->rect.x + distance && | |||
| 2036 | r2->rect.x >= r1->rect.x - distance && | |||
| 2037 | r2->rect.y <= r1->rect.y + distance && | |||
| 2038 | r2->rect.y >= r1->rect.y - distance && | |||
| 2039 | r2->rect.width <= (int)(r1->rect.width * 1.5 + 0.5) && | |||
| 2040 | (int)(r2->rect.width * 1.5 + 0.5) >= r1->rect.width && | |||
| 2041 | r2->rect.height <= (int)(r1->rect.height * 1.5 + 0.5) && | |||
| 2042 | (int)(r2->rect.height * 1.5 + 0.5) >= r1->rect.height; | |||
| 2043 | } | |||
| 2044 | ||||
| 2045 | ccv_array_t* ccv_dpm_detect_objects(ccv_dense_matrix_t* a, ccv_dpm_mixture_model_t** _model, int count, ccv_dpm_param_t params) | |||
| 2046 | { | |||
| 2047 | int c, i, j, k, x, y; | |||
| 2048 | double scale = pow(2.0, 1.0 / (params.interval + 1.0)); | |||
| 2049 | int next = params.interval + 1; | |||
| 2050 | int scale_upto = _ccv_dpm_scale_upto(a, _model, count, params.interval); | |||
| 2051 | if (scale_upto < 0) // image is too small to be interesting | |||
| 2052 | return 0; | |||
| 2053 | ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca((scale_upto + next * 2) * sizeof(ccv_dense_matrix_t*))__builtin_alloca ((scale_upto + next * 2) * sizeof(ccv_dense_matrix_t *)); | |||
| 2054 | _ccv_dpm_feature_pyramid(a, pyr, scale_upto, params.interval); | |||
| 2055 | ccv_array_t* idx_seq; | |||
| 2056 | ccv_array_t* seq = ccv_array_new(sizeof(ccv_root_comp_t), 64, 0); | |||
| 2057 | ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_root_comp_t), 64, 0); | |||
| 2058 | ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_root_comp_t), 64, 0); | |||
| 2059 | for (c = 0; c < count; c++) | |||
| 2060 | { | |||
| 2061 | ccv_dpm_mixture_model_t* model = _model[c]; | |||
| 2062 | double scale_x = 1.0; | |||
| 2063 | double scale_y = 1.0; | |||
| 2064 | for (i = next; i < scale_upto + next * 2; i++) | |||
| 2065 | { | |||
| 2066 | for (j = 0; j < model->count; j++) | |||
| 2067 | { | |||
| 2068 | ccv_dpm_root_classifier_t* root = model->root + j; | |||
| 2069 | ccv_dense_matrix_t* root_feature = 0; | |||
| 2070 | ccv_dense_matrix_t* part_feature[CCV_DPM_PART_MAX(10)]; | |||
| 2071 | ccv_dense_matrix_t* dx[CCV_DPM_PART_MAX(10)]; | |||
| 2072 | ccv_dense_matrix_t* dy[CCV_DPM_PART_MAX(10)]; | |||
| 2073 | _ccv_dpm_compute_score(root, pyr[i], pyr[i - next], &root_feature, part_feature, dx, dy); | |||
| 2074 | int rwh = (root->root.w->rows - 1) / 2, rww = (root->root.w->cols - 1) / 2; | |||
| 2075 | int rwh_1 = root->root.w->rows / 2, rww_1 = root->root.w->cols / 2; | |||
| 2076 | /* these values are designed to make sure works with odd/even number of rows/cols | |||
| 2077 | * of the root classifier: | |||
| 2078 | * suppose the image is 6x6, and the root classifier is 6x6, the scan area should starts | |||
| 2079 | * at (2,2) and end at (2,2), thus, it is capped by (rwh, rww) to (6 - rwh_1 - 1, 6 - rww_1 - 1) | |||
| 2080 | * this computation works for odd root classifier too (i.e. 5x5) */ | |||
