/home/liu/actions-runner/_work/ccv/ccv/test/unit/convnet.tests.c
Line | Count | Source |
1 | | #include "ccv.h" |
2 | | #include "case.h" |
3 | | #include "ccv_case.h" |
4 | | #include "3rdparty/dsfmt/dSFMT.h" |
5 | | |
6 | | TEST_CASE("convolutional network of 11x11 on 225x225 with uniform weights") |
7 | 1 | { |
8 | 1 | ccv_convnet_layer_param_t params = { |
9 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
10 | 1 | .bias = 0, |
11 | 1 | .glorot = sqrtf(2), |
12 | 1 | .input = { |
13 | 1 | .matrix = { |
14 | 1 | .rows = 225, |
15 | 1 | .cols = 225, |
16 | 1 | .channels = 3, |
17 | 1 | .partition = 1, |
18 | 1 | }, |
19 | 1 | }, |
20 | 1 | .output = { |
21 | 1 | .convolutional = { |
22 | 1 | .count = 4, |
23 | 1 | .strides = 4, |
24 | 1 | .border = 1, |
25 | 1 | .rows = 11, |
26 | 1 | .cols = 11, |
27 | 1 | .channels = 3, |
28 | 1 | .partition = 1, |
29 | 1 | }, |
30 | 1 | }, |
31 | 1 | }; |
32 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(225, 225), ¶ms, 1); |
33 | 1 | int i, x, y; |
34 | 1.45k | for (i = 0; i < 11 * 11 * 3 * 4; i++1.45k ) |
35 | 1.45k | convnet->layers[0].w[i] = 1; |
36 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(225, 225, CCV_32F | CCV_C3, 0, 0); |
37 | 151k | for (i = 0; i < 225 * 225 * 3; i++151k ) |
38 | 151k | a->data.f32[i] = 1; |
39 | 1 | ccv_dense_matrix_t* b = 0; |
40 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
41 | 1 | ccv_matrix_free(a); |
42 | 1 | REQUIRE(b->rows == 55 && b->cols == 55, "11x11 convolves on 225x255 with strides 4 should produce 55x55 matrix"); |
43 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(55, 55, CCV_32F | 4, 0, 0); |
44 | 56 | for (y = 0; y < 55; y++55 ) |
45 | 3.08k | for (x = 0; 55 x < 55; x++3.02k ) |
46 | 15.1k | for (i = 0; 3.02k i < 4; i++12.1k ) |
47 | 12.1k | c->data.f32[(y * 55 + x) * 4 + i] = ((x == 0 && y == 0220 ) || (12.0k x == 012.0k && y == 54216 ) || (12.0k x == 5412.0k && y == 0220 ) || (12.0k x == 5412.0k && y == 54216 )) ? 30016 : (12.0k (12.0k x == 012.0k || y == 011.8k || x == 5411.6k || y == 5411.4k ) ? 330848 : 36311.2k ); |
48 | 1 | REQUIRE_MATRIX_EQ(b, c, "55x55 matrix should be exactly a matrix fill 363, with 300 on the corner and 330 on the border"); |
49 | 1 | ccv_matrix_free(b); |
50 | 1 | ccv_matrix_free(c); |
51 | 1 | ccv_convnet_free(convnet); |
52 | 1 | } |
53 | | |
54 | | TEST_CASE("convolutional network of 5x5 on 27x27 with uniform weights") |
55 | 1 | { |
56 | 1 | ccv_convnet_layer_param_t params = { |
57 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
58 | 1 | .bias = 0, |
59 | 1 | .glorot = sqrtf(2), |
60 | 1 | .input = { |
61 | 1 | .matrix = { |
62 | 1 | .rows = 27, |
63 | 1 | .cols = 27, |
64 | 1 | .channels = 1, |
65 | 1 | .partition = 1, |
66 | 1 | }, |
67 | 1 | }, |
68 | 1 | .output = { |
69 | 1 | .convolutional = { |
70 | 1 | .count = 4, |
71 | 1 | .strides = 1, |
72 | 1 | .border = 2, |
73 | 1 | .rows = 5, |
74 | 1 | .cols = 5, |
75 | 1 | .channels = 1, |
76 | 1 | .partition = 1, |
77 | 1 | }, |
78 | 1 | }, |
79 | 1 | }; |
80 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(27, 27), ¶ms, 1); |
81 | 1 | int i, x, y; |
82 | 101 | for (i = 0; i < 5 * 5 * 4; i++100 ) |
83 | 100 | convnet->layers->w[i] = 1; |
84 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(27, 27, CCV_32F | CCV_C1, 0, 0); |
85 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
86 | 729 | a->data.f32[i] = 1; |
87 | 1 | ccv_dense_matrix_t* b = 0; |
88 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
89 | 1 | REQUIRE(b->rows == 27 && b->cols == 27, "5x5 convolves on 27x27 with border 2 should produce 27x27 matrix"); |
90 | 1 | ccv_matrix_free(a); |
91 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(27, 27, CCV_32F | 4, 0, 0); |
92 | 28 | for (y = 0; y < 27; y++27 ) |
93 | 756 | for (x = 0; 27 x < 27; x++729 ) |
94 | 3.64k | for (i = 0; 729 i < 4; i++2.91k ) |
95 | 2.91k | { |
96 | 2.91k | if ((x == 0 && y == 0108 ) || (2.91k x == 02.91k && y == 26104 ) || (2.90k x == 262.90k && y == 0108 ) || (2.90k x == 262.90k && y == 26104 )) |
97 | 16 | c->data.f32[(y * 27 + x) * 4 + i] = 9; |
98 | 2.90k | else if ((x == 0 && y == 1100 ) || (2.89k x == 02.89k && y == 2596 ) || (2.89k x == 12.89k && y == 0108 ) || (2.88k x == 12.88k && y == 26104 ) || (2.88k x == 252.88k && y == 0108 ) || (2.88k x == 252.88k && y == 26104 ) || (2.87k x == 262.87k && y == 1100 ) || (2.87k x == 262.87k && y == 2596 )) |
99 | 32 | c->data.f32[(y * 27 + x) * 4 + i] = 12; |
100 | 2.86k | else if (x == 0 || y == 02.77k || x == 262.68k || y == 262.59k ) |
101 | 368 | c->data.f32[(y * 27 + x) * 4 + i] = 15; |
