| File: | nnc/ccv_nnc_micro_core.c |
| Warning: | line 642, column 42 Potential memory leak |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include "ccv_nnc.h" | |||
| 2 | #include "ccv_nnc_easy.h" | |||
| 3 | #include "ccv_nnc_internal.h" | |||
| 4 | #include "ccv_internal.h" | |||
| 5 | #include "_ccv_nnc_micro.h" | |||
| 6 | #include "3rdparty/khash/khash.h" | |||
| 7 | ||||
| 8 | // MARK - Level-1 API | |||
| 9 | ||||
| 10 | const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_input_isa = {}; | |||
| 11 | ||||
| 12 | #define GRAD(_id)(2 * (var_count) - 1 - (_id)) (2 * (var_count) - 1 - (_id)) | |||
| 13 | ||||
| 14 | ccv_nnc_micro_io_t ccv_nnc_micro_input(const int dimensions) | |||
| 15 | { | |||
| 16 | assert(dimensions <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((dimensions <= (12)) ? 1 : 0), __extension__ ({ if (dimensions <= (12)) ; else __assert_fail ("dimensions <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 16, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 17 | ccv_nnc_micro_io_t input = cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_s)); | |||
| 18 | input->isa = &ccv_nnc_micro_io_input_isa; | |||
| 19 | input->dimensions = dimensions; | |||
| 20 | input->id = 0; | |||
| 21 | return input; | |||
| 22 | } | |||
| 23 | struct ccv_nnc_micro_io_grad_s { | |||
| 24 | struct ccv_nnc_micro_io_s super; | |||
| 25 | ccv_nnc_micro_io_t x; | |||
| 26 | }; | |||
| 27 | ||||
| 28 | static void _ccv_nnc_micro_grad_numbering(const ccv_nnc_micro_io_t super, const int id, const int var_count) | |||
| 29 | { | |||
| 30 | struct ccv_nnc_micro_io_grad_s* const self = (struct ccv_nnc_micro_io_grad_s*)super; | |||
| 31 | const int sid = self->x->id; | |||
| 32 | self->super.id = GRAD(sid)(2 * (var_count) - 1 - (sid)); | |||
| 33 | } | |||
| 34 | ||||
| 35 | const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_grad_isa = { | |||
| 36 | .numbering = _ccv_nnc_micro_grad_numbering | |||
| 37 | }; | |||
| 38 | ||||
| 39 | ccv_nnc_micro_io_t ccv_nnc_micro_grad(const ccv_nnc_micro_io_t x) | |||
| 40 | { | |||
| 41 | struct ccv_nnc_micro_io_grad_s* const grad = cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_grad_s)); | |||
| 42 | grad->super.isa = &ccv_nnc_micro_io_grad_isa; | |||
| 43 | grad->super.dimensions = x->dimensions; | |||
| 44 | grad->super.id = 0; | |||
| 45 | grad->x = x; | |||
| 46 | return (ccv_nnc_micro_io_t)grad; | |||
| 47 | } | |||
| 48 | ||||
| 49 | // A simple recursive descent parser. Omitted tokenisation step. | |||
| 50 | static int _accept(const char** const pos, int* const remain_size, const char* symbol, int size) | |||
| 51 | { | |||
| 52 | if (*remain_size < size) | |||
| 53 | return 0; | |||
| 54 | if (memcmp(*pos, symbol, size) == 0) | |||
| 55 | { | |||
| 56 | *remain_size -= size; | |||
| 57 | *pos += size; | |||
| 58 | return 1; | |||
| 59 | } | |||
| 60 | return 0; | |||
| 61 | } | |||
| 62 | ||||
| 63 | static int _expect(const char** const pos, int* const remain_size, const char* symbol, int size) | |||
| 64 | { | |||
| 65 | if (_accept(pos, remain_size, symbol, size)) | |||
| 66 | return 1; | |||
| 67 | assert(0 && "unexpected symbol")((void) sizeof ((0 && "unexpected symbol") ? 1 : 0), __extension__ ({ if (0 && "unexpected symbol") ; else __assert_fail ("0 && \"unexpected symbol\"", "ccv_nnc_micro_core.c" , 67, __extension__ __PRETTY_FUNCTION__); })); | |||
| 68 | return 0; | |||
| 69 | } | |||
| 70 | ||||
| 71 | static int _constant(const char** const pos, int* const remain_size, int* const id) | |||
| 72 | { | |||
| 73 | int size = 0; | |||
| 74 | *id = 0; | |||
| 75 | while (*remain_size - size > 0 && pos[0][size] >= '0' && pos[0][size] <= '9') | |||
| 76 | { | |||
| 77 | *id *= 10; | |||
| 78 | *id += (pos[0][size] - '0'); | |||
| 79 | ++size; | |||
| 80 | } | |||
| 81 | *remain_size -= size; | |||
| 82 | *pos += size; | |||
| 83 | return size > 0; | |||
| 84 | } | |||
| 85 | ||||
| 86 | static int _index(const char** const pos, int* const remain_size, int* const id) | |||
| 87 | { | |||
| 88 | if (!(*remain_size > 0 && pos[0][0] == 'i')) | |||
| 89 | return 0; | |||
| 90 | int size = 1; | |||
| 91 | *id = 0; | |||
| 92 | while (*remain_size - size > 0 && pos[0][size] >= '0' && pos[0][size] <= '9') | |||
| 93 | { | |||
| 94 | *id *= 10; | |||
| 95 | *id += (pos[0][size] - '0'); | |||
| 96 | ++size; | |||
| 97 | } | |||
| 98 | if (size > 1) | |||
| 99 | { | |||
| 100 | *remain_size -= size; | |||
| 101 | *pos += size; | |||
| 102 | return 1; | |||
| 103 | } | |||
| 104 | return 0; | |||
| 105 | } | |||
| 106 | ||||
| 107 | static int _dim(const char** const pos, int* const remain_size, int* const id, int* const d, ccv_array_t* const equal_assertions) | |||
| 108 | { | |||
| 109 | if (!(*remain_size > 1 && pos[0][0] == 'd')) | |||
| 110 | return 0; | |||
| 111 | if (!(pos[0][1] >= 'A' && pos[0][1] <= 'Z')) | |||
| 112 | return 0; | |||
| 113 | *id = pos[0][1] - 'A'; | |||
| 114 | int size = 2; | |||
| 115 | *d = 0; | |||
| 116 | while (*remain_size - size > 0 && pos[0][size] >= '0' && pos[0][size] <= '9') | |||
| 117 | { | |||
| 118 | *d *= 10; | |||
| 119 | *d += (pos[0][size] - '0'); | |||
| 120 | ++size; | |||
| 121 | } | |||
| 122 | if (size > 1) | |||
| 123 | { | |||
| 124 | *remain_size -= size; | |||
| 125 | *pos += size; | |||
| 126 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 127 | if (_accept(pos, remain_size, "[", 1)) | |||
| 128 | { | |||
| 129 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 130 | _expect(pos, remain_size, "=", 1); | |||
| 131 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 132 | int next_id; | |||
| 133 | int next_d; | |||
| 134 | if (!_dim(pos, remain_size, &next_id, &next_d, equal_assertions)) | |||
| 135 | { assert(0 && "unexpected symbol")((void) sizeof ((0 && "unexpected symbol") ? 1 : 0), __extension__ ({ if (0 && "unexpected symbol") ; else __assert_fail ("0 && \"unexpected symbol\"", "ccv_nnc_micro_core.c" , 135, __extension__ __PRETTY_FUNCTION__); })); } | |||
| 136 | const ccv_nnc_micro_id_equal_assertion_t equal_assertion = { | |||
| 137 | .left = { | |||
| 138 | .type = CCV_NNC_MICRO_AXIS_SIZE_ID, | |||
| 139 | .id = -(*id + 1), | |||
| 140 | .d = *d | |||
| 141 | }, | |||
| 142 | .right = { | |||
| 143 | .type = CCV_NNC_MICRO_AXIS_SIZE_ID, | |||
| 144 | .id = -(next_id + 1), | |||
| 145 | .d = next_d | |||
| 146 | } | |||
| 147 | }; | |||
| 148 | ccv_array_push(equal_assertions, &equal_assertion); | |||
| 149 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 150 | _expect(pos, remain_size, "]", 1); | |||
| 151 | } | |||
| 152 | return 1; | |||
| 153 | } | |||
| 154 | return 0; | |||
| 155 | } | |||
| 156 | ||||
| 157 | static int _var(const char** const pos, int* const remain_size, char** name) | |||
| 158 | { | |||
| 159 | if (!(*remain_size > 0 && pos[0][0] == '$')) | |||
| 160 | return 0; | |||
| 161 | int size = 1; | |||
| 162 | while (*remain_size - size > 0 && | |||
| 163 | ((pos[0][size] >= '0' && pos[0][size] <= '9') || | |||
| 164 | (pos[0][size] >= 'a' && pos[0][size] <= 'z') || | |||
| 165 | (pos[0][size] >= 'A' && pos[0][size] <= 'Z') || | |||
| 166 | pos[0][size] == '_')) | |||
| 167 | ++size; | |||
| 168 | if (size > 1) | |||
| 169 | { | |||
| 170 | *name = ccmallocmalloc(size + 1); | |||
| 171 | memcpy(*name, *pos, size); | |||
| 172 | name[0][size] = 0; | |||
| 173 | *remain_size -= size; | |||
| 174 | *pos += size; | |||
| 175 | return 1; | |||
| 176 | } | |||
| 177 | return 0; | |||
| 178 | } | |||
| 179 | ||||
| 180 | static CCV_WARN_UNUSED(ccv_nnc_micro_loop_index_term_t)ccv_nnc_micro_loop_index_term_t __attribute__((warn_unused_result )) _expression(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions); | |||
| 181 | ||||
| 182 | static ccv_nnc_micro_loop_index_term_t _factor(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions) | |||
| 183 | { | |||
| 184 | ccv_nnc_micro_loop_index_term_t term; | |||
| 185 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 186 | int id, d; | |||
| 187 | char* name; | |||
| 188 | if (_constant(pos, remain_size, &id)) { | |||
| 189 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL; | |||
| 190 | term.immediate_value = id; | |||
| 191 | } else if (_index(pos, remain_size, &id)) { | |||
| 192 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID; | |||
| 193 | term.id.type = CCV_NNC_MICRO_LOOP_ID; | |||
| 194 | term.id.id = id; | |||
| 195 | } else if (_dim(pos, remain_size, &id, &d, equal_assertions)) { | |||
| 196 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID; | |||
| 197 | term.id.type = CCV_NNC_MICRO_AXIS_SIZE_ID; | |||
| 198 | term.id.d = d; | |||
| 199 | term.id.id = -(id + 1); | |||
| 200 | } else if (_var(pos, remain_size, &name)) { | |||
| 201 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR; | |||
| 202 | term.name = name; | |||
| 203 | } else if (_accept(pos, remain_size, "(", 1)) { | |||
| 204 | term = _expression(pos, remain_size, equal_assertions); | |||
| 205 | _expect(pos, remain_size, ")", 1); | |||
| 206 | } else { | |||
| 207 | assert(0 && "factor: syntax error")((void) sizeof ((0 && "factor: syntax error") ? 1 : 0 ), __extension__ ({ if (0 && "factor: syntax error") ; else __assert_fail ("0 && \"factor: syntax error\"", "ccv_nnc_micro_core.c", 207, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 208 | } | |||
| 209 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 210 | return term; | |||
| 211 | } | |||
| 212 | ||||
| 213 | static ccv_nnc_micro_loop_index_term_t _term(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions) | |||
| 214 | { | |||
| 215 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 216 | ccv_nnc_micro_loop_index_term_t term = _factor(pos, remain_size, equal_assertions); | |||
| 217 | while (*remain_size > 0 && (pos[0][0] == '*' || pos[0][0] == '/')) | |||
| 218 | { | |||
| 219 | const int op = pos[0][0] == '*' ? CCV_NNC_MICRO_BINARY_OP_MUL : CCV_NNC_MICRO_BINARY_OP_DIV; | |||
| 220 | *remain_size -= 1; | |||
| 221 | *pos += 1; | |||
| 222 | const ccv_nnc_micro_loop_index_term_t left = term; | |||
| 223 | const ccv_nnc_micro_loop_index_term_t right = _factor(pos, remain_size, equal_assertions); | |||
| 224 | term.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY; | |||
| 225 | term.binary = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
| 226 | term.binary->op = op; | |||
| 227 | term.binary->left = left; | |||
| 228 | term.binary->right = right; | |||
| 229 | } | |||
| 230 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 231 | return term; | |||
| 232 | } | |||
| 233 | ||||
| 234 | static ccv_nnc_micro_loop_index_term_t _expression(const char** const pos, int* const remain_size, ccv_array_t* const equal_assertions) | |||
| 235 | { | |||
| 236 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 237 | int prefix_op = -1; | |||
| 238 | if (*remain_size > 0 && (pos[0][0] == '+' || pos[0][0] == '-')) | |||
| 239 | { | |||
| 240 | prefix_op = pos[0][0] == '+' ? CCV_NNC_MICRO_BINARY_OP_PLUS : CCV_NNC_MICRO_BINARY_OP_MINUS; | |||
| 241 | *remain_size -= 1; | |||
| 242 | *pos += 1; | |||
| 243 | } | |||
| 244 | ccv_nnc_micro_loop_index_term_t node = _term(pos, remain_size, equal_assertions); | |||
| 245 | while (*remain_size > 0 && (pos[0][0] == '+' || pos[0][0] == '-')) | |||
| 246 | { | |||
| 247 | const int op = pos[0][0] == '+' ? CCV_NNC_MICRO_BINARY_OP_PLUS : CCV_NNC_MICRO_BINARY_OP_MINUS; | |||