| 2081 | float* f_ptr = (float*)ccv_get_dense_matrix_cell_by(CCV_32F | CCV_C1, root_feature, rwh, 0, 0)(((CCV_32F | CCV_C1) & CCV_32S) ? (void*)((root_feature)-> data.i32 + ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_32F ) ? (void*)((root_feature)->data.f32+ ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64S) ? (void*)((root_feature) ->data.i64+ ((rwh) * (root_feature)->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (((CCV_32F | CCV_C1) & CCV_64F ) ? (void*)((root_feature)->data.f64 + ((rwh) * (root_feature )->cols + (0)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)) : (void*)((root_feature)->data.u8 + (rwh) * (root_feature)-> step + (0) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)))))); | |||
| 2082 | for (y = rwh; y < root_feature->rows - rwh_1; y++) | |||
| 2083 | { | |||
| 2084 | for (x = rww; x < root_feature->cols - rww_1; x++) | |||
| 2085 | if (f_ptr[x] + root->beta > params.threshold) | |||
| 2086 | { | |||
| 2087 | ccv_root_comp_t comp; | |||
| 2088 | comp.neighbors = 1; | |||
| 2089 | comp.classification.id = c + 1; | |||
| 2090 | comp.classification.confidence = f_ptr[x] + root->beta; | |||
| 2091 | comp.pnum = root->count; | |||
| 2092 | float drift_x = root->alpha[0], | |||
| 2093 | drift_y = root->alpha[1], | |||
| 2094 | drift_scale = root->alpha[2]; | |||
| 2095 | for (k = 0; k < root->count; k++) | |||
| 2096 | { | |||
| 2097 | ccv_dpm_part_classifier_t* part = root->part + k; | |||
| 2098 | comp.part[k].neighbors = 1; | |||
| 2099 | comp.part[k].classification.id = c; | |||
| 2100 | int pww = (part->w->cols - 1) / 2, pwh = (part->w->rows - 1) / 2; | |||
| 2101 | int offy = part->y + pwh - rwh * 2; | |||
| 2102 | int offx = part->x + pww - rww * 2; | |||
| 2103 | int iy = ccv_clamp(y * 2 + offy, pwh, part_feature[k]->rows - part->w->rows + pwh)({ typeof (pwh) _a = (pwh); typeof (part_feature[k]->rows - part->w->rows + pwh) _b = (part_feature[k]->rows - part ->w->rows + pwh); typeof (y * 2 + offy) _x = (y * 2 + offy ); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 2104 | int ix = ccv_clamp(x * 2 + offx, pww, part_feature[k]->cols - part->w->cols + pww)({ typeof (pww) _a = (pww); typeof (part_feature[k]->cols - part->w->cols + pww) _b = (part_feature[k]->cols - part ->w->cols + pww); typeof (x * 2 + offx) _x = (x * 2 + offx ); (_x < _a) ? _a : ((_x > _b) ? _b : _x); }); | |||
| 2105 | int ry = ccv_get_dense_matrix_cell_value_by(CCV_32S | CCV_C1, dy[k], iy, ix, 0)(((CCV_32S | CCV_C1) & CCV_32S) ? (dy[k])->data.i32[(( iy) * (dy[k])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)] : (((CCV_32S | CCV_C1) & CCV_32F) ? (dy[k])-> data.f32[((iy) * (dy[k])->cols + (ix)) * ((CCV_32S | CCV_C1 ) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64S) ? (dy[k])->data.i64[((iy) * (dy[k])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64F ) ? (dy[k])->data.f64[((iy) * (dy[k])->cols + (ix)) * ( (CCV_32S | CCV_C1) & 0xFFF) + (0)] : (dy[k])->data.u8[ (iy) * (dy[k])->step + (ix) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)])))); | |||