102 | 2.50k | else if ((x == 1 && y == 1100 ) || (2.49k x == 12.49k && y == 2596 ) || (2.49k x == 252.49k && y == 1100 ) || (2.48k x == 252.48k && y == 2596 )) |
103 | 16 | c->data.f32[(y * 27 + x) * 4 + i] = 16; |
104 | 2.48k | else if (x == 1 || y == 12.39k || x == 252.30k || y == 252.20k ) |
105 | 368 | c->data.f32[(y * 27 + x) * 4 + i] = 20; |
106 | 2.11k | else |
107 | 2.11k | c->data.f32[(y * 27 + x) * 4 + i] = 25; |
108 | 2.91k | } |
109 | 1 | REQUIRE_MATRIX_EQ(b, c, "27x27 matrix should be exactly a matrix fill 25, with 9, 16 on the corner and 12, 15, 20 on the border"); |
110 | 1 | ccv_matrix_free(b); |
111 | 1 | ccv_matrix_free(c); |
112 | 1 | ccv_convnet_free(convnet); |
113 | 1 | } |
114 | | |
115 | | TEST_CASE("convolutional network of 11x11 on 225x225 with non-uniform weights") |
116 | 1 | { |
117 | 1 | ccv_convnet_layer_param_t params = { |
118 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
119 | 1 | .bias = 0, |
120 | 1 | .glorot = sqrtf(2), |
121 | 1 | .input = { |
122 | 1 | .matrix = { |
123 | 1 | .rows = 225, |
124 | 1 | .cols = 225, |
125 | 1 | .channels = 1, |
126 | 1 | .partition = 1, |
127 | 1 | }, |
128 | 1 | }, |
129 | 1 | .output = { |
130 | 1 | .convolutional = { |
131 | 1 | .count = 4, |
132 | 1 | .strides = 4, |
133 | 1 | .border = 1, |
134 | 1 | .rows = 11, |
135 | 1 | .cols = 11, |
136 | 1 | .channels = 1, |
137 | 1 | .partition = 1, |
138 | 1 | }, |
139 | 1 | }, |
140 | 1 | }; |
141 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(225, 225), ¶ms, 1); |
142 | 1 | int i, x, y; |
143 | 5 | for (x = 0; x < 4; x++4 ) |
144 | 488 | for (i = 0; 4 i < 11 * 11; i++484 ) |
145 | 484 | convnet->layers[0].w[x * 11 * 11 + i] = i + 1; |
146 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(225, 225, CCV_32F | CCV_C1, 0, 0); |
147 | 50.6k | for (i = 0; i < 225 * 225; i++50.6k ) |
148 | 50.6k | a->data.f32[i] = i + 1; |
149 | 1 | ccv_dense_matrix_t* b = 0; |
150 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
151 | 1 | ccv_matrix_free(a); |
152 | 1 | REQUIRE(b->rows == 55 && b->cols == 55, "11x11 convolves on 225x255 with strides 4 should produce 55x55 matrix"); |
153 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(55, 55, CCV_32F | 4, 0, 0); |
154 | 1 | float sum = 0; |
155 | | // first column |
156 | 11 | for (y = 0; y < 10; y++10 ) |
157 | 110 | for (x = 0; 10 x < 10; x++100 ) |
158 | 100 | sum += ((y + 1) * 11 + x + 2) * (y * 225 + x + 1); |
159 | 5 | for (i = 0; i < 4; i++4 ) |
160 | 4 | c->data.f32[i] = sum; |
161 | 1 | sum = 0; |
162 | 11 | for (y = 0; y < 10; y++10 ) |
163 | 120 | for (x = 0; 10 x < 11; x++110 ) |
164 | 110 | sum += ((y + 1) * 11 + x + 1) * (y * 225 + (x + 3) + 1); |
165 | 54 | for (x = 1; x < 54; x++53 ) |
166 | 265 | for (i = 0; 53 i < 4; i++212 ) |
167 | 212 | c->data.f32[x * 4 + i] = sum + (x - 1) * 4 * (11 * 11 + 12) * 11 * 10 / 2; |
168 | 1 | sum = 0; |
169 | 11 | for (y = 0; y < 10; y++10 ) |
170 | 110 | for (x = 0; 10 x < 10; x++100 ) |
171 | 100 | sum += ((y + 1) * 11 + x + 1) * (y * 225 + (x + 215) + 1); |
172 | 5 | for (i = 0; i < 4; i++4 ) |
173 | 4 | c->data.f32[54 * 4 + i] = sum; |
174 | | // last column |
175 | 1 | sum = 0; |
176 | 11 | for (y = 0; y < 10; y++10 ) |
177 | 110 | for (x = 0; 10 x < 10; x++100 ) |
178 | 100 | sum += (y * 11 + x + 2) * ((y + 215) * 225 + x + 1); |
179 | 5 | for (i = 0; i < 4; i++4 ) |
180 | 4 | c->data.f32[55 * 54 * 4 + i] = sum; |
181 | 1 | sum = 0; |
182 | 11 | for (y = 0; y < 10; y++10 ) |
183 | 120 | for (x = 0; 10 x < 11; x++110 ) |
184 | 110 | sum += (y * 11 + x + 1) * ((y + 215) * 225 + (x + 3) + 1); |
185 | 54 | for (x = 1; x < 54; x++53 ) |
186 | 265 | for (i = 0; 53 i < 4; i++212 ) |
187 | 212 | c->data.f32[(55 * 54 + x) * 4 + i] = sum + (x - 1) * 4 * (10 * 11 + 1) * 11 * 10 / 2; |
188 | 1 | sum = 0; |
189 | 11 | for (y = 0; y < 10; y++10 ) |
190 | 110 | for (x = 0; 10 x < 10; x++100 ) |
191 | 100 | sum += (y * 11 + x + 1) * ((y + 215) * 225 + (x + 215) + 1); |
192 | 5 | for (i = 0; i < 4; i++4 ) |
193 | 4 | c->data.f32[(55 * 54 + 54) * 4 + i] = sum; |
194 | 1 | float border[] = { |
195 | 1 | 0, 0 |
196 | 1 | }; |
197 | 12 | for (y = 0; y < 11; y++11 ) |
198 | 121 | for (x = 0; 11 x < 10; x++110 ) |
199 | 110 | border[0] += (y * 11 + x + 2) * ((y + 3) * 225 + x + 1); |
200 | 12 | for (y = 0; y < 11; y++11 ) |
201 | 121 | for (x = 0; 11 x < 10; x++110 ) |
202 | 110 | border[1] += (y * 11 + x + 1) * ((y + 3) * 225 + (x + 215) + 1); |
203 | 1 | sum = 0; |
204 | 12 | for (y = 0; y < 11; y++11 ) |
205 | 132 | for (x = 0; 11 x < 11; x++121 ) |
206 | 121 | sum += (y * 11 + x + 1) * ((y + 3) * 225 + (x + 3) + 1); |
