| File: | ccv_convnet.c |
| Warning: | line 974, column 25 4th function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include "ccv.h" | |||
| 2 | #include "ccv_internal.h" | |||
| 3 | #if defined(HAVE_SSE21) | |||
| 4 | #include <xmmintrin.h> | |||
| 5 | #elif defined(HAVE_NEON) | |||
| 6 | #include <arm_neon.h> | |||
| 7 | #endif | |||
| 8 | #ifdef HAVE_GSL1 | |||
| 9 | #include <gsl/gsl_rng.h> | |||
| 10 | #include <gsl/gsl_randist.h> | |||
| 11 | #endif | |||
| 12 | #ifdef USE_OPENMP | |||
| 13 | #include <omp.h> | |||
| 14 | #endif | |||
| 15 | #ifdef USE_DISPATCH | |||
| 16 | #include <dispatch/dispatch.h> | |||
| 17 | #endif | |||
| 18 | #ifdef HAVE_CUDA1 | |||
| 19 | #include "cuda/cwc.h" | |||
| 20 | #endif | |||
| 21 | #include "3rdparty/sqlite3/sqlite3.h" | |||
| 22 | #include "inc/ccv_convnet_internal.h" | |||
| 23 | ||||
| 24 | #ifndef CASE_TESTS | |||
| 25 | ||||
| 26 | ccv_convnet_t* ccv_convnet_new(int use_cwc_accel, ccv_size_t input, ccv_convnet_layer_param_t params[], int count) | |||
| 27 | { | |||
| 28 | ccv_convnet_t* convnet = (ccv_convnet_t*)ccmallocmalloc(sizeof(ccv_convnet_t) + sizeof(ccv_convnet_layer_t) * count + sizeof(ccv_dense_matrix_t*) * count * 2); | |||
| 29 | convnet->use_cwc_accel = use_cwc_accel; | |||
| 30 | #ifdef HAVE_GSL1 | |||
| 31 | gsl_rng_env_setup(); | |||
| 32 | gsl_rng* rng = gsl_rng_alloc(gsl_rng_default); | |||
| 33 | gsl_rng_set(rng, (unsigned long int)convnet); | |||
| 34 | #endif | |||
| 35 | convnet->reserved = 0; | |||
| 36 | convnet->layers = (ccv_convnet_layer_t*)(convnet + 1); | |||
| 37 | convnet->acts = (ccv_dense_matrix_t**)(convnet->layers + count); | |||
| 38 | memset(convnet->acts, 0, sizeof(ccv_dense_matrix_t*) * count); | |||
| 39 | convnet->denoms = (ccv_dense_matrix_t**)(convnet->acts + count); | |||
| 40 | memset(convnet->denoms, 0, sizeof(ccv_dense_matrix_t*) * count); | |||
| 41 | convnet->count = count; | |||
| 42 | convnet->input = input; | |||
| 43 | convnet->rows = params[0].input.matrix.rows; | |||
| 44 | convnet->cols = params[0].input.matrix.cols; | |||
| 45 | convnet->channels = params[0].input.matrix.channels; | |||
| 46 | convnet->mean_activity = ccv_dense_matrix_new(convnet->input.height, convnet->input.width, convnet->channels | CCV_32F, 0, 0); | |||
| 47 | ccv_zero(convnet->mean_activity); | |||
| 48 | ccv_convnet_layer_t* layers = convnet->layers; | |||
| 49 | int i, j; | |||
| 50 | for (i = 0; i < count; i++) | |||
| 51 | { | |||
| 52 | layers[i].type = params[i].type; | |||
| 53 | layers[i].input = params[i].input; | |||
| 54 | layers[i].net = params[i].output; | |||
| 55 | layers[i].reserved = 0; | |||
| 56 | switch (params[i].type) | |||
| 57 | { | |||
| 58 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 59 | assert(params[i].input.matrix.channels % params[i].input.matrix.partition == 0)((void) sizeof ((params[i].input.matrix.channels % params[i]. input.matrix.partition == 0) ? 1 : 0), __extension__ ({ if (params [i].input.matrix.channels % params[i].input.matrix.partition == 0) ; else __assert_fail ("params[i].input.matrix.channels % params[i].input.matrix.partition == 0" , "ccv_convnet.c", 59, __extension__ __PRETTY_FUNCTION__); }) ); | |||
| 60 | assert(params[i].output.convolutional.count % params[i].output.convolutional.partition == 0)((void) sizeof ((params[i].output.convolutional.count % params [i].output.convolutional.partition == 0) ? 1 : 0), __extension__ ({ if (params[i].output.convolutional.count % params[i].output .convolutional.partition == 0) ; else __assert_fail ("params[i].output.convolutional.count % params[i].output.convolutional.partition == 0" , "ccv_convnet.c", 60, __extension__ __PRETTY_FUNCTION__); }) ); | |||
| 61 | assert(params[i].output.convolutional.partition % params[i].input.matrix.partition == 0)((void) sizeof ((params[i].output.convolutional.partition % params [i].input.matrix.partition == 0) ? 1 : 0), __extension__ ({ if (params[i].output.convolutional.partition % params[i].input. matrix.partition == 0) ; else __assert_fail ("params[i].output.convolutional.partition % params[i].input.matrix.partition == 0" , "ccv_convnet.c", 61, __extension__ __PRETTY_FUNCTION__); }) ); | |||
| 62 | assert(params[i].output.convolutional.partition >= params[i].input.matrix.partition)((void) sizeof ((params[i].output.convolutional.partition >= params[i].input.matrix.partition) ? 1 : 0), __extension__ ({ if (params[i].output.convolutional.partition >= params[i] .input.matrix.partition) ; else __assert_fail ("params[i].output.convolutional.partition >= params[i].input.matrix.partition" , "ccv_convnet.c", 62, __extension__ __PRETTY_FUNCTION__); }) ); | |||
| 63 | layers[i].wnum = params[i].output.convolutional.rows * params[i].output.convolutional.cols * params[i].output.convolutional.channels / params[i].input.matrix.partition * params[i].output.convolutional.count; | |||
| 64 | layers[i].w = (float*)ccmallocmalloc(sizeof(float) * (layers[i].wnum + params[i].output.convolutional.count)); | |||
| 65 | layers[i].bias = layers[i].w + layers[i].wnum; | |||
| 66 | #ifdef HAVE_GSL1 | |||
| 67 | for (j = 0; j < layers[i].wnum; j++) | |||
| 68 | layers[i].w[j] = (gsl_rng_uniform_pos(rng) * 2 - 1) * params[i].glorot / sqrtf(params[i].output.convolutional.rows * params[i].output.convolutional.cols * params[i].output.convolutional.channels / params[i].input.matrix.partition + params[i].output.convolutional.count); | |||
| 69 | #else | |||
| 70 | for (j = 0; j < layers[i].wnum; j++) | |||
| 71 | layers[i].w[j] = 0; | |||
| 72 | #endif | |||
| 73 | for (j = 0; j < params[i].output.convolutional.count; j++) | |||
| 74 | layers[i].bias[j] = params[i].bias; | |||
| 75 | break; | |||
| 76 | case CCV_CONVNET_FULL_CONNECT: | |||
| 77 | layers[i].wnum = params[i].input.node.count * params[i].output.full_connect.count; | |||
| 78 | layers[i].w = (float*)ccmallocmalloc(sizeof(float) * (layers[i].wnum + params[i].output.full_connect.count)); | |||
| 79 | layers[i].bias = layers[i].w + layers[i].wnum; | |||
| 80 | #ifdef HAVE_GSL1 | |||
| 81 | for (j = 0; j < layers[i].wnum; j++) | |||
| 82 | layers[i].w[j] = (gsl_rng_uniform_pos(rng) * 2 - 1) * params[i].glorot / sqrtf(params[i].input.node.count + params[i].output.full_connect.count); | |||
| 83 | #else | |||
| 84 | for (j = 0; j < layers[i].wnum; j++) | |||
| 85 | layers[i].w[j] = 0; | |||
| 86 | #endif | |||
| 87 | for (j = 0; j < params[i].output.full_connect.count; j++) | |||
| 88 | layers[i].bias[j] = params[i].bias; | |||
| 89 | break; | |||
| 90 | default: | |||
| 91 | layers[i].wnum = 0; | |||
| 92 | layers[i].w = 0; | |||
| 93 | layers[i].bias = 0; | |||
| 94 | break; | |||
| 95 | } | |||
| 96 | } | |||
| 97 | #ifdef HAVE_GSL1 | |||
| 98 | gsl_rng_free(rng); | |||
| 99 | #endif | |||
| 100 | return convnet; | |||
| 101 | } | |||
| 102 | ||||
| 103 | int ccv_convnet_verify(ccv_convnet_t* convnet, int output) | |||
| 104 | { | |||
| 105 | int i, out_rows, out_cols, out_partition, out_channels; | |||
| 106 | if (convnet->count < 1) | |||
| 107 | return -1; | |||
| 108 | // the last layer has to be full connect | |||
| 109 | if (convnet->layers[convnet->count - 1].type != CCV_CONVNET_FULL_CONNECT) | |||
| 110 | return -1; | |||
| 111 | // you cannot enable relu on the last layer | |||
| 112 | if (convnet->layers[convnet->count - 1].net.full_connect.relu) | |||
| 113 | return -1; | |||
| 114 | out_channels = 3; | |||
| 115 | for (i = 0; i < convnet->count; i++) | |||
| 116 | { | |||
| 117 | ccv_convnet_layer_t* layer = convnet->layers + i; | |||
| 118 | if (i > 0 && (out_rows != layer->input.matrix.rows || out_cols != layer->input.matrix.cols)) | |||
| 119 | return -1; | |||
| 120 | // the input channels should be equal to the previous output channels, skip this check for full connect as it is meaningless | |||
| 121 | if (out_channels != layer->input.matrix.channels && layer->type != CCV_CONVNET_FULL_CONNECT) | |||
| 122 | return -1; | |||
| 123 | ccv_convnet_make_output(layer, layer->input.matrix.rows, layer->input.matrix.cols, &out_rows, &out_cols, &out_partition); | |||
| 124 | if (layer->type == CCV_CONVNET_CONVOLUTIONAL) | |||
| 125 | { | |||
| 126 | // check to see if the input matrix channel is equal to the expected input of the convolutional layer filters | |||
| 127 | if (layer->input.matrix.channels != layer->net.convolutional.channels) | |||
| 128 | return -1; | |||
| 129 | // if this layer is convolutional layer, its filter output should equal to next layer's channel input | |||
| 130 | out_channels = layer->net.convolutional.count; | |||
| 131 | } | |||
| 132 | } | |||
| 133 | if (out_rows * out_cols != output) | |||
| 134 | return -1; | |||
| 135 | int count = 0; | |||
| 136 | for (i = 0; i < convnet->count; i++) | |||
| 137 | { | |||
| 138 | ccv_convnet_layer_t* layer = convnet->layers + i; | |||
| 139 | if (layer->type == CCV_CONVNET_FULL_CONNECT) | |||
| 140 | { | |||
| 141 | count = i; | |||
| 142 | break; | |||
| 143 | } | |||
| 144 | } | |||
| 145 | // all the layers after the first full connect layer should only be full connect layer | |||
| 146 | for (i = count; i < convnet->count; i++) | |||
| 147 | if (convnet->layers[i].type != CCV_CONVNET_FULL_CONNECT || | |||
| 148 | convnet->layers[i].input.matrix.rows * convnet->layers[i].input.matrix.cols * convnet->layers[i].input.matrix.channels != convnet->layers[i].input.node.count) | |||
| 149 | return -1; | |||
| 150 | return 0; | |||
| 151 | } | |||
| 152 | ||||
| 153 | #endif | |||
| 154 | ||||
| 155 | #if defined(HAVE_SSE21) || defined(HAVE_NEON) | |||
| 156 | ||||
| 157 | static void _ccv_convnet_layer_simd_alloc_reserved(ccv_convnet_layer_t* layer) | |||
| 158 | { | |||
| 159 | if (layer->reserved) | |||
| 160 | return; | |||
| 161 | int partition = layer->input.matrix.partition; | |||
| 162 | int ch = layer->net.convolutional.channels; | |||
| 163 | int count = layer->net.convolutional.count; | |||
| 164 | int kernel_rows = layer->net.convolutional.rows; | |||
| 165 | int kernel_cols = layer->net.convolutional.cols; | |||
| 166 | int ch_per_partition = ch / partition; | |||
| 167 | int count_per_4 = count / 4; | |||
| 168 | float* simd_w = (float*)ccmallocmalloc(sizeof(float) * layer->wnum); | |||
| 169 | int i, j, k, c; | |||
| 170 | for (k = 0; k < count_per_4; k++) | |||
| 171 | for (i = 0; i < kernel_rows * kernel_cols; i++) | |||
| 172 | for (j = 0; j < ch_per_partition; j++) | |||
| 173 | for (c = 0; c < 4; c++) | |||
| 174 | simd_w[(k * kernel_rows * kernel_cols * ch_per_partition + i * ch_per_partition + j) * 4 + c] = layer->w[(k * 4 + c) * kernel_rows * kernel_cols * ch_per_partition + i * ch_per_partition + j]; | |||
| 175 | layer->reserved = simd_w; | |||
| 176 | } | |||
| 177 | ||||
| 178 | #endif | |||
| 179 | ||||
| 180 | #define SIMD(x)((float*)((x)->reserved)) ((float*)((x)->reserved)) | |||
| 181 | ||||
| 182 | #if defined(HAVE_SSE21) | |||
| 183 | static inline void _ccv_convnet_convolutional_forward_propagate_sse2(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* db, int rows, int cols, int ch, int count, int strides, int border, int kernel_rows, int kernel_cols, int ch_per_partition, int count_per_partition) | |||
| 184 | { | |||
| 185 | assert(SIMD(layer))((void) sizeof ((((float*)((layer)->reserved))) ? 1 : 0), __extension__ ({ if (((float*)((layer)->reserved))) ; else __assert_fail ("SIMD(layer)", "ccv_convnet.c", 185, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 186 | #define main_for(block) \ | |||
| 187 | parallel_for(k, (count >> 2)){ int k; for ((k) = 0; (k) < ((count >> 2)); (k)++) { { \ | |||
| 188 | int i, j, x, y, c; \ | |||
| 189 | int p = k * 4 / count_per_partition; \ | |||
| 190 | float* ap = a->data.f32 + p * ch_per_partition; \ | |||
| 191 | float* bp = db->data.f32 + k * 4; \ | |||
| 192 | float* layer_w = SIMD(layer)((float*)((layer)->reserved)) + k * 4 * kernel_rows * kernel_cols * ch_per_partition; \ | |||
| 193 | float bias[4] __attribute__ ((__aligned__(16))); \ | |||
| 194 | memcpy(bias, layer->bias + k * 4, sizeof(float) * 4); \ | |||
| 195 | /* 4 accumulators */ \ | |||
| 196 | __m128 z4 = _mm_setzero_ps(); \ | |||
| 197 | for (i = 0; i < db->rows; i++) \ | |||
| 198 | { \ | |||
| 199 | int comy = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); \ | |||
| 200 | int maxy = kernel_rows - comy - (i * strides + kernel_rows - ccv_min(a->rows + border, i * strides + kernel_rows)({ typeof (a->rows + border) _a = (a->rows + border); typeof (i * strides + kernel_rows) _b = (i * strides + kernel_rows) ; (_a < _b) ? _a : _b; })); \ | |||
| 201 | comy *= ch_per_partition * kernel_cols; \ | |||
| 202 | for (j = 0; j < db->cols; j++) \ | |||
| 203 | { \ | |||
| 204 | __m128 v40 = _mm_load_ps(bias); \ | |||
| 205 | __m128 v41 = _mm_setzero_ps(); \ | |||
| 206 | __m128 v42 = _mm_setzero_ps(); \ | |||
| 207 | __m128 v43 = _mm_setzero_ps(); \ | |||
| 208 | int comx = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); \ | |||
| 209 | int maxx = kernel_cols - comx - (j * strides + kernel_cols - ccv_min(a->cols + border, j * strides + kernel_cols)({ typeof (a->cols + border) _a = (a->cols + border); typeof (j * strides + kernel_cols) _b = (j * strides + kernel_cols) ; (_a < _b) ? _a : _b; })); \ | |||
| 210 | float* w = layer_w + (comx * ch_per_partition + comy) * 4; \ | |||
| 211 | float* apz = ap + ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) * ch; \ | |||
| 212 | /* when we have border, we simply do zero padding */ \ | |||
| 213 | for (y = 0; y < maxy; y++) \ | |||
| 214 | { \ | |||
| 215 | /* special casing for these cases to speed up SIMD computation */ \ | |||
| 216 | for (x = 0; x < maxx; x++) \ | |||
| 217 | { \ | |||
| 218 | c = 0; \ | |||
| 219 | for (; c < ch_per_partition - 3; c += 4) \ | |||
| 220 | { \ | |||
| 221 | __m128 apz4 = _mm_loadu_ps(apz + x * ch + c); \ | |||
| 222 | __m128 w40 = _mm_loadu_ps(w + (x * ch_per_partition + c) * 4); \ | |||
| 223 | __m128 w41 = _mm_loadu_ps(w + (x * ch_per_partition + c + 1) * 4); \ | |||
| 224 | __m128 w42 = _mm_loadu_ps(w + (x * ch_per_partition + c + 2) * 4); \ | |||
| 225 | __m128 w43 = _mm_loadu_ps(w + (x * ch_per_partition + c + 3) * 4); \ | |||
| 226 | __m128 apz40 = _mm_shuffle_ps(apz4, apz4, 0x00)((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(apz4), (__v4sf )(__m128)(apz4), (int)(0x00))); \ | |||
| 227 | __m128 apz41 = _mm_shuffle_ps(apz4, apz4, 0x55)((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(apz4), (__v4sf )(__m128)(apz4), (int)(0x55))); \ | |||
| 228 | __m128 apz42 = _mm_shuffle_ps(apz4, apz4, 0xAA)((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(apz4), (__v4sf )(__m128)(apz4), (int)(0xAA))); \ | |||