| 2106 | int rx = ccv_get_dense_matrix_cell_value_by(CCV_32S | CCV_C1, dx[k], iy, ix, 0)(((CCV_32S | CCV_C1) & CCV_32S) ? (dx[k])->data.i32[(( iy) * (dx[k])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)] : (((CCV_32S | CCV_C1) & CCV_32F) ? (dx[k])-> data.f32[((iy) * (dx[k])->cols + (ix)) * ((CCV_32S | CCV_C1 ) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64S) ? (dx[k])->data.i64[((iy) * (dx[k])->cols + (ix)) * ((CCV_32S | CCV_C1) & 0xFFF) + (0)] : (((CCV_32S | CCV_C1) & CCV_64F ) ? (dx[k])->data.f64[((iy) * (dx[k])->cols + (ix)) * ( (CCV_32S | CCV_C1) & 0xFFF) + (0)] : (dx[k])->data.u8[ (iy) * (dx[k])->step + (ix) * ((CCV_32S | CCV_C1) & 0xFFF ) + (0)])))); | |||
| 2107 | drift_x += part->alpha[0] * rx + part->alpha[1] * ry; | |||
| 2108 | drift_y += part->alpha[2] * rx + part->alpha[3] * ry; | |||
| 2109 | drift_scale += part->alpha[4] * rx + part->alpha[5] * ry; | |||
| 2110 | ry = iy - ry; | |||
| 2111 | rx = ix - rx; | |||
| 2112 | comp.part[k].rect = ccv_rect((int)((rx - pww) * CCV_DPM_WINDOW_SIZE(8) / 2 * scale_x + 0.5), (int)((ry - pwh) * CCV_DPM_WINDOW_SIZE(8) / 2 * scale_y + 0.5), (int)(part->w->cols * CCV_DPM_WINDOW_SIZE(8) / 2 * scale_x + 0.5), (int)(part->w->rows * CCV_DPM_WINDOW_SIZE(8) / 2 * scale_y + 0.5)); | |||
| 2113 | comp.part[k].classification.confidence = -ccv_get_dense_matrix_cell_value_by(CCV_32F | CCV_C1, part_feature[k], iy, ix, 0)(((CCV_32F | CCV_C1) & CCV_32S) ? (part_feature[k])->data .i32[((iy) * (part_feature[k])->cols + (ix)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)] : (((CCV_32F | CCV_C1) & CCV_32F ) ? (part_feature[k])->data.f32[((iy) * (part_feature[k])-> cols + (ix)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)] : (((CCV_32F | CCV_C1) & CCV_64S) ? (part_feature[k])->data.i64[(( iy) * (part_feature[k])->cols + (ix)) * ((CCV_32F | CCV_C1 ) & 0xFFF) + (0)] : (((CCV_32F | CCV_C1) & CCV_64F) ? (part_feature[k])->data.f64[((iy) * (part_feature[k])-> cols + (ix)) * ((CCV_32F | CCV_C1) & 0xFFF) + (0)] : (part_feature [k])->data.u8[(iy) * (part_feature[k])->step + (ix) * ( (CCV_32F | CCV_C1) & 0xFFF) + (0)])))); | |||
| 2114 | } | |||
| 2115 | comp.rect = ccv_rect((int)((x + drift_x) * CCV_DPM_WINDOW_SIZE(8) * scale_x - rww * CCV_DPM_WINDOW_SIZE(8) * scale_x * (1.0 + drift_scale) + 0.5), (int)((y + drift_y) * CCV_DPM_WINDOW_SIZE(8) * scale_y - rwh * CCV_DPM_WINDOW_SIZE(8) * scale_y * (1.0 + drift_scale) + 0.5), (int)(root->root.w->cols * CCV_DPM_WINDOW_SIZE(8) * scale_x * (1.0 + drift_scale) + 0.5), (int)(root->root.w->rows * CCV_DPM_WINDOW_SIZE(8) * scale_y * (1.0 + drift_scale) + 0.5)); | |||
| 2116 | ccv_array_push(seq, &comp); | |||
| 2117 | } | |||
| 2118 | f_ptr += root_feature->cols; | |||
| 2119 | } | |||
| 2120 | for (k = 0; k < root->count; k++) | |||