207 | 54 | for (y = 1; y < 54; y++53 ) |
208 | 53 | { |
209 | 265 | for (i = 0; i < 4; i++212 ) |
210 | 212 | c->data.f32[y * 55 * 4 + i] = border[0]; |
211 | 2.86k | for (x = 1; x < 54; x++2.80k ) |
212 | 14.0k | for (i = 0; 2.80k i < 4; i++11.2k ) |
213 | 11.2k | c->data.f32[(y * 55 + x) * 4 + i] = sum + (x - 1) * 4 * (11 * 11 + 1) * 11 * 11 / 2; |
214 | 265 | for (i = 0; i < 4; i++212 ) |
215 | 212 | c->data.f32[(y * 55 + 54) * 4 + i] = border[1]; |
216 | 53 | sum += 225 * 4 * (11 * 11 + 1) * 11 * 11 / 2; |
217 | 53 | border[0] += 225 * 4 * ((11 * 11 + 1) * 11 * 11 / 2 - (10 * 11 + 1 + 1) * 11 / 2); |
218 | 53 | border[1] += 225 * 4 * ((11 * 11 + 1) * 11 * 11 / 2 - (11 * 11 + 11) * 11 / 2); |
219 | 53 | } |
220 | | // regularize the output so it is within the tolerance |
221 | 12.1k | for (i = 0; i < 55 * 55 * 4; i++12.1k ) |
222 | 12.1k | c->data.f32[i] = c->data.f32[i] * 1e-7, b->data.f32[i] = b->data.f32[i] * 1e-7; |
223 | 1 | REQUIRE_MATRIX_EQ(b, c, "55x55 matrix should be exactly the same"); |
224 | 1 | ccv_matrix_free(b); |
225 | 1 | ccv_matrix_free(c); |
226 | 1 | ccv_convnet_free(convnet); |
227 | 1 | } |
228 | | |
229 | | TEST_CASE("convolutional network of 5x5 on 27x27 with non-uniform weights") |
230 | 1 | { |
231 | 1 | ccv_convnet_layer_param_t params = { |
232 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
233 | 1 | .bias = 0, |
234 | 1 | .glorot = sqrtf(2), |
235 | 1 | .input = { |
236 | 1 | .matrix = { |
237 | 1 | .rows = 27, |
238 | 1 | .cols = 27, |
239 | 1 | .channels = 1, |
240 | 1 | .partition = 1, |
241 | 1 | }, |
242 | 1 | }, |
243 | 1 | .output = { |
244 | 1 | .convolutional = { |
245 | 1 | .count = 4, |
246 | 1 | .strides = 1, |
247 | 1 | .border = 2, |
248 | 1 | .rows = 5, |
249 | 1 | .cols = 5, |
250 | 1 | .channels = 1, |
251 | 1 | .partition = 1, |
252 | 1 | }, |
253 | 1 | }, |
254 | 1 | }; |
255 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(27, 27), ¶ms, 1); |
256 | 1 | int i, x, y; |
257 | 5 | for (x = 0; x < 4; x++4 ) |
258 | 104 | for (i = 0; 4 i < 5 * 5; i++100 ) |
259 | 100 | convnet->layers->w[x * 5 * 5 + i] = i + 1; |
260 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(27, 27, CCV_32F | CCV_C1, 0, 0); |
261 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
262 | 729 | a->data.f32[i] = i + 1; |
263 | 1 | ccv_dense_matrix_t* b = 0; |
264 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
265 | 1 | REQUIRE(b->rows == 27 && b->cols == 27, "5x5 convolves on 27x27 with border 2 should produce 27x27 matrix"); |
266 | 1 | ccv_matrix_free(a); |
267 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(27, 27, CCV_32F | 4, 0, 0); |
268 | | // the first column |
269 | 1 | float sum = 0; |
270 | 4 | for (y = 0; y < 3; y++3 ) |
271 | 12 | for (x = 0; 3 x < 3; x++9 ) |
272 | 9 | sum += ((y + 2) * 5 + x + 3) * (y * 27 + x + 1); |
273 | 5 | for (i = 0; i < 4; i++4 ) |
274 | 4 | c->data.f32[i] = sum; |
275 | 1 | sum = 0; |
276 | 4 | for (y = 0; y < 3; y++3 ) |
277 | 15 | for (x = 0; 3 x < 4; x++12 ) |
278 | 12 | sum += ((y + 2) * 5 + x + 2) * (y * 27 + x + 1); |
279 | 5 | for (i = 0; i < 4; i++4 ) |
280 | 4 | c->data.f32[4 + i] = sum; |
281 | 1 | sum = 0; |
282 | 4 | for (y = 0; y < 3; y++3 ) |
283 | 18 | for (x = 0; 3 x < 5; x++15 ) |
284 | 15 | sum += ((y + 2) * 5 + x + 1) * (y * 27 + x + 1); |
285 | 24 | for (x = 2; x < 25; x++23 ) |
286 | 115 | for (i = 0; 23 i < 4; i++92 ) |
287 | 92 | c->data.f32[x * 4 + i] = sum + (x - 2) * 36 * 15 / 2; |
288 | 1 | sum = 0; |
289 | 4 | for (y = 0; y < 3; y++3 ) |
290 | 15 | for (x = 0; 3 x < 4; x++12 ) |
291 | 12 | sum += ((y + 2) * 5 + x + 1) * (y * 27 + x + 24); |
292 | 5 | for (i = 0; i < 4; i++4 ) |
293 | 4 | c->data.f32[25 * 4 + i] = sum; |
294 | 1 | sum = 0; |
295 | 4 | for (y = 0; y < 3; y++3 ) |
296 | 12 | for (x = 0; 3 x < 3; x++9 ) |
297 | 9 | sum += ((y + 2) * 5 + x + 1) * (y * 27 + x + 25); |
298 | 5 | for (i = 0; i < 4; i++4 ) |
299 | 4 | c->data.f32[26 * 4 + i] = sum; |
300 | | // the second column |
301 | 1 | sum = 0; |
302 | 5 | for (y = 0; y < 4; y++4 ) |
303 | 16 | for (x = 0; 4 x < 3; x++12 ) |
304 | 12 | sum += ((y + 1) * 5 + x + 3) * (y * 27 + x + 1); |
305 | 5 | for (i = 0; i < 4; i++4 ) |
306 | 4 | c->data.f32[27 * 4 + i] = sum; |
307 | 1 | sum = 0; |
308 | 5 | for (y = 0; y < 4; y++4 ) |
309 | 20 | for (x = 0; 4 x < 4; x++16 ) |
310 | 16 | sum += ((y + 1) * 5 + x + 2) * (y * 27 + x + 1); |
311 | 5 | for (i = 0; i < 4; i++4 ) |
312 | 4 | c->data.f32[28 * 4 + i] = sum; |
313 | 1 | sum = 0; |
314 | 5 | for (y = 0; y < 4; y++4 ) |
315 | 24 | for (x = 0; 4 x < 5; x++20 ) |
316 | 20 | sum += ((y + 1) * 5 + x + 1) * (y * 27 + x + 1); |