| 229 | __m128 apz43 = _mm_shuffle_ps(apz4, apz4, 0xFF)((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(apz4), (__v4sf )(__m128)(apz4), (int)(0xFF))); \ | |||
| 230 | v40 =_mm_add_ps(_mm_mul_ps(w40, apz40), v40); \ | |||
| 231 | v41 =_mm_add_ps(_mm_mul_ps(w41, apz41), v41); \ | |||
| 232 | v42 =_mm_add_ps(_mm_mul_ps(w42, apz42), v42); \ | |||
| 233 | v43 =_mm_add_ps(_mm_mul_ps(w43, apz43), v43); \ | |||
| 234 | } \ | |||
| 235 | block /* insert executions for tail partition */ \ | |||
| 236 | } \ | |||
| 237 | w += kernel_cols * ch_per_partition * 4; \ | |||
| 238 | apz += a->cols * ch; \ | |||
| 239 | } \ | |||
| 240 | __m128 v4 = _mm_max_ps(z4, _mm_add_ps(_mm_add_ps(v40, v41), _mm_add_ps(v42, v43))); \ | |||
| 241 | _mm_storeu_ps(bp + j * count, v4); /* ReLU */ \ | |||
| 242 | } \ | |||
| 243 | bp += db->cols * count; \ | |||
| 244 | ap += a->cols * ch * (ccv_max((i + 1) * strides - border, 0)({ typeof ((i + 1) * strides - border) _a = ((i + 1) * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; })); \ | |||
| 245 | } \ | |||
| 246 | } parallel_endfor} } | |||
| 247 | if (ch_per_partition % 4 == 0) | |||
| 248 | { | |||
| 249 | main_for(); | |||
| 250 | } else if (ch_per_partition % 4 == 3) { // unroll the last for-loops | |||
| 251 | #define block \ | |||
| 252 | __m128 apz40 = _mm_load1_ps(apz + x * ch + c); \ | |||
| 253 | __m128 apz41 = _mm_load1_ps(apz + x * ch + c + 1); \ | |||
| 254 | __m128 apz42 = _mm_load1_ps(apz + x * ch + c + 2); \ | |||
| 255 | __m128 w40 = _mm_loadu_ps(w + (x * ch_per_partition + c) * 4); \ | |||
| 256 | __m128 w41 = _mm_loadu_ps(w + (x * ch_per_partition + c + 1) * 4); \ | |||
| 257 | __m128 w42 = _mm_loadu_ps(w + (x * ch_per_partition + c + 2) * 4); \ | |||
| 258 | v40 = _mm_add_ps(_mm_mul_ps(w40, apz40), v40); \ | |||
| 259 | v41 = _mm_add_ps(_mm_mul_ps(w41, apz41), v41); \ | |||
| 260 | v42 = _mm_add_ps(_mm_mul_ps(w42, apz42), v42); | |||
| 261 | main_for(block); | |||
| 262 | #undef block | |||
| 263 | } else if (ch_per_partition % 4 == 2) { // unroll the last for-loops | |||
| 264 | #define block \ | |||
| 265 | __m128 apz40 = _mm_load1_ps(apz + x * ch + c); \ | |||
| 266 | __m128 apz41 = _mm_load1_ps(apz + x * ch + c + 1); \ | |||
| 267 | __m128 w40 = _mm_loadu_ps(w + (x * ch_per_partition + c) * 4); \ | |||
| 268 | __m128 w41 = _mm_loadu_ps(w + (x * ch_per_partition + c + 1) * 4); \ | |||
| 269 | v40 = _mm_add_ps(_mm_mul_ps(w40, apz40), v40); \ | |||
| 270 | v41 = _mm_add_ps(_mm_mul_ps(w41, apz41), v41); | |||
| 271 | main_for(block); | |||
| 272 | #undef block | |||
| 273 | } else { | |||
| 274 | #define block \ | |||
| 275 | __m128 apz4 = _mm_load1_ps(apz + x * ch + c); \ | |||
| 276 | __m128 w4 = _mm_loadu_ps(w + (x * ch_per_partition + c) * 4); \ | |||
| 277 | v40 = _mm_add_ps(_mm_mul_ps(w4, apz4), v40); | |||
| 278 | main_for(block); | |||
| 279 | #undef block | |||
| 280 | } | |||
| 281 | #undef main_for | |||
| 282 | } | |||
| 283 | #elif defined(HAVE_NEON) | |||
| 284 | static inline void _ccv_convnet_convolutional_forward_propagate_neon(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* db, int rows, int cols, int ch, int count, int strides, int border, int kernel_rows, int kernel_cols, int ch_per_partition, int count_per_partition) | |||
| 285 | { | |||
| 286 | assert(SIMD(layer))((void) sizeof ((((float*)((layer)->reserved))) ? 1 : 0), __extension__ ({ if (((float*)((layer)->reserved))) ; else __assert_fail ("SIMD(layer)", "ccv_convnet.c", 286, __extension__ __PRETTY_FUNCTION__ ); })); | |||
| 287 | #define main_for(block) \ | |||
| 288 | parallel_for(k, (count >> 2)){ int k; for ((k) = 0; (k) < ((count >> 2)); (k)++) { { \ | |||
| 289 | int i, j, x, y, c; \ | |||
| 290 | int p = k * 4 / count_per_partition; \ | |||
| 291 | float* ap = a->data.f32 + p * ch_per_partition; \ | |||
| 292 | float* bp = db->data.f32 + k * 4; \ | |||
| 293 | float* layer_w = SIMD(layer)((float*)((layer)->reserved)) + k * 4 * kernel_rows * kernel_cols * ch_per_partition; \ | |||
| 294 | float bias[4] __attribute__ ((__aligned__(16))); \ | |||
| 295 | memcpy(bias, layer->bias + k * 4, sizeof(float) * 4); \ | |||
| 296 | float32x4_t z4 = vmovq_n_f32(0); \ | |||
| 297 | for (i = 0; i < db->rows; i++) \ | |||
| 298 | { \ | |||
| 299 | int comy = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); \ | |||
| 300 | int maxy = kernel_rows - comy - (i * strides + kernel_rows - ccv_min(a->rows + border, i * strides + kernel_rows)({ typeof (a->rows + border) _a = (a->rows + border); typeof (i * strides + kernel_rows) _b = (i * strides + kernel_rows) ; (_a < _b) ? _a : _b; })); \ | |||
| 301 | comy *= ch_per_partition * kernel_cols; \ | |||
| 302 | for (j = 0; j < db->cols; j++) \ | |||
| 303 | { \ | |||
| 304 | float32x4_t v40 = vld1q_f32(bias); \ | |||
| 305 | float32x4_t v41 = vmovq_n_f32(0); \ | |||
| 306 | int comx = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); \ | |||
| 307 | int maxx = kernel_cols - comx - (j * strides + kernel_cols - ccv_min(a->cols + border, j * strides + kernel_cols)({ typeof (a->cols + border) _a = (a->cols + border); typeof (j * strides + kernel_cols) _b = (j * strides + kernel_cols) ; (_a < _b) ? _a : _b; })); \ | |||
| 308 | float* w = layer_w + (comx * ch_per_partition + comy) * 4; \ | |||
| 309 | float* apz = ap + ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) * ch; \ | |||
| 310 | /* when we have border, we simply do zero padding */ \ | |||
| 311 | for (y = 0; y < maxy; y++) \ | |||
| 312 | { \ | |||
| 313 | for (x = 0; x < maxx; x++) \ | |||
| 314 | { \ | |||
| 315 | c = 0; \ | |||
| 316 | for (; c < ch_per_partition - 1; c += 2) \ | |||
| 317 | { \ | |||
| 318 | float32x2_t apz4 = vld1_f32(apz + x * ch + c); \ | |||
| 319 | float32x4_t apz40 = vdupq_lane_f32(apz4, 0); \ | |||
| 320 | float32x4_t apz41 = vdupq_lane_f32(apz4, 1); \ | |||
| 321 | float32x4_t w40 = vld1q_f32(w + (x * ch_per_partition + c) * 4); \ | |||
| 322 | float32x4_t w41 = vld1q_f32(w + (x * ch_per_partition + c + 1) * 4); \ | |||
| 323 | v40 = vmlaq_f32(v40, w40, apz40); \ | |||
| 324 | v41 = vmlaq_f32(v41, w41, apz41); \ | |||
| 325 | } \ | |||
| 326 | block /* insert executions for tail partition */ \ | |||
| 327 | } \ | |||
| 328 | w += kernel_cols * ch_per_partition * 4; \ | |||
| 329 | apz += a->cols * ch; \ | |||
| 330 | } \ | |||
| 331 | float32x4_t v4 = vmaxq_f32(z4, vaddq_f32(v40, v41)); \ | |||
| 332 | vst1q_f32(bp + j * count, v4); /* ReLU */ \ | |||
| 333 | } \ | |||
| 334 | bp += db->cols * count; \ | |||
| 335 | ap += a->cols * ch * (ccv_max((i + 1) * strides - border, 0)({ typeof ((i + 1) * strides - border) _a = ((i + 1) * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; })); \ | |||
| 336 | } \ | |||
| 337 | } parallel_endfor} } | |||
| 338 | if (ch_per_partition % 2 == 0) | |||
| 339 | { | |||
| 340 | main_for(); | |||
| 341 | } else { // unroll the last for-loops | |||
| 342 | #define block \ | |||
| 343 | float32x4_t apz4 = vmovq_n_f32(apz[x * ch + c]); \ | |||
| 344 | float32x4_t w4 = vld1q_f32(w + (x * ch_per_partition + c) * 4); \ | |||
| 345 | v40 = vmlaq_f32(v40, w4, apz4); | |||
| 346 | main_for(block); | |||
| 347 | #undef block | |||
| 348 | } | |||
| 349 | #undef main_for | |||
| 350 | } | |||
| 351 | #else | |||
| 352 | static inline void _ccv_convnet_convolutional_forward_propagate_fallback(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* db, int rows, int cols, int ch, int count, int strides, int border, int kernel_rows, int kernel_cols, int ch_per_partition, int count_per_partition) | |||
| 353 | { | |||
| 354 | parallel_for(k, count){ int k; for ((k) = 0; (k) < (count); (k)++) { { | |||
| 355 | int i, j, x, y, c; | |||
| 356 | int p = k / count_per_partition; | |||
| 357 | float* ap = a->data.f32 + p * ch_per_partition; | |||
| 358 | float* bp = db->data.f32 + k; | |||
| 359 | float* layer_w = layer->w + k * kernel_rows * kernel_cols * ch_per_partition; | |||
| 360 | float bias = layer->bias[k]; | |||
| 361 | for (i = 0; i < db->rows; i++) | |||
| 362 | { | |||
| 363 | int comy = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 364 | int maxy = kernel_rows - comy - (i * strides + kernel_rows - ccv_min(a->rows + border, i * strides + kernel_rows)({ typeof (a->rows + border) _a = (a->rows + border); typeof (i * strides + kernel_rows) _b = (i * strides + kernel_rows) ; (_a < _b) ? _a : _b; })); | |||
| 365 | comy *= ch_per_partition * kernel_cols; | |||
| 366 | for (j = 0; j < db->cols; j++) | |||
| 367 | { | |||
| 368 | float v = bias; | |||
| 369 | int comx = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 370 | int maxx = kernel_cols - comx - (j * strides + kernel_cols - ccv_min(a->cols + border, j * strides + kernel_cols)({ typeof (a->cols + border) _a = (a->cols + border); typeof (j * strides + kernel_cols) _b = (j * strides + kernel_cols) ; (_a < _b) ? _a : _b; })); | |||
| 371 | float* w = layer_w + comx * ch_per_partition + comy; | |||
| 372 | float* apz = ap + ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) * ch; | |||
| 373 | // when we have border, we simply do zero padding | |||
| 374 | for (y = 0; y < maxy; y++) | |||
| 375 | { | |||
| 376 | for (x = 0; x < maxx; x++) | |||
| 377 | for (c = 0; c < ch_per_partition; c++) | |||
| 378 | v += w[x * ch_per_partition + c] * apz[x * ch + c]; | |||
| 379 | w += kernel_cols * ch_per_partition; | |||
| 380 | apz += a->cols * ch; | |||
| 381 | } | |||
| 382 | bp[j * count] = ccv_max(0, v)({ typeof (0) _a = (0); typeof (v) _b = (v); (_a > _b) ? _a : _b; }); // ReLU | |||
| 383 | } | |||
| 384 | bp += db->cols * count; | |||
| 385 | ap += a->cols * ch * (ccv_max((i + 1) * strides - border, 0)({ typeof ((i + 1) * strides - border) _a = ((i + 1) * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; })); | |||
| 386 | } | |||
| 387 | } parallel_endfor} } | |||
| 388 | } | |||
| 389 | #endif | |||
| 390 | ||||
| 391 | static void _ccv_convnet_convolutional_forward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b) | |||
| 392 | { | |||
| 393 | int rows, cols, partition; | |||
| 394 | ccv_convnet_make_output(layer, a->rows, a->cols, &rows, &cols, &partition); | |||
| 395 | int ch = layer->net.convolutional.channels; | |||
| 396 | int count = layer->net.convolutional.count; | |||
| 397 | int strides = layer->net.convolutional.strides; | |||
| 398 | int border = layer->net.convolutional.border; | |||
| 399 | int kernel_rows = layer->net.convolutional.rows; | |||
| 400 | int kernel_cols = layer->net.convolutional.cols; | |||
| 401 | int type = CCV_32F | count; | |||
| 402 | assert(CCV_GET_CHANNEL(a->type) == ch)((void) sizeof ((((a->type) & 0xFFF) == ch) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFFF) == ch) ; else __assert_fail ("CCV_GET_CHANNEL(a->type) == ch", "ccv_convnet.c", 402, __extension__ __PRETTY_FUNCTION__); })); | |||
| 403 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 403, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 404 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, type, type, 0); | |||
| 405 | int ch_per_partition = ch / partition; | |||
| 406 | int count_per_partition = count / partition; | |||
| 407 | assert(count_per_partition % 4 == 0)((void) sizeof ((count_per_partition % 4 == 0) ? 1 : 0), __extension__ ({ if (count_per_partition % 4 == 0) ; else __assert_fail ("count_per_partition % 4 == 0" , "ccv_convnet.c", 407, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 408 | #if defined(HAVE_SSE21) || defined(HAVE_NEON) | |||
| 409 | _ccv_convnet_layer_simd_alloc_reserved(layer); | |||
| 410 | #endif | |||
| 411 | #if defined(HAVE_SSE21) | |||
| 412 | _ccv_convnet_convolutional_forward_propagate_sse2(layer, a, db, rows, cols, ch, count, strides, border, kernel_rows, kernel_cols, ch_per_partition, count_per_partition); | |||
| 413 | #elif defined(HAVE_NEON) | |||
| 414 | _ccv_convnet_convolutional_forward_propagate_neon(layer, a, db, rows, cols, ch, count, strides, border, kernel_rows, kernel_cols, ch_per_partition, count_per_partition); | |||
| 415 | #else | |||
| 416 | _ccv_convnet_convolutional_forward_propagate_fallback(layer, a, db, rows, cols, ch, count, strides, border, kernel_rows, kernel_cols, ch_per_partition, count_per_partition); | |||
| 417 | #endif | |||
| 418 | } | |||
| 419 | ||||
| 420 | static void _ccv_convnet_full_connect_forward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b) | |||
| 421 | { | |||
| 422 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 422, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 423 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, layer->net.full_connect.count, 1, CCV_32F | CCV_C1, CCV_32F | CCV_C1, 0); | |||
| 424 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 425 | int rows = a->rows, cols = a->cols; | |||
| 426 | // reshape a for gemm | |||
| 427 | assert(a->step == a->cols * CCV_GET_DATA_TYPE_SIZE(a->type) * ch)((void) sizeof ((a->step == a->cols * _ccv_get_data_type_size [((a->type) & 0xFF000) >> 12] * ch) ? 1 : 0), __extension__ ({ if (a->step == a->cols * _ccv_get_data_type_size[(( a->type) & 0xFF000) >> 12] * ch) ; else __assert_fail ("a->step == a->cols * CCV_GET_DATA_TYPE_SIZE(a->type) * ch" , "ccv_convnet.c", 427, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 428 | a->rows = rows * cols * ch, a->cols = 1, a->type = (a->type - ch) | CCV_C1; | |||
| 429 | assert(a->rows * db->rows == layer->wnum)((void) sizeof ((a->rows * db->rows == layer->wnum) ? 1 : 0), __extension__ ({ if (a->rows * db->rows == layer ->wnum) ; else __assert_fail ("a->rows * db->rows == layer->wnum" , "ccv_convnet.c", 429, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 430 | a->step = a->cols * CCV_GET_DATA_TYPE_SIZE(a->type)_ccv_get_data_type_size[((a->type) & 0xFF000) >> 12]; | |||
| 431 | int i; | |||
| 432 | float* bptr = db->data.f32; | |||
| 433 | for (i = 0; i < db->rows; i++) | |||
| 434 | bptr[i] = layer->bias[i]; | |||
| 435 | ccv_dense_matrix_t dw = ccv_dense_matrix(db->rows, a->rows, CCV_32F | CCV_C1, layer->w, 0); | |||
| 436 | ccv_gemm(&dw, a, 1, db, 1, 0, (ccv_matrix_t**)&db, 0); // supply db as matrix C is allowed | |||
| 437 | if (layer->net.full_connect.relu) | |||
| 438 | for (i = 0; i < db->rows; i++) | |||
| 439 | bptr[i] = ccv_max(0, bptr[i])({ typeof (0) _a = (0); typeof (bptr[i]) _b = (bptr[i]); (_a > _b) ? _a : _b; }); // relu | |||
| 440 | a->rows = rows, a->cols = cols, a->type = (a->type - CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF)) | ch; | |||
| 441 | a->step = a->cols * CCV_GET_DATA_TYPE_SIZE(a->type)_ccv_get_data_type_size[((a->type) & 0xFF000) >> 12] * CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 442 | } | |||
| 443 | ||||
| 444 | static void _ccv_convnet_rnorm_forward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, ccv_dense_matrix_t** denoms) | |||