| 248 | *remain_size -= 1; | |||
| 249 | *pos += 1; | |||
| 250 | const ccv_nnc_micro_loop_index_term_t left = node; | |||
| 251 | const ccv_nnc_micro_loop_index_term_t right = _term(pos, remain_size, equal_assertions); | |||
| 252 | node.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY; | |||
| 253 | node.binary = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
| 254 | node.binary->op = op; | |||
| 255 | node.binary->left = left; | |||
| 256 | node.binary->right = right; | |||
| 257 | } | |||
| 258 | while (_accept(pos, remain_size, " ", 1)) {} | |||
| 259 | if (prefix_op >= 0) | |||
| 260 | { | |||
| 261 | ccv_nnc_micro_loop_index_binary_t* const expr = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
| 262 | expr->op = prefix_op; | |||
| 263 | expr->left = node; | |||
| 264 | expr->right.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_NONE; | |||
| 265 | node.type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY; | |||
| 266 | node.binary = expr; | |||
| 267 | } | |||
| 268 | return node; | |||
| 269 | } | |||
| 270 | ||||
| 271 | static void _no_index(const ccv_nnc_micro_loop_index_term_t term) | |||
| 272 | { | |||
| 273 | switch (term.type) { | |||
| 274 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID: | |||
| 275 | // Can only be axis size id. No loop index. | |||
| 276 | assert(term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID)((void) sizeof ((term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID) ? 1 : 0), __extension__ ({ if (term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID ) ; else __assert_fail ("term.id.type == CCV_NNC_MICRO_AXIS_SIZE_ID" , "ccv_nnc_micro_core.c", 276, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 277 | break; | |||
| 278 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: | |||
| 279 | _no_index(term.binary->left); | |||
| 280 | _no_index(term.binary->right); | |||
| 281 | break; | |||
| 282 | } | |||
| 283 | } | |||
| 284 | ||||
| 285 | static void _sid_to_axis_size_term(ccv_nnc_micro_loop_index_term_t* const term, const int* const sids, const int sid_count) | |||
| 286 | { | |||
| 287 | switch (term->type) { | |||
| 288 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID: | |||
| 289 | // Can only be axis size id. No loop index. | |||
| 290 | if (term->id.type == CCV_NNC_MICRO_AXIS_SIZE_ID && term->id.id < 0) | |||
| 291 | { | |||
| 292 | const int id = -(term->id.id + 1); | |||
| 293 | assert(id >= 0 && id < sid_count)((void) sizeof ((id >= 0 && id < sid_count) ? 1 : 0), __extension__ ({ if (id >= 0 && id < sid_count ) ; else __assert_fail ("id >= 0 && id < sid_count" , "ccv_nnc_micro_core.c", 293, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 294 | term->id.id = sids[id]; | |||
| 295 | } | |||
| 296 | break; | |||
| 297 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: | |||
| 298 | _sid_to_axis_size_term(&term->binary->left, sids, sid_count); | |||
| 299 | _sid_to_axis_size_term(&term->binary->right, sids, sid_count); | |||
| 300 | break; | |||
| 301 | } | |||
| 302 | } | |||
| 303 | ||||
| 304 | struct ccv_nnc_micro_io_reindex_s { | |||
| 305 | struct ccv_nnc_micro_io_s super; | |||
| 306 | int s_count; | |||
| 307 | ccv_nnc_micro_io_t x; | |||
| 308 | ccv_nnc_micro_loop_index_term_t* shape; | |||
| 309 | ccv_nnc_micro_loop_index_term_t* reindex; | |||
| 310 | ccv_nnc_micro_io_t* ss; | |||
| 311 | ccv_array_t* equal_assertions; | |||
| 312 | }; | |||
| 313 | ||||
| 314 | static void _ccv_nnc_micro_reindex_numbering(const ccv_nnc_micro_io_t super, const int id, const int var_count) | |||
| 315 | { | |||
| 316 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 317 | self->super.id = id; | |||
| 318 | // No need to update axis size. | |||
| 319 | if (self->s_count == 0) | |||
| 320 | return; | |||
| 321 | int sids[self->s_count]; | |||
| 322 | int i; | |||
| 323 | for (i = 0; i < self->s_count; i++) | |||
| 324 | sids[i] = self->ss[i]->id; | |||
| 325 | for (i = 0; i < self->super.dimensions; i++) | |||
| 326 | _sid_to_axis_size_term(&self->shape[i], sids, self->s_count); | |||
| 327 | for (i = 0; i < self->x->dimensions; i++) | |||
| 328 | _sid_to_axis_size_term(&self->reindex[i], sids, self->s_count); | |||
| 329 | for (i = 0; i < self->equal_assertions->rnum; i++) | |||
| 330 | { | |||
| 331 | ccv_nnc_micro_id_equal_assertion_t* const equal_assertion = (ccv_nnc_micro_id_equal_assertion_t*)ccv_array_get(self->equal_assertions, i)((void*)(((char*)((self->equal_assertions)->data)) + (size_t )(self->equal_assertions)->rsize * (size_t)(i))); | |||
| 332 | if (equal_assertion->left.type == CCV_NNC_MICRO_AXIS_SIZE_ID && equal_assertion->left.id < 0) | |||
| 333 | { | |||
| 334 | const int id = -(equal_assertion->left.id + 1); | |||
| 335 | assert(id >= 0 && id < self->s_count)((void) sizeof ((id >= 0 && id < self->s_count ) ? 1 : 0), __extension__ ({ if (id >= 0 && id < self->s_count) ; else __assert_fail ("id >= 0 && id < self->s_count" , "ccv_nnc_micro_core.c", 335, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 336 | equal_assertion->left.id = sids[id]; | |||
| 337 | } | |||
| 338 | if (equal_assertion->right.type == CCV_NNC_MICRO_AXIS_SIZE_ID && equal_assertion->right.id < 0) | |||
| 339 | { | |||
| 340 | const int id = -(equal_assertion->right.id + 1); | |||
| 341 | assert(id >= 0 && id < self->s_count)((void) sizeof ((id >= 0 && id < self->s_count ) ? 1 : 0), __extension__ ({ if (id >= 0 && id < self->s_count) ; else __assert_fail ("id >= 0 && id < self->s_count" , "ccv_nnc_micro_core.c", 341, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 342 | equal_assertion->right.id = sids[id]; | |||
| 343 | } | |||
| 344 | } | |||
| 345 | } | |||
| 346 | ||||
| 347 | static void _ccv_nnc_micro_reindex_equal_assertions(const ccv_nnc_micro_io_t super, ccv_array_t* const equal_assertions) | |||
| 348 | { | |||
| 349 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 350 | int i; | |||
| 351 | for (i = 0; i < self->equal_assertions->rnum; i++) | |||
| 352 | { | |||
| 353 | ccv_nnc_micro_id_equal_assertion_t* const equal_assertion = (ccv_nnc_micro_id_equal_assertion_t*)ccv_array_get(self->equal_assertions, i)((void*)(((char*)((self->equal_assertions)->data)) + (size_t )(self->equal_assertions)->rsize * (size_t)(i))); | |||
| 354 | ccv_array_push(equal_assertions, equal_assertion); | |||
| 355 | } | |||
| 356 | } | |||
| 357 | ||||
| 358 | static void _ccv_nnc_bind_scalars_in_term(ccv_nnc_micro_loop_index_term_t* const term, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context) | |||
| 359 | { | |||
| 360 | switch (term->type) | |||
| 361 | { | |||
| 362 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: | |||
| 363 | _ccv_nnc_bind_scalars_in_term(&term->binary->left, lookup, context); | |||
| 364 | _ccv_nnc_bind_scalars_in_term(&term->binary->right, lookup, context); | |||
| 365 | break; | |||
| 366 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR: { | |||
| 367 | char* const name = term->name; | |||
| 368 | term->id.id = lookup(context, name); | |||
| 369 | ccfreefree(name); | |||
| 370 | term->id.d = 0; | |||
| 371 | term->id.type = CCV_NNC_MICRO_SCALAR_ID; | |||
| 372 | term->type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID; | |||
| 373 | break; | |||
| 374 | } | |||
| 375 | } | |||
| 376 | } | |||
| 377 | ||||
| 378 | static void _ccv_nnc_micro_reindex_bind_scalars(const ccv_nnc_micro_io_t super, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context) | |||
| 379 | { | |||
| 380 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 381 | int i; | |||
| 382 | for (i = 0; i < self->super.dimensions; i++) | |||
| 383 | _ccv_nnc_bind_scalars_in_term(&self->shape[i], lookup, context); | |||
| 384 | for (i = 0; i < self->x->dimensions; i++) | |||
| 385 | _ccv_nnc_bind_scalars_in_term(&self->reindex[i], lookup, context); | |||
| 386 | } | |||
| 387 | ||||
| 388 | ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_loop_index_deep_copy(const ccv_nnc_micro_loop_index_term_t* const term) | |||
| 389 | { | |||
| 390 | switch (term->type) | |||
| 391 | { | |||
| 392 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY: { | |||
| 393 | ccv_nnc_micro_loop_index_term_t copy = *term; | |||
| 394 | copy.binary = (ccv_nnc_micro_loop_index_binary_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_binary_t)); | |||
| 395 | *copy.binary = *term->binary; | |||
| 396 | copy.binary->left = ccv_nnc_micro_loop_index_deep_copy(&term->binary->left); | |||
| 397 | copy.binary->right = ccv_nnc_micro_loop_index_deep_copy(&term->binary->right); | |||
| 398 | return copy; | |||
| 399 | } | |||
| 400 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_NONE: | |||
| 401 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID: | |||
| 402 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL: | |||
| 403 | case CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR: | |||
| 404 | return *term; | |||
| 405 | } | |||
| 406 | return *term; | |||
| 407 | } | |||
| 408 | ||||
| 409 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reindex_emit(const ccv_nnc_micro_io_t super) | |||
| 410 | { | |||
| 411 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 412 | const int loop_count = self->super.dimensions; | |||
| 413 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 413, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 414 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 415 | int i; | |||
| 416 | for (i = 0; i < loop_count; i++) | |||
| 417 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
| 418 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
| 419 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 420 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, self->x->dimensions, self->reindex)) | |||
| 421 | ); | |||
| 422 | for (i = 0; i < self->x->dimensions; i++) | |||
| 423 | self->reindex[i] = ccv_nnc_micro_loop_index_deep_copy(&self->reindex[i]); | |||
| 424 | loops[loop_count - 1].statement_count = 1; | |||
| 425 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 426 | loops[loop_count - 1].statements[0] = statement; | |||
| 427 | return (ccv_nnc_micro_function_t){ | |||
| 428 | .block_count = 1, | |||
| 429 | .one_block = { | |||
| 430 | .loop_count = loop_count, | |||
| 431 | .loops = loops | |||
| 432 | } | |||
| 433 | }; | |||
| 434 | } | |||
| 435 | ||||
| 436 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reindex_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
| 437 | { | |||
| 438 | // The grad is var_count + original id. | |||
| 439 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 440 | const int reset_loop_count = self->x->dimensions; | |||
| 441 | ccv_nnc_micro_loop_t* const reset_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * reset_loop_count); | |||
| 442 | // This loop reset grad to 0. | |||
| 443 | int i; | |||
| 444 | for (i = 0; i < reset_loop_count; i++) | |||
| 445 | reset_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
| 446 | const ccv_nnc_micro_loop_statement_t reset_statement = ccv_nnc_micro_loop_assignment( | |||