317 | 24 | for (x = 2; x < 25; x++23 ) |
318 | 115 | for (i = 0; 23 i < 4; i++92 ) |
319 | 92 | c->data.f32[(27 + x) * 4 + i] = sum + (x - 2) * 31 * 20 / 2; |
320 | 1 | sum = 0; |
321 | 5 | for (y = 0; y < 4; y++4 ) |
322 | 20 | for (x = 0; 4 x < 4; x++16 ) |
323 | 16 | sum += ((y + 1) * 5 + x + 1) * (y * 27 + x + 24); |
324 | 5 | for (i = 0; i < 4; i++4 ) |
325 | 4 | c->data.f32[52 * 4 + i] = sum; |
326 | 1 | sum = 0; |
327 | 5 | for (y = 0; y < 4; y++4 ) |
328 | 16 | for (x = 0; 4 x < 3; x++12 ) |
329 | 12 | sum += ((y + 1) * 5 + x + 1) * (y * 27 + x + 25); |
330 | 5 | for (i = 0; i < 4; i++4 ) |
331 | 4 | c->data.f32[53 * 4 + i] = sum; |
332 | 1 | sum = 0; |
333 | | // the last 2nd column |
334 | 5 | for (y = 0; y < 4; y++4 ) |
335 | 16 | for (x = 0; 4 x < 3; x++12 ) |
336 | 12 | sum += (y * 5 + x + 3) * ((y + 23) * 27 + x + 1); |
337 | 5 | for (i = 0; i < 4; i++4 ) |
338 | 4 | c->data.f32[27 * 25 * 4 + i] = sum; |
339 | 1 | sum = 0; |
340 | 5 | for (y = 0; y < 4; y++4 ) |
341 | 20 | for (x = 0; 4 x < 4; x++16 ) |
342 | 16 | sum += (y * 5 + x + 2) * ((y + 23) * 27 + x + 1); |
343 | 5 | for (i = 0; i < 4; i++4 ) |
344 | 4 | c->data.f32[(27 * 25 + 1) * 4 + i] = sum; |
345 | 1 | sum = 0; |
346 | 5 | for (y = 0; y < 4; y++4 ) |
347 | 24 | for (x = 0; 4 x < 5; x++20 ) |
348 | 20 | sum += (y * 5 + x + 1) * ((y + 23) * 27 + x + 1); |
349 | 24 | for (x = 2; x < 25; x++23 ) |
350 | 115 | for (i = 0; 23 i < 4; i++92 ) |
351 | 92 | c->data.f32[(27 * 25 + x) * 4 + i] = sum + (x - 2) * 21 * 20 / 2; |
352 | 1 | sum = 0; |
353 | 5 | for (y = 0; y < 4; y++4 ) |
354 | 20 | for (x = 0; 4 x < 4; x++16 ) |
355 | 16 | sum += (y * 5 + x + 1) * ((y + 23) * 27 + x + 24); |
356 | 5 | for (i = 0; i < 4; i++4 ) |
357 | 4 | c->data.f32[(27 * 25 + 25) * 4 + i] = sum; |
358 | 1 | sum = 0; |
359 | 5 | for (y = 0; y < 4; y++4 ) |
360 | 16 | for (x = 0; 4 x < 3; x++12 ) |
361 | 12 | sum += (y * 5 + x + 1) * ((y + 23) * 27 + x + 25); |
362 | 5 | for (i = 0; i < 4; i++4 ) |
363 | 4 | c->data.f32[(27 * 25 + 26) * 4 + i] = sum; |
364 | | // the last column |
365 | 1 | sum = 0; |
366 | 4 | for (y = 0; y < 3; y++3 ) |
367 | 12 | for (x = 0; 3 x < 3; x++9 ) |
368 | 9 | sum += (y * 5 + x + 3) * ((y + 24) * 27 + x + 1); |
369 | 5 | for (i = 0; i < 4; i++4 ) |
370 | 4 | c->data.f32[27 * 26 * 4 + i] = sum; |
371 | 1 | sum = 0; |
372 | 4 | for (y = 0; y < 3; y++3 ) |
373 | 15 | for (x = 0; 3 x < 4; x++12 ) |
374 | 12 | sum += (y * 5 + x + 2) * ((y + 24) * 27 + x + 1); |
375 | 5 | for (i = 0; i < 4; i++4 ) |
376 | 4 | c->data.f32[(27 * 26 + 1) * 4 + i] = sum; |
377 | 1 | sum = 0; |
378 | 4 | for (y = 0; y < 3; y++3 ) |
379 | 18 | for (x = 0; 3 x < 5; x++15 ) |
380 | 15 | sum += (y * 5 + x + 1) * ((y + 24) * 27 + x + 1); |
381 | 24 | for (x = 2; x < 25; x++23 ) |
382 | 115 | for (i = 0; 23 i < 4; i++92 ) |
383 | 92 | c->data.f32[(27 * 26 + x) * 4 + i] = sum + (x - 2) * 16 * 15 / 2; |
384 | 1 | sum = 0; |
385 | 4 | for (y = 0; y < 3; y++3 ) |
386 | 15 | for (x = 0; 3 x < 4; x++12 ) |
387 | 12 | sum += (y * 5 + x + 1) * ((y + 24) * 27 + x + 24); |
388 | 5 | for (i = 0; i < 4; i++4 ) |
389 | 4 | c->data.f32[(27 * 26 + 25) * 4 + i] = sum; |
390 | 1 | sum = 0; |
391 | 4 | for (y = 0; y < 3; y++3 ) |
392 | 12 | for (x = 0; 3 x < 3; x++9 ) |
393 | 9 | sum += (y * 5 + x + 1) * ((y + 24) * 27 + x + 25); |
394 | 5 | for (i = 0; i < 4; i++4 ) |
395 | 4 | c->data.f32[(27 * 26 + 26) * 4 + i] = sum; |
396 | 1 | float border[] = { |
397 | 1 | 0, 0, 0, 0 |
398 | 1 | }; |
399 | 6 | for (y = 0; y < 5; y++5 ) |
400 | 20 | for (x = 0; 5 x < 3; x++15 ) |
401 | 15 | border[0] += (y * 5 + x + 3) * (y * 27 + x + 1); |
402 | 6 | for (y = 0; y < 5; y++5 ) |
403 | 25 | for (x = 0; 5 x < 4; x++20 ) |
404 | 20 | border[1] += (y * 5 + x + 2) * (y * 27 + x + 1); |
405 | 6 | for (y = 0; y < 5; y++5 ) |
406 | 25 | for (x = 0; 5 x < 4; x++20 ) |
407 | 20 | border[2] += (y * 5 + x + 1) * (y * 27 + x + 24); |
408 | 6 | for (y = 0; y < 5; y++5 ) |
409 | 20 | for (x = 0; 5 x < 3; x++15 ) |
410 | 15 | border[3] += (y * 5 + x + 1) * (y * 27 + x + 25); |
411 | 1 | sum = 0; |
412 | 6 | for (y = 0; y < 5; y++5 ) |
413 | 30 | for (x = 0; 5 x < 5; x++25 ) |
414 | 25 | sum += (y * 5 + x + 1) * (y * 27 + x + 1); |
415 | 24 | for (y = 2; y < 25; y++23 ) |
416 | 23 | { |
417 | 115 | for (i = 0; i < 4; i++92 ) |
418 | 92 | { |
419 | 92 | c->data.f32[y * 27 * 4 + i] = border[0] + (y - 2) * 27 * (3 + 4 + 5 + 8 + 9 + 10 + 13 + 14 + 15 + 18 + 19 + 20 + 23 + 24 + 25); |
420 | 92 | c->data.f32[(y * 27 + 1) * 4 + i] = border[1] + (y - 2) * 27 * (2 + 3 + 4 + 5 + 7 + 8 + 9 + 10 + 12 + 13 + 14 + 15 + 17 + 18 + 19 + 20 + 22 + 23 + 24 + 25); |