| 445 | { | |||
| 446 | int rows, cols, partition; | |||
| 447 | ccv_convnet_make_output(layer, a->rows, a->cols, &rows, &cols, &partition); | |||
| 448 | int size = layer->net.rnorm.size; | |||
| 449 | float kappa = layer->net.rnorm.kappa; | |||
| 450 | float alpha = layer->net.rnorm.alpha; | |||
| 451 | float beta = layer->net.rnorm.beta; | |||
| 452 | int way = size / 2; | |||
| 453 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 453, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 454 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 455 | int type = CCV_32F | ch; | |||
| 456 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, type, type, 0); | |||
| 457 | int i, j, k, x, p; | |||
| 458 | float* ap = a->data.f32; | |||
| 459 | float* bp = db->data.f32; | |||
| 460 | int ch_per_partition = ch / partition; | |||
| 461 | if (denoms) | |||
| 462 | { | |||
| 463 | ccv_dense_matrix_t* ddenoms = *denoms = ccv_dense_matrix_renew(*denoms, rows, cols, type, type, 0); | |||
| 464 | float* dp = ddenoms->data.f32; | |||
| 465 | for (i = 0; i < db->rows; i++) | |||
| 466 | { | |||
| 467 | for (j = 0; j < db->cols; j++) | |||
| 468 | for (p = 0; p < partition; p++) | |||
| 469 | for (k = 0; k < ch_per_partition; k++) | |||
| 470 | { | |||
| 471 | float v = ap[j * ch + p * ch_per_partition + k]; | |||
| 472 | float denom = 0; | |||
| 473 | for (x = ccv_max(k - way, 0)({ typeof (k - way) _a = (k - way); typeof (0) _b = (0); (_a > _b) ? _a : _b; }); x <= ccv_min(k + way, ch_per_partition - 1)({ typeof (k + way) _a = (k + way); typeof (ch_per_partition - 1) _b = (ch_per_partition - 1); (_a < _b) ? _a : _b; }); x++) | |||
| 474 | denom += ap[j * ch + p * ch_per_partition + x] * ap[j * ch + p * ch_per_partition + x]; | |||
| 475 | denom = kappa + alpha * denom; | |||
| 476 | dp[j * ch + p * ch_per_partition + k] = denom; | |||
| 477 | bp[j * ch + p * ch_per_partition + k] = v * powf(denom, -beta); | |||
| 478 | } | |||
| 479 | ap += a->cols * ch; | |||
| 480 | dp += ddenoms->cols * ch; | |||
| 481 | bp += db->cols * ch; | |||
| 482 | } | |||
| 483 | } else { | |||
| 484 | for (i = 0; i < db->rows; i++) | |||
| 485 | { | |||
| 486 | for (j = 0; j < db->cols; j++) | |||
| 487 | for (p = 0; p < partition; p++) | |||
| 488 | for (k = 0; k < ch_per_partition; k++) | |||
| 489 | { | |||
| 490 | float v = ap[j * ch + p * ch_per_partition + k]; | |||
| 491 | float denom = 0; | |||
| 492 | for (x = ccv_max(k - way, 0)({ typeof (k - way) _a = (k - way); typeof (0) _b = (0); (_a > _b) ? _a : _b; }); x <= ccv_min(k + way, ch_per_partition - 1)({ typeof (k + way) _a = (k + way); typeof (ch_per_partition - 1) _b = (ch_per_partition - 1); (_a < _b) ? _a : _b; }); x++) | |||
| 493 | denom += ap[j * ch + p * ch_per_partition + x] * ap[j * ch + p * ch_per_partition + x]; | |||
| 494 | denom = kappa + alpha * denom; | |||
| 495 | bp[j * ch + p * ch_per_partition + k] = v * powf(denom, -beta); | |||
| 496 | } | |||
| 497 | ap += a->cols * ch; | |||
| 498 | bp += db->cols * ch; | |||
| 499 | } | |||
| 500 | } | |||
| 501 | } | |||
| 502 | ||||
| 503 | static void _ccv_convnet_max_pool_forward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b) | |||
| 504 | { | |||
| 505 | int rows, cols, partition; | |||
| 506 | ccv_convnet_make_output(layer, a->rows, a->cols, &rows, &cols, &partition); | |||
| 507 | int size = layer->net.pool.size; | |||
| 508 | int strides = layer->net.pool.strides; | |||
| 509 | int border = layer->net.pool.border; | |||
| 510 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 510, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 511 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 512 | int type = CCV_32F | ch; | |||
| 513 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, type, type, 0); | |||
| 514 | int i, j, k, x, y; | |||
| 515 | float* ap = a->data.f32; | |||
| 516 | float* bp = db->data.f32; | |||
| 517 | for (i = 0; i < db->rows; i++) | |||
| 518 | { | |||
| 519 | const int start_y = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 520 | const int end_y = size + ccv_min(i * strides + size - border, a->rows)({ typeof (i * strides + size - border) _a = (i * strides + size - border); typeof (a->rows) _b = (a->rows); (_a < _b ) ? _a : _b; }) - (i * strides + size - border); | |||
| 521 | for (j = 0; j < db->cols; j++) | |||
| 522 | { | |||
| 523 | const int start_x = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 524 | const int end_x = size + ccv_min(j * strides + size - border, a->cols)({ typeof (j * strides + size - border) _a = (j * strides + size - border); typeof (a->cols) _b = (a->cols); (_a < _b ) ? _a : _b; }) - (j * strides + size - border); | |||
| 525 | for (k = 0; k < ch; k++) | |||
| 526 | { | |||
| 527 | float v = 0; | |||
| 528 | for (y = start_y; y < end_y; y++) | |||
| 529 | for (x = start_x; x < end_x; x++) | |||
| 530 | if (x == start_x && y == start_y) | |||
| 531 | v = ap[(j * strides - border + x + (y - border) * a->cols) * ch + k]; | |||
| 532 | else if (ap[(j * strides - border + x + (y - border) * a->cols) * ch + k] > v) | |||
| 533 | v = ap[(j * strides - border + x + (y - border) * a->cols) * ch + k]; | |||
| 534 | bp[j * ch + k] = v; | |||
| 535 | } | |||
| 536 | } | |||
| 537 | ap += a->cols * ch * strides; | |||
| 538 | bp += db->cols * ch; | |||
| 539 | } | |||
| 540 | } | |||
| 541 | ||||
| 542 | static void _ccv_convnet_average_pool_forward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b) | |||
| 543 | { | |||
| 544 | int rows, cols, partition; | |||
| 545 | ccv_convnet_make_output(layer, a->rows, a->cols, &rows, &cols, &partition); | |||
| 546 | int size = layer->net.pool.size; | |||
| 547 | int strides = layer->net.pool.strides; | |||
| 548 | int border = layer->net.pool.border; | |||
| 549 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 549, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 550 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 551 | int type = CCV_32F | ch; | |||
| 552 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, type, type, 0); | |||
| 553 | int i, j, k, x, y; | |||
| 554 | float* ap = a->data.f32; | |||
| 555 | float* bp = db->data.f32; | |||
| 556 | for (i = 0; i < db->rows; i++) | |||
| 557 | { | |||
| 558 | const int start_y = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 559 | const int end_y = size + ccv_min(i * strides + size - border, a->rows)({ typeof (i * strides + size - border) _a = (i * strides + size - border); typeof (a->rows) _b = (a->rows); (_a < _b ) ? _a : _b; }) - (i * strides + size - border); | |||
| 560 | for (j = 0; j < db->cols; j++) | |||
| 561 | { | |||
| 562 | const int start_x = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 563 | const int end_x = size + ccv_min(j * strides + size - border, a->cols)({ typeof (j * strides + size - border) _a = (j * strides + size - border); typeof (a->cols) _b = (a->cols); (_a < _b ) ? _a : _b; }) - (j * strides + size - border); | |||
| 564 | for (k = 0; k < ch; k++) | |||
| 565 | { | |||
| 566 | float v = 0; | |||
| 567 | for (y = start_y; y < end_y; y++) | |||
| 568 | for (x = start_x; x < end_x; x++) | |||
| 569 | v += ap[(j * strides - border + x + (y - border) * a->cols) * ch + k]; | |||
| 570 | bp[j * ch + k] = v / ((end_x - start_x) * (end_y - start_y)); | |||
| 571 | } | |||
| 572 | } | |||
| 573 | ap += a->cols * ch * strides; | |||
| 574 | bp += db->cols * ch; | |||
| 575 | } | |||
| 576 | } | |||
| 577 | ||||
| 578 | static void _ccv_convnet_layer_forward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, ccv_dense_matrix_t** denoms) | |||
| 579 | { | |||
| 580 | switch(layer->type) | |||
| 581 | { | |||
| 582 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 583 | _ccv_convnet_convolutional_forward_propagate(layer, a, b); | |||
| 584 | break; | |||
| 585 | case CCV_CONVNET_FULL_CONNECT: | |||
| 586 | _ccv_convnet_full_connect_forward_propagate(layer, a, b); | |||
| 587 | break; | |||
| 588 | case CCV_CONVNET_LOCAL_RESPONSE_NORM: | |||
| 589 | _ccv_convnet_rnorm_forward_propagate(layer, a, b, denoms); | |||
| 590 | break; | |||
| 591 | case CCV_CONVNET_MAX_POOL: | |||
| 592 | _ccv_convnet_max_pool_forward_propagate(layer, a, b); | |||
| 593 | break; | |||
| 594 | case CCV_CONVNET_AVERAGE_POOL: | |||
| 595 | _ccv_convnet_average_pool_forward_propagate(layer, a, b); | |||
| 596 | break; | |||
| 597 | } | |||
| 598 | } | |||
| 599 | ||||
| 600 | static void _ccv_convnet_full_connect_forward_propagate_parallel(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b) | |||
| 601 | { | |||
| 602 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 602, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 603 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, layer->net.full_connect.count, CCV_32F | CCV_C1, CCV_32F | CCV_C1, 0); | |||
| 604 | // reshape a for gemm | |||
| 605 | int i, j; | |||
| 606 | float* bptr = db->data.f32; | |||
| 607 | for (i = 0; i < db->rows; i++) | |||
| 608 | { | |||
| 609 | for (j = 0; j < db->cols; j++) | |||
| 610 | bptr[j] = layer->bias[j]; | |||
| 611 | bptr += db->cols; | |||
| 612 | } | |||
| 613 | ccv_dense_matrix_t dw = ccv_dense_matrix(db->cols, a->cols, CCV_32F | CCV_C1, layer->w, 0); | |||
| 614 | ccv_gemm(a, &dw, 1, db, 1, CCV_B_TRANSPOSE, (ccv_matrix_t**)&db, 0); // supply db as matrix C is allowed | |||
| 615 | bptr = db->data.f32; | |||
| 616 | if (layer->net.full_connect.relu) | |||
| 617 | for (i = 0; i < db->rows; i++) | |||
| 618 | { | |||
| 619 | for (j = 0; j < db->cols; j++) | |||
| 620 | bptr[j] = ccv_max(0, bptr[j])({ typeof (0) _a = (0); typeof (bptr[j]) _b = (bptr[j]); (_a > _b) ? _a : _b; }); // relu | |||
| 621 | bptr += db->cols; | |||
| 622 | } | |||
| 623 | } | |||
| 624 | ||||
| 625 | static void _ccv_convnet_compute_softmax_parallel(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type) | |||
| 626 | { | |||
| 627 | assert(CCV_GET_CHANNEL(a->type) == CCV_C1)((void) sizeof ((((a->type) & 0xFFF) == CCV_C1) ? 1 : 0 ), __extension__ ({ if (((a->type) & 0xFFF) == CCV_C1) ; else __assert_fail ("CCV_GET_CHANNEL(a->type) == CCV_C1" , "ccv_convnet.c", 627, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 628 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 628, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 629 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, 1, a->cols, CCV_32F | CCV_C1, CCV_32F | CCV_C1, 0); | |||
| 630 | ccv_zero(db); | |||
| 631 | int i, j; | |||
| 632 | float* aptr = a->data.f32; | |||
| 633 | float* bptr = db->data.f32; | |||
| 634 | float* cptr = (float*)ccmallocmalloc(sizeof(float) * a->cols); | |||
| 635 | for (i = 0; i < a->rows; i++) | |||
| 636 | { | |||
| 637 | double max = aptr[0]; | |||
| 638 | for (j = 1; j < a->cols; j++) | |||
| 639 | if (aptr[j] > max) | |||
| 640 | max = aptr[j]; | |||
| 641 | double tt = 0; | |||
| 642 | for (j = 0; j < a->cols; j++) | |||
| 643 | tt += (cptr[j] = expf(aptr[j] - max)); | |||
| 644 | tt = 1.0 / tt; | |||
| 645 | for (j = 0; j < a->cols; j++) | |||
| 646 | bptr[j] += cptr[j] * tt; | |||
| 647 | aptr += a->cols; | |||
| 648 | } | |||
| 649 | ccfreefree(cptr); | |||
| 650 | } | |||
| 651 | ||||
| 652 | #ifndef CASE_TESTS | |||
| 653 | ||||
| 654 | void ccv_convnet_encode(ccv_convnet_t* convnet, ccv_dense_matrix_t** a, ccv_dense_matrix_t** b, int batch) | |||
| 655 | { | |||
| 656 | #ifdef HAVE_CUDA1 | |||
| 657 | if (convnet->use_cwc_accel) | |||
| 658 | cwc_convnet_encode(convnet, a, b, batch); | |||
| 659 | else { | |||
| 660 | #endif | |||
| 661 | assert(batch == 1)((void) sizeof ((batch == 1) ? 1 : 0), __extension__ ({ if (batch == 1) ; else __assert_fail ("batch == 1", "ccv_convnet.c", 661 , __extension__ __PRETTY_FUNCTION__); })); | |||
| 662 | assert(CCV_GET_CHANNEL((*a)->type) == convnet->channels)((void) sizeof (((((*a)->type) & 0xFFF) == convnet-> channels) ? 1 : 0), __extension__ ({ if ((((*a)->type) & 0xFFF) == convnet->channels) ; else __assert_fail ("CCV_GET_CHANNEL((*a)->type) == convnet->channels" , "ccv_convnet.c", 662, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 663 | assert((*a)->rows == convnet->rows)((void) sizeof (((*a)->rows == convnet->rows) ? 1 : 0), __extension__ ({ if ((*a)->rows == convnet->rows) ; else __assert_fail ("(*a)->rows == convnet->rows", "ccv_convnet.c" , 663, __extension__ __PRETTY_FUNCTION__); })); | |||
| 664 | assert((*a)->cols == convnet->cols)((void) sizeof (((*a)->cols == convnet->cols) ? 1 : 0), __extension__ ({ if ((*a)->cols == convnet->cols) ; else __assert_fail ("(*a)->cols == convnet->cols", "ccv_convnet.c" , 664, __extension__ __PRETTY_FUNCTION__); })); | |||
| 665 | int i; | |||
| 666 | // save the last layer of neuron cache in case that we encode to a different matrix | |||
| 667 | ccv_dense_matrix_t* out_neuron = convnet->acts[convnet->count - 1]; | |||
| 668 | convnet->acts[convnet->count - 1] = *b; | |||
| 669 | _ccv_convnet_layer_forward_propagate(convnet->layers, *a, convnet->acts, convnet->denoms); | |||
| 670 | for (i = 1; i < convnet->count; i++) | |||
| 671 | _ccv_convnet_layer_forward_propagate(convnet->layers + i, convnet->acts[i - 1], convnet->acts + i, convnet->denoms + i); | |||
| 672 | if (convnet->acts + convnet->count - 1 != b) | |||
| 673 | { | |||
| 674 | *b = convnet->acts[convnet->count - 1]; | |||
| 675 | // restore the last layer of neuron cache | |||
| 676 | convnet->acts[convnet->count - 1] = out_neuron; | |||
| 677 | } | |||
| 678 | #ifdef HAVE_CUDA1 | |||
| 679 | } | |||
| 680 | #endif | |||
| 681 | } | |||
| 682 | ||||
| 683 | // find the layer for scanning (it is the last convolutional layer) | |||
| 684 | static int _ccv_convnet_find_scan(ccv_convnet_t* convnet) | |||
| 685 | { | |||
| 686 | int i; | |||
| 687 | ccv_convnet_layer_t* layers = convnet->layers; | |||
| 688 | for (i = convnet->count - 1; i >= 0; i--) | |||
| 689 | if (layers[i].type == CCV_CONVNET_CONVOLUTIONAL) | |||
| 690 | return i; | |||
| 691 | return -1; | |||
| 692 | } | |||
| 693 | ||||
| 694 | static int _ccv_convnet_derive_scale(ccv_convnet_t* convnet, int scan) | |||
| 695 | { | |||
| 696 | int i, scale = 1; | |||
| 697 | for (i = scan; i >= 0; i--) | |||
| 698 | { | |||
| 699 | ccv_convnet_layer_t* layer = convnet->layers + i; | |||
| 700 | switch (layer->type) | |||
| 701 | { | |||
| 702 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 703 | scale *= layer->net.convolutional.strides; | |||
| 704 | break; | |||
| 705 | case CCV_CONVNET_MAX_POOL: | |||
| 706 | case CCV_CONVNET_AVERAGE_POOL: | |||
| 707 | scale *= layer->net.pool.strides; | |||
| 708 | break; | |||
| 709 | } | |||
| 710 | } | |||
| 711 | return scale; | |||
| 712 | } | |||
| 713 | ||||
| 714 | static int _ccv_convnet_find_full_connect(ccv_convnet_t* convnet) | |||