| 447 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), reset_loop_count, ccv_nnc_micro_index_of_loops(reset_loops, reset_loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = reset_loop_count > 0 ? reset_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 1 ? reset_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 2 ? reset_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = reset_loop_count > 3 ? reset_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 4 ? reset_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 5 ? reset_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = reset_loop_count > 6 ? reset_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = reset_loop_count > 7 ? reset_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 448 | ccv_nnc_micro_loop_expression_of_value(0) | |||
| 449 | ); | |||
| 450 | reset_loops[reset_loop_count - 1].statement_count = 1; | |||
| 451 | reset_loops[reset_loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 452 | reset_loops[reset_loop_count - 1].statements[0] = reset_statement; | |||
| 453 | const int loop_count = self->super.dimensions; | |||
| 454 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 455 | for (i = 0; i < loop_count; i++) | |||
| 456 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
| 457 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_compound_assignment_of_tensor( | |||
| 458 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), self->x->dimensions, self->reindex), | |||
| 459 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 460 | ); | |||
| 461 | for (i = 0; i < self->x->dimensions; i++) | |||
| 462 | self->reindex[i] = ccv_nnc_micro_loop_index_deep_copy(&self->reindex[i]); | |||
| 463 | loops[loop_count - 1].statement_count = 1; | |||
| 464 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 465 | loops[loop_count - 1].statements[0] = statement; | |||
| 466 | ccv_nnc_micro_loop_block_t* const blocks = (ccv_nnc_micro_loop_block_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_block_t) * 2); | |||
| 467 | blocks[0] = (ccv_nnc_micro_loop_block_t){ | |||
| 468 | .loop_count = reset_loop_count, | |||
| 469 | .loops = reset_loops | |||
| 470 | }; | |||
| 471 | blocks[1] = (ccv_nnc_micro_loop_block_t){ | |||
| 472 | .loop_count = loop_count, | |||
| 473 | .loops = loops | |||
| 474 | }; | |||
| 475 | return (ccv_nnc_micro_function_t){ | |||
| 476 | .block_count = 2, | |||
| 477 | .blocks = blocks | |||
| 478 | }; | |||
| 479 | } | |||
| 480 | ||||
| 481 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_reindex_return_shape(const ccv_nnc_micro_io_t super) | |||
| 482 | { | |||
| 483 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 484 | ccv_nnc_micro_tensor_t var = {}; | |||
| 485 | var.dimensions = self->super.dimensions; | |||
| 486 | var.sibling = -1; | |||
| 487 | var.input = self->x->id; | |||
| 488 | var.shape = (ccv_nnc_micro_loop_index_term_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
| 489 | memcpy(var.shape, self->shape, sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
| 490 | return var; | |||
| 491 | } | |||
| 492 | ||||
| 493 | static void _ccv_nnc_micro_reindex_deinit(const ccv_nnc_micro_io_t super) | |||
| 494 | { | |||
| 495 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)super; | |||
| 496 | int i; | |||
| 497 | for (i = 0; i < self->x->dimensions; i++) | |||
| 498 | ccv_nnc_micro_loop_index_free(&self->reindex[i]); | |||
| 499 | ccv_array_free(self->equal_assertions); | |||
| 500 | } | |||
| 501 | ||||
| 502 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_reindex_isa = { | |||
| 503 | .numbering = _ccv_nnc_micro_reindex_numbering, | |||
| 504 | .equal_assertions = _ccv_nnc_micro_reindex_equal_assertions, | |||
| 505 | .bind_scalars = _ccv_nnc_micro_reindex_bind_scalars, | |||
| 506 | .emit = _ccv_nnc_micro_reindex_emit, | |||
| 507 | .emit_grad = _ccv_nnc_micro_reindex_emit_grad, | |||
| 508 | .return_shape = _ccv_nnc_micro_reindex_return_shape, | |||
| 509 | .deinit = _ccv_nnc_micro_reindex_deinit | |||
| 510 | }; | |||
| 511 | ||||
| 512 | ccv_nnc_micro_io_t ccv_nnc_micro_reindex(const char* const* const shape, const int shape_count, const ccv_nnc_micro_io_t* const ss, const int s_count, const char* const* const reindex, const int reindex_count, const ccv_nnc_micro_io_t x) | |||
| 513 | { | |||
| 514 | assert(shape_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((shape_count <= (12)) ? 1 : 0), __extension__ ({ if (shape_count <= (12)) ; else __assert_fail ("shape_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 514, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 515 | assert(reindex_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((reindex_count <= (12)) ? 1 : 0), __extension__ ({ if (reindex_count <= (12)) ; else __assert_fail ("reindex_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 515, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 516 | assert(reindex_count == x->dimensions)((void) sizeof ((reindex_count == x->dimensions) ? 1 : 0), __extension__ ({ if (reindex_count == x->dimensions) ; else __assert_fail ("reindex_count == x->dimensions", "ccv_nnc_micro_core.c" , 516, __extension__ __PRETTY_FUNCTION__); })); | |||
| 517 | int i; | |||
| 518 | struct ccv_nnc_micro_io_reindex_s* const self = (struct ccv_nnc_micro_io_reindex_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_reindex_s) + sizeof(ccv_nnc_micro_loop_index_term_t) * (shape_count + reindex_count) + sizeof(ccv_nnc_micro_io_t) * (s_count + 1)); | |||
| 519 | self->super.isa = &ccv_nnc_micro_io_reindex_isa; | |||
| 520 | self->super.dimensions = shape_count; | |||
| 521 | self->super.id = 0; | |||
| 522 | self->x = x; | |||
| 523 | self->shape = (ccv_nnc_micro_loop_index_term_t*)(self + 1); | |||
| 524 | self->reindex = self->shape + shape_count; | |||
| 525 | self->ss = (ccv_nnc_micro_io_t*)(self->reindex + reindex_count); | |||
| 526 | self->s_count = s_count; | |||
| 527 | self->ss[s_count] = x; | |||
| 528 | self->super.inputs = self->ss; | |||
| 529 | self->super.input_size = s_count + 1; | |||
| 530 | if (s_count > 0) | |||
| 531 | memcpy(self->ss, ss, sizeof(ccv_nnc_micro_io_t) * s_count); | |||
| 532 | ccv_array_t* const equal_assertions = self->equal_assertions = ccv_array_new(sizeof(ccv_nnc_micro_id_equal_assertion_t), 0, 0); | |||
| 533 | // Parse shape into expressions and validate the grammar. Do this upfront so we don't fail on parsing | |||
| 534 | // later, which can be confusing. | |||
| 535 | // CFG: | |||
| 536 | // VAR -> $[a-zA-Z0-9]+ | |||
| 537 | // DIM -> d[A-Z]{1}[0-9]+ | |||
| 538 | // INDEX -> i[0-9]+ | |||
| 539 | // CONST -> [0-9]+ | |||
| 540 | // FACTOR -> VAR | DIM | CONST | INDEX | |||
| 541 | // TERM -> FACTOR { ("*" | "/") FACTOR } | |||
| 542 | // EXPRESSION -> ["+" | "-"] TERM { ("+" | "-") TERM } | |||
| 543 | // Also, we choose to reuse the index expression structure even some information (such as id of tensors | |||
| 544 | // and the binding variables) not available. In this way, there is no need to reallocate index expression | |||
| 545 | // later, we just need to simply "patch" it in ccv_nnc_micro_combine_t. | |||
| 546 | for (i = 0; i < shape_count; i++) | |||
| 547 | { | |||
| 548 | int remain_size = strlen(shape[i]); | |||
| 549 | const char* pos = shape[i]; | |||
| 550 | ccv_nnc_micro_loop_index_term_t term = _expression(&pos, &remain_size, equal_assertions); | |||
| 551 | _no_index(term); // Make sure this is not index, no loop index. | |||
| 552 | self->shape[i] = term; | |||
| 553 | } | |||
| 554 | // Parse reindex. | |||
| 555 | for (i = 0; i < reindex_count; i++) | |||
| 556 | { | |||
| 557 | int remain_size = strlen(reindex[i]); | |||
| 558 | const char* pos = reindex[i]; | |||
| 559 | self->reindex[i] = _expression(&pos, &remain_size, equal_assertions); | |||
| 560 | } | |||
| 561 | return (ccv_nnc_micro_io_t)self; | |||
| 562 | } | |||
| 563 | ||||
| 564 | struct ccv_nnc_micro_io_unary_s { | |||
| 565 | struct ccv_nnc_micro_io_s super; | |||
| 566 | uint32_t unary_op; | |||
| 567 | ccv_nnc_micro_io_t x; | |||
| 568 | }; | |||
| 569 | ||||
| 570 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_unary_emit(const ccv_nnc_micro_io_t super) | |||
| 571 | { | |||
| 572 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)super; | |||
| 573 | const int loop_count = self->super.dimensions; | |||
| 574 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 574, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 575 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 575, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 576 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 577 | int i; | |||
| 578 | for (i = 0; i < loop_count; i++) | |||
| 579 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
| 580 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
| 581 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 582 | ccv_nnc_micro_loop_expression_of_unary( | |||
| 583 | self->unary_op, | |||
| 584 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 585 | ) | |||
| 586 | ); | |||
| 587 | loops[loop_count - 1].statement_count = 1; | |||
| 588 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 589 | loops[loop_count - 1].statements[0] = statement; | |||
| 590 | return (ccv_nnc_micro_function_t){ | |||
| 591 | .block_count = 1, | |||
| 592 | .one_block = { | |||
| 593 | .loop_count = loop_count, | |||
| 594 | .loops = loops | |||
| 595 | } | |||
| 596 | }; | |||
| 597 | } | |||
| 598 | ||||
| 599 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_unary_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
| 600 | { | |||
| 601 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)super; | |||
| 602 | const int loop_count = self->super.dimensions; | |||
| 603 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 603, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| ||||
| 604 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 604, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 605 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 606 | int i; | |||
| 607 | for (i = 0; i < loop_count; i++) | |||
| 608 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
| 609 | ccv_nnc_micro_loop_statement_t statement; | |||
| 610 | switch (self->unary_op) | |||
| 611 | { | |||
| 612 | case CCV_NNC_MICRO_UNARY_OP_NEG: | |||
| 613 | statement = ccv_nnc_micro_loop_assignment( | |||
| 614 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 615 | ccv_nnc_micro_loop_expression_of_unary( | |||
| 616 | CCV_NNC_MICRO_UNARY_OP_NEG, | |||
| 617 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 618 | ) | |||
| 619 | ); | |||
| 620 | break; | |||
| 621 | case CCV_NNC_MICRO_UNARY_OP_EXP: | |||
| 622 | statement = ccv_nnc_micro_loop_assignment( | |||
| 623 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 624 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 625 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
| 626 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 627 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 628 | ) | |||
| 629 | ); | |||
| 630 | break; | |||
| 631 | case CCV_NNC_MICRO_UNARY_OP_LOG: | |||
| 632 | statement = ccv_nnc_micro_loop_assignment( | |||
| 633 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 634 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 635 | CCV_NNC_MICRO_BINARY_OP_DIV, | |||
| 636 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 637 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 638 | ) | |||
| 639 | ); | |||
| 640 | break; | |||
| 641 | } | |||
| 642 | loops[loop_count - 1].statement_count = 1; | |||
| ||||
| 643 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 644 | loops[loop_count - 1].statements[0] = statement; | |||
| 645 | return (ccv_nnc_micro_function_t){ | |||