| 2121 | { | |||
| 2122 | ccv_matrix_free(part_feature[k]); | |||
| 2123 | ccv_matrix_free(dx[k]); | |||
| 2124 | ccv_matrix_free(dy[k]); | |||
| 2125 | } | |||
| 2126 | ccv_matrix_free(root_feature); | |||
| 2127 | } | |||
| 2128 | scale_x *= scale; | |||
| 2129 | scale_y *= scale; | |||
| 2130 | } | |||
| 2131 | /* the following code from OpenCV's haar feature implementation */ | |||
| 2132 | if (params.min_neighbors == 0) | |||
| 2133 | { | |||
| 2134 | for (i = 0; i < seq->rnum; i++) | |||
| 2135 | { | |||
| 2136 | ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i)((void*)(((char*)((seq)->data)) + (size_t)(seq)->rsize * (size_t)(i))); | |||
| 2137 | ccv_array_push(result_seq, comp); | |||
| 2138 | } | |||
| 2139 | } else { | |||
| 2140 | idx_seq = 0; | |||
| 2141 | ccv_array_clear(seq2); | |||
| 2142 | // group retrieved rectangles in order to filter out noise | |||
| 2143 | int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0); | |||
| 2144 | ccv_root_comp_t* comps = (ccv_root_comp_t*)ccmallocmalloc((ncomp + 1) * sizeof(ccv_root_comp_t)); | |||
| 2145 | memset(comps, 0, (ncomp + 1) * sizeof(ccv_root_comp_t)); | |||
| 2146 | ||||
| 2147 | // count number of neighbors | |||
| 2148 | for (i = 0; i < seq->rnum; i++) | |||
| 2149 | { | |||
| 2150 | ccv_root_comp_t r1 = *(ccv_root_comp_t*)ccv_array_get(seq, i)((void*)(((char*)((seq)->data)) + (size_t)(seq)->rsize * (size_t)(i))); | |||
| 2151 | int idx = *(int*)ccv_array_get(idx_seq, i)((void*)(((char*)((idx_seq)->data)) + (size_t)(idx_seq)-> rsize * (size_t)(i))); | |||
| 2152 | ||||
| 2153 | comps[idx].classification.id = r1.classification.id; | |||
| 2154 | comps[idx].pnum = r1.pnum; | |||
| 2155 | if (r1.classification.confidence > comps[idx].classification.confidence || comps[idx].neighbors == 0) | |||
| 2156 | { | |||
| 2157 | comps[idx].rect = r1.rect; | |||
| 2158 | comps[idx].classification.confidence = r1.classification.confidence; | |||
| 2159 | memcpy(comps[idx].part, r1.part, sizeof(ccv_comp_t) * CCV_DPM_PART_MAX(10)); | |||
| 2160 | } | |||
| 2161 | ||||
| 2162 | ++comps[idx].neighbors; | |||
| 2163 | } | |||
| 2164 | ||||
| 2165 | // calculate average bounding box | |||
| 2166 | for (i = 0; i < ncomp; i++) | |||
| 2167 | { | |||
| 2168 | int n = comps[i].neighbors; | |||
| 2169 | if (n >= params.min_neighbors) | |||
| 2170 | ccv_array_push(seq2, comps + i); | |||
| 2171 | } | |||
| 2172 | ||||
| 2173 | // filter out large object rectangles contains small object rectangles | |||
| 2174 | for (i = 0; i < seq2->rnum; i++) | |||
| 2175 | { | |||
| 2176 | ccv_root_comp_t* r2 = (ccv_root_comp_t*)ccv_array_get(seq2, i)((void*)(((char*)((seq2)->data)) + (size_t)(seq2)->rsize * (size_t)(i))); | |||
| 2177 | int distance = (int)(ccv_min(r2->rect.width, r2->rect.height)({ typeof (r2->rect.width) _a = (r2->rect.width); typeof (r2->rect.height) _b = (r2->rect.height); (_a < _b) ? _a : _b; }) * 0.25 + 0.5); | |||