| 715 | { | |||
| 716 | int i; | |||
| 717 | for (i = 0; i < convnet->count; i++) | |||
| 718 | if (convnet->layers[i].type == CCV_CONVNET_FULL_CONNECT) | |||
| 719 | return i; | |||
| 720 | return -1; | |||
| 721 | } | |||
| 722 | ||||
| 723 | void ccv_convnet_classify(ccv_convnet_t* convnet, ccv_dense_matrix_t** a, int symmetric, ccv_array_t** ranks, int tops, int batch) | |||
| 724 | { | |||
| 725 | #ifdef HAVE_CUDA1 | |||
| 726 | if (convnet->use_cwc_accel) | |||
| 727 | cwc_convnet_classify(convnet, a, symmetric, ranks, tops, batch); | |||
| 728 | else { | |||
| 729 | #endif | |||
| 730 | int i, j, k, t; | |||
| 731 | ccv_dense_matrix_t** b = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * (convnet->count + 1))__builtin_alloca (sizeof(ccv_dense_matrix_t*) * (convnet-> count + 1)); | |||
| 732 | int scan = _ccv_convnet_find_scan(convnet); | |||
| 733 | int scale = _ccv_convnet_derive_scale(convnet, scan); | |||
| 734 | int full_connect = _ccv_convnet_find_full_connect(convnet); | |||
| 735 | assert(scan >= 0 && scan < convnet->count)((void) sizeof ((scan >= 0 && scan < convnet-> count) ? 1 : 0), __extension__ ({ if (scan >= 0 && scan < convnet->count) ; else __assert_fail ("scan >= 0 && scan < convnet->count" , "ccv_convnet.c", 735, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 736 | assert(full_connect >= 0 && full_connect < convnet->count)((void) sizeof ((full_connect >= 0 && full_connect < convnet->count) ? 1 : 0), __extension__ ({ if (full_connect >= 0 && full_connect < convnet->count) ; else __assert_fail ("full_connect >= 0 && full_connect < convnet->count" , "ccv_convnet.c", 736, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 737 | memset(b, 0, sizeof(ccv_dense_matrix_t*) * (convnet->count + 1)); | |||
| 738 | for (i = 0; i < batch; i++) | |||
| 739 | { | |||
| 740 | assert(CCV_GET_CHANNEL(a[i]->type) == convnet->channels)((void) sizeof ((((a[i]->type) & 0xFFF) == convnet-> channels) ? 1 : 0), __extension__ ({ if (((a[i]->type) & 0xFFF) == convnet->channels) ; else __assert_fail ("CCV_GET_CHANNEL(a[i]->type) == convnet->channels" , "ccv_convnet.c", 740, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 741 | assert(a[i]->rows == convnet->input.height || a[i]->cols == convnet->input.width)((void) sizeof ((a[i]->rows == convnet->input.height || a[i]->cols == convnet->input.width) ? 1 : 0), __extension__ ({ if (a[i]->rows == convnet->input.height || a[i]-> cols == convnet->input.width) ; else __assert_fail ("a[i]->rows == convnet->input.height || a[i]->cols == convnet->input.width" , "ccv_convnet.c", 741, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 742 | assert(a[i]->rows >= convnet->input.height && a[i]->cols >= convnet->input.width)((void) sizeof ((a[i]->rows >= convnet->input.height && a[i]->cols >= convnet->input.width) ? 1 : 0), __extension__ ({ if (a[i]->rows >= convnet->input .height && a[i]->cols >= convnet->input.width ) ; else __assert_fail ("a[i]->rows >= convnet->input.height && a[i]->cols >= convnet->input.width" , "ccv_convnet.c", 742, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 743 | // find optimal rows and cols to slice to | |||
| 744 | int rows = convnet->rows + ((a[i]->rows - convnet->rows) / scale) * scale; | |||
| 745 | int cols = convnet->cols + ((a[i]->cols - convnet->cols) / scale) * scale; | |||
| 746 | assert(rows == convnet->input.height || cols == convnet->input.width)((void) sizeof ((rows == convnet->input.height || cols == convnet ->input.width) ? 1 : 0), __extension__ ({ if (rows == convnet ->input.height || cols == convnet->input.width) ; else __assert_fail ("rows == convnet->input.height || cols == convnet->input.width" , "ccv_convnet.c", 746, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 747 | assert(rows <= a[i]->rows && cols <= a[i]->cols)((void) sizeof ((rows <= a[i]->rows && cols <= a[i]->cols) ? 1 : 0), __extension__ ({ if (rows <= a[i ]->rows && cols <= a[i]->cols) ; else __assert_fail ("rows <= a[i]->rows && cols <= a[i]->cols" , "ccv_convnet.c", 747, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 748 | ccv_dense_matrix_t* slice = 0; | |||
| 749 | ccv_slice(a[i], (ccv_matrix_t**)&slice, CCV_32F, (a[i]->rows - rows) / 2, (a[i]->cols - cols) / 2, rows, cols); | |||
| 750 | ccv_dense_matrix_t* mean_activity = 0; | |||
| 751 | // scale mean activity up to be substractable (from this one, the CPU implementation is an approximation of GPU implementation) | |||
| 752 | ccv_resample(convnet->mean_activity, &mean_activity, 0, (double)rows / (double)convnet->mean_activity->rows, (double)cols / (double)convnet->mean_activity->cols, CCV_INTER_CUBIC); | |||
| 753 | ccv_subtract(slice, mean_activity, (ccv_matrix_t**)b, CCV_32F); | |||
| 754 | ccv_matrix_free(mean_activity); | |||
| 755 | ccv_matrix_free(slice); | |||
| 756 | // doing the first few layers until the first scan layer | |||
| 757 | int out_rows, out_cols, out_partition; | |||
| 758 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(5 * (!!symmetric + 1), convnet->layers[full_connect].input.node.count, CCV_32F | CCV_C1, 0, 0); | |||
| 759 | for (t = 0; t <= !!symmetric; t++) | |||
| 760 | { | |||
| 761 | rows = b[0]->rows, cols = b[0]->cols; | |||
| 762 | for (j = 0; j < scan + 1; j++) | |||
| 763 | { | |||
| 764 | ccv_convnet_layer_t* layer = convnet->layers + j; | |||
| 765 | ccv_convnet_make_output(layer, rows, cols, &out_rows, &out_cols, &out_partition); | |||
| 766 | _ccv_convnet_layer_forward_propagate(layer, b[j], b + j + 1, 0); | |||
| 767 | assert(b[j + 1]->rows == out_rows && b[j + 1]->cols == out_cols)((void) sizeof ((b[j + 1]->rows == out_rows && b[j + 1]->cols == out_cols) ? 1 : 0), __extension__ ({ if (b[ j + 1]->rows == out_rows && b[j + 1]->cols == out_cols ) ; else __assert_fail ("b[j + 1]->rows == out_rows && b[j + 1]->cols == out_cols" , "ccv_convnet.c", 767, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 768 | if (j > 0) | |||
| 769 | ccv_matrix_free(b[j]); | |||
| 770 | rows = out_rows, cols = out_cols; | |||
| 771 | } | |||
| 772 | int offsets[5][2] = { | |||
| 773 | {0, 0}, | |||
| 774 | {cols - convnet->layers[scan + 1].input.matrix.cols, 0}, | |||
| 775 | {(cols - convnet->layers[scan + 1].input.matrix.cols) / 2, (rows - convnet->layers[scan + 1].input.matrix.rows) / 2}, | |||
| 776 | {0, rows - convnet->layers[scan + 1].input.matrix.rows}, | |||
| 777 | {cols - convnet->layers[scan + 1].input.matrix.cols, rows - convnet->layers[scan + 1].input.matrix.rows}, | |||
| 778 | }; | |||
| 779 | for (k = 0; k < 5; k++) | |||
| 780 | { | |||
| 781 | ccv_dense_matrix_t* input = 0; | |||
| 782 | ccv_convnet_layer_t* layer = convnet->layers + scan + 1; | |||
| 783 | ccv_slice(b[scan + 1], (ccv_matrix_t**)&input, CCV_32F, offsets[k][1], offsets[k][0], layer->input.matrix.rows, layer->input.matrix.cols); | |||
| 784 | // copy the last layer for full connect compute | |||
| 785 | b[full_connect] = ccv_dense_matrix_new(convnet->layers[full_connect].input.matrix.rows, convnet->layers[full_connect].input.matrix.cols, CCV_NO_DATA_ALLOC | CCV_32F | convnet->layers[full_connect].input.matrix.channels, c->data.f32 + (t * 5 + k) * convnet->layers[full_connect].input.node.count, 0); | |||
| 786 | for (j = scan + 1; j < full_connect; j++) | |||
| 787 | { | |||
| 788 | layer = convnet->layers + j; | |||
| 789 | _ccv_convnet_layer_forward_propagate(layer, j > scan + 1 ? b[j] : input, b + j + 1, 0); | |||
| 790 | if (j > scan + 1) | |||
| 791 | ccv_matrix_free(b[j]); | |||
| 792 | else | |||
| 793 | ccv_matrix_free(input); | |||
| 794 | } | |||
| 795 | ccv_matrix_free(b[full_connect]); | |||
| 796 | // set it to 0 | |||
| 797 | memset(b + scan + 2, 0, sizeof(ccv_dense_matrix_t*) * (full_connect - scan - 1)); | |||
| 798 | } | |||
| 799 | ccv_matrix_free(b[scan + 1]); | |||
| 800 | memset(b + 1, 0, sizeof(ccv_dense_matrix_t*) * (scan + 1)); | |||
| 801 | if (t < !!symmetric) | |||
| 802 | ccv_flip(b[0], &b[0], 0, CCV_FLIP_X); | |||
| 803 | } | |||
| 804 | ccv_matrix_free(b[0]); | |||
| 805 | // now have everything in c, do the last full connect propagate | |||
| 806 | b[full_connect] = c; | |||
| 807 | for (j = full_connect; j < convnet->count; j++) | |||
| 808 | { | |||
| 809 | ccv_convnet_layer_t* layer = convnet->layers + j; | |||
| 810 | assert(layer->type == CCV_CONVNET_FULL_CONNECT)((void) sizeof ((layer->type == CCV_CONVNET_FULL_CONNECT) ? 1 : 0), __extension__ ({ if (layer->type == CCV_CONVNET_FULL_CONNECT ) ; else __assert_fail ("layer->type == CCV_CONVNET_FULL_CONNECT" , "ccv_convnet.c", 810, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 811 | _ccv_convnet_full_connect_forward_propagate_parallel(layer, b[j], b + j + 1); | |||
| 812 | ccv_matrix_free(b[j]); | |||
| 813 | } | |||
| 814 | ccv_dense_matrix_t* softmax = 0; | |||
| 815 | _ccv_convnet_compute_softmax_parallel(b[convnet->count], &softmax, 0); | |||
| 816 | ccv_matrix_free(b[convnet->count]); | |||
| 817 | ranks[i] = ccv_array_new(sizeof(ccv_classification_t), tops, 0); | |||
| 818 | float* r = softmax->data.f32; | |||
| 819 | assert(tops <= softmax->cols)((void) sizeof ((tops <= softmax->cols) ? 1 : 0), __extension__ ({ if (tops <= softmax->cols) ; else __assert_fail ("tops <= softmax->cols" , "ccv_convnet.c", 819, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 820 | for (j = 0; j < tops; j++) | |||
| 821 | { | |||
| 822 | float max_val = -1; | |||
| 823 | int max_idx = -1; | |||
| 824 | for (k = 0; k < softmax->cols; k++) | |||
| 825 | if (r[k] >= 0 && r[k] > max_val) | |||
| 826 | max_val = r[k], max_idx = k; | |||
| 827 | assert(max_idx >= 0)((void) sizeof ((max_idx >= 0) ? 1 : 0), __extension__ ({ if (max_idx >= 0) ; else __assert_fail ("max_idx >= 0", "ccv_convnet.c" , 827, __extension__ __PRETTY_FUNCTION__); })); | |||
| 828 | r[max_idx] = -1; | |||
| 829 | ccv_classification_t classification = { | |||
| 830 | .id = max_idx, | |||
| 831 | .confidence = max_val / ((!!symmetric + 1) * 5), | |||
| 832 | }; | |||
| 833 | ccv_array_push(ranks[i], &classification); | |||
| 834 | } | |||
| 835 | ccv_matrix_free(softmax); | |||
| 836 | memset(b, 0, sizeof(ccv_dense_matrix_t*) * (convnet->count + 1)); | |||
| 837 | } | |||
| 838 | #ifdef HAVE_CUDA1 | |||
| 839 | } | |||
| 840 | #endif | |||
| 841 | } | |||
| 842 | ||||
| 843 | #endif | |||
| 844 | ||||
| 845 | #ifdef HAVE_GSL1 | |||
| 846 | ||||
| 847 | // compute back propagated gradient & weight update delta | |||
| 848 | static void _ccv_convnet_convolutional_backward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* n, ccv_dense_matrix_t* m, ccv_dense_matrix_t** b, ccv_convnet_layer_t* update_params) | |||
| 849 | { | |||
| 850 | // a is the input gradient (for back prop). | |||
| 851 | // x is the input (for forward prop), b is the output gradient (gradient, or known as propagated error) | |||
| 852 | // note that y (the output from forward prop) is not included because the full connect net is simple enough that we don't need it | |||
| 853 | int rows, cols, partition; | |||
| 854 | ccv_convnet_make_output(layer, layer->input.matrix.rows, layer->input.matrix.cols, &rows, &cols, &partition); | |||
| 855 | int ch = layer->net.convolutional.channels; | |||
| 856 | int count = layer->net.convolutional.count; | |||
| 857 | int strides = layer->net.convolutional.strides; | |||
| 858 | int border = layer->net.convolutional.border; | |||
| 859 | int kernel_rows = layer->net.convolutional.rows; | |||
| 860 | int kernel_cols = layer->net.convolutional.cols; | |||
| 861 | assert(a->rows == rows)((void) sizeof ((a->rows == rows) ? 1 : 0), __extension__ ( { if (a->rows == rows) ; else __assert_fail ("a->rows == rows" , "ccv_convnet.c", 861, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 862 | assert(a->cols == cols)((void) sizeof ((a->cols == cols) ? 1 : 0), __extension__ ( { if (a->cols == cols) ; else __assert_fail ("a->cols == cols" , "ccv_convnet.c", 862, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 863 | assert(CCV_GET_CHANNEL(a->type) == count)((void) sizeof ((((a->type) & 0xFFF) == count) ? 1 : 0 ), __extension__ ({ if (((a->type) & 0xFFF) == count) ; else __assert_fail ("CCV_GET_CHANNEL(a->type) == count", "ccv_convnet.c" , 863, __extension__ __PRETTY_FUNCTION__); })); | |||
| 864 | int a_rows = a->rows, a_cols = a->cols, a_ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 865 | a->rows = rows, a->cols = cols, a->type = (a->type - a_ch) | count; | |||
| 866 | assert(CCV_GET_CHANNEL(m->type) == ch)((void) sizeof ((((m->type) & 0xFFF) == ch) ? 1 : 0), __extension__ ({ if (((m->type) & 0xFFF) == ch) ; else __assert_fail ("CCV_GET_CHANNEL(m->type) == ch", "ccv_convnet.c", 866, __extension__ __PRETTY_FUNCTION__); })); | |||
| 867 | assert(CCV_GET_DATA_TYPE(m->type) == CCV_32F)((void) sizeof ((((m->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((m->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(m->type) == CCV_32F" , "ccv_convnet.c", 867, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 868 | int count_per_partition = count / partition; | |||
| 869 | int ch_per_partition = ch / partition; | |||
| 870 | // update weight gradient | |||
| 871 | parallel_for(k, count){ int k; for ((k) = 0; (k) < (count); (k)++) { { | |||
| 872 | int i, j, x, y, c; | |||
| 873 | int p = k / count_per_partition; | |||
| 874 | float* mp = m->data.f32 + p * ch_per_partition; | |||
| 875 | float* ap = a->data.f32 + k; | |||
| 876 | float* np = n->data.f32 + k; | |||
| 877 | float* update_w = update_params->w + k * kernel_rows * kernel_cols * ch_per_partition; | |||
| 878 | float bias = 0; | |||
| 879 | for (i = 0; i < rows; i++) | |||
| 880 | { | |||
| 881 | int comy = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 882 | int maxy = kernel_rows - comy - (i * strides + kernel_rows - ccv_min(m->rows + border, i * strides + kernel_rows)({ typeof (m->rows + border) _a = (m->rows + border); typeof (i * strides + kernel_rows) _b = (i * strides + kernel_rows) ; (_a < _b) ? _a : _b; })); | |||
| 883 | comy *= ch_per_partition * kernel_cols; | |||
| 884 | for (j = 0; j < cols; j++) | |||
| 885 | { | |||
| 886 | if (np[j * count] > 0) | |||
| 887 | { /* when np is bigger than 0, relu continues to update the weight, otherwise it stops */ | |||
| 888 | float v = ap[j * count]; | |||
| 889 | bias += v; | |||
| 890 | int comx = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 891 | int maxx = kernel_cols - comx - (j * strides + kernel_cols - ccv_min(m->cols + border, j * strides + kernel_cols)({ typeof (m->cols + border) _a = (m->cols + border); typeof (j * strides + kernel_cols) _b = (j * strides + kernel_cols) ; (_a < _b) ? _a : _b; })); | |||
| 892 | float* w = update_w + comx * ch_per_partition + comy; | |||