| 646 | .block_count = 1, | |||
| 647 | .one_block = { | |||
| 648 | .loop_count = loop_count, | |||
| 649 | .loops = loops | |||
| 650 | } | |||
| 651 | }; | |||
| 652 | } | |||
| 653 | ||||
| 654 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_unary_return_shape(const ccv_nnc_micro_io_t super) | |||
| 655 | { | |||
| 656 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)super; | |||
| 657 | ccv_nnc_micro_tensor_t var = {}; | |||
| 658 | var.dimensions = self->super.dimensions; | |||
| 659 | var.input = self->x->id; | |||
| 660 | var.sibling = -1; | |||
| 661 | return var; | |||
| 662 | } | |||
| 663 | ||||
| 664 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_unary_isa = { | |||
| 665 | .emit = _ccv_nnc_micro_unary_emit, | |||
| 666 | .emit_grad = _ccv_nnc_micro_unary_emit_grad, | |||
| 667 | .return_shape = _ccv_nnc_micro_unary_return_shape | |||
| 668 | }; | |||
| 669 | ||||
| 670 | ccv_nnc_micro_io_t ccv_nnc_micro_unary(const uint32_t op, const ccv_nnc_micro_io_t x) | |||
| 671 | { | |||
| 672 | struct ccv_nnc_micro_io_unary_s* const self = (struct ccv_nnc_micro_io_unary_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_unary_s)); | |||
| 673 | self->super.isa = &ccv_nnc_micro_io_unary_isa; | |||
| 674 | self->super.dimensions = x->dimensions; | |||
| 675 | self->super.id = 0; | |||
| 676 | self->super.inputs = &self->x; | |||
| 677 | self->super.input_size = 1; | |||
| 678 | self->unary_op = op; | |||
| 679 | self->x = x; | |||
| 680 | return (ccv_nnc_micro_io_t)self; | |||
| 681 | } | |||
| 682 | ||||
| 683 | struct ccv_nnc_micro_io_binary_s { | |||
| 684 | struct ccv_nnc_micro_io_s super; | |||
| 685 | uint32_t binary_op; | |||
| 686 | ccv_nnc_micro_io_t left; | |||
| 687 | ccv_nnc_micro_io_t right; | |||
| 688 | }; | |||
| 689 | ||||
| 690 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_binary_emit(const ccv_nnc_micro_io_t super) | |||
| 691 | { | |||
| 692 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)super; | |||
| 693 | const int loop_count = self->super.dimensions; | |||
| 694 | assert(self->left->dimensions == loop_count)((void) sizeof ((self->left->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->left->dimensions == loop_count) ; else __assert_fail ("self->left->dimensions == loop_count" , "ccv_nnc_micro_core.c", 694, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 695 | assert(self->right->dimensions == loop_count)((void) sizeof ((self->right->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->right->dimensions == loop_count) ; else __assert_fail ("self->right->dimensions == loop_count" , "ccv_nnc_micro_core.c", 695, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 696 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 696, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 697 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 698 | int i; | |||
| 699 | for (i = 0; i < loop_count; i++) | |||
| 700 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
| 701 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
| 702 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 703 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 704 | self->binary_op, | |||
| 705 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 706 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 707 | ) | |||
| 708 | ); | |||
| 709 | loops[loop_count - 1].statement_count = 1; | |||
| 710 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 711 | loops[loop_count - 1].statements[0] = statement; | |||
| 712 | return (ccv_nnc_micro_function_t){ | |||
| 713 | .block_count = 1, | |||
| 714 | .one_block = { | |||
| 715 | .loop_count = loop_count, | |||
| 716 | .loops = loops | |||
| 717 | } | |||
| 718 | }; | |||
| 719 | } | |||
| 720 | ||||
| 721 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_binary_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
| 722 | { | |||
| 723 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)super; | |||
| 724 | const int loop_count = self->super.dimensions; | |||
| 725 | assert(self->left->dimensions == loop_count)((void) sizeof ((self->left->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->left->dimensions == loop_count) ; else __assert_fail ("self->left->dimensions == loop_count" , "ccv_nnc_micro_core.c", 725, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 726 | assert(self->right->dimensions == loop_count)((void) sizeof ((self->right->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->right->dimensions == loop_count) ; else __assert_fail ("self->right->dimensions == loop_count" , "ccv_nnc_micro_core.c", 726, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 727 | assert(loop_count <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((loop_count <= (12)) ? 1 : 0), __extension__ ({ if (loop_count <= (12)) ; else __assert_fail ("loop_count <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 727, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 728 | int i; | |||
| 729 | ccv_nnc_micro_loop_t* const left_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 730 | for (i = 0; i < loop_count; i++) | |||
| 731 | left_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
| 732 | ccv_nnc_micro_loop_t* const right_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 733 | for (i = 0; i < loop_count; i++) | |||
| 734 | right_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), i), i); | |||
| 735 | ccv_nnc_micro_loop_statement_t left_statement; | |||
| 736 | ccv_nnc_micro_loop_statement_t right_statement; | |||
| 737 | switch (self->binary_op) | |||
| 738 | { | |||
| 739 | case CCV_NNC_MICRO_BINARY_OP_DIV: | |||
| 740 | left_statement = ccv_nnc_micro_loop_assignment( | |||
| 741 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 742 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 743 | CCV_NNC_MICRO_BINARY_OP_DIV, | |||
| 744 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 745 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 746 | ) | |||
| 747 | ); | |||
| 748 | right_statement = ccv_nnc_micro_loop_assignment( | |||
| 749 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 750 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 751 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
| 752 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 753 | CCV_NNC_MICRO_BINARY_OP_DIV, | |||
| 754 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 755 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 756 | ), | |||
| 757 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 758 | ) | |||
| 759 | ); | |||
| 760 | break; | |||
| 761 | case CCV_NNC_MICRO_BINARY_OP_MUL: | |||
| 762 | left_statement = ccv_nnc_micro_loop_assignment( | |||
| 763 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 764 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 765 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
| 766 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 767 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 768 | ) | |||
| 769 | ); | |||
| 770 | right_statement = ccv_nnc_micro_loop_assignment( | |||
| 771 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 772 | ccv_nnc_micro_loop_expression_of_binary( | |||
| 773 | CCV_NNC_MICRO_BINARY_OP_MUL, | |||
| 774 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 775 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 776 | ) | |||
| 777 | ); | |||
| 778 | break; | |||
| 779 | case CCV_NNC_MICRO_BINARY_OP_PLUS: | |||
| 780 | left_statement = ccv_nnc_micro_loop_assignment( | |||
| 781 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 782 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 783 | ); | |||
| 784 | right_statement = ccv_nnc_micro_loop_assignment( | |||
| 785 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 786 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 787 | ); | |||
| 788 | break; | |||
| 789 | case CCV_NNC_MICRO_BINARY_OP_MINUS: | |||
| 790 | left_statement = ccv_nnc_micro_loop_assignment( | |||
| 791 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 792 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 793 | ); | |||
| 794 | right_statement = ccv_nnc_micro_loop_assignment( | |||
| 795 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 796 | ccv_nnc_micro_loop_expression_of_unary( | |||
| 797 | CCV_NNC_MICRO_UNARY_OP_NEG, | |||
| 798 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 799 | ) | |||
| 800 | ); | |||
| 801 | break; | |||
| 802 | case CCV_NNC_MICRO_BINARY_OP_MIN: | |||
| 803 | left_statement = ccv_nnc_micro_loop_assignment( | |||
| 804 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 805 | ccv_nnc_micro_loop_expression_of_ternary( | |||
| 806 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
| 807 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 808 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 809 | ), | |||
| 810 | ccv_nnc_micro_loop_expression_of_value(0), | |||
| 811 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 812 | ) | |||
| 813 | ); | |||
| 814 | right_statement = ccv_nnc_micro_loop_assignment( | |||
| 815 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 816 | ccv_nnc_micro_loop_expression_of_ternary( | |||
| 817 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
| 818 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 819 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 820 | ), | |||
| 821 | ccv_nnc_micro_loop_expression_of_value(0), | |||
| 822 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 823 | ) | |||
| 824 | ); | |||
| 825 | break; | |||
| 826 | case CCV_NNC_MICRO_BINARY_OP_MAX: | |||
| 827 | left_statement = ccv_nnc_micro_loop_assignment( | |||
| 828 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->left->id)(2 * (var_count) - 1 - (self->left->id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 829 | ccv_nnc_micro_loop_expression_of_ternary( | |||
| 830 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
| 831 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 832 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 833 | ), | |||
| 834 | ccv_nnc_micro_loop_expression_of_value(0), | |||
| 835 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(left_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? left_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? left_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? left_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? left_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? left_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? left_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? left_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? left_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 836 | ) | |||
| 837 | ); | |||
| 838 | right_statement = ccv_nnc_micro_loop_assignment( | |||
| 839 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->right->id)(2 * (var_count) - 1 - (self->right->id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 840 | ccv_nnc_micro_loop_expression_of_ternary( | |||
| 841 | ccv_nnc_micro_loop_expression_of_binary(CCV_NNC_MICRO_BINARY_OP_LESS_THAN, | |||
| 842 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->right->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })), | |||
| 843 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->left->id, loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 844 | ), | |||
| 845 | ccv_nnc_micro_loop_expression_of_value(0), | |||