| 2178 | for (j = 0; j < seq2->rnum; j++) | |||
| 2179 | { | |||
| 2180 | ccv_root_comp_t r1 = *(ccv_root_comp_t*)ccv_array_get(seq2, j)((void*)(((char*)((seq2)->data)) + (size_t)(seq2)->rsize * (size_t)(j))); | |||
| 2181 | if (i != j && | |||
| 2182 | abs(r1.classification.id) == r2->classification.id && | |||
| 2183 | r1.rect.x >= r2->rect.x - distance && | |||
| 2184 | r1.rect.y >= r2->rect.y - distance && | |||
| 2185 | r1.rect.x + r1.rect.width <= r2->rect.x + r2->rect.width + distance && | |||
| 2186 | r1.rect.y + r1.rect.height <= r2->rect.y + r2->rect.height + distance && | |||
| 2187 | // if r1 (the smaller one) is better, mute r2 | |||
| 2188 | (r2->classification.confidence <= r1.classification.confidence && r2->neighbors < r1.neighbors)) | |||
| 2189 | { | |||
| 2190 | r2->classification.id = -r2->classification.id; | |||
| 2191 | break; | |||
| 2192 | } | |||
| 2193 | } | |||
| 2194 | } | |||
| 2195 | ||||
| 2196 | // filter out small object rectangles inside large object rectangles | |||
| 2197 | for (i = 0; i < seq2->rnum; i++) | |||
| 2198 | { | |||
| 2199 | ccv_root_comp_t r1 = *(ccv_root_comp_t*)ccv_array_get(seq2, i)((void*)(((char*)((seq2)->data)) + (size_t)(seq2)->rsize * (size_t)(i))); | |||
| 2200 | if (r1.classification.id > 0) | |||
| 2201 | { | |||
| 2202 | int flag = 1; | |||
| 2203 | ||||
| 2204 | for (j = 0; j < seq2->rnum; j++) | |||
| 2205 | { | |||
| 2206 | ccv_root_comp_t r2 = *(ccv_root_comp_t*)ccv_array_get(seq2, j)((void*)(((char*)((seq2)->data)) + (size_t)(seq2)->rsize * (size_t)(j))); | |||
| 2207 | int distance = (int)(ccv_min(r2.rect.width, r2.rect.height)({ typeof (r2.rect.width) _a = (r2.rect.width); typeof (r2.rect .height) _b = (r2.rect.height); (_a < _b) ? _a : _b; }) * 0.25 + 0.5); | |||
| 2208 | ||||
| 2209 | if (i != j && | |||
| 2210 | r1.classification.id == abs(r2.classification.id) && | |||
| 2211 | r1.rect.x >= r2.rect.x - distance && | |||
| 2212 | r1.rect.y >= r2.rect.y - distance && | |||
| 2213 | r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance && | |||
| 2214 | r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance && | |||
| 2215 | (r2.classification.confidence > r1.classification.confidence || r2.neighbors >= r1.neighbors)) | |||
| 2216 | { | |||
| 2217 | flag = 0; | |||
| 2218 | break; | |||
| 2219 | } | |||
| 2220 | } | |||
| 2221 | ||||
| 2222 | if (flag) | |||
| 2223 | ccv_array_push(result_seq, &r1); | |||
| 2224 | } | |||
| 2225 | } | |||
| 2226 | ccv_array_free(idx_seq); | |||
| 2227 | ccfreefree(comps); | |||
| 2228 | } | |||
| 2229 | } | |||
| 2230 | ||||
| 2231 | for (i = 0; i < scale_upto + next * 2; i++) | |||
| 2232 | ccv_matrix_free(pyr[i]); | |||
| 2233 | ||||
| 2234 | ccv_array_free(seq); | |||
| 2235 | ccv_array_free(seq2); | |||
| 2236 | ||||
| 2237 | ccv_array_t* result_seq2; | |||
| 2238 | /* the following code from OpenCV's haar feature implementation */ | |||