| 893 | float* mpz = mp + ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) * ch; | |||
| 894 | /* when we have border, we simply do zero padding */ | |||
| 895 | for (y = 0; y < maxy; y++) | |||
| 896 | { | |||
| 897 | for (x = 0; x < maxx; x++) | |||
| 898 | for (c = 0; c < ch_per_partition; c++) | |||
| 899 | w[x * ch_per_partition + c] += v * mpz[x * ch + c]; | |||
| 900 | w += kernel_cols * ch_per_partition; | |||
| 901 | mpz += m->cols * ch; | |||
| 902 | } | |||
| 903 | } | |||
| 904 | } | |||
| 905 | ap += a->cols * count; | |||
| 906 | np += n->cols * count; | |||
| 907 | mp += m->cols * ch * (ccv_max((i + 1) * strides - border, 0)({ typeof ((i + 1) * strides - border) _a = ((i + 1) * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; })); | |||
| 908 | } | |||
| 909 | update_params->bias[k] += bias; | |||
| 910 | } parallel_endfor} } | |||
| 911 | if (b) | |||
| 912 | { | |||
| 913 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, m->rows, m->cols, CCV_32F | CCV_GET_CHANNEL(m->type)((m->type) & 0xFFF), CCV_32F | CCV_GET_CHANNEL(m->type)((m->type) & 0xFFF), 0); | |||
| 914 | // clear it up before propagate result | |||
| 915 | ccv_zero(db); | |||
| 916 | int k; | |||
| 917 | for (k = 0; k < count; k++) | |||
| 918 | { | |||
| 919 | int i, j, x, y, c; | |||
| 920 | int p = k / count_per_partition; | |||
| 921 | float* bp = db->data.f32 + p * ch_per_partition; | |||
| 922 | float* ap = a->data.f32 + k; | |||
| 923 | float* np = n->data.f32 + k; | |||
| 924 | float* layer_w = layer->w + k * kernel_rows * kernel_cols * ch_per_partition; | |||
| 925 | for (i = 0; i < rows; i++) | |||
| 926 | { | |||
| 927 | int comy = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 928 | int maxy = kernel_rows - comy - (i * strides + kernel_rows - ccv_min(db->rows + border, i * strides + kernel_rows)({ typeof (db->rows + border) _a = (db->rows + border); typeof (i * strides + kernel_rows) _b = (i * strides + kernel_rows ); (_a < _b) ? _a : _b; })); | |||
| 929 | comy *= ch_per_partition * kernel_cols; | |||
| 930 | for (j = 0; j < cols; j++) | |||
| 931 | { | |||
| 932 | if (np[j * count] > 0) | |||
| 933 | { /* when np is bigger than 0, relu continues to update the weight, otherwise it stops */ | |||
| 934 | float v = ap[j * count]; | |||
| 935 | int comx = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 936 | int maxx = kernel_cols - comx - (j * strides + kernel_cols - ccv_min(db->cols + border, j * strides + kernel_cols)({ typeof (db->cols + border) _a = (db->cols + border); typeof (j * strides + kernel_cols) _b = (j * strides + kernel_cols ); (_a < _b) ? _a : _b; })); | |||
| 937 | float* w = layer_w + comx * ch_per_partition + comy; | |||
| 938 | float* bpz = bp + ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) * ch; | |||
| 939 | /* when we have border, we simply do zero padding */ | |||
| 940 | for (y = 0; y < maxy; y++) | |||
| 941 | { | |||
| 942 | for (x = 0; x < maxx; x++) | |||
| 943 | for (c = 0; c < ch_per_partition; c++) | |||
| 944 | bpz[x * ch + c] += v * w[x * ch_per_partition + c]; | |||
| 945 | w += kernel_cols * ch_per_partition; | |||
| 946 | bpz += db->cols * ch; | |||
| 947 | } | |||
| 948 | } | |||
| 949 | } | |||
| 950 | ap += a->cols * count; | |||
| 951 | np += n->cols * count; | |||
| 952 | bp += db->cols * ch * (ccv_max((i + 1) * strides - border, 0)({ typeof ((i + 1) * strides - border) _a = ((i + 1) * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; })); | |||
| 953 | } | |||
| 954 | } | |||
| 955 | } | |||
| 956 | a->rows = a_rows, a->cols = a_cols, a->type = (a->type - CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF)) | a_ch; | |||
| 957 | } | |||
| 958 | ||||
| 959 | static void _ccv_convnet_full_connect_backward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* y, ccv_dense_matrix_t* x, ccv_dense_matrix_t** b, ccv_convnet_layer_t* update_params) | |||
| 960 | { | |||
| 961 | // a is the input gradient (for back prop), y is the output (for forward prop) | |||
| 962 | // x is the input (for forward prop), b is the output gradient (gradient, or known as propagated error) | |||
| 963 | ccv_dense_matrix_t* db = 0; | |||
| 964 | if (b
| |||
| 965 | db = *b = ccv_dense_matrix_renew(*b, x->rows, x->cols, CCV_32F | CCV_GET_CHANNEL(x->type)((x->type) & 0xFFF), CCV_32F | CCV_GET_CHANNEL(x->type)((x->type) & 0xFFF), 0); | |||
| 966 | int x_rows = x->rows, x_cols = x->cols, x_ch = CCV_GET_CHANNEL(x->type)((x->type) & 0xFFF); | |||
| 967 | x->rows = x_rows * x_cols * x_ch, x->cols = 1, x->type = (x->type - x_ch) | CCV_C1; | |||
| 968 | x->step = x->cols * CCV_GET_DATA_TYPE_SIZE(x->type)_ccv_get_data_type_size[((x->type) & 0xFF000) >> 12]; | |||
| 969 | int i; | |||
| 970 | if (layer->net.full_connect.relu) | |||
| 971 | for (i = 0; i < y->rows; i++) | |||
| 972 | if (y->data.f32[i] <= 0) | |||
| 973 | a->data.f32[i] = 0; | |||
| 974 | ccv_dense_matrix_t w = ccv_dense_matrix(a->rows, x->rows, CCV_32F | CCV_C1, update_params->w, 0); | |||
| ||||
| 975 | ccv_dense_matrix_t* dw = &w; | |||
| 976 | // compute bias gradient | |||
| 977 | ccv_dense_matrix_t bias = ccv_dense_matrix(a->rows, 1, CCV_32F | CCV_C1, update_params->bias, 0); | |||
| 978 | ccv_dense_matrix_t* dbias = &bias; | |||
| 979 | ccv_add(a, dbias, (ccv_matrix_t**)&dbias, 0); | |||
| 980 | // compute weight gradient | |||
| 981 | ccv_gemm(a, x, 1, dw, 1, CCV_B_TRANSPOSE, (ccv_matrix_t**)&dw, 0); | |||
| 982 | w = ccv_dense_matrix(a->rows, x->rows, CCV_32F | CCV_C1, layer->w, 0); | |||
| 983 | // propagate error | |||
| 984 | if (db) | |||
| 985 | { | |||
| 986 | db->rows = x->rows, db->cols = x->cols, db->type = (db->type - x_ch) | CCV_C1; | |||
| 987 | db->step = db->cols * CCV_GET_DATA_TYPE_SIZE(db->type)_ccv_get_data_type_size[((db->type) & 0xFF000) >> 12]; | |||
| 988 | ccv_gemm(&w, a, 1, 0, 0, CCV_A_TRANSPOSE, (ccv_matrix_t**)&db, 0); | |||
| 989 | db->rows = x_rows, db->cols = x_cols, db->type = (db->type - CCV_GET_CHANNEL(db->type)((db->type) & 0xFFF)) | x_ch; | |||
| 990 | db->step = db->cols * CCV_GET_DATA_TYPE_SIZE(db->type)_ccv_get_data_type_size[((db->type) & 0xFF000) >> 12] * CCV_GET_CHANNEL(db->type)((db->type) & 0xFFF); | |||
| 991 | } | |||
| 992 | x->rows = x_rows, x->cols = x_cols, x->type = (x->type - CCV_GET_CHANNEL(x->type)((x->type) & 0xFFF)) | x_ch; | |||
| 993 | x->step = x->cols * CCV_GET_DATA_TYPE_SIZE(x->type)_ccv_get_data_type_size[((x->type) & 0xFF000) >> 12] * CCV_GET_CHANNEL(x->type)((x->type) & 0xFFF); | |||
| 994 | } | |||
| 995 | ||||
| 996 | static void _ccv_convnet_rnorm_backward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* n, ccv_dense_matrix_t* m, ccv_dense_matrix_t* denoms, ccv_dense_matrix_t** b) | |||
| 997 | { | |||
| 998 | int rows, cols, partition; | |||
| 999 | ccv_convnet_make_output(layer, layer->input.matrix.rows, layer->input.matrix.cols, &rows, &cols, &partition); | |||
| 1000 | int size = layer->net.rnorm.size; | |||
| 1001 | float alpha = layer->net.rnorm.alpha; | |||
| 1002 | float beta = layer->net.rnorm.beta; | |||
| 1003 | int way = size / 2; | |||
| 1004 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 1004, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1005 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 1006 | int type = CCV_32F | ch; | |||
| 1007 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, type, type, 0); | |||
| 1008 | int i, j, k, x, p; | |||
| 1009 | float* ap = a->data.f32; | |||
| 1010 | float* np = n->data.f32; | |||
| 1011 | float* mp = m->data.f32; | |||
| 1012 | float* dp = denoms->data.f32; | |||
| 1013 | float* bp = db->data.f32; | |||
| 1014 | int ch_per_partition = ch / partition; | |||
| 1015 | for (i = 0; i < db->rows; i++) | |||
| 1016 | { | |||
| 1017 | for (j = 0; j < db->cols; j++) | |||
| 1018 | for (p = 0; p < partition; p++) | |||
| 1019 | for (k = 0; k < ch_per_partition; k++) | |||
| 1020 | { | |||
| 1021 | float nom = 0; | |||
| 1022 | for (x = ccv_max(k - way, 0)({ typeof (k - way) _a = (k - way); typeof (0) _b = (0); (_a > _b) ? _a : _b; }); x <= ccv_min(k + way, ch_per_partition - 1)({ typeof (k + way) _a = (k + way); typeof (ch_per_partition - 1) _b = (ch_per_partition - 1); (_a < _b) ? _a : _b; }); x++) | |||
| 1023 | nom += -2 * alpha * beta * ap[j * ch + x + p * ch_per_partition] * np[j * ch + x + p * ch_per_partition] / dp[j * ch + x + p * ch_per_partition]; | |||
| 1024 | bp[j * ch + k + p * ch_per_partition] = mp[j * ch + k + p * ch_per_partition] * nom + ap[j * ch + k + p * ch_per_partition] * powf(dp[j * ch + k + p * ch_per_partition], -beta); | |||
| 1025 | } | |||
| 1026 | ap += a->cols * ch; | |||
| 1027 | np += n->cols * ch; | |||
| 1028 | mp += m->cols * ch; | |||
| 1029 | dp += denoms->cols * ch; | |||
| 1030 | bp += db->cols * ch; | |||
| 1031 | } | |||
| 1032 | } | |||
| 1033 | ||||
| 1034 | static void _ccv_convnet_max_pool_backward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* n, ccv_dense_matrix_t* m, ccv_dense_matrix_t** b) | |||
| 1035 | { | |||
| 1036 | // a is the input gradient (for back prop), y is the output (from forward prop), | |||
| 1037 | // x is the input (for forward prop), b is the output gradient (gradient, or known as propagated error) | |||
| 1038 | // pooling layer doesn't need the dropout | |||
| 1039 | if (b) | |||
| 1040 | { | |||
| 1041 | assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(n->type))((void) sizeof ((((a->type) & 0xFFF) == ((n->type) & 0xFFF)) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFFF ) == ((n->type) & 0xFFF)) ; else __assert_fail ("CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(n->type)" , "ccv_convnet.c", 1041, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1042 | assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(m->type))((void) sizeof ((((a->type) & 0xFFF) == ((m->type) & 0xFFF)) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFFF ) == ((m->type) & 0xFFF)) ; else __assert_fail ("CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(m->type)" , "ccv_convnet.c", 1042, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1043 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 1044 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, m->rows, m->cols, CCV_32F | ch, CCV_32F | ch, 0); | |||
| 1045 | ccv_zero(db); | |||
| 1046 | int size = layer->net.pool.size; | |||
| 1047 | int strides = layer->net.pool.strides; | |||
| 1048 | int border = layer->net.pool.border; | |||
| 1049 | int i, j, k, x, y; | |||
| 1050 | float* ap = a->data.f32; | |||
| 1051 | float* bp = db->data.f32; | |||
| 1052 | float* np = n->data.f32; | |||
| 1053 | float* mp = m->data.f32; | |||
| 1054 | for (i = 0; i < a->rows; i++) | |||
| 1055 | { | |||
| 1056 | const int start_y = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 1057 | const int end_y = size + ccv_min(i * strides + size - border, db->rows)({ typeof (i * strides + size - border) _a = (i * strides + size - border); typeof (db->rows) _b = (db->rows); (_a < _b) ? _a : _b; }) - (i * strides + size - border); | |||
| 1058 | for (j = 0; j < a->cols; j++) | |||
| 1059 | { | |||
| 1060 | const int start_x = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 1061 | const int end_x = size + ccv_min(j * strides + size - border, db->cols)({ typeof (j * strides + size - border) _a = (j * strides + size - border); typeof (db->cols) _b = (db->cols); (_a < _b) ? _a : _b; }) - (j * strides + size - border); | |||
| 1062 | for (k = 0; k < ch; k++) | |||
| 1063 | { | |||
| 1064 | float v = np[j * ch + k]; | |||
| 1065 | float u = ap[j * ch + k]; | |||
| 1066 | for (y = start_y; y < end_y; y++) | |||
| 1067 | for (x = start_x; x < end_x; x++) | |||
| 1068 | // we have to do direct comparison otherwise it will contribute to too many cells | |||
| 1069 | // and the propagation won't work. But CPU will have different result comparing with GPU | |||
| 1070 | if (mp[(j * strides - border + x + (y - border) * m->cols) * ch + k] == v) | |||
| 1071 | bp[(j * strides - border + x + (y - border) * db->cols) * ch + k] += u; | |||
| 1072 | } | |||
| 1073 | } | |||
| 1074 | ap += a->cols * ch; | |||
| 1075 | np += n->cols * ch; | |||
| 1076 | bp += db->cols * ch * strides; | |||
| 1077 | mp += m->cols * ch * strides; | |||
| 1078 | } | |||
| 1079 | } | |||
| 1080 | } | |||
| 1081 | ||||
| 1082 | static void _ccv_convnet_average_pool_backward_propagate(ccv_convnet_layer_t* layer, ccv_dense_matrix_t* a, ccv_dense_matrix_t* m, ccv_dense_matrix_t** b) | |||
| 1083 | { | |||
| 1084 | // a is the input gradient (for back prop), y is the output (from forward prop), | |||
| 1085 | // x is the input (for forward prop), b is the output gradient (gradient, or known as propagated error) | |||
| 1086 | // pooling layer doesn't need the dropout | |||
| 1087 | if (b) | |||
| 1088 | { | |||
| 1089 | assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(m->type))((void) sizeof ((((a->type) & 0xFFF) == ((m->type) & 0xFFF)) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFFF ) == ((m->type) & 0xFFF)) ; else __assert_fail ("CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(m->type)" , "ccv_convnet.c", 1089, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1090 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 1091 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, m->rows, m->cols, CCV_32F | ch, CCV_32F | ch, 0); | |||
| 1092 | ccv_zero(db); | |||
| 1093 | int size = layer->net.pool.size; | |||
| 1094 | int strides = layer->net.pool.strides; | |||
| 1095 | int border = layer->net.pool.border; | |||
| 1096 | int i, j, k, x, y; | |||
| 1097 | float* ap = a->data.f32; | |||
| 1098 | float* bp = db->data.f32; | |||
| 1099 | for (i = 0; i < a->rows; i++) | |||
| 1100 | { | |||
| 1101 | const int start_y = ccv_max(i * strides - border, 0)({ typeof (i * strides - border) _a = (i * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (i * strides - border); | |||
| 1102 | const int end_y = size + ccv_min(i * strides + size - border, db->rows)({ typeof (i * strides + size - border) _a = (i * strides + size - border); typeof (db->rows) _b = (db->rows); (_a < _b) ? _a : _b; }) - (i * strides + size - border); | |||
| 1103 | for (j = 0; j < a->cols; j++) | |||
| 1104 | { | |||
| 1105 | const int start_x = ccv_max(j * strides - border, 0)({ typeof (j * strides - border) _a = (j * strides - border); typeof (0) _b = (0); (_a > _b) ? _a : _b; }) - (j * strides - border); | |||
| 1106 | const int end_x = size + ccv_min(j * strides + size - border, db->cols)({ typeof (j * strides + size - border) _a = (j * strides + size - border); typeof (db->cols) _b = (db->cols); (_a < _b) ? _a : _b; }) - (j * strides + size - border); | |||
| 1107 | for (k = 0; k < ch; k++) | |||
| 1108 | { | |||