421 | 2.20k | for (x = 2; x < 25; x++2.11k ) |
422 | 2.11k | c->data.f32[(y * 27 + x) * 4 + i] = sum + ((y - 2) * 27 + x - 2) * 26 * 25 / 2; |
423 | 92 | c->data.f32[(y * 27 + 25) * 4 + i] = border[2] + (y - 2) * 27 * (1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 11 + 12 + 13 + 14 + 16 + 17 + 18 + 19 + 21 + 22 + 23 + 24); |
424 | 92 | c->data.f32[(y * 27 + 26) * 4 + i] = border[3] + (y - 2) * 27 * (1 + 2 + 3 + 6 + 7 + 8 + 11 + 12 + 13 + 16 + 17 + 18 + 21 + 22 + 23); |
425 | 92 | } |
426 | 23 | } |
427 | 1 | REQUIRE_MATRIX_EQ(b, c, "27x27 matrix should be exactly the same"); |
428 | 1 | ccv_matrix_free(b); |
429 | 1 | ccv_matrix_free(c); |
430 | 1 | ccv_convnet_free(convnet); |
431 | 1 | } |
432 | | |
433 | | TEST_CASE("convolutional network of 5x5x4 on 27x27x8 partitioned by 2") |
434 | 1 | { |
435 | 1 | ccv_convnet_layer_param_t params = { |
436 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
437 | 1 | .bias = 0, |
438 | 1 | .glorot = sqrtf(2), |
439 | 1 | .input = { |
440 | 1 | .matrix = { |
441 | 1 | .rows = 27, |
442 | 1 | .cols = 27, |
443 | 1 | .channels = 4, |
444 | 1 | .partition = 2, |
445 | 1 | }, |
446 | 1 | }, |
447 | 1 | .output = { |
448 | 1 | .convolutional = { |
449 | 1 | .count = 8, |
450 | 1 | .strides = 1, |
451 | 1 | .border = 2, |
452 | 1 | .rows = 5, |
453 | 1 | .cols = 5, |
454 | 1 | .channels = 4, |
455 | 1 | .partition = 2, |
456 | 1 | }, |
457 | 1 | }, |
458 | 1 | }; |
459 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(27, 27), ¶ms, 1); |
460 | 1 | int i, k; |
461 | 401 | for (i = 0; i < convnet->layers->wnum; i++400 ) |
462 | 400 | convnet->layers->w[i] = i; |
463 | 9 | for (i = 0; i < convnet->layers->net.convolutional.count; i++8 ) |
464 | 8 | convnet->layers->bias[i] = i + 1; |
465 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(27, 27, CCV_32F | 4, 0, 0); |
466 | 2.91k | for (i = 0; i < 27 * 27 * 4; i++2.91k ) |
467 | 2.91k | a->data.f32[i] = 20 - i; |
468 | 1 | ccv_dense_matrix_t* b = 0; |
469 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
470 | 1 | ccv_convnet_layer_param_t partitioned_params = { |
471 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
472 | 1 | .bias = 0, |
473 | 1 | .glorot = sqrtf(2), |
474 | 1 | .input = { |
475 | 1 | .matrix = { |
476 | 1 | .rows = 27, |
477 | 1 | .cols = 27, |
478 | 1 | .channels = 2, |
479 | 1 | .partition = 1, |
480 | 1 | }, |
481 | 1 | }, |
482 | 1 | .output = { |
483 | 1 | .convolutional = { |
484 | 1 | .count = 4, |
485 | 1 | .strides = 1, |
486 | 1 | .border = 2, |
487 | 1 | .rows = 5, |
488 | 1 | .cols = 5, |
489 | 1 | .channels = 2, |
490 | 1 | .partition = 1, |
491 | 1 | }, |
492 | 1 | }, |
493 | 1 | }; |
494 | 1 | ccv_convnet_t* partitioned_convnet = ccv_convnet_new(0, ccv_size(27, 27), &partitioned_params, 1); |
495 | 1 | memcpy(partitioned_convnet->layers->w, convnet->layers->w, sizeof(float) * (convnet->layers->wnum / 2)); |
496 | 1 | memcpy(partitioned_convnet->layers->bias, convnet->layers->bias, sizeof(float) * (convnet->layers->net.convolutional.count / 2)); |
497 | 1 | ccv_dense_matrix_t* aa = ccv_dense_matrix_new(27, 27, CCV_32F | 2, 0, 0); |
498 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
499 | 2.18k | for (k = 0; 729 k < 2; k++1.45k ) |
500 | 1.45k | aa->data.f32[i * 2 + k] = a->data.f32[i * 4 + k]; |
501 | 1 | ccv_dense_matrix_t* bb = ccv_dense_matrix_new(27, 27, CCV_32F | 8, 0, 0); |
502 | 1 | ccv_dense_matrix_t* cc = 0; |
503 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &cc, 1); |
504 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
505 | 3.64k | for (k = 0; 729 k < 4; k++2.91k ) |
506 | 2.91k | bb->data.f32[i * 8 + k] = cc->data.f32[i * 4 + k]; |
507 | 1 | memcpy(partitioned_convnet->layers->w, convnet->layers->w + (convnet->layers->wnum / 2), sizeof(float) * (convnet->layers->wnum / 2)); |
508 | 1 | memcpy(partitioned_convnet->layers->bias, convnet->layers->bias + (convnet->layers->net.convolutional.count / 2), sizeof(float) * (convnet->layers->net.convolutional.count / 2)); |
509 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
510 | 2.18k | for (k = 0; 729 k < 2; k++1.45k ) |
511 | 1.45k | aa->data.f32[i * 2 + k] = a->data.f32[i * 4 + 2 + k]; |
512 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &cc, 1); |
513 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
514 | 3.64k | for (k = 0; 729 k < 4; k++2.91k ) |
515 | 2.91k | bb->data.f32[i * 8 + 4 + k] = cc->data.f32[i * 4 + k]; |
516 | 1 | REQUIRE_MATRIX_EQ(b, bb, "27x27x8 matrix computed from convnet with partition and partitioned convnet should be exactly the same"); |