| 2239 | if (params.flags & CCV_DPM_NO_NESTED) | |||
| 2240 | { | |||
| 2241 | result_seq2 = ccv_array_new(sizeof(ccv_root_comp_t), 64, 0); | |||
| 2242 | idx_seq = 0; | |||
| 2243 | // group retrieved rectangles in order to filter out noise | |||
| 2244 | int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0); | |||
| 2245 | ccv_root_comp_t* comps = (ccv_root_comp_t*)ccmallocmalloc((ncomp + 1) * sizeof(ccv_root_comp_t)); | |||
| 2246 | memset(comps, 0, (ncomp + 1) * sizeof(ccv_root_comp_t)); | |||
| 2247 | ||||
| 2248 | // count number of neighbors | |||
| 2249 | for(i = 0; i < result_seq->rnum; i++) | |||
| 2250 | { | |||
| 2251 | ccv_root_comp_t r1 = *(ccv_root_comp_t*)ccv_array_get(result_seq, i)((void*)(((char*)((result_seq)->data)) + (size_t)(result_seq )->rsize * (size_t)(i))); | |||
| 2252 | int idx = *(int*)ccv_array_get(idx_seq, i)((void*)(((char*)((idx_seq)->data)) + (size_t)(idx_seq)-> rsize * (size_t)(i))); | |||
| 2253 | ||||
| 2254 | if (comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence) | |||
| 2255 | { | |||
| 2256 | comps[idx].classification.confidence = r1.classification.confidence; | |||
| 2257 | comps[idx].neighbors = 1; | |||
| 2258 | comps[idx].rect = r1.rect; | |||
| 2259 | comps[idx].classification.id = r1.classification.id; | |||
| 2260 | comps[idx].pnum = r1.pnum; | |||
| 2261 | memcpy(comps[idx].part, r1.part, sizeof(ccv_comp_t) * CCV_DPM_PART_MAX(10)); | |||
| 2262 | } | |||
| 2263 | } | |||
| 2264 | ||||
| 2265 | // calculate average bounding box | |||
| 2266 | for(i = 0; i < ncomp; i++) | |||
| 2267 | if(comps[i].neighbors) | |||
| 2268 | ccv_array_push(result_seq2, &comps[i]); | |||
| 2269 | ||||
| 2270 | ccv_array_free(result_seq); | |||
| 2271 | ccfreefree(comps); | |||
| 2272 | } else { | |||
| 2273 | result_seq2 = result_seq; | |||
| 2274 | } | |||
| 2275 | ||||
| 2276 | return result_seq2; | |||
| 2277 | } | |||
| 2278 | ||||
| 2279 | ccv_dpm_mixture_model_t* ccv_dpm_read_mixture_model(const char* directory) | |||
| 2280 | { | |||
| 2281 | FILE* r = fopen(directory, "r"); | |||
| 2282 | if (r == 0) | |||
| 2283 | return 0; | |||
| 2284 | int count; | |||
| 2285 | char flag; | |||
| 2286 | fscanf(r, "%c", &flag); | |||
| 2287 | assert(flag == '.')((void) sizeof ((flag == '.') ? 1 : 0), __extension__ ({ if ( flag == '.') ; else __assert_fail ("flag == '.'", "ccv_dpm.c" , 2287, __extension__ __PRETTY_FUNCTION__); })); | |||
| 2288 | fscanf(r, "%d", &count); | |||
| 2289 | ccv_dpm_root_classifier_t* root_classifier = (ccv_dpm_root_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_root_classifier_t) * count); | |||
| 2290 | memset(root_classifier, 0, sizeof(ccv_dpm_root_classifier_t) * count); | |||
| 2291 | int i, j, k; | |||
| 2292 | size_t size = sizeof(ccv_dpm_mixture_model_t) + sizeof(ccv_dpm_root_classifier_t) * count; | |||
| 2293 | /* the format is easy, but I tried to copy all data into one memory region */ | |||