| 846 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(right_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? right_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? right_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? right_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? right_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? right_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? right_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? right_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? right_loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 847 | ) | |||
| 848 | ); | |||
| 849 | break; | |||
| 850 | } | |||
| 851 | left_loops[loop_count - 1].statement_count = 1; | |||
| 852 | left_loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 853 | left_loops[loop_count - 1].statements[0] = left_statement; | |||
| 854 | right_loops[loop_count - 1].statement_count = 1; | |||
| 855 | right_loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 856 | right_loops[loop_count - 1].statements[0] = right_statement; | |||
| 857 | ccv_nnc_micro_loop_block_t* const blocks = (ccv_nnc_micro_loop_block_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_block_t) * 2); | |||
| 858 | blocks[0] = (ccv_nnc_micro_loop_block_t){ | |||
| 859 | .loop_count = loop_count, | |||
| 860 | .loops = left_loops | |||
| 861 | }; | |||
| 862 | blocks[1] = (ccv_nnc_micro_loop_block_t){ | |||
| 863 | .loop_count = loop_count, | |||
| 864 | .loops = right_loops | |||
| 865 | }; | |||
| 866 | return (ccv_nnc_micro_function_t){ | |||
| 867 | .block_count = 2, | |||
| 868 | .blocks = blocks | |||
| 869 | }; | |||
| 870 | } | |||
| 871 | ||||
| 872 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_binary_return_shape(const ccv_nnc_micro_io_t super) | |||
| 873 | { | |||
| 874 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)super; | |||
| 875 | ccv_nnc_micro_tensor_t var = {}; | |||
| 876 | var.dimensions = self->super.dimensions; | |||
| 877 | var.input = self->left->id; | |||
| 878 | var.sibling = self->right->id; | |||
| 879 | return var; | |||
| 880 | } | |||
| 881 | ||||
| 882 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_binary_isa = { | |||
| 883 | .emit = _ccv_nnc_micro_binary_emit, | |||
| 884 | .emit_grad = _ccv_nnc_micro_binary_emit_grad, | |||
| 885 | .return_shape = _ccv_nnc_micro_binary_return_shape | |||
| 886 | }; | |||
| 887 | ||||
| 888 | ccv_nnc_micro_io_t ccv_nnc_micro_binary(const uint32_t op, const ccv_nnc_micro_io_t x, const ccv_nnc_micro_io_t y) | |||
| 889 | { | |||
| 890 | struct ccv_nnc_micro_io_binary_s* const self = (struct ccv_nnc_micro_io_binary_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_binary_s)); | |||
| 891 | self->super.isa = &ccv_nnc_micro_io_binary_isa; | |||
| 892 | self->super.dimensions = x->dimensions; | |||
| 893 | self->super.id = 0; | |||
| 894 | self->super.inputs = &self->left; | |||
| 895 | self->super.input_size = 2; | |||
| 896 | self->binary_op = op; | |||
| 897 | self->left = x; | |||
| 898 | self->right = y; | |||
| 899 | assert(x->dimensions == y->dimensions)((void) sizeof ((x->dimensions == y->dimensions) ? 1 : 0 ), __extension__ ({ if (x->dimensions == y->dimensions) ; else __assert_fail ("x->dimensions == y->dimensions" , "ccv_nnc_micro_core.c", 899, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 900 | return (ccv_nnc_micro_io_t)self; | |||
| 901 | } | |||
| 902 | ||||
| 903 | struct ccv_nnc_micro_io_reduce_s { | |||
| 904 | struct ccv_nnc_micro_io_s super; | |||
| 905 | uint32_t reduce_op; | |||
| 906 | int axis_count; | |||
| 907 | ccv_nnc_micro_io_t x; | |||
| 908 | int axis[1]; | |||
| 909 | }; | |||
| 910 | ||||
| 911 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reduce_emit(const ccv_nnc_micro_io_t super) | |||
| 912 | { | |||
| 913 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)super; | |||
| 914 | const int loop_count = self->super.dimensions; | |||
| 915 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 915, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 916 | // If axis_count == loop_count, we need extra loop to reduce. | |||
| 917 | int has_extra_loop = (self->axis_count == loop_count); | |||
| 918 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * (loop_count + has_extra_loop)); | |||
| 919 | int i, j, k; | |||
| 920 | int8_t reduce_axis[loop_count]; | |||
| 921 | memset(reduce_axis, 0, sizeof(int8_t) * loop_count); | |||
| 922 | for (i = 0; i < self->axis_count; i++) | |||
| 923 | reduce_axis[self->axis[i]] = 1; | |||
| 924 | j = 0; | |||
| 925 | // If loop_count == reduce_axis_count, we have extra loop for carried variables and blocks. | |||
| 926 | if (has_extra_loop) | |||
| 927 | { | |||
| 928 | loops[0] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_value(1), 0); | |||
| 929 | k = 1; | |||
| 930 | } else | |||
| 931 | k = loop_count - self->axis_count; | |||
| 932 | for (i = 0; i < loop_count; i++) | |||
| 933 | if (reduce_axis[i]) | |||
| 934 | { | |||
| 935 | loops[k] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->x->id, i), i + has_extra_loop); | |||
| 936 | ++k; | |||
| 937 | } else { | |||
| 938 | loops[j] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->x->id, i), i + has_extra_loop); | |||
| 939 | ++j; | |||
| 940 | } | |||
| 941 | const int carried_loop_idx = has_extra_loop ? 0 : loop_count - self->axis_count - 1; | |||
| 942 | loops[carried_loop_idx].carried_count = 1; | |||
| 943 | loops[carried_loop_idx].carrieds = (ccv_nnc_micro_loop_carried_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_carried_t)); | |||
| 944 | loops[carried_loop_idx].carrieds[0] = ccv_nnc_micro_loop_carried(self->reduce_op, 0); | |||
| 945 | j = 0; | |||
| 946 | k = has_extra_loop ? 1 : loop_count - self->axis_count; | |||
| 947 | // If loop_count == reduce_axis_count, we have extra loop for carrieds and block. | |||
| 948 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 949 | for (i = 0; i < loop_count; i++) | |||
| 950 | if (reduce_axis[i]) | |||
| 951 | { | |||
| 952 | index[i] = ccv_nnc_micro_index_of_id(loops[k].id); | |||
| 953 | ++k; | |||
| 954 | } else { | |||
| 955 | index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
| 956 | ++j; | |||
| 957 | } | |||
| 958 | ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_compound_assignment_of_id( | |||
| 959 | loops[carried_loop_idx].carrieds[0].id, | |||
| 960 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, index)) | |||
| 961 | ); | |||
| 962 | loops[carried_loop_idx + self->axis_count].statement_count = 1; | |||
| 963 | loops[carried_loop_idx + self->axis_count].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 964 | loops[carried_loop_idx + self->axis_count].statements[0] = statement; | |||
| 965 | j = 0; | |||
| 966 | for (i = 0; i < loop_count; i++) | |||
| 967 | if (reduce_axis[i]) | |||
| 968 | index[i] = ccv_nnc_micro_index_of_value(0); | |||
| 969 | else { | |||
| 970 | index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
| 971 | ++j; | |||
| 972 | } | |||
| 973 | statement = ccv_nnc_micro_loop_assignment( | |||
| 974 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, index), | |||
| 975 | ccv_nnc_micro_loop_expression_of_id(loops[carried_loop_idx].carrieds[0].id) | |||
| 976 | ); | |||
| 977 | loops[carried_loop_idx].statement_count = 1; | |||
| 978 | loops[carried_loop_idx].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 979 | loops[carried_loop_idx].statements[0] = statement; | |||
| 980 | return (ccv_nnc_micro_function_t){ | |||
| 981 | .block_count = 1, | |||
| 982 | .one_block = { | |||
| 983 | .carried_count = 1, | |||
| 984 | .loop_count = loop_count + has_extra_loop, | |||
| 985 | .loops = loops | |||
| 986 | } | |||
| 987 | }; | |||
| 988 | } | |||
| 989 | ||||
| 990 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_reduce_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
| 991 | { | |||
| 992 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)super; | |||
| 993 | assert(self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM)((void) sizeof ((self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM ) ? 1 : 0), __extension__ ({ if (self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM ) ; else __assert_fail ("self->reduce_op == CCV_NNC_MICRO_REDUCE_OP_SUM" , "ccv_nnc_micro_core.c", 993, __extension__ __PRETTY_FUNCTION__ ); })); // I haven't figure out how to do mean without add additional opcode. | |||
| 994 | const int loop_count = self->super.dimensions; | |||
| 995 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 995, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 996 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 997 | int i, j, k; | |||
| 998 | int8_t reduce_axis[loop_count]; | |||
| 999 | memset(reduce_axis, 0, sizeof(int8_t) * loop_count); | |||
| 1000 | for (i = 0; i < self->axis_count; i++) | |||
| 1001 | reduce_axis[self->axis[i]] = 1; | |||
| 1002 | j = 0; | |||
| 1003 | k = loop_count - self->axis_count; | |||
| 1004 | for (i = 0; i < loop_count; i++) | |||
| 1005 | if (reduce_axis[i]) | |||
| 1006 | { | |||
| 1007 | loops[k] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
| 1008 | ++k; | |||
| 1009 | } else { | |||
| 1010 | loops[j] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
| 1011 | ++j; | |||
| 1012 | } | |||
| 1013 | j = 0; | |||
| 1014 | k = loop_count - self->axis_count; | |||
| 1015 | // If loop_count == reduce_axis_count, we have extra loop for carrieds and block. | |||
| 1016 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1017 | for (i = 0; i < loop_count; i++) | |||
| 1018 | if (reduce_axis[i]) | |||
| 1019 | { | |||
| 1020 | index[i] = ccv_nnc_micro_index_of_id(loops[k].id); | |||
| 1021 | ++k; | |||
| 1022 | } else { | |||
| 1023 | index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
| 1024 | ++j; | |||
| 1025 | } | |||
| 1026 | j = 0; | |||
| 1027 | ccv_nnc_micro_loop_index_term_t reduced_index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1028 | for (i = 0; i < loop_count; i++) | |||
| 1029 | if (reduce_axis[i]) | |||
| 1030 | reduced_index[i] = ccv_nnc_micro_index_of_value(0); | |||
| 1031 | else { | |||
| 1032 | reduced_index[i] = ccv_nnc_micro_index_of_id(loops[j].id); | |||
| 1033 | ++j; | |||
| 1034 | } | |||
| 1035 | ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
| 1036 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, index), | |||
| 1037 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, reduced_index)) | |||
| 1038 | ); | |||
| 1039 | loops[loop_count - 1].statement_count = 1; | |||
| 1040 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 1041 | loops[loop_count - 1].statements[0] = statement; | |||
| 1042 | return (ccv_nnc_micro_function_t){ | |||
| 1043 | .block_count = 1, | |||
| 1044 | .one_block = { | |||
| 1045 | .carried_count = 1, | |||
| 1046 | .loop_count = loop_count, | |||
| 1047 | .loops = loops | |||
| 1048 | } | |||
| 1049 | }; | |||
| 1050 | } | |||
| 1051 | ||||
| 1052 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_reduce_return_shape(const ccv_nnc_micro_io_t super) | |||
| 1053 | { | |||
| 1054 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)super; | |||
| 1055 | ccv_nnc_micro_tensor_t var = {}; | |||
| 1056 | var.dimensions = self->super.dimensions; | |||
| 1057 | var.input = self->x->id; | |||
| 1058 | var.sibling = -1; | |||