517 | 1 | ccv_matrix_free(a); |
518 | 1 | ccv_matrix_free(b); |
519 | 1 | ccv_matrix_free(aa); |
520 | 1 | ccv_matrix_free(bb); |
521 | 1 | ccv_matrix_free(cc); |
522 | 1 | ccv_convnet_free(convnet); |
523 | 1 | ccv_convnet_free(partitioned_convnet); |
524 | 1 | } |
525 | | |
526 | | TEST_CASE("full connect network from 13x13x128 to 2048") |
527 | 1 | { |
528 | 1 | ccv_convnet_layer_param_t params = { |
529 | 1 | .type = CCV_CONVNET_FULL_CONNECT, |
530 | 1 | .bias = 0, |
531 | 1 | .glorot = sqrtf(2), |
532 | 1 | .input = { |
533 | 1 | .matrix = { |
534 | 1 | .rows = 13, |
535 | 1 | .cols = 13, |
536 | 1 | .channels = 128, |
537 | 1 | .partition = 1, |
538 | 1 | }, |
539 | 1 | .node = { |
540 | 1 | .count = 13 * 13 * 128, |
541 | 1 | }, |
542 | 1 | }, |
543 | 1 | .output = { |
544 | 1 | .full_connect = { |
545 | 1 | .relu = 0, |
546 | 1 | .count = 2048, |
547 | 1 | }, |
548 | 1 | }, |
549 | 1 | }; |
550 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(13, 13), ¶ms, 1); |
551 | 1 | int i; |
552 | 44.3M | for (i = 0; i < 13 * 13 * 128 * 2048; i++44.3M ) |
553 | 44.3M | convnet->layers->w[i] = 1; |
554 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(13, 13, CCV_32F | 128, 0, 0); |
555 | 21.6k | for (i = 0; i < 13 * 13 * 128; i++21.6k ) |
556 | 21.6k | a->data.f32[i] = 1; |
557 | 1 | ccv_dense_matrix_t* b = 0; |
558 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
559 | 1 | ccv_matrix_free(a); |
560 | 1 | REQUIRE(b->rows == 2048 && b->cols == 1, "full connect network output should be 2048 neurons"); |
561 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(2048, 1, CCV_32F | CCV_C1, 0, 0); |
562 | 2.04k | for (i = 0; i < 2048; i++2.04k ) |
563 | 2.04k | c->data.f32[i] = 13 * 13 * 128; |
564 | 1 | REQUIRE_MATRIX_EQ(b, c, "full connect network output should be exactly 13 * 13 * 128"); |
565 | 1 | ccv_matrix_free(b); |
566 | 1 | ccv_matrix_free(c); |
567 | 1 | ccv_convnet_free(convnet); |
568 | 1 | } |
569 | | |
570 | | TEST_CASE("maximum pool network of 55x55 with window of 3x3 and stride of 2") |
571 | 1 | { |
572 | 1 | ccv_convnet_layer_param_t params = { |
573 | 1 | .type = CCV_CONVNET_MAX_POOL, |
574 | 1 | .bias = 0, |
575 | 1 | .glorot = sqrtf(2), |
576 | 1 | .input = { |
577 | 1 | .matrix = { |
578 | 1 | .rows = 55, |
579 | 1 | .cols = 55, |
580 | 1 | .channels = 1, |
581 | 1 | .partition = 1, |
582 | 1 | }, |
583 | 1 | }, |
584 | 1 | .output = { |
585 | 1 | .pool = { |
586 | 1 | .size = 3, |
587 | 1 | .strides = 2, |
588 | 1 | .border = 0, |
589 | 1 | }, |
590 | 1 | }, |
591 | 1 | }; |
592 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(55, 55), ¶ms, 1); |
593 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(55, 55, CCV_32F | CCV_C1, 0, 0); |
594 | 1 | int i, x, y; |
595 | 3.02k | for (i = 0; i < 55 * 55; i++3.02k ) |
596 | 3.02k | a->data.f32[i] = i + 1; |
597 | 1 | ccv_dense_matrix_t* b = 0; |
598 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
599 | 1 | ccv_matrix_free(a); |
600 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(27, 27, CCV_32F | CCV_C1, 0, 0); |
601 | 28 | for (y = 0; y < 27; y++27 ) |
602 | 756 | for (x = 0; 27 x < 27; x++729 ) |
603 | 729 | c->data.f32[y * 27 + x] = 113 + y * 110 + x * 2; |
604 | 1 | REQUIRE_MATRIX_EQ(b, c, "max pool network output should be exactly the same"); |
605 | 1 | ccv_matrix_free(b); |
606 | 1 | ccv_matrix_free(c); |
607 | 1 | ccv_convnet_free(convnet); |
608 | 1 | } |
609 | | |
610 | | TEST_CASE("maximum pool network of 57x57 with window of 3x3 and stride of 3") |
611 | 1 | { |
612 | 1 | ccv_convnet_layer_param_t params = { |
613 | 1 | .type = CCV_CONVNET_MAX_POOL, |
614 | 1 | .bias = 0, |
615 | 1 | .glorot = sqrtf(2), |
616 | 1 | .input = { |
617 | 1 | .matrix = { |
618 | 1 | .rows = 57, |
619 | 1 | .cols = 57, |
620 | 1 | .channels = 1, |
621 | 1 | .partition = 1, |
622 | 1 | }, |
623 | 1 | }, |
624 | 1 | .output = { |
625 | 1 | .pool = { |
626 | 1 | .size = 3, |
627 | 1 | .strides = 3, |
628 | 1 | .border = 0, |
629 | 1 | }, |
630 | 1 | }, |
631 | 1 | }; |
632 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(57, 57), ¶ms, 1); |
633 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(57, 57, CCV_32F | CCV_C1, 0, 0); |
634 | 1 | int i, x, y; |
635 | 3.25k | for (i = 0; i < 57 * 57; i++3.24k ) |
636 | 3.24k | a->data.f32[i] = i + 1; |
637 | 1 | ccv_dense_matrix_t* b = 0; |
638 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
639 | 1 | ccv_matrix_free(a); |
640 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(19, 19, CCV_32F | CCV_C1, 0, 0); |
641 | 20 | for (y = 0; y < 19; y++19 ) |