| 2294 | for (i = 0; i < count; i++) | |||
| 2295 | { | |||
| 2296 | int rows, cols; | |||
| 2297 | fscanf(r, "%d %d", &rows, &cols); | |||
| 2298 | fscanf(r, "%f %f %f %f", &root_classifier[i].beta, &root_classifier[i].alpha[0], &root_classifier[i].alpha[1], &root_classifier[i].alpha[2]); | |||
| 2299 | root_classifier[i].root.w = ccv_dense_matrix_new(rows, cols, CCV_32F | 31, ccmallocmalloc(ccv_compute_dense_matrix_size(rows, cols, CCV_32F | 31)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((cols) * _ccv_get_data_type_size [((CCV_32F | 31) & 0xFF000) >> 12] * ((CCV_32F | 31 ) & 0xFFF) + 3) & -4) * (rows))), 0); | |||
| 2300 | size += ccv_compute_dense_matrix_size(rows, cols, CCV_32F | 31)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((cols) * _ccv_get_data_type_size [((CCV_32F | 31) & 0xFF000) >> 12] * ((CCV_32F | 31 ) & 0xFFF) + 3) & -4) * (rows)); | |||
| 2301 | for (j = 0; j < rows * cols * 31; j++) | |||
| 2302 | fscanf(r, "%f", &root_classifier[i].root.w->data.f32[j]); | |||
| 2303 | ccv_make_matrix_immutable(root_classifier[i].root.w); | |||
| 2304 | fscanf(r, "%d", &root_classifier[i].count); | |||
| 2305 | ccv_dpm_part_classifier_t* part_classifier = (ccv_dpm_part_classifier_t*)ccmallocmalloc(sizeof(ccv_dpm_part_classifier_t) * root_classifier[i].count); | |||
| 2306 | size += sizeof(ccv_dpm_part_classifier_t) * root_classifier[i].count; | |||
| 2307 | for (j = 0; j < root_classifier[i].count; j++) | |||
| 2308 | { | |||
| 2309 | fscanf(r, "%d %d %d", &part_classifier[j].x, &part_classifier[j].y, &part_classifier[j].z); | |||
| 2310 | fscanf(r, "%lf %lf %lf %lf", &part_classifier[j].dx, &part_classifier[j].dy, &part_classifier[j].dxx, &part_classifier[j].dyy); | |||
| 2311 | fscanf(r, "%f %f %f %f %f %f", &part_classifier[j].alpha[0], &part_classifier[j].alpha[1], &part_classifier[j].alpha[2], &part_classifier[j].alpha[3], &part_classifier[j].alpha[4], &part_classifier[j].alpha[5]); | |||
| 2312 | fscanf(r, "%d %d %d", &rows, &cols, &part_classifier[j].counterpart); | |||
| 2313 | part_classifier[j].w = ccv_dense_matrix_new(rows, cols, CCV_32F | 31, ccmallocmalloc(ccv_compute_dense_matrix_size(rows, cols, CCV_32F | 31)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((cols) * _ccv_get_data_type_size [((CCV_32F | 31) & 0xFF000) >> 12] * ((CCV_32F | 31 ) & 0xFFF) + 3) & -4) * (rows))), 0); | |||
| 2314 | size += ccv_compute_dense_matrix_size(rows, cols, CCV_32F | 31)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((cols) * _ccv_get_data_type_size [((CCV_32F | 31) & 0xFF000) >> 12] * ((CCV_32F | 31 ) & 0xFFF) + 3) & -4) * (rows)); | |||
| 2315 | for (k = 0; k < rows * cols * 31; k++) | |||
| 2316 | fscanf(r, "%f", &part_classifier[j].w->data.f32[k]); | |||
| 2317 | ccv_make_matrix_immutable(part_classifier[j].w); | |||
| 2318 | } | |||
| 2319 | root_classifier[i].part = part_classifier; | |||
| 2320 | } | |||