| 1109 | float u = ap[j * ch + k] / ((end_x - start_x) * (end_y - start_y)); | |||
| 1110 | for (y = start_y; y < end_y; y++) | |||
| 1111 | for (x = start_x; x < end_x; x++) | |||
| 1112 | bp[(j * strides - border + x + (y - border) * db->cols) * ch + k] += u; | |||
| 1113 | } | |||
| 1114 | } | |||
| 1115 | ap += a->cols * ch; | |||
| 1116 | bp += db->cols * ch * strides; | |||
| 1117 | } | |||
| 1118 | } | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | static void _ccv_convnet_propagate_loss(ccv_convnet_t* convnet, ccv_dense_matrix_t* a, ccv_dense_matrix_t* dloss, ccv_convnet_t* update_params) | |||
| 1122 | { | |||
| 1123 | int i; | |||
| 1124 | ccv_convnet_layer_t* layer = convnet->layers + convnet->count - 1; | |||
| 1125 | assert(layer->type == CCV_CONVNET_FULL_CONNECT)((void) sizeof ((layer->type == CCV_CONVNET_FULL_CONNECT) ? 1 : 0), __extension__ ({ if (layer->type == CCV_CONVNET_FULL_CONNECT ) ; else __assert_fail ("layer->type == CCV_CONVNET_FULL_CONNECT" , "ccv_convnet.c", 1125, __extension__ __PRETTY_FUNCTION__); } )); // the last layer has too be a full connect one to generate softmax result | |||
| 1126 | _ccv_convnet_full_connect_backward_propagate(layer, dloss, convnet->acts[convnet->count - 1], convnet->acts[convnet->count - 2], convnet->count - 1 > 0 ? update_params->acts + convnet->count - 2 : 0, update_params->layers + convnet->count - 1); | |||
| 1127 | for (i = convnet->count - 2; i >= 0; i--) | |||
| 1128 | { | |||
| 1129 | layer = convnet->layers + i; | |||
| 1130 | switch (layer->type) | |||
| 1131 | { | |||
| 1132 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1133 | _ccv_convnet_convolutional_backward_propagate(layer, update_params->acts[i], convnet->acts[i], i > 0 ? convnet->acts[i - 1] : a, i > 0 ? update_params->acts + i - 1 : 0, update_params->layers + i); | |||
| 1134 | break; | |||
| 1135 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1136 | _ccv_convnet_full_connect_backward_propagate(layer, update_params->acts[i], convnet->acts[i], i > 0 ? convnet->acts[i - 1] : a, i > 0 ? update_params->acts + i - 1 : 0, update_params->layers + i); | |||
| 1137 | break; | |||
| 1138 | case CCV_CONVNET_LOCAL_RESPONSE_NORM: | |||
| 1139 | _ccv_convnet_rnorm_backward_propagate(layer, update_params->acts[i], convnet->acts[i], i > 0 ? convnet->acts[i - 1] : a, convnet->denoms[i], i > 0 ? update_params->acts + i - 1 : 0); | |||
| 1140 | break; | |||
| 1141 | case CCV_CONVNET_MAX_POOL: | |||
| 1142 | _ccv_convnet_max_pool_backward_propagate(layer, update_params->acts[i], convnet->acts[i], i > 0 ? convnet->acts[i - 1] : a, i > 0 ? update_params->acts + i - 1 : 0); | |||
| 1143 | break; | |||
| 1144 | case CCV_CONVNET_AVERAGE_POOL: | |||
| 1145 | _ccv_convnet_average_pool_backward_propagate(layer, update_params->acts[i], i > 0 ? convnet->acts[i - 1] : a, i > 0 ? update_params->acts + i - 1 : 0); | |||
| 1146 | break; | |||
| 1147 | } | |||
| 1148 | } | |||
| 1149 | } | |||
| 1150 | ||||
| 1151 | static void _ccv_convnet_update(ccv_convnet_t* convnet, int batch, ccv_convnet_t* momentum, ccv_convnet_t* update_params, ccv_convnet_layer_train_param_t* layer_params) | |||
| 1152 | { | |||
| 1153 | int i, j; | |||
| 1154 | float learn_rate; | |||
| 1155 | for (i = 0; i < convnet->count; i++) | |||
| 1156 | switch (update_params->layers[i].type) | |||
| 1157 | { | |||
| 1158 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1159 | { | |||
| 1160 | float* w = convnet->layers[i].w; | |||
| 1161 | float* vw = momentum->layers[i].w; | |||
| 1162 | float* dw = update_params->layers[i].w; | |||
| 1163 | learn_rate = layer_params[i].w.learn_rate / batch; | |||
| 1164 | for (j = 0; j < convnet->layers[i].wnum; j++) | |||
| 1165 | { | |||
| 1166 | vw[j] = layer_params[i].w.momentum * vw[j] - layer_params[i].w.decay * layer_params[i].w.learn_rate * w[j] + learn_rate * dw[j]; | |||
| 1167 | w[j] += vw[j]; | |||
| 1168 | } | |||
| 1169 | float* bias = convnet->layers[i].bias; | |||
| 1170 | float* vbias = momentum->layers[i].bias; | |||
| 1171 | float* dbias = update_params->layers[i].bias; | |||
| 1172 | learn_rate = layer_params[i].bias.learn_rate / batch; | |||
| 1173 | for (j = 0; j < convnet->layers[i].net.convolutional.count; j++) | |||
| 1174 | { | |||
| 1175 | vbias[j] = layer_params[i].bias.momentum * vbias[j] - layer_params[i].bias.decay * layer_params[i].bias.learn_rate * bias[j] + learn_rate * dbias[j]; | |||
| 1176 | bias[j] += vbias[j]; | |||
| 1177 | } | |||
| 1178 | break; | |||
| 1179 | } | |||
| 1180 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1181 | { | |||
| 1182 | float* w = convnet->layers[i].w; | |||
| 1183 | float* vw = momentum->layers[i].w; | |||
| 1184 | float* dw = update_params->layers[i].w; | |||
| 1185 | learn_rate = layer_params[i].w.learn_rate / batch; | |||
| 1186 | for (j = 0; j < convnet->layers[i].wnum; j++) | |||
| 1187 | { | |||
| 1188 | vw[j] = layer_params[i].w.momentum * vw[j] - layer_params[i].w.decay * layer_params[i].w.learn_rate * w[j] + learn_rate * dw[j]; | |||
| 1189 | w[j] += vw[j]; | |||
| 1190 | } | |||
| 1191 | float* bias = convnet->layers[i].bias; | |||
| 1192 | float* vbias = momentum->layers[i].bias; | |||
| 1193 | float* dbias = update_params->layers[i].bias; | |||
| 1194 | learn_rate = layer_params[i].bias.learn_rate / batch; | |||
| 1195 | for (j = 0; j < convnet->layers[i].net.full_connect.count; j++) | |||
| 1196 | { | |||
| 1197 | vbias[j] = layer_params[i].bias.momentum * vbias[j] - layer_params[i].bias.decay * layer_params[i].bias.learn_rate * bias[j] + learn_rate * dbias[j]; | |||
| 1198 | bias[j] += vbias[j]; | |||
| 1199 | } | |||
| 1200 | break; | |||
| 1201 | } | |||
| 1202 | } | |||
| 1203 | } | |||
| 1204 | ||||
| 1205 | static void _ccv_convnet_update_zero(ccv_convnet_t* update_params) | |||
| 1206 | { | |||
| 1207 | int i; | |||
| 1208 | for (i = 0; i < update_params->count; i++) | |||
| 1209 | switch (update_params->layers[i].type) | |||
| 1210 | { | |||
| 1211 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1212 | memset(update_params->layers[i].w, 0, sizeof(float) * update_params->layers[i].wnum); | |||
| 1213 | memset(update_params->layers[i].bias, 0, sizeof(float) * update_params->layers[i].net.convolutional.count); | |||
| 1214 | break; | |||
| 1215 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1216 | assert(update_params->layers[i].wnum % update_params->layers[i].net.full_connect.count == 0)((void) sizeof ((update_params->layers[i].wnum % update_params ->layers[i].net.full_connect.count == 0) ? 1 : 0), __extension__ ({ if (update_params->layers[i].wnum % update_params-> layers[i].net.full_connect.count == 0) ; else __assert_fail ( "update_params->layers[i].wnum % update_params->layers[i].net.full_connect.count == 0" , "ccv_convnet.c", 1216, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1217 | memset(update_params->layers[i].w, 0, sizeof(float) * update_params->layers[i].wnum); | |||
| 1218 | memset(update_params->layers[i].bias, 0, sizeof(float) * update_params->layers[i].net.full_connect.count); | |||
| 1219 | break; | |||
| 1220 | } | |||
| 1221 | } | |||
| 1222 | ||||
| 1223 | static ccv_convnet_t* _ccv_convnet_update_new(ccv_convnet_t* convnet) | |||
| 1224 | { | |||
| 1225 | ccv_convnet_t* update_params = (ccv_convnet_t*)ccmallocmalloc(sizeof(ccv_convnet_t) + sizeof(ccv_convnet_layer_t) * convnet->count + sizeof(ccv_dense_matrix_t*) * convnet->count); | |||
| 1226 | update_params->reserved = 0; | |||
| 1227 | update_params->layers = (ccv_convnet_layer_t*)(update_params + 1); | |||
| 1228 | update_params->acts = (ccv_dense_matrix_t**)(update_params->layers + convnet->count); | |||
| 1229 | memset(update_params->acts, 0, sizeof(ccv_dense_matrix_t*) * convnet->count); | |||
| 1230 | update_params->denoms = 0; | |||
| 1231 | update_params->input = convnet->input; | |||
| 1232 | update_params->rows = convnet->rows; | |||
| 1233 | update_params->cols = convnet->cols; | |||
| 1234 | update_params->count = convnet->count; | |||
| 1235 | update_params->channels = convnet->channels; | |||
| 1236 | update_params->mean_activity = 0; | |||
| 1237 | int i; | |||
| 1238 | for (i = 0; i < convnet->count; i++) | |||
| 1239 | { | |||
| 1240 | update_params->layers[i].type = convnet->layers[i].type; | |||
| 1241 | update_params->layers[i].input = convnet->layers[i].input; | |||
| 1242 | update_params->layers[i].net = convnet->layers[i].net; | |||
| 1243 | update_params->layers[i].wnum = convnet->layers[i].wnum; | |||
| 1244 | update_params->layers[i].reserved = 0; | |||
| 1245 | switch (update_params->layers[i].type) | |||
| 1246 | { | |||
| 1247 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1248 | update_params->layers[i].w = (float*)cccalloccalloc(update_params->layers[i].wnum + update_params->layers[i].net.convolutional.count, sizeof(float)); | |||
| 1249 | update_params->layers[i].bias = update_params->layers[i].w + update_params->layers[i].wnum; | |||
| 1250 | break; | |||
| 1251 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1252 | assert(update_params->layers[i].wnum % update_params->layers[i].net.full_connect.count == 0)((void) sizeof ((update_params->layers[i].wnum % update_params ->layers[i].net.full_connect.count == 0) ? 1 : 0), __extension__ ({ if (update_params->layers[i].wnum % update_params-> layers[i].net.full_connect.count == 0) ; else __assert_fail ( "update_params->layers[i].wnum % update_params->layers[i].net.full_connect.count == 0" , "ccv_convnet.c", 1252, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1253 | update_params->layers[i].w = (float*)cccalloccalloc(update_params->layers[i].wnum + update_params->layers[i].net.full_connect.count, sizeof(float)); | |||
| 1254 | update_params->layers[i].bias = update_params->layers[i].w + update_params->layers[i].wnum; | |||
| 1255 | break; | |||
| 1256 | case CCV_CONVNET_LOCAL_RESPONSE_NORM: | |||
| 1257 | case CCV_CONVNET_MAX_POOL: | |||
| 1258 | case CCV_CONVNET_AVERAGE_POOL: | |||
| 1259 | update_params->layers[i].w = 0; | |||
| 1260 | update_params->layers[i].bias = 0; | |||
| 1261 | break; | |||
| 1262 | } | |||
| 1263 | } | |||
| 1264 | return update_params; | |||
| 1265 | } | |||
| 1266 | ||||
| 1267 | static void _ccv_convnet_compute_softmax(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type) | |||
| 1268 | { | |||
| 1269 | int ch = CCV_GET_CHANNEL(a->type)((a->type) & 0xFFF); | |||
| 1270 | assert(CCV_GET_DATA_TYPE(a->type) == CCV_32F)((void) sizeof ((((a->type) & 0xFF000) == CCV_32F) ? 1 : 0), __extension__ ({ if (((a->type) & 0xFF000) == CCV_32F ) ; else __assert_fail ("CCV_GET_DATA_TYPE(a->type) == CCV_32F" , "ccv_convnet.c", 1270, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1271 | ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_32F | ch, CCV_32F | ch, 0); | |||
| 1272 | int i; | |||
| 1273 | float* aptr = a->data.f32; | |||
| 1274 | float* bptr = db->data.f32; | |||
| 1275 | double max = aptr[0]; | |||
| 1276 | for (i = 1; i < a->rows * a->cols * ch; i++) | |||
| 1277 | if (aptr[i] > max) | |||
| 1278 | max = aptr[i]; | |||
| 1279 | double tt = 0; | |||
| 1280 | for (i = 0; i < a->rows * a->cols * ch; i++) | |||
| 1281 | tt += (bptr[i] = expf(aptr[i] - max)); | |||
| 1282 | tt = 1.0 / tt; | |||
| 1283 | for (i = 0; i < a->rows * a->cols * ch; i++) | |||
| 1284 | bptr[i] *= tt; | |||
| 1285 | } | |||
| 1286 | ||||
| 1287 | static void _ccv_convnet_classify(ccv_convnet_t* convnet, ccv_dense_matrix_t** a, int* labels, int batch) | |||
| 1288 | { | |||
| 1289 | assert(batch == 1)((void) sizeof ((batch == 1) ? 1 : 0), __extension__ ({ if (batch == 1) ; else __assert_fail ("batch == 1", "ccv_convnet.c", 1289 , __extension__ __PRETTY_FUNCTION__); })); | |||
| 1290 | ccv_convnet_encode(convnet, a, convnet->acts + convnet->count - 1, 1); | |||
| 1291 | int i, c = 0; | |||
| 1292 | ccv_dense_matrix_t* b = convnet->acts[convnet->count - 1]; | |||
| 1293 | float maxc = b->data.f32[0]; | |||
| 1294 | for (i = 1; i < b->rows; i++) | |||
| 1295 | if (b->data.f32[i] > maxc) | |||
| 1296 | maxc = b->data.f32[i], c = i; | |||
| 1297 | labels[0] = c; | |||
| 1298 | } | |||
| 1299 | ||||
| 1300 | #endif | |||
| 1301 | ||||
| 1302 | #ifndef CASE_TESTS | |||
| 1303 | ||||
| 1304 | void ccv_convnet_supervised_train(ccv_convnet_t* convnet, ccv_array_t* categorizeds, ccv_array_t* tests, const char* filename, ccv_convnet_train_param_t params) | |||
| 1305 | { | |||
| 1306 | #ifdef HAVE_GSL1 | |||
| 1307 | #ifdef HAVE_CUDA1 | |||
| 1308 | if (convnet->use_cwc_accel) | |||
| ||||
| 1309 | cwc_convnet_supervised_train(convnet, categorizeds, tests, filename, params); | |||
| 1310 | else { | |||
| 1311 | #endif | |||
| 1312 | int i, j, t; | |||
| 1313 | gsl_rng_env_setup(); | |||
| 1314 | gsl_rng* rng = gsl_rng_alloc(gsl_rng_default); | |||
| 1315 | int aligned_padding = categorizeds->rnum % params.mini_batch; | |||
| 1316 | int aligned_rnum = categorizeds->rnum - aligned_padding; | |||
| 1317 | int* idx = (int*)ccmallocmalloc(sizeof(int) * (categorizeds->rnum + aligned_padding)); | |||
| 1318 | for (i = 0; i < categorizeds->rnum; i++) | |||
| 1319 | idx[i] = i; | |||
| 1320 | gsl_ran_shuffle(rng, idx, categorizeds->rnum, sizeof(int)); | |||
| 1321 | // the last layer has to be full connect, thus we can use it as softmax layer | |||
| 1322 | assert(convnet->layers[convnet->count - 1].type == CCV_CONVNET_FULL_CONNECT)((void) sizeof ((convnet->layers[convnet->count - 1].type == CCV_CONVNET_FULL_CONNECT) ? 1 : 0), __extension__ ({ if ( convnet->layers[convnet->count - 1].type == CCV_CONVNET_FULL_CONNECT ) ; else __assert_fail ("convnet->layers[convnet->count - 1].type == CCV_CONVNET_FULL_CONNECT" , "ccv_convnet.c", 1322, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1323 | int category_count = convnet->layers[convnet->count - 1].net.full_connect.count; | |||
| 1324 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); | |||
| 1325 | ccv_convnet_t* momentum = _ccv_convnet_update_new(convnet); | |||
| 1326 | for (t = 0; t < params.max_epoch; t++) | |||
| 1327 | { | |||
| 1328 | for (i = 0; i < aligned_rnum; i++) | |||
| 1329 | { | |||
| 1330 | // dropout the first hidden layer | |||
| 1331 | ccv_categorized_t* categorized = (ccv_categorized_t*)ccv_array_get(categorizeds, idx[i])((void*)(((char*)((categorizeds)->data)) + (size_t)(categorizeds )->rsize * (size_t)(idx[i]))); | |||
| 1332 | ccv_convnet_encode(convnet, &categorized->matrix, convnet->acts + convnet->count - 1, 1); | |||
| 1333 | ccv_dense_matrix_t* softmax = convnet->acts[convnet->count - 1]; | |||
| 1334 | float* dloss = softmax->data.f32; | |||
| 1335 | _ccv_convnet_compute_softmax(softmax, &softmax, 0); | |||