| 1059 | var.shape = (ccv_nnc_micro_loop_index_term_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
| 1060 | int i; | |||
| 1061 | for (i = 0; i < self->super.dimensions; i++) | |||
| 1062 | var.shape[i] = ccv_nnc_micro_index_of_axis_size(self->x->id, i); | |||
| 1063 | for (i = 0; i < self->axis_count; i++) | |||
| 1064 | var.shape[self->axis[i]] = ccv_nnc_micro_index_of_value(1); | |||
| 1065 | return var; | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_reduce_isa = { | |||
| 1069 | .emit = _ccv_nnc_micro_reduce_emit, | |||
| 1070 | .emit_grad = _ccv_nnc_micro_reduce_emit_grad, | |||
| 1071 | .return_shape = _ccv_nnc_micro_reduce_return_shape | |||
| 1072 | }; | |||
| 1073 | ||||
| 1074 | ccv_nnc_micro_io_t ccv_nnc_micro_reduce(const uint8_t op, const int* const axis, const int axis_count, const ccv_nnc_micro_io_t x) | |||
| 1075 | { | |||
| 1076 | struct ccv_nnc_micro_io_reduce_s* const self = (struct ccv_nnc_micro_io_reduce_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_reduce_s) + sizeof(int) * (axis_count - 1)); | |||
| 1077 | self->super.isa = &ccv_nnc_micro_io_reduce_isa; | |||
| 1078 | self->super.dimensions = x->dimensions; | |||
| 1079 | self->super.id = 0; | |||
| 1080 | self->super.inputs = &self->x; | |||
| 1081 | self->super.input_size = 1; | |||
| 1082 | self->reduce_op = op; | |||
| 1083 | self->x = x; | |||
| 1084 | self->axis_count = axis_count; | |||
| 1085 | assert(axis_count <= x->dimensions)((void) sizeof ((axis_count <= x->dimensions) ? 1 : 0), __extension__ ({ if (axis_count <= x->dimensions) ; else __assert_fail ("axis_count <= x->dimensions", "ccv_nnc_micro_core.c" , 1085, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1086 | int i; | |||
| 1087 | for (i = 0; i < axis_count; i++) | |||
| 1088 | { assert(axis[i] < x->dimensions)((void) sizeof ((axis[i] < x->dimensions) ? 1 : 0), __extension__ ({ if (axis[i] < x->dimensions) ; else __assert_fail ( "axis[i] < x->dimensions", "ccv_nnc_micro_core.c", 1088 , __extension__ __PRETTY_FUNCTION__); })); } | |||
| 1089 | memcpy(self->axis, axis, sizeof(int) * axis_count); | |||
| 1090 | return (ccv_nnc_micro_io_t)self; | |||
| 1091 | } | |||
| 1092 | ||||
| 1093 | struct ccv_nnc_micro_io_select_s { | |||
| 1094 | struct ccv_nnc_micro_io_s super; | |||
| 1095 | int axis; | |||
| 1096 | ccv_nnc_micro_io_t x; | |||
| 1097 | ccv_nnc_micro_io_t index; | |||
| 1098 | }; | |||
| 1099 | ||||
| 1100 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_select_emit(const ccv_nnc_micro_io_t super) | |||
| 1101 | { | |||
| 1102 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)super; | |||
| 1103 | const int loop_count = self->super.dimensions; | |||
| 1104 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1104, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1105 | assert(self->index->dimensions == loop_count)((void) sizeof ((self->index->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->index->dimensions == loop_count) ; else __assert_fail ("self->index->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1105, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1106 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 1107 | int i; | |||
| 1108 | for (i = 0; i < loop_count; i++) | |||
| 1109 | { | |||
| 1110 | if (i == self->axis) | |||
| 1111 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_value(1), i); | |||
| 1112 | else | |||
| 1113 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(self->super.id, i), i); | |||
| 1114 | } | |||
| 1115 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1116 | for (i = 0; i < loop_count; i++) | |||
| 1117 | { | |||
| 1118 | if (i == self->axis) | |||
| 1119 | index[i] = ccv_nnc_micro_index_of_id(ccv_nnc_micro_id_of_tensor(self->index->id)); | |||
| 1120 | else | |||
| 1121 | index[i] = ccv_nnc_micro_index_of_id(loops[i].id); | |||
| 1122 | } | |||
| 1123 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_assignment( | |||
| 1124 | ccv_nnc_micro_loop_variable_of_tensor(self->super.id, loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 1125 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(self->x->id, loop_count, index)) | |||
| 1126 | ); | |||
| 1127 | loops[loop_count - 1].statement_count = 1; | |||
| 1128 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 1129 | loops[loop_count - 1].statements[0] = statement; | |||
| 1130 | return (ccv_nnc_micro_function_t){ | |||
| 1131 | .block_count = 1, | |||
| 1132 | .one_block = { | |||
| 1133 | .loop_count = loop_count, | |||
| 1134 | .loops = loops | |||
| 1135 | } | |||
| 1136 | }; | |||
| 1137 | } | |||
| 1138 | ||||
| 1139 | static CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) _ccv_nnc_micro_select_emit_grad(const ccv_nnc_micro_io_t super, const int var_count) | |||
| 1140 | { | |||
| 1141 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)super; | |||
| 1142 | const int loop_count = self->super.dimensions; | |||
| 1143 | assert(self->x->dimensions == loop_count)((void) sizeof ((self->x->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->x->dimensions == loop_count ) ; else __assert_fail ("self->x->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1143, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1144 | assert(self->index->dimensions == loop_count)((void) sizeof ((self->index->dimensions == loop_count) ? 1 : 0), __extension__ ({ if (self->index->dimensions == loop_count) ; else __assert_fail ("self->index->dimensions == loop_count" , "ccv_nnc_micro_core.c", 1144, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1145 | ccv_nnc_micro_loop_t* const reset_loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 1146 | int i; | |||
| 1147 | for (i = 0; i < loop_count; i++) | |||
| 1148 | reset_loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
| 1149 | const ccv_nnc_micro_loop_statement_t reset_statement = ccv_nnc_micro_loop_assignment( | |||
| 1150 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, ccv_nnc_micro_index_of_loops(reset_loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? reset_loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? reset_loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 2 ? reset_loops[2].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 3 ? reset_loops[3].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 4 ? reset_loops[4].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? reset_loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? reset_loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? reset_loops[7].id : (ccv_nnc_micro_id_t){} } }), | |||
| 1151 | ccv_nnc_micro_loop_expression_of_value(0) | |||
| 1152 | ); | |||
| 1153 | reset_loops[loop_count - 1].statement_count = 1; | |||
| 1154 | reset_loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 1155 | reset_loops[loop_count - 1].statements[0] = reset_statement; | |||
| 1156 | ccv_nnc_micro_loop_t* const loops = (ccv_nnc_micro_loop_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_t) * loop_count); | |||
| 1157 | for (i = 0; i < loop_count; i++) | |||
| 1158 | loops[i] = ccv_nnc_micro_for_in(ccv_nnc_micro_index_of_value(0), ccv_nnc_micro_index_of_axis_size(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), i), i); | |||
| 1159 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; | |||
| 1160 | for (i = 0; i < loop_count; i++) | |||
| 1161 | { | |||
| 1162 | if (i == self->axis) | |||
| 1163 | index[i] = ccv_nnc_micro_index_of_id(ccv_nnc_micro_id_of_tensor(self->index->id)); | |||
| 1164 | else | |||
| 1165 | index[i] = ccv_nnc_micro_index_of_id(loops[i].id); | |||
| 1166 | } | |||
| 1167 | // This is only for x, nothing for index. | |||
| 1168 | const ccv_nnc_micro_loop_statement_t statement = ccv_nnc_micro_loop_compound_assignment_of_tensor( | |||
| 1169 | ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->x->id)(2 * (var_count) - 1 - (self->x->id)), loop_count, index), | |||
| 1170 | ccv_nnc_micro_loop_expression_of_variable(ccv_nnc_micro_loop_variable_of_tensor(GRAD(self->super.id)(2 * (var_count) - 1 - (self->super.id)), loop_count, ccv_nnc_micro_index_of_loops(loops, loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 0 ? loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 1 ? loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 2 ? loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 3 ? loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 4 ? loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 5 ? loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = loop_count > 6 ? loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = loop_count > 7 ? loops[7].id : (ccv_nnc_micro_id_t){} } })) | |||
| 1171 | ); | |||
| 1172 | loops[loop_count - 1].statement_count = 1; | |||
| 1173 | loops[loop_count - 1].statements = (ccv_nnc_micro_loop_statement_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_statement_t)); | |||
| 1174 | loops[loop_count - 1].statements[0] = statement; | |||
| 1175 | ccv_nnc_micro_loop_block_t* const blocks = (ccv_nnc_micro_loop_block_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_block_t) * 2); | |||
| 1176 | blocks[0] = (ccv_nnc_micro_loop_block_t){ | |||
| 1177 | .loop_count = loop_count, | |||
| 1178 | .loops = reset_loops | |||
| 1179 | }; | |||
| 1180 | blocks[1] = (ccv_nnc_micro_loop_block_t){ | |||
| 1181 | .loop_count = loop_count, | |||
| 1182 | .loops = loops | |||
| 1183 | }; | |||
| 1184 | return (ccv_nnc_micro_function_t){ | |||
| 1185 | .block_count = 2, | |||
| 1186 | .blocks = blocks | |||
| 1187 | }; | |||
| 1188 | } | |||
| 1189 | ||||
| 1190 | static ccv_nnc_micro_tensor_t _ccv_nnc_micro_select_return_shape(const ccv_nnc_micro_io_t super) | |||
| 1191 | { | |||
| 1192 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)super; | |||
| 1193 | ccv_nnc_micro_tensor_t var = {}; | |||
| 1194 | var.dimensions = self->super.dimensions; | |||
| 1195 | var.input = self->x->id; | |||
| 1196 | var.sibling = -1; | |||
| 1197 | var.shape = (ccv_nnc_micro_loop_index_term_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_index_term_t) * self->super.dimensions); | |||
| 1198 | int i; | |||
| 1199 | for (i = 0; i < self->super.dimensions; i++) | |||
| 1200 | { | |||
| 1201 | if (i != self->axis) | |||
| 1202 | var.shape[i] = ccv_nnc_micro_index_of_axis_size(self->x->id, i); | |||
| 1203 | else | |||
| 1204 | var.shape[i] = ccv_nnc_micro_index_of_value(1); | |||
| 1205 | } | |||
| 1206 | return var; | |||
| 1207 | } | |||
| 1208 | ||||
| 1209 | static const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_select_isa = { | |||
| 1210 | .emit = _ccv_nnc_micro_select_emit, | |||
| 1211 | .emit_grad = _ccv_nnc_micro_select_emit_grad, | |||
| 1212 | .return_shape = _ccv_nnc_micro_select_return_shape | |||
| 1213 | }; | |||
| 1214 | ||||
| 1215 | ccv_nnc_micro_io_t ccv_nnc_micro_select(const int axis, const ccv_nnc_micro_io_t x, const ccv_nnc_micro_io_t index) | |||
| 1216 | { | |||
| 1217 | struct ccv_nnc_micro_io_select_s* const self = (struct ccv_nnc_micro_io_select_s*)cccalloccalloc(1, sizeof(struct ccv_nnc_micro_io_select_s)); | |||
| 1218 | self->super.isa = &ccv_nnc_micro_io_select_isa; | |||
| 1219 | self->super.dimensions = x->dimensions; | |||
| 1220 | self->super.id = 0; | |||
| 1221 | self->super.inputs = &self->x; | |||
| 1222 | self->super.input_size = 2; | |||
| 1223 | self->x = x; | |||
| 1224 | self->index = index; | |||
| 1225 | self->axis = axis; | |||