642 | 380 | for (x = 0; 19 x < 19; x++361 ) |
643 | 361 | c->data.f32[y * 19 + x] = 117 + y * 171 + x * 3; |
644 | 1 | REQUIRE_MATRIX_EQ(b, c, "max pool network output should be exactly the same"); |
645 | 1 | ccv_matrix_free(b); |
646 | 1 | ccv_matrix_free(c); |
647 | 1 | ccv_convnet_free(convnet); |
648 | 1 | } |
649 | | |
650 | | TEST_CASE("maximum pool network of 54x54 with window of 2x2 and stride of 2") |
651 | 1 | { |
652 | 1 | ccv_convnet_layer_param_t params = { |
653 | 1 | .type = CCV_CONVNET_MAX_POOL, |
654 | 1 | .bias = 0, |
655 | 1 | .glorot = sqrtf(2), |
656 | 1 | .input = { |
657 | 1 | .matrix = { |
658 | 1 | .rows = 54, |
659 | 1 | .cols = 54, |
660 | 1 | .channels = 1, |
661 | 1 | .partition = 1, |
662 | 1 | }, |
663 | 1 | }, |
664 | 1 | .output = { |
665 | 1 | .pool = { |
666 | 1 | .size = 2, |
667 | 1 | .strides = 2, |
668 | 1 | .border = 0, |
669 | 1 | }, |
670 | 1 | }, |
671 | 1 | }; |
672 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(54, 54), ¶ms, 1); |
673 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(54, 54, CCV_32F | CCV_C1, 0, 0); |
674 | 1 | int i, x, y; |
675 | 2.91k | for (i = 0; i < 54 * 54; i++2.91k ) |
676 | 2.91k | a->data.f32[i] = i + 1; |
677 | 1 | ccv_dense_matrix_t* b = 0; |
678 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
679 | 1 | ccv_matrix_free(a); |
680 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(27, 27, CCV_32F | CCV_C1, 0, 0); |
681 | 28 | for (y = 0; y < 27; y++27 ) |
682 | 756 | for (x = 0; 27 x < 27; x++729 ) |
683 | 729 | c->data.f32[y * 27 + x] = 56 + y * 108 + x * 2; |
684 | 1 | REQUIRE_MATRIX_EQ(b, c, "max pool network output should be exactly the same"); |
685 | 1 | ccv_matrix_free(b); |
686 | 1 | ccv_matrix_free(c); |
687 | 1 | ccv_convnet_free(convnet); |
688 | 1 | } |
689 | | |
690 | | TEST_CASE("average pool network of 55x55 with window of 3x3 and stride of 2") |
691 | 1 | { |
692 | 1 | ccv_convnet_layer_param_t params = { |
693 | 1 | .type = CCV_CONVNET_AVERAGE_POOL, |
694 | 1 | .bias = 0, |
695 | 1 | .glorot = sqrtf(2), |
696 | 1 | .input = { |
697 | 1 | .matrix = { |
698 | 1 | .rows = 55, |
699 | 1 | .cols = 55, |
700 | 1 | .channels = 1, |
701 | 1 | .partition = 1, |
702 | 1 | }, |
703 | 1 | }, |
704 | 1 | .output = { |
705 | 1 | .pool = { |
706 | 1 | .size = 3, |
707 | 1 | .strides = 2, |
708 | 1 | .border = 0, |
709 | 1 | }, |
710 | 1 | }, |
711 | 1 | }; |
712 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(55, 55), ¶ms, 1); |
713 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(55, 55, CCV_32F | CCV_C1, 0, 0); |
714 | 1 | int i, x, y; |
715 | 3.02k | for (i = 0; i < 55 * 55; i++3.02k ) |
716 | 3.02k | a->data.f32[i] = i + 1; |
717 | 1 | ccv_dense_matrix_t* b = 0; |
718 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
719 | 1 | ccv_matrix_free(a); |
720 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(27, 27, CCV_32F | CCV_C1, 0, 0); |
721 | 28 | for (y = 0; y < 27; y++27 ) |
722 | 756 | for (x = 0; 27 x < 27; x++729 ) |
723 | 729 | c->data.f32[y * 27 + x] = 57 + y * 110 + x * 2; |
724 | 1 | REQUIRE_MATRIX_EQ(b, c, "average pool network output should be exactly the same"); |
725 | 1 | ccv_matrix_free(b); |
726 | 1 | ccv_matrix_free(c); |
727 | 1 | ccv_convnet_free(convnet); |
728 | 1 | } |
729 | | |
730 | | TEST_CASE("average pool network of 57x57 with window of 3x3 and stride of 3") |
731 | 1 | { |
732 | 1 | ccv_convnet_layer_param_t params = { |
733 | 1 | .type = CCV_CONVNET_AVERAGE_POOL, |
734 | 1 | .bias = 0, |
735 | 1 | .glorot = sqrtf(2), |
736 | 1 | .input = { |
737 | 1 | .matrix = { |
738 | 1 | .rows = 57, |
739 | 1 | .cols = 57, |
740 | 1 | .channels = 1, |
741 | 1 | .partition = 1, |
742 | 1 | }, |
743 | 1 | }, |
744 | 1 | .output = { |
745 | 1 | .pool = { |
746 | 1 | .size = 3, |
747 | 1 | .strides = 3, |
748 | 1 | .border = 0, |
749 | 1 | }, |
750 | 1 | }, |
751 | 1 | }; |
752 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(57, 57), ¶ms, 1); |
753 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(57, 57, CCV_32F | CCV_C1, 0, 0); |
754 | 1 | int i, x, y; |
755 | 3.25k | for (i = 0; i < 57 * 57; i++3.24k ) |
756 | 3.24k | a->data.f32[i] = i + 1; |
757 | 1 | ccv_dense_matrix_t* b = 0; |
758 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
759 | 1 | ccv_matrix_free(a); |
760 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(19, 19, CCV_32F | CCV_C1, 0, 0); |
761 | 20 | for (y = 0; y < 19; y++19 ) |
762 | 380 | for (x = 0; 19 x < 19; x++361 ) |
763 | 361 | c->data.f32[y * 19 + x] = 59 + y * 171 + x * 3; |
764 | 1 | REQUIRE_MATRIX_EQ(b, c, "average pool network output should be exactly the same"); |