| 2321 | fclose(r); | |||
| 2322 | unsigned char* m = (unsigned char*)ccmallocmalloc(size); | |||
| 2323 | ccv_dpm_mixture_model_t* model = (ccv_dpm_mixture_model_t*)m; | |||
| 2324 | m += sizeof(ccv_dpm_mixture_model_t); | |||
| 2325 | model->count = count; | |||
| 2326 | model->root = (ccv_dpm_root_classifier_t*)m; | |||
| 2327 | m += sizeof(ccv_dpm_root_classifier_t) * model->count; | |||
| 2328 | memcpy(model->root, root_classifier, sizeof(ccv_dpm_root_classifier_t) * model->count); | |||
| 2329 | ccfreefree(root_classifier); | |||
| 2330 | for (i = 0; i < model->count; i++) | |||
| 2331 | { | |||
| 2332 | ccv_dpm_part_classifier_t* part_classifier = model->root[i].part; | |||
| 2333 | model->root[i].part = (ccv_dpm_part_classifier_t*)m; | |||
| 2334 | m += sizeof(ccv_dpm_part_classifier_t) * model->root[i].count; | |||
| 2335 | memcpy(model->root[i].part, part_classifier, sizeof(ccv_dpm_part_classifier_t) * model->root[i].count); | |||
| 2336 | ccfreefree(part_classifier); | |||
| 2337 | } | |||
| 2338 | for (i = 0; i < model->count; i++) | |||
| 2339 | { | |||
| 2340 | ccv_dense_matrix_t* w = model->root[i].root.w; | |||
| 2341 | model->root[i].root.w = (ccv_dense_matrix_t*)m; | |||
| 2342 | m += ccv_compute_dense_matrix_size(w->rows, w->cols, w->type)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((w->cols ) * _ccv_get_data_type_size[((w->type) & 0xFF000) >> 12] * ((w->type) & 0xFFF) + 3) & -4) * (w->rows )); | |||
| 2343 | memcpy(model->root[i].root.w, w, ccv_compute_dense_matrix_size(w->rows, w->cols, w->type)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((w->cols ) * _ccv_get_data_type_size[((w->type) & 0xFF000) >> 12] * ((w->type) & 0xFFF) + 3) & -4) * (w->rows ))); | |||
| 2344 | model->root[i].root.w->data.u8 = (unsigned char*)(model->root[i].root.w + 1); | |||
| 2345 | ccfreefree(w); | |||
| 2346 | for (j = 0; j < model->root[i].count; j++) | |||
| 2347 | { | |||
| 2348 | w = model->root[i].part[j].w; | |||
| 2349 | model->root[i].part[j].w = (ccv_dense_matrix_t*)m; | |||
| 2350 | m += ccv_compute_dense_matrix_size(w->rows, w->cols, w->type)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((w->cols ) * _ccv_get_data_type_size[((w->type) & 0xFF000) >> 12] * ((w->type) & 0xFFF) + 3) & -4) * (w->rows )); | |||
| 2351 | memcpy(model->root[i].part[j].w, w, ccv_compute_dense_matrix_size(w->rows, w->cols, w->type)(((sizeof(ccv_dense_matrix_t) + 63) & -64) + (((w->cols ) * _ccv_get_data_type_size[((w->type) & 0xFF000) >> 12] * ((w->type) & 0xFFF) + 3) & -4) * (w->rows ))); | |||
| 2352 | model->root[i].part[j].w->data.u8 = (unsigned char*)(model->root[i].part[j].w + 1); | |||
| 2353 | ccfreefree(w); | |||
| 2354 | } | |||
| 2355 | } | |||
| 2356 | return model; | |||
| 2357 | } | |||
| 2358 | ||||
| 2359 | void ccv_dpm_mixture_model_free(ccv_dpm_mixture_model_t* model) | |||
| 2360 | { | |||
| 2361 | ccfreefree(model); | |||
| 2362 | } |