| 1226 | assert(axis <= CCV_NNC_MAX_DIM_ALLOC)((void) sizeof ((axis <= (12)) ? 1 : 0), __extension__ ({ if (axis <= (12)) ; else __assert_fail ("axis <= CCV_NNC_MAX_DIM_ALLOC" , "ccv_nnc_micro_core.c", 1226, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 1227 | return (ccv_nnc_micro_io_t)self; | |||
| 1228 | } |
| 1 | /********************************************************** |
| 2 | * C-based/Cached/Core Computer Vision Library |
| 3 | * Liu Liu, 2010-02-01 |
| 4 | **********************************************************/ |
| 5 | |
| 6 | /********************************************************** |
| 7 | * CCV - Neural Network Collection |
| 8 | **********************************************************/ |
| 9 | |
| 10 | #ifndef GUARD_ccv_nnc_micro_internal_h |
| 11 | #define GUARD_ccv_nnc_micro_internal_h |
| 12 | |
| 13 | #include "ccv_nnc.h" |
| 14 | |
| 15 | enum { |
| 16 | CCV_NNC_MICRO_LOOP_ID, |
| 17 | CCV_NNC_MICRO_LOOP_CARRIED_ID, |
| 18 | CCV_NNC_MICRO_AXIS_SIZE_ID, |
| 19 | CCV_NNC_MICRO_TENSOR_ID, |
| 20 | CCV_NNC_MICRO_SCALAR_ID, |
| 21 | }; |
| 22 | |
| 23 | typedef struct { |
| 24 | uint8_t type; |
| 25 | uint8_t d; // Only used for axis_size, identify which axis for a tensor. |
| 26 | int16_t id; |
| 27 | } ccv_nnc_micro_id_t; |
| 28 | |
| 29 | typedef struct { |
| 30 | ccv_nnc_micro_id_t left; |
| 31 | ccv_nnc_micro_id_t right; |
| 32 | } ccv_nnc_micro_id_equal_assertion_t; |
| 33 | |
| 34 | enum { |
| 35 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_NONE, |
| 36 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, |
| 37 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL, |
| 38 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_BINARY, |
| 39 | CCV_NNC_MICRO_LOOP_INDEX_TYPE_UNBOUND_SCALAR, // Unbounded scalar variable, shouldn't be there after fully-evaluated. |
| 40 | }; |
| 41 | |
| 42 | typedef struct ccv_nnc_micro_loop_index_binary_s ccv_nnc_micro_loop_index_binary_t; |
| 43 | |
| 44 | typedef struct { |
| 45 | int type; |
| 46 | union { |
| 47 | char* name; // binding variable name. |
| 48 | ccv_nnc_micro_id_t id; |
| 49 | int immediate_value; |
| 50 | ccv_nnc_micro_loop_index_binary_t* binary; |
| 51 | }; |
| 52 | } ccv_nnc_micro_loop_index_term_t; |
| 53 | |
| 54 | struct ccv_nnc_micro_loop_index_binary_s { |
| 55 | int op; |
| 56 | ccv_nnc_micro_loop_index_term_t left; |
| 57 | ccv_nnc_micro_loop_index_term_t right; |
| 58 | }; |
| 59 | |
| 60 | typedef struct { |
| 61 | ccv_nnc_micro_id_t id; |
| 62 | int index_count; |
| 63 | int no_check_bound[CCV_NNC_MAX_DIM_ALLOC(12)]; |
| 64 | ccv_nnc_micro_loop_index_term_t index[CCV_NNC_MAX_DIM_ALLOC(12)]; |
| 65 | } ccv_nnc_micro_loop_variable_t; |
| 66 | |
| 67 | enum { |
| 68 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID, |
| 69 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAL, |
| 70 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR, |
| 71 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_UNARY, |
| 72 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY, |
| 73 | CCV_NNC_MICRO_LOOP_EXPR_TYPE_TERNAY, |
| 74 | }; |
| 75 | |
| 76 | typedef struct ccv_nnc_micro_loop_expression_s ccv_nnc_micro_loop_expression_t; |
| 77 | |
| 78 | typedef struct { |
| 79 | int unary_op; |
| 80 | ccv_nnc_micro_loop_expression_t* x; |
| 81 | } ccv_nnc_micro_loop_unary_t; |
| 82 | |
| 83 | typedef struct { |
| 84 | int binary_op; |
| 85 | ccv_nnc_micro_loop_expression_t* left; |
| 86 | ccv_nnc_micro_loop_expression_t* right; |
| 87 | } ccv_nnc_micro_loop_binary_t; |
| 88 | |
| 89 | typedef struct { |
| 90 | ccv_nnc_micro_loop_expression_t* pivot; // If it is 0, choose left, otherwise choose right. |
| 91 | ccv_nnc_micro_loop_expression_t* left; |
| 92 | ccv_nnc_micro_loop_expression_t* right; |
| 93 | } ccv_nnc_micro_loop_ternary_t; |
| 94 | |
| 95 | struct ccv_nnc_micro_loop_expression_s { |
| 96 | int type; |
| 97 | union { |
| 98 | ccv_nnc_micro_id_t id; // If this is a compound assignment, the id to that. |
| 99 | ccv_nnc_micro_scalar_t immediate_value; |
| 100 | ccv_nnc_micro_loop_variable_t variable; |
| 101 | ccv_nnc_micro_loop_unary_t unary; |
| 102 | ccv_nnc_micro_loop_binary_t binary; |
| 103 | ccv_nnc_micro_loop_ternary_t ternary; |
| 104 | }; |
| 105 | }; |
| 106 | |
| 107 | typedef struct { |
| 108 | ccv_nnc_micro_loop_variable_t lvalue; |
| 109 | ccv_nnc_micro_loop_expression_t rvalue; |
| 110 | } ccv_nnc_micro_loop_assignment_t; |
| 111 | |
| 112 | |
| 113 | typedef struct { |
| 114 | int type; |
| 115 | union { |
| 116 | ccv_nnc_micro_id_t id; // If this is a compound assignment, the id to that. |
| 117 | ccv_nnc_micro_loop_variable_t variable; // This only implies PLUS at the moment. |
| 118 | }; |
| 119 | } ccv_nnc_micro_loop_compound_assignment_lvalue_t; |
| 120 | |
| 121 | typedef struct { |
| 122 | ccv_nnc_micro_loop_compound_assignment_lvalue_t lvalue; // It shouldn't be unary or binary, only id or variable. |
| 123 | ccv_nnc_micro_loop_expression_t rvalue; |
| 124 | } ccv_nnc_micro_loop_compound_assignment_t; |
| 125 | |
| 126 | enum { |
| 127 | CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_ASSIGNMENT, |
| 128 | CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT, |
| 129 | }; |
| 130 | |
| 131 | // A generic statement within a loop. |
| 132 | // For our purpose, there will be two types of generic statement: |
| 133 | // an assignment statement (for tensors). |
| 134 | // an compound assignment statement (for loop carry overs). |
| 135 | typedef struct { |
| 136 | int type; |
| 137 | union { |
| 138 | ccv_nnc_micro_loop_assignment_t assignment; |
| 139 | ccv_nnc_micro_loop_compound_assignment_t compound_assignment; |
| 140 | }; |
| 141 | } ccv_nnc_micro_loop_statement_t; |
| 142 | |
| 143 | typedef struct { |
| 144 | ccv_nnc_micro_id_t id; |
| 145 | } ccv_nnc_micro_loop_carried_t; // The accumulating register. |
| 146 | |
| 147 | // A loop is identified with a loop counter id, some blocks inside this loop, some carry overs within |
| 148 | // this loop and can be used outside of this loop. |
| 149 | // If this loop has another loop nested (represented as the next one in the ccv_nnc_micro_nested_loop_t) |
| 150 | // all blocks are executed after the nested loop finished. |
| 151 | typedef struct { |
| 152 | ccv_nnc_micro_id_t id; // Loop counter's id, this will be used for indexing. |
| 153 | int carried_count; |
| 154 | int statement_count; |
| 155 | ccv_nnc_micro_loop_index_term_t start_index; |
| 156 | ccv_nnc_micro_loop_index_term_t end_index; |
| 157 | ccv_nnc_micro_loop_carried_t* carrieds; |
| 158 | ccv_nnc_micro_loop_statement_t* statements; |
| 159 | } ccv_nnc_micro_loop_t; |
| 160 | |
| 161 | // A loop block contains many loops within each other. |
| 162 | typedef struct { |
| 163 | int carried_count; |
| 164 | int loop_count; |
| 165 | ccv_nnc_micro_loop_t* loops; |
| 166 | } ccv_nnc_micro_loop_block_t; |
| 167 | |
| 168 | typedef struct { |
| 169 | int input; // The one it derives its shape from. If shape is nullptr, it has the same shape as input. -1 means it is an input. |
| 170 | int sibling; // The sibling that has the same shape. |
| 171 | int dimensions; |
| 172 | int no_alloc; // No need to allocate this tensor. |
| 173 | ccv_nnc_micro_loop_index_term_t* shape; |
| 174 | } ccv_nnc_micro_tensor_t; |
| 175 | |
| 176 | // A function contains a list of loop blocks that will be executed serially. |
| 177 | // It also contains references to its dependencies so a function knows its inputs / outputs. |
| 178 | typedef struct { |
| 179 | int block_count; |
| 180 | union { |
| 181 | ccv_nnc_micro_loop_block_t* blocks; // Heap-allocated blocks. |
| 182 | ccv_nnc_micro_loop_block_t one_block; // In-place block to optimize memory allocation for one block cases. |
| 183 | }; |
| 184 | } ccv_nnc_micro_function_t; |
| 185 | |
| 186 | typedef struct { |
| 187 | int input_size; // Size of inputs. |
| 188 | int output_size; // Size of outputs. |
| 189 | // Combined ops only have global vars, there is no local vars. All vars are tensors. |
| 190 | int var_count; |
| 191 | // loops are our constructs of IR ops really. It is hierarchical. |
| 192 | int function_count; |
| 193 | int* inputs; |
| 194 | int* outputs; |
| 195 | ccv_nnc_micro_tensor_t* vars; |
| 196 | ccv_nnc_micro_function_t* functions; |
| 197 | } ccv_nnc_micro_program_t; |
| 198 | |
| 199 | // A combined op is constructed with many nested loops. These loops may have data dependencies |
| 200 | // between each other, but they are ordered in topological order to make sure one is finished |
| 201 | // after the another. |
| 202 | struct ccv_nnc_micro_combine_s { |
| 203 | int parameter_size; // Size of parameters. |
| 204 | ccv_nnc_micro_program_t forward; |
| 205 | ccv_nnc_micro_program_t backward; |
| 206 | ccv_array_t* equal_assertions; |
| 207 | }; |
| 208 | |
| 209 | typedef uint32_t(*ccv_nnc_micro_scalar_lookup_f)(const void* const context, const char* const name); |
| 210 | |
| 211 | /** |
| 212 | * This is the virtual table for micro op. |
| 213 | */ |
| 214 | struct ccv_nnc_micro_io_vtab_s { |
| 215 | void (*bind_scalars)(const ccv_nnc_micro_io_t self, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context); /**< Bind scalar name to a scoped id. */ |
| 216 | void (*numbering)(const ccv_nnc_micro_io_t self, const int id, const int var_count); /**< Assign id to the output of this micro op. */ |
| 217 | void (*equal_assertions)(const ccv_nnc_micro_io_t self, ccv_array_t* const equal_assertions); /**< Collect assertions about id equal. */ |
| 218 | ccv_nnc_micro_function_t (*emit)(const ccv_nnc_micro_io_t self); /**< Emit instructions for this micro op. */ |
| 219 | ccv_nnc_micro_function_t (*emit_grad)(const ccv_nnc_micro_io_t self, const int var_count); /**< Emit backward instructions for this micro op. */ |
| 220 | ccv_nnc_micro_tensor_t (*return_shape)(const ccv_nnc_micro_io_t self); /**< The shape of the returned tensor. */ |
| 221 | void (*deinit)(const ccv_nnc_micro_io_t self); /**< Deinit this micro io. */ |
| 222 | }; |
| 223 | |
| 224 | extern const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_input_isa; |
| 225 | extern const ccv_nnc_micro_io_vtab_t ccv_nnc_micro_io_grad_isa; |
| 226 | |
| 227 | #define CCV_NNC_IS_MICRO_IO_INPUT(x)((x)->isa == &ccv_nnc_micro_io_input_isa) ((x)->isa == &ccv_nnc_micro_io_input_isa) |
| 228 | #define CCV_NNC_IS_MICRO_IO_GRAD(x)((x)->isa == &ccv_nnc_micro_io_grad_isa) ((x)->isa == &ccv_nnc_micro_io_grad_isa) |
| 229 | |
| 230 | static inline void ccv_nnc_micro_numbering(const ccv_nnc_micro_io_t self, const int id, const int var_count) |
| 231 | { |
| 232 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 233 | // If we numbering with negative id, we really just enumerate the grad. |
| 234 | if (id < 0 && !CCV_NNC_IS_MICRO_IO_GRAD(self)((self)->isa == &ccv_nnc_micro_io_grad_isa)) |
| 235 | return; |
| 236 | if (isa->numbering) |
| 237 | isa->numbering(self, id, var_count); |
| 238 | else |
| 239 | self->id = id; |
| 240 | } |
| 241 | |
| 242 | static inline void ccv_nnc_micro_equal_assertions(const ccv_nnc_micro_io_t self, ccv_array_t* const equal_assertions) |
| 243 | { |
| 244 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 245 | if (isa->equal_assertions) |
| 246 | isa->equal_assertions(self, equal_assertions); |
| 247 | } |
| 248 | |
| 249 | static inline void ccv_nnc_micro_bind_scalars(const ccv_nnc_micro_io_t self, ccv_nnc_micro_scalar_lookup_f lookup, const void* const context) |
| 250 | { |