| 1336 | assert(softmax->rows == category_count && softmax->cols == 1)((void) sizeof ((softmax->rows == category_count && softmax->cols == 1) ? 1 : 0), __extension__ ({ if (softmax ->rows == category_count && softmax->cols == 1) ; else __assert_fail ("softmax->rows == category_count && softmax->cols == 1" , "ccv_convnet.c", 1336, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1337 | // this mashes softmax and logistic regression together | |||
| 1338 | // also, it gives you -D[loss w.r.t. to x_i] (note the negative sign) | |||
| 1339 | for (j = 0; j < category_count; j++) | |||
| 1340 | dloss[j] = (j == categorized->c) - dloss[j]; | |||
| 1341 | _ccv_convnet_propagate_loss(convnet, categorized->matrix, softmax, update_params); | |||
| 1342 | if ((i + 1) % params.mini_batch == 0) | |||
| 1343 | { | |||
| 1344 | FLUSH(CCV_CLI_INFO, " - at epoch %03d / %d => stochastic gradient descent at %d / %d", t + 1, params.max_epoch, (i + 1) / params.mini_batch, aligned_rnum / params.mini_batch)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - at epoch %03d / %d => stochastic gradient descent at %d / %d" , t + 1, params.max_epoch, (i + 1) / params.mini_batch, aligned_rnum / params.mini_batch); fflush(stdout); } } while (0); | |||
| 1345 | // update weights | |||
| 1346 | _ccv_convnet_update(convnet, params.mini_batch, momentum, update_params, params.layer_params); | |||
| 1347 | _ccv_convnet_update_zero(update_params); | |||
| 1348 | // compact the convnet to avoid any staled temporary resource | |||
| 1349 | ccv_convnet_compact(convnet); | |||
| 1350 | } | |||
| 1351 | } | |||
| 1352 | int miss = 0; | |||
| 1353 | for (i = 0; i < tests->rnum; i++) | |||
| 1354 | { | |||
| 1355 | FLUSH(CCV_CLI_INFO, " - at epoch %03d / %d => going through %d / %d for tests", t + 1, params.max_epoch, i + 1, tests->rnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - at epoch %03d / %d => going through %d / %d for tests" , t + 1, params.max_epoch, i + 1, tests->rnum); fflush(stdout ); } } while (0); | |||
| 1356 | ccv_categorized_t* test = (ccv_categorized_t*)ccv_array_get(tests, i)((void*)(((char*)((tests)->data)) + (size_t)(tests)->rsize * (size_t)(i))); | |||
| 1357 | int c = 0; | |||
| 1358 | _ccv_convnet_classify(convnet, &test->matrix, &c, 1); | |||
| 1359 | if (c != test->c) | |||
| 1360 | ++miss; | |||
| 1361 | } | |||
| 1362 | FLUSH(CCV_CLI_INFO, " - at epoch %03d / %d => with miss rate %.2f%%\n", t + 1, params.max_epoch, miss * 100.0f / tests->rnum)do { if ((CCV_CLI_INFO & ccv_cli_get_output_levels())) { for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf("\b"); for (_CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP++) printf(" "); for ( _CCV_PRINT_LOOP = 0; _CCV_PRINT_LOOP < _CCV_PRINT_COUNT; _CCV_PRINT_LOOP ++) printf("\b"); _CCV_PRINT_COUNT = printf(" - at epoch %03d / %d => with miss rate %.2f%%\n" , t + 1, params.max_epoch, miss * 100.0f / tests->rnum); fflush (stdout); } } while (0); | |||
| 1363 | if (t + 1 < params.max_epoch) | |||
| 1364 | { | |||
| 1365 | // reshuffle the parts we visited and move the rest to the beginning | |||
| 1366 | memcpy(idx + categorizeds->rnum, idx + aligned_rnum, sizeof(int) * aligned_padding); | |||
| 1367 | memmove(idx + aligned_padding, idx, sizeof(int) * aligned_rnum); | |||
| 1368 | memcpy(idx, idx + categorizeds->rnum, sizeof(int) * aligned_padding); | |||
| 1369 | gsl_ran_shuffle(rng, idx + aligned_padding, aligned_rnum, sizeof(int)); | |||
| 1370 | } | |||
| 1371 | } | |||
| 1372 | ccfreefree(idx); | |||
| 1373 | ccv_convnet_free(momentum); | |||
| 1374 | ccv_convnet_free(update_params); | |||
| 1375 | gsl_rng_free(rng); | |||
| 1376 | #ifdef HAVE_CUDA1 | |||
| 1377 | } | |||
| 1378 | #endif | |||
| 1379 | #else | |||
| 1380 | assert(0 && "ccv_convnet_supervised_train requires GSL library support")((void) sizeof ((0 && "ccv_convnet_supervised_train requires GSL library support" ) ? 1 : 0), __extension__ ({ if (0 && "ccv_convnet_supervised_train requires GSL library support" ) ; else __assert_fail ("0 && \"ccv_convnet_supervised_train requires GSL library support\"" , "ccv_convnet.c", 1380, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1381 | #endif | |||
| 1382 | } | |||
| 1383 | ||||
| 1384 | void ccv_convnet_compact(ccv_convnet_t* convnet) | |||
| 1385 | { | |||
| 1386 | #ifdef HAVE_CUDA1 | |||
| 1387 | cwc_convnet_compact(convnet); | |||
| 1388 | #endif | |||
| 1389 | int i; | |||
| 1390 | for (i = 0; i < convnet->count; i++) | |||
| 1391 | { | |||
| 1392 | if (convnet->acts[i]) | |||
| 1393 | ccv_matrix_free(convnet->acts[i]); | |||
| 1394 | convnet->acts[i] = 0; | |||
| 1395 | if (convnet->denoms) | |||
| 1396 | { | |||
| 1397 | if (convnet->denoms[i]) | |||
| 1398 | ccv_matrix_free(convnet->denoms[i]); | |||
| 1399 | convnet->denoms[i] = 0; | |||
| 1400 | } | |||
| 1401 | if (SIMD(convnet->layers + i)((float*)((convnet->layers + i)->reserved))) | |||
| 1402 | { | |||
| 1403 | ccfreefree(convnet->layers[i].reserved); | |||
| 1404 | convnet->layers[i].reserved = 0; | |||
| 1405 | } | |||
| 1406 | } | |||
| 1407 | } | |||
| 1408 | ||||
| 1409 | void ccv_convnet_write(ccv_convnet_t* convnet, const char* filename, ccv_convnet_write_param_t params) | |||
| 1410 | { | |||
| 1411 | sqlite3* db = 0; | |||
| 1412 | if (SQLITE_OK0 == sqlite3_open(filename, &db)) | |||
| 1413 | { | |||
| 1414 | const char layer_create_table_qs[] = | |||
| 1415 | "CREATE TABLE IF NOT EXISTS layer_params " | |||
| 1416 | "(layer INTEGER PRIMARY KEY ASC, type INTEGER, " | |||
| 1417 | "input_matrix_rows INTEGER, input_matrix_cols INTEGER, input_matrix_channels INTEGER, input_matrix_partition INTEGER, input_node_count INTEGER, " | |||
| 1418 | "output_rows INTEGER, output_cols INTEGER, output_channels INTEGER, output_partition INTEGER, output_count INTEGER, output_strides INTEGER, output_border INTEGER, " | |||
| 1419 | "output_size INTEGER, output_kappa REAL, output_alpha REAL, output_beta REAL, output_relu INTEGER);" | |||
| 1420 | "CREATE TABLE IF NOT EXISTS convnet_params " | |||
| 1421 | "(convnet INTEGER PRIMARY KEY ASC, input_height INTEGER, input_width INTEGER, mean_activity BLOB);" | |||
| 1422 | "CREATE TABLE IF NOT EXISTS layer_data " | |||
| 1423 | "(layer INTEGER PRIMARY KEY ASC, weight BLOB, bias BLOB, half_precision INTEGER);"; | |||
| 1424 | assert(SQLITE_OK == sqlite3_exec(db, layer_create_table_qs, 0, 0, 0))((void) sizeof ((0 == sqlite3_exec(db, layer_create_table_qs, 0, 0, 0)) ? 1 : 0), __extension__ ({ if (0 == sqlite3_exec(db , layer_create_table_qs, 0, 0, 0)) ; else __assert_fail ("SQLITE_OK == sqlite3_exec(db, layer_create_table_qs, 0, 0, 0)" , "ccv_convnet.c", 1424, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1425 | const char layer_params_insert_qs[] = | |||
| 1426 | "REPLACE INTO layer_params " | |||
| 1427 | "(layer, type, " | |||
| 1428 | "input_matrix_rows, input_matrix_cols, input_matrix_channels, input_matrix_partition, input_node_count, " | |||
| 1429 | "output_rows, output_cols, output_channels, output_partition, output_count, output_strides, output_border, " | |||
| 1430 | "output_size, output_kappa, output_alpha, output_beta, output_relu) VALUES " | |||
| 1431 | "($layer, $type, " // 1 | |||
| 1432 | "$input_matrix_rows, $input_matrix_cols, $input_matrix_channels, $input_matrix_partition, $input_node_count, " // 6 | |||
| 1433 | "$output_rows, $output_cols, $output_channels, $output_partition, $output_count, $output_strides, $output_border, " // 13 | |||
| 1434 | "$output_size, $output_kappa, $output_alpha, $output_beta, $output_relu);"; // 18 | |||
| 1435 | sqlite3_stmt* layer_params_insert_stmt = 0; | |||
| 1436 | assert(SQLITE_OK == sqlite3_prepare_v2(db, layer_params_insert_qs, sizeof(layer_params_insert_qs), &layer_params_insert_stmt, 0))((void) sizeof ((0 == sqlite3_prepare_v2(db, layer_params_insert_qs , sizeof(layer_params_insert_qs), &layer_params_insert_stmt , 0)) ? 1 : 0), __extension__ ({ if (0 == sqlite3_prepare_v2( db, layer_params_insert_qs, sizeof(layer_params_insert_qs), & layer_params_insert_stmt, 0)) ; else __assert_fail ("SQLITE_OK == sqlite3_prepare_v2(db, layer_params_insert_qs, sizeof(layer_params_insert_qs), &layer_params_insert_stmt, 0)" , "ccv_convnet.c", 1436, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1437 | const char layer_data_insert_qs[] = | |||
| 1438 | "REPLACE INTO layer_data " | |||
| 1439 | "(layer, weight, bias, half_precision) VALUES ($layer, $weight, $bias, $half_precision);"; | |||
| 1440 | sqlite3_stmt* layer_data_insert_stmt = 0; | |||
| 1441 | assert(SQLITE_OK == sqlite3_prepare_v2(db, layer_data_insert_qs, sizeof(layer_data_insert_qs), &layer_data_insert_stmt, 0))((void) sizeof ((0 == sqlite3_prepare_v2(db, layer_data_insert_qs , sizeof(layer_data_insert_qs), &layer_data_insert_stmt, 0 )) ? 1 : 0), __extension__ ({ if (0 == sqlite3_prepare_v2(db, layer_data_insert_qs, sizeof(layer_data_insert_qs), &layer_data_insert_stmt , 0)) ; else __assert_fail ("SQLITE_OK == sqlite3_prepare_v2(db, layer_data_insert_qs, sizeof(layer_data_insert_qs), &layer_data_insert_stmt, 0)" , "ccv_convnet.c", 1441, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1442 | int i; | |||
| 1443 | for (i = 0; i < convnet->count; i++) | |||
| 1444 | { | |||
| 1445 | ccv_convnet_layer_t* layer = convnet->layers + i; | |||
| 1446 | // insert layer params | |||
| 1447 | sqlite3_bind_int(layer_params_insert_stmt, 1, i); | |||
| 1448 | sqlite3_bind_int(layer_params_insert_stmt, 2, layer->type); | |||
| 1449 | sqlite3_bind_int(layer_params_insert_stmt, 3, layer->input.matrix.rows); | |||
| 1450 | sqlite3_bind_int(layer_params_insert_stmt, 4, layer->input.matrix.cols); | |||
| 1451 | sqlite3_bind_int(layer_params_insert_stmt, 5, layer->input.matrix.channels); | |||
| 1452 | sqlite3_bind_int(layer_params_insert_stmt, 6, layer->input.matrix.partition); | |||
| 1453 | sqlite3_bind_int(layer_params_insert_stmt, 7, layer->input.node.count); | |||
| 1454 | switch (layer->type) | |||
| 1455 | { | |||
| 1456 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1457 | sqlite3_bind_int(layer_params_insert_stmt, 8, layer->net.convolutional.rows); | |||
| 1458 | sqlite3_bind_int(layer_params_insert_stmt, 9, layer->net.convolutional.cols); | |||
| 1459 | sqlite3_bind_int(layer_params_insert_stmt, 10, layer->net.convolutional.channels); | |||
| 1460 | sqlite3_bind_int(layer_params_insert_stmt, 11, layer->net.convolutional.partition); | |||
| 1461 | sqlite3_bind_int(layer_params_insert_stmt, 12, layer->net.convolutional.count); | |||
| 1462 | sqlite3_bind_int(layer_params_insert_stmt, 13, layer->net.convolutional.strides); | |||
| 1463 | sqlite3_bind_int(layer_params_insert_stmt, 14, layer->net.convolutional.border); | |||
| 1464 | break; | |||
| 1465 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1466 | sqlite3_bind_int(layer_params_insert_stmt, 12, layer->net.full_connect.count); | |||
| 1467 | sqlite3_bind_int(layer_params_insert_stmt, 19, layer->net.full_connect.relu); | |||
| 1468 | break; | |||
| 1469 | case CCV_CONVNET_MAX_POOL: | |||
| 1470 | case CCV_CONVNET_AVERAGE_POOL: | |||
| 1471 | sqlite3_bind_int(layer_params_insert_stmt, 13, layer->net.pool.strides); | |||
| 1472 | sqlite3_bind_int(layer_params_insert_stmt, 14, layer->net.pool.border); | |||
| 1473 | sqlite3_bind_int(layer_params_insert_stmt, 15, layer->net.pool.size); | |||
| 1474 | break; | |||
| 1475 | case CCV_CONVNET_LOCAL_RESPONSE_NORM: | |||
| 1476 | sqlite3_bind_int(layer_params_insert_stmt, 15, layer->net.rnorm.size); | |||
| 1477 | sqlite3_bind_double(layer_params_insert_stmt, 16, layer->net.rnorm.kappa); | |||
| 1478 | sqlite3_bind_double(layer_params_insert_stmt, 17, layer->net.rnorm.alpha); | |||
| 1479 | sqlite3_bind_double(layer_params_insert_stmt, 18, layer->net.rnorm.beta); | |||
| 1480 | break; | |||
| 1481 | } | |||
| 1482 | assert(SQLITE_DONE == sqlite3_step(layer_params_insert_stmt))((void) sizeof ((101 == sqlite3_step(layer_params_insert_stmt )) ? 1 : 0), __extension__ ({ if (101 == sqlite3_step(layer_params_insert_stmt )) ; else __assert_fail ("SQLITE_DONE == sqlite3_step(layer_params_insert_stmt)" , "ccv_convnet.c", 1482, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1483 | sqlite3_reset(layer_params_insert_stmt); | |||
| 1484 | sqlite3_clear_bindings(layer_params_insert_stmt); | |||
| 1485 | // insert layer data | |||
| 1486 | if (layer->type == CCV_CONVNET_CONVOLUTIONAL || layer->type == CCV_CONVNET_FULL_CONNECT) | |||
| 1487 | { | |||
| 1488 | sqlite3_bind_int(layer_data_insert_stmt, 1, i); | |||
| 1489 | if (params.half_precision) | |||
| 1490 | { | |||
| 1491 | uint16_t* w = (uint16_t*)ccmallocmalloc(sizeof(uint16_t) * layer->wnum); | |||
| 1492 | ccv_float_to_half_precision(layer->w, w, layer->wnum); | |||
| 1493 | uint16_t* bias = (uint16_t*)ccmallocmalloc(sizeof(uint16_t) * (layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count)); | |||
| 1494 | ccv_float_to_half_precision(layer->bias, bias, layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count); | |||
| 1495 | sqlite3_bind_blob(layer_data_insert_stmt, 2, w, sizeof(uint16_t) * layer->wnum, ccfreefree); | |||
| 1496 | sqlite3_bind_blob(layer_data_insert_stmt, 3, bias, sizeof(uint16_t) * (layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count), ccfreefree); | |||
| 1497 | } else { | |||
| 1498 | sqlite3_bind_blob(layer_data_insert_stmt, 2, layer->w, sizeof(float) * layer->wnum, SQLITE_STATIC((sqlite3_destructor_type)0)); | |||
| 1499 | sqlite3_bind_blob(layer_data_insert_stmt, 3, layer->bias, sizeof(float) * (layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count), SQLITE_STATIC((sqlite3_destructor_type)0)); | |||
| 1500 | } | |||
| 1501 | sqlite3_bind_int(layer_data_insert_stmt, 4, params.half_precision); | |||
| 1502 | assert(SQLITE_DONE == sqlite3_step(layer_data_insert_stmt))((void) sizeof ((101 == sqlite3_step(layer_data_insert_stmt)) ? 1 : 0), __extension__ ({ if (101 == sqlite3_step(layer_data_insert_stmt )) ; else __assert_fail ("SQLITE_DONE == sqlite3_step(layer_data_insert_stmt)" , "ccv_convnet.c", 1502, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1503 | sqlite3_reset(layer_data_insert_stmt); | |||
| 1504 | sqlite3_clear_bindings(layer_data_insert_stmt); | |||
| 1505 | } | |||
| 1506 | } | |||
| 1507 | // insert convnet related params | |||
| 1508 | const char convnet_params_insert_qs[] = | |||
| 1509 | "REPLACE INTO convnet_params " | |||
| 1510 | "(convnet, mean_activity, input_height, input_width) VALUES (0, $mean_activity, $input_height, $input_width);"; | |||
| 1511 | sqlite3_stmt* convnet_params_insert_stmt = 0; | |||