| 251 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 252 | if (isa->bind_scalars) |
| 253 | isa->bind_scalars(self, lookup, context); |
| 254 | } |
| 255 | |
| 256 | static inline void ccv_nnc_micro_deinit(const ccv_nnc_micro_io_t self) |
| 257 | { |
| 258 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 259 | if (isa->deinit) |
| 260 | isa->deinit(self); |
| 261 | } |
| 262 | |
| 263 | static inline CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) ccv_nnc_micro_emit(const ccv_nnc_micro_io_t self) |
| 264 | { |
| 265 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 266 | return isa->emit(self); |
| 267 | } |
| 268 | |
| 269 | static inline CCV_WARN_UNUSED(ccv_nnc_micro_function_t)ccv_nnc_micro_function_t __attribute__((warn_unused_result)) ccv_nnc_micro_emit_grad(const ccv_nnc_micro_io_t self, const int var_count) |
| 270 | { |
| 271 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 272 | return isa->emit_grad(self, var_count); |
| 273 | } |
| 274 | |
| 275 | static inline CCV_WARN_UNUSED(ccv_nnc_micro_tensor_t)ccv_nnc_micro_tensor_t __attribute__((warn_unused_result)) ccv_nnc_micro_return_shape(const ccv_nnc_micro_io_t self) |
| 276 | { |
| 277 | const ccv_nnc_micro_io_vtab_t* const isa = self->isa; |
| 278 | return isa->return_shape(self); |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * Helpers to construct the micro IR. |
| 283 | */ |
| 284 | |
| 285 | static inline ccv_nnc_micro_id_t ccv_nnc_micro_id_of_tensor(const int id) |
| 286 | { |
| 287 | return (ccv_nnc_micro_id_t){ |
| 288 | .type = CCV_NNC_MICRO_TENSOR_ID, |
| 289 | .id = id, |
| 290 | .d = 0 |
| 291 | }; |
| 292 | } |
| 293 | |
| 294 | static inline ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_index_of_value(const int value) |
| 295 | { |
| 296 | return (ccv_nnc_micro_loop_index_term_t){ |
| 297 | .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_VAL, |
| 298 | .immediate_value = value |
| 299 | }; |
| 300 | } |
| 301 | |
| 302 | static inline ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_index_of_id(const ccv_nnc_micro_id_t id) |
| 303 | { |
| 304 | return (ccv_nnc_micro_loop_index_term_t){ |
| 305 | .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, |
| 306 | .id = id |
| 307 | }; |
| 308 | } |
| 309 | |
| 310 | static inline ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_index_of_axis_size(const int id, const int level) |
| 311 | { |
| 312 | return (ccv_nnc_micro_loop_index_term_t){ |
| 313 | .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, |
| 314 | .id = { |
| 315 | .type = CCV_NNC_MICRO_AXIS_SIZE_ID, |
| 316 | .id = id, |
| 317 | .d = level |
| 318 | } |
| 319 | }; |
| 320 | } |
| 321 | |
| 322 | static inline ccv_nnc_micro_loop_t ccv_nnc_micro_for_in(const ccv_nnc_micro_loop_index_term_t start_index, const ccv_nnc_micro_loop_index_term_t end_index, const int level) |
| 323 | { |
| 324 | return (ccv_nnc_micro_loop_t){ |
| 325 | .start_index = start_index, |
| 326 | .end_index = end_index, |
| 327 | .carried_count = 0, |
| 328 | .carrieds = 0, |
| 329 | .statement_count = 0, |
| 330 | .statements = 0, |
| 331 | .id = { |
| 332 | .type = CCV_NNC_MICRO_LOOP_ID, |
| 333 | .d = 0, |
| 334 | .id = level, |
| 335 | } |
| 336 | }; |
| 337 | } |
| 338 | |
| 339 | // This is a macro because C cannot return array type. |
| 340 | #define ccv_nnc_micro_index_of_loops(_loops, _loop_count)(ccv_nnc_micro_loop_index_term_t [(12)]){ { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 0 ? _loops[0].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 1 ? _loops[1].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 2 ? _loops[2].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 3 ? _loops[3].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 4 ? _loops[4].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 5 ? _loops[5].id : (ccv_nnc_micro_id_t){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID , .id = _loop_count > 6 ? _loops[6].id : (ccv_nnc_micro_id_t ){} }, { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 7 ? _loops[7].id : (ccv_nnc_micro_id_t){} } } \ |
| 341 | (ccv_nnc_micro_loop_index_term_t [CCV_NNC_MAX_DIM_ALLOC(12)]){ \ |
| 342 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 0 ? _loops[0].id : (ccv_nnc_micro_id_t){} }, \ |
| 343 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 1 ? _loops[1].id : (ccv_nnc_micro_id_t){} }, \ |
| 344 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 2 ? _loops[2].id : (ccv_nnc_micro_id_t){} }, \ |
| 345 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 3 ? _loops[3].id : (ccv_nnc_micro_id_t){} }, \ |
| 346 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 4 ? _loops[4].id : (ccv_nnc_micro_id_t){} }, \ |
| 347 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 5 ? _loops[5].id : (ccv_nnc_micro_id_t){} }, \ |
| 348 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 6 ? _loops[6].id : (ccv_nnc_micro_id_t){} }, \ |
| 349 | { .type = CCV_NNC_MICRO_LOOP_INDEX_TYPE_ID, .id = _loop_count > 7 ? _loops[7].id : (ccv_nnc_micro_id_t){} } \ |
| 350 | } |
| 351 | |
| 352 | static inline ccv_nnc_micro_loop_variable_t ccv_nnc_micro_loop_variable_of_tensor(const int id, const int index_count, const ccv_nnc_micro_loop_index_term_t* const index) |
| 353 | { |
| 354 | ccv_nnc_micro_loop_variable_t variable = { |
| 355 | .id = ccv_nnc_micro_id_of_tensor(id), |
| 356 | .index_count = index_count |
| 357 | }; |
| 358 | int i; |
| 359 | for (i = 0; i < index_count; i++) |
| 360 | variable.index[i] = index[i]; |
| 361 | return variable; |
| 362 | } |
| 363 | |
| 364 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_variable(const ccv_nnc_micro_loop_variable_t variable) |
| 365 | { |
| 366 | return (ccv_nnc_micro_loop_expression_t){ |
| 367 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR, |
| 368 | .variable = variable |
| 369 | }; |
| 370 | } |
| 371 | |
| 372 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_value(const float value) |
| 373 | { |
| 374 | return (ccv_nnc_micro_loop_expression_t){ |
| 375 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAL, |
| 376 | .immediate_value = { |
| 377 | .type = CCV_32F, |
| 378 | .f32 = value |
| 379 | } |
| 380 | }; |
| 381 | } |
| 382 | |
| 383 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_id(const ccv_nnc_micro_id_t id) |
| 384 | { |
| 385 | return (ccv_nnc_micro_loop_expression_t){ |
| 386 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID, |
| 387 | .id = id |
| 388 | }; |
| 389 | } |
| 390 | |
| 391 | static inline ccv_nnc_micro_loop_statement_t ccv_nnc_micro_loop_assignment(const ccv_nnc_micro_loop_variable_t lvalue, const ccv_nnc_micro_loop_expression_t rvalue) |
| 392 | { |
| 393 | return (ccv_nnc_micro_loop_statement_t){ |
| 394 | .type = CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_ASSIGNMENT, |
| 395 | .assignment = { |
| 396 | .lvalue = lvalue, |
| 397 | .rvalue = rvalue |
| 398 | } |
| 399 | }; |
| 400 | } |
| 401 | |
| 402 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_unary(const int unary_op, const ccv_nnc_micro_loop_expression_t x) |
| 403 | { |
| 404 | ccv_nnc_micro_loop_expression_t expression = { |
| 405 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY |
| 406 | }; |
| 407 | expression.unary.unary_op = unary_op; |
| 408 | expression.unary.x = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
| 409 | *expression.unary.x = x; |
| 410 | return expression; |
| 411 | } |
| 412 | |
| 413 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_binary(const int binary_op, const ccv_nnc_micro_loop_expression_t left, const ccv_nnc_micro_loop_expression_t right) |
| 414 | { |
| 415 | ccv_nnc_micro_loop_expression_t expression = { |
| 416 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_BINARY |
| 417 | }; |
| 418 | expression.binary.binary_op = binary_op; |
| 419 | expression.binary.left = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
| 420 | *expression.binary.left = left; |
| 421 | expression.binary.right = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
| 422 | *expression.binary.right = right; |
| 423 | return expression; |
| 424 | } |
| 425 | |
| 426 | static inline ccv_nnc_micro_loop_expression_t ccv_nnc_micro_loop_expression_of_ternary(const ccv_nnc_micro_loop_expression_t pivot, const ccv_nnc_micro_loop_expression_t left, const ccv_nnc_micro_loop_expression_t right) |
| 427 | { |
| 428 | ccv_nnc_micro_loop_expression_t expression = { |
| 429 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_TERNAY |
| 430 | }; |
| 431 | expression.ternary.pivot = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
| 432 | *expression.ternary.pivot = pivot; |
| 433 | expression.ternary.left = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
| 434 | *expression.ternary.left = left; |
| 435 | expression.ternary.right = (ccv_nnc_micro_loop_expression_t*)ccmallocmalloc(sizeof(ccv_nnc_micro_loop_expression_t)); |
| 436 | *expression.ternary.right = right; |
| 437 | return expression; |
| 438 | } |
| 439 | |
| 440 | static inline ccv_nnc_micro_loop_statement_t ccv_nnc_micro_loop_compound_assignment_of_id(const ccv_nnc_micro_id_t lvalue, const ccv_nnc_micro_loop_expression_t rvalue) |
| 441 | { |
| 442 | return (ccv_nnc_micro_loop_statement_t){ |
| 443 | .type = CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT, |
| 444 | .compound_assignment = { |
| 445 | .lvalue = { |
| 446 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_ID, |
| 447 | .id = lvalue |
| 448 | }, |
| 449 | .rvalue = rvalue |
| 450 | } |
| 451 | }; |
| 452 | } |
| 453 | |
| 454 | static inline ccv_nnc_micro_loop_statement_t ccv_nnc_micro_loop_compound_assignment_of_tensor(const ccv_nnc_micro_loop_variable_t lvalue, const ccv_nnc_micro_loop_expression_t rvalue) |
| 455 | { |
| 456 | return (ccv_nnc_micro_loop_statement_t){ |
| 457 | .type = CCV_NNC_MICRO_LOOP_STATEMENT_TYPE_COMPOUND_ASSIGNMENT, |
| 458 | .compound_assignment = { |
| 459 | .lvalue = { |
| 460 | .type = CCV_NNC_MICRO_LOOP_EXPR_TYPE_VAR, |
| 461 | .variable = lvalue |
| 462 | }, |
| 463 | .rvalue = rvalue |
| 464 | } |
| 465 | }; |
| 466 | } |
| 467 | |
| 468 | static inline ccv_nnc_micro_loop_carried_t ccv_nnc_micro_loop_carried(const uint8_t reduce_op, const int idx) |
| 469 | { |
| 470 | return (ccv_nnc_micro_loop_carried_t){ |
| 471 | .id = { |
| 472 | .type = CCV_NNC_MICRO_LOOP_CARRIED_ID, |
| 473 | .d = reduce_op, |
| 474 | .id = idx |
| 475 | } |
| 476 | }; |
| 477 | } |
| 478 | |
| 479 | // This method has to be mutable for efficiency reasons. Hence I kept it private. |
| 480 | void ccv_nnc_micro_program_simplify(ccv_nnc_micro_program_t* const program, const ccv_nnc_micro_io_t* const inputs, const int input_size, const ccv_nnc_micro_io_t* const outputs, const int output_size, const ccv_array_t* const equal_assertions); |
| 481 | ccv_nnc_micro_loop_index_term_t ccv_nnc_micro_loop_index_deep_copy(const ccv_nnc_micro_loop_index_term_t* const term); |
| 482 | void ccv_nnc_micro_loop_index_free(ccv_nnc_micro_loop_index_term_t* const term); |
| 483 | void ccv_nnc_micro_loop_variable_free(ccv_nnc_micro_loop_variable_t* const var); |
| 484 | void ccv_nnc_micro_loop_statement_free(ccv_nnc_micro_loop_statement_t* const statement); |
| 485 | void ccv_nnc_micro_loop_statement_lvalue_free(ccv_nnc_micro_loop_statement_t* const statement); |
| 486 | void ccv_nnc_micro_loops_free(ccv_nnc_micro_loop_t* const loops, const int loop_count); |
| 487 | |
| 488 | #endif |