| 1512 | assert(SQLITE_OK == sqlite3_prepare_v2(db, convnet_params_insert_qs, sizeof(convnet_params_insert_qs), &convnet_params_insert_stmt, 0))((void) sizeof ((0 == sqlite3_prepare_v2(db, convnet_params_insert_qs , sizeof(convnet_params_insert_qs), &convnet_params_insert_stmt , 0)) ? 1 : 0), __extension__ ({ if (0 == sqlite3_prepare_v2( db, convnet_params_insert_qs, sizeof(convnet_params_insert_qs ), &convnet_params_insert_stmt, 0)) ; else __assert_fail ( "SQLITE_OK == sqlite3_prepare_v2(db, convnet_params_insert_qs, sizeof(convnet_params_insert_qs), &convnet_params_insert_stmt, 0)" , "ccv_convnet.c", 1512, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1513 | assert(convnet->mean_activity->rows == convnet->input.height)((void) sizeof ((convnet->mean_activity->rows == convnet ->input.height) ? 1 : 0), __extension__ ({ if (convnet-> mean_activity->rows == convnet->input.height) ; else __assert_fail ("convnet->mean_activity->rows == convnet->input.height" , "ccv_convnet.c", 1513, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1514 | assert(convnet->mean_activity->cols == convnet->input.width)((void) sizeof ((convnet->mean_activity->cols == convnet ->input.width) ? 1 : 0), __extension__ ({ if (convnet-> mean_activity->cols == convnet->input.width) ; else __assert_fail ("convnet->mean_activity->cols == convnet->input.width" , "ccv_convnet.c", 1514, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1515 | assert(CCV_GET_CHANNEL(convnet->mean_activity->type) == convnet->channels)((void) sizeof ((((convnet->mean_activity->type) & 0xFFF ) == convnet->channels) ? 1 : 0), __extension__ ({ if (((convnet ->mean_activity->type) & 0xFFF) == convnet->channels ) ; else __assert_fail ("CCV_GET_CHANNEL(convnet->mean_activity->type) == convnet->channels" , "ccv_convnet.c", 1515, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1516 | assert(CCV_GET_DATA_TYPE(convnet->mean_activity->type) == CCV_32F)((void) sizeof ((((convnet->mean_activity->type) & 0xFF000 ) == CCV_32F) ? 1 : 0), __extension__ ({ if (((convnet->mean_activity ->type) & 0xFF000) == CCV_32F) ; else __assert_fail ("CCV_GET_DATA_TYPE(convnet->mean_activity->type) == CCV_32F" , "ccv_convnet.c", 1516, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1517 | sqlite3_bind_blob(convnet_params_insert_stmt, 1, convnet->mean_activity->data.f32, sizeof(float) * convnet->input.height * convnet->input.width * convnet->channels, SQLITE_STATIC((sqlite3_destructor_type)0)); | |||
| 1518 | sqlite3_bind_int(convnet_params_insert_stmt, 2, convnet->input.height); | |||
| 1519 | sqlite3_bind_int(convnet_params_insert_stmt, 3, convnet->input.width); | |||
| 1520 | assert(SQLITE_DONE == sqlite3_step(convnet_params_insert_stmt))((void) sizeof ((101 == sqlite3_step(convnet_params_insert_stmt )) ? 1 : 0), __extension__ ({ if (101 == sqlite3_step(convnet_params_insert_stmt )) ; else __assert_fail ("SQLITE_DONE == sqlite3_step(convnet_params_insert_stmt)" , "ccv_convnet.c", 1520, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1521 | sqlite3_reset(convnet_params_insert_stmt); | |||
| 1522 | sqlite3_clear_bindings(convnet_params_insert_stmt); | |||
| 1523 | ||||
| 1524 | sqlite3_finalize(layer_params_insert_stmt); | |||
| 1525 | sqlite3_finalize(layer_data_insert_stmt); | |||
| 1526 | sqlite3_finalize(convnet_params_insert_stmt); | |||
| 1527 | sqlite3_close(db); | |||
| 1528 | } | |||
| 1529 | } | |||
| 1530 | ||||
| 1531 | ccv_convnet_t* ccv_convnet_read(int use_cwc_accel, const char* filename) | |||
| 1532 | { | |||
| 1533 | sqlite3* db = 0; | |||
| 1534 | if (SQLITE_OK0 == sqlite3_open(filename, &db)) | |||
| 1535 | { | |||
| 1536 | ccv_convnet_t* convnet = 0; | |||
| 1537 | sqlite3_stmt* layer_params_stmt = 0; | |||
| 1538 | // load layer params | |||
| 1539 | const char layer_params_qs[] = | |||
| 1540 | "SELECT type, " // 1 | |||
| 1541 | "input_matrix_rows, input_matrix_cols, input_matrix_channels, input_matrix_partition, input_node_count, " // 6 | |||
| 1542 | "output_rows, output_cols, output_channels, output_partition, output_count, output_strides, output_border, " // 13 | |||
| 1543 | "output_size, output_kappa, output_alpha, output_beta, output_relu FROM layer_params ORDER BY layer ASC;"; // 18 | |||
| 1544 | if (SQLITE_OK0 == sqlite3_prepare_v2(db, layer_params_qs, sizeof(layer_params_qs), &layer_params_stmt, 0)) | |||
| 1545 | { | |||
| 1546 | ccv_array_t* layer_params = ccv_array_new(sizeof(ccv_convnet_layer_param_t), 3, 0); | |||
| 1547 | while (sqlite3_step(layer_params_stmt) == SQLITE_ROW100) | |||
| 1548 | { | |||
| 1549 | ccv_convnet_layer_param_t layer_param; | |||
| 1550 | layer_param.type = sqlite3_column_int(layer_params_stmt, 0); | |||
| 1551 | layer_param.input.matrix.rows = sqlite3_column_int(layer_params_stmt, 1); | |||
| 1552 | layer_param.input.matrix.cols = sqlite3_column_int(layer_params_stmt, 2); | |||
| 1553 | layer_param.input.matrix.channels = sqlite3_column_int(layer_params_stmt, 3); | |||
| 1554 | layer_param.input.matrix.partition = sqlite3_column_int(layer_params_stmt, 4); | |||
| 1555 | layer_param.input.node.count = sqlite3_column_int(layer_params_stmt, 5); | |||
| 1556 | layer_param.bias = layer_param.glorot = 0; // this is irrelevant to read convnet | |||
| 1557 | switch (layer_param.type) | |||
| 1558 | { | |||
| 1559 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1560 | layer_param.output.convolutional.rows = sqlite3_column_int(layer_params_stmt, 6); | |||
| 1561 | layer_param.output.convolutional.cols = sqlite3_column_int(layer_params_stmt, 7); | |||
| 1562 | layer_param.output.convolutional.channels = sqlite3_column_int(layer_params_stmt, 8); | |||
| 1563 | layer_param.output.convolutional.partition = sqlite3_column_int(layer_params_stmt, 9); | |||
| 1564 | layer_param.output.convolutional.count = sqlite3_column_int(layer_params_stmt, 10); | |||
| 1565 | layer_param.output.convolutional.strides = sqlite3_column_int(layer_params_stmt, 11); | |||
| 1566 | layer_param.output.convolutional.border = sqlite3_column_int(layer_params_stmt, 12); | |||
| 1567 | break; | |||
| 1568 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1569 | layer_param.output.full_connect.count = sqlite3_column_int(layer_params_stmt, 10); | |||
| 1570 | layer_param.output.full_connect.relu = sqlite3_column_int(layer_params_stmt, 17); | |||
| 1571 | break; | |||
| 1572 | case CCV_CONVNET_MAX_POOL: | |||
| 1573 | case CCV_CONVNET_AVERAGE_POOL: | |||
| 1574 | layer_param.output.pool.strides = sqlite3_column_int(layer_params_stmt, 11); | |||
| 1575 | layer_param.output.pool.border = sqlite3_column_int(layer_params_stmt, 12); | |||
| 1576 | layer_param.output.pool.size = sqlite3_column_int(layer_params_stmt, 13); | |||
| 1577 | break; | |||
| 1578 | case CCV_CONVNET_LOCAL_RESPONSE_NORM: | |||
| 1579 | layer_param.output.rnorm.size = sqlite3_column_int(layer_params_stmt, 13); | |||
| 1580 | layer_param.output.rnorm.kappa = sqlite3_column_double(layer_params_stmt, 14); | |||
| 1581 | layer_param.output.rnorm.alpha = sqlite3_column_double(layer_params_stmt, 15); | |||
| 1582 | layer_param.output.rnorm.beta = sqlite3_column_double(layer_params_stmt, 16); | |||
| 1583 | break; | |||
| 1584 | } | |||
| 1585 | ccv_array_push(layer_params, &layer_param); | |||
| 1586 | } | |||
| 1587 | sqlite3_finalize(layer_params_stmt); | |||
| 1588 | sqlite3_stmt* convnet_params_input_stmt = 0; | |||
| 1589 | // load convnet params for input | |||
| 1590 | const char convnet_params_input_qs[] = | |||
| 1591 | "SELECT input_height, input_width FROM convnet_params WHERE convnet = 0;"; | |||
| 1592 | ccv_size_t input = ccv_size(0, 0); | |||
| 1593 | if (SQLITE_OK0 == sqlite3_prepare_v2(db, convnet_params_input_qs, sizeof(convnet_params_input_qs), &convnet_params_input_stmt, 0)) | |||
| 1594 | { | |||
| 1595 | if (sqlite3_step(convnet_params_input_stmt) == SQLITE_ROW100) | |||
| 1596 | { | |||
| 1597 | input.height = sqlite3_column_int(convnet_params_input_stmt, 0); | |||
| 1598 | input.width = sqlite3_column_int(convnet_params_input_stmt, 1); | |||
| 1599 | } | |||
| 1600 | sqlite3_finalize(convnet_params_input_stmt); | |||
| 1601 | } | |||
| 1602 | assert(input.height != 0 && input.width != 0)((void) sizeof ((input.height != 0 && input.width != 0 ) ? 1 : 0), __extension__ ({ if (input.height != 0 && input.width != 0) ; else __assert_fail ("input.height != 0 && input.width != 0" , "ccv_convnet.c", 1602, __extension__ __PRETTY_FUNCTION__); } )); | |||
| 1603 | convnet = ccv_convnet_new(use_cwc_accel, input, (ccv_convnet_layer_param_t*)ccv_array_get(layer_params, 0)((void*)(((char*)((layer_params)->data)) + (size_t)(layer_params )->rsize * (size_t)(0))), layer_params->rnum); | |||
| 1604 | ccv_array_free(layer_params); | |||
| 1605 | // load layer data | |||
| 1606 | sqlite3_stmt* layer_data_stmt = 0; | |||
| 1607 | const char layer_data_qs[] = | |||
| 1608 | "SELECT layer, weight, bias, half_precision FROM layer_data;"; | |||
| 1609 | if (SQLITE_OK0 == sqlite3_prepare_v2(db, layer_data_qs, sizeof(layer_data_qs), &layer_data_stmt, 0)) | |||
| 1610 | { | |||
| 1611 | while (sqlite3_step(layer_data_stmt) == SQLITE_ROW100) | |||
| 1612 | { | |||
| 1613 | ccv_convnet_layer_t* layer = convnet->layers + sqlite3_column_int(layer_data_stmt, 0); | |||
| 1614 | int half_precision = sqlite3_column_int(layer_data_stmt, 3); | |||
| 1615 | int wnum = sqlite3_column_bytes(layer_data_stmt, 1) / (half_precision ? sizeof(uint16_t) : sizeof(float)); | |||
| 1616 | // if weights available, load weights | |||
| 1617 | if (wnum == layer->wnum) | |||
| 1618 | { | |||
| 1619 | const void* w = sqlite3_column_blob(layer_data_stmt, 1); | |||
| 1620 | if (half_precision) | |||
| 1621 | { | |||
| 1622 | float* f = (float*)ccmallocmalloc(sizeof(float) * layer->wnum); | |||
| 1623 | ccv_half_precision_to_float((uint16_t*)w, f, layer->wnum); | |||
| 1624 | w = f; | |||
| 1625 | } | |||
| 1626 | switch (layer->type) | |||
| 1627 | { | |||
| 1628 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1629 | memcpy(layer->w, w, sizeof(float) * layer->wnum); | |||
| 1630 | break; | |||
| 1631 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1632 | memcpy(layer->w, w, sizeof(float) * layer->wnum); | |||
| 1633 | break; | |||
| 1634 | } | |||
| 1635 | if (half_precision) | |||
| 1636 | ccfreefree((void*)w); | |||
| 1637 | } | |||
| 1638 | int bnum = sqlite3_column_bytes(layer_data_stmt, 2) / (half_precision ? sizeof(uint16_t) : sizeof(float)); | |||
| 1639 | // if bias available, load bias | |||
| 1640 | if (bnum == (layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count)) | |||
| 1641 | { | |||
| 1642 | const void* bias = sqlite3_column_blob(layer_data_stmt, 2); | |||
| 1643 | if (half_precision) | |||
| 1644 | { | |||
| 1645 | float* f = (float*)ccmallocmalloc(sizeof(float) * (layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count)); | |||
| 1646 | ccv_half_precision_to_float((uint16_t*)bias, f, layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->net.full_connect.count); | |||
| 1647 | bias = f; | |||
| 1648 | } | |||
| 1649 | switch (layer->type) | |||
| 1650 | { | |||
| 1651 | case CCV_CONVNET_CONVOLUTIONAL: | |||
| 1652 | memcpy(layer->bias, bias, sizeof(float) * layer->net.convolutional.count); | |||
| 1653 | break; | |||
| 1654 | case CCV_CONVNET_FULL_CONNECT: | |||
| 1655 | memcpy(layer->bias, bias, sizeof(float) * layer->net.full_connect.count); | |||
| 1656 | break; | |||
| 1657 | } | |||
| 1658 | if (half_precision) | |||
| 1659 | ccfreefree((void*)bias); | |||
| 1660 | } | |||
| 1661 | } | |||
| 1662 | sqlite3_finalize(layer_data_stmt); | |||
| 1663 | } | |||
| 1664 | sqlite3_stmt* convnet_params_mean_activity_stmt = 0; | |||
| 1665 | // load convnet params for mean activity | |||
| 1666 | const char convnet_params_mean_activity_qs[] = | |||
| 1667 | "SELECT mean_activity FROM convnet_params WHERE convnet = 0;"; | |||
| 1668 | if (SQLITE_OK0 == sqlite3_prepare_v2(db, convnet_params_mean_activity_qs, sizeof(convnet_params_mean_activity_qs), &convnet_params_mean_activity_stmt, 0)) | |||
| 1669 | { | |||
| 1670 | if (sqlite3_step(convnet_params_mean_activity_stmt) == SQLITE_ROW100) | |||
| 1671 | { | |||
| 1672 | int elems = sqlite3_column_bytes(convnet_params_mean_activity_stmt, 0) / sizeof(float); | |||
| 1673 | if (elems == convnet->input.height * convnet->input.width * convnet->channels) | |||
| 1674 | memcpy(convnet->mean_activity->data.f32, sqlite3_column_blob(convnet_params_mean_activity_stmt, 0), sizeof(float) * elems); | |||
| 1675 | } | |||
| 1676 | sqlite3_finalize(convnet_params_mean_activity_stmt); | |||
| 1677 | } | |||
| 1678 | } | |||
| 1679 | sqlite3_close(db); | |||
| 1680 | return convnet; | |||
| 1681 | } | |||
| 1682 | return 0; | |||
| 1683 | } | |||
| 1684 | ||||
| 1685 | void ccv_convnet_input_formation(ccv_size_t input, ccv_dense_matrix_t* a, ccv_dense_matrix_t** b) | |||
| 1686 | { | |||
| 1687 | if (a->rows > input.height && a->cols > input.width) | |||
| 1688 | ccv_resample(a, b, CCV_32F, (double)ccv_max(input.height, (int)(a->rows * (float)input.height / a->cols + 0.5))({ typeof (input.height) _a = (input.height); typeof ((int)(a ->rows * (float)input.height / a->cols + 0.5)) _b = ((int )(a->rows * (float)input.height / a->cols + 0.5)); (_a > _b) ? _a : _b; }) / (double)a->rows, (double)ccv_max(input.width, (int)(a->cols * (float)input.width / a->rows + 0.5))({ typeof (input.width) _a = (input.width); typeof ((int)(a-> cols * (float)input.width / a->rows + 0.5)) _b = ((int)(a-> cols * (float)input.width / a->rows + 0.5)); (_a > _b) ? _a : _b; }) / (double)a->cols, CCV_INTER_AREA); | |||
| 1689 | else if (a->rows < input.height || a->cols < input.width) | |||
| 1690 | ccv_resample(a, b, CCV_32F, (double)ccv_max(input.height, (int)(a->rows * (float)input.height / a->cols + 0.5))({ typeof (input.height) _a = (input.height); typeof ((int)(a ->rows * (float)input.height / a->cols + 0.5)) _b = ((int )(a->rows * (float)input.height / a->cols + 0.5)); (_a > _b) ? _a : _b; }) / (double)a->rows, (double)ccv_max(input.width, (int)(a->cols * (float)input.width / a->rows + 0.5))({ typeof (input.width) _a = (input.width); typeof ((int)(a-> cols * (float)input.width / a->rows + 0.5)) _b = ((int)(a-> cols * (float)input.width / a->rows + 0.5)); (_a > _b) ? _a : _b; }) / (double)a->cols, CCV_INTER_CUBIC); | |||
| 1691 | else | |||
| 1692 | ccv_shift(a, (ccv_matrix_t**)b, CCV_32F, 0, 0); // converting to 32f | |||
| 1693 | } | |||
| 1694 | ||||
| 1695 | void ccv_convnet_free(ccv_convnet_t* convnet) | |||
| 1696 | { | |||
| 1697 | ccv_convnet_compact(convnet); | |||
| 1698 | int i; | |||
| 1699 | for (i = 0; i < convnet->count; i++) | |||
| 1700 | if (convnet->layers[i].w) | |||
| 1701 | ccfreefree(convnet->layers[i].w); | |||
| 1702 | if (convnet->mean_activity) | |||
| 1703 | ccv_matrix_free(convnet->mean_activity); | |||
| 1704 | ccfreefree(convnet); | |||
| 1705 | } | |||
| 1706 | ||||
| 1707 | #endif |