765 | 1 | ccv_matrix_free(b); |
766 | 1 | ccv_matrix_free(c); |
767 | 1 | ccv_convnet_free(convnet); |
768 | 1 | } |
769 | | |
770 | | TEST_CASE("average pool network of 54x54 with window of 2x2 and stride of 2") |
771 | 1 | { |
772 | 1 | ccv_convnet_layer_param_t params = { |
773 | 1 | .type = CCV_CONVNET_AVERAGE_POOL, |
774 | 1 | .bias = 0, |
775 | 1 | .glorot = sqrtf(2), |
776 | 1 | .input = { |
777 | 1 | .matrix = { |
778 | 1 | .rows = 54, |
779 | 1 | .cols = 54, |
780 | 1 | .channels = 1, |
781 | 1 | .partition = 1, |
782 | 1 | }, |
783 | 1 | }, |
784 | 1 | .output = { |
785 | 1 | .pool = { |
786 | 1 | .size = 2, |
787 | 1 | .strides = 2, |
788 | 1 | .border = 0, |
789 | 1 | }, |
790 | 1 | }, |
791 | 1 | }; |
792 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(54, 54), ¶ms, 1); |
793 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(54, 54, CCV_32F | CCV_C1, 0, 0); |
794 | 1 | int i, x, y; |
795 | 2.91k | for (i = 0; i < 54 * 54; i++2.91k ) |
796 | 2.91k | a->data.f32[i] = i + 1; |
797 | 1 | ccv_dense_matrix_t* b = 0; |
798 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
799 | 1 | ccv_matrix_free(a); |
800 | 1 | ccv_dense_matrix_t* c = ccv_dense_matrix_new(27, 27, CCV_32F | CCV_C1, 0, 0); |
801 | 28 | for (y = 0; y < 27; y++27 ) |
802 | 756 | for (x = 0; 27 x < 27; x++729 ) |
803 | 729 | c->data.f32[y * 27 + x] = 28.5 + y * 108 + x * 2; |
804 | 1 | REQUIRE_MATRIX_EQ(b, c, "average pool network output should be exactly the same"); |
805 | 1 | ccv_matrix_free(b); |
806 | 1 | ccv_matrix_free(c); |
807 | 1 | ccv_convnet_free(convnet); |
808 | 1 | } |
809 | | |
810 | | TEST_CASE("local response normalization with partitioned by 2") |
811 | 1 | { |
812 | 1 | ccv_convnet_layer_param_t params = { |
813 | 1 | .type = CCV_CONVNET_LOCAL_RESPONSE_NORM, |
814 | 1 | .input = { |
815 | 1 | .matrix = { |
816 | 1 | .rows = 27, |
817 | 1 | .cols = 27, |
818 | 1 | .channels = 10, |
819 | 1 | .partition = 2, |
820 | 1 | }, |
821 | 1 | }, |
822 | 1 | .output = { |
823 | 1 | .rnorm = { |
824 | 1 | .size = 3, |
825 | 1 | .kappa = 2, |
826 | 1 | .alpha = 1e-4, |
827 | 1 | .beta = 0.75, |
828 | 1 | }, |
829 | 1 | }, |
830 | 1 | }; |
831 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(27, 27), ¶ms, 1); |
832 | 1 | int i, k; |
833 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(27, 27, CCV_32F | 10, 0, 0); |
834 | 7.29k | for (i = 0; i < 27 * 27 * 10; i++7.29k ) |
835 | 7.29k | a->data.f32[i] = i; |
836 | 1 | ccv_dense_matrix_t* b = 0; |
837 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
838 | 1 | ccv_convnet_layer_param_t partitioned_params = { |
839 | 1 | .type = CCV_CONVNET_LOCAL_RESPONSE_NORM, |
840 | 1 | .input = { |
841 | 1 | .matrix = { |
842 | 1 | .rows = 27, |
843 | 1 | .cols = 27, |
844 | 1 | .channels = 5, |
845 | 1 | .partition = 1, |
846 | 1 | }, |
847 | 1 | }, |
848 | 1 | .output = { |
849 | 1 | .rnorm = { |
850 | 1 | .size = 3, |
851 | 1 | .kappa = 2, |
852 | 1 | .alpha = 1e-4, |
853 | 1 | .beta = 0.75, |
854 | 1 | }, |
855 | 1 | }, |
856 | 1 | }; |
857 | 1 | ccv_convnet_t* partitioned_convnet = ccv_convnet_new(0, ccv_size(27, 27), &partitioned_params, 1); |
858 | 1 | ccv_dense_matrix_t* aa = ccv_dense_matrix_new(27, 27, CCV_32F | 5, 0, 0); |
859 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
860 | 4.37k | for (k = 0; 729 k < 5; k++3.64k ) |
861 | 3.64k | aa->data.f32[i * 5 + k] = a->data.f32[i * 10 + k]; |
862 | 1 | ccv_dense_matrix_t* bb = ccv_dense_matrix_new(27, 27, CCV_32F | 10, 0, 0); |
863 | 1 | ccv_dense_matrix_t* cc = 0; |
864 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &cc, 1); |
865 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
866 | 4.37k | for (k = 0; 729 k < 5; k++3.64k ) |
867 | 3.64k | bb->data.f32[i * 10 + k] = cc->data.f32[i * 5 + k]; |
868 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
869 | 4.37k | for (k = 0; 729 k < 5; k++3.64k ) |
870 | 3.64k | aa->data.f32[i * 5 + k] = a->data.f32[i * 10 + 5 + k]; |
871 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &cc, 1); |
872 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
873 | 4.37k | for (k = 0; 729 k < 5; k++3.64k ) |
874 | 3.64k | bb->data.f32[i * 10 + 5 + k] = cc->data.f32[i * 5 + k]; |
875 | 1 | REQUIRE_MATRIX_EQ(b, bb, "27x27x10 matrix computed from convnet with partition and partitioned convnet should be exactly the same"); |
876 | 1 | ccv_matrix_free(a); |
877 | 1 | ccv_matrix_free(b); |
878 | 1 | ccv_matrix_free(aa); |
879 | 1 | ccv_matrix_free(bb); |
880 | 1 | ccv_matrix_free(cc); |
881 | 1 | ccv_convnet_free(convnet); |
882 | 1 | ccv_convnet_free(partitioned_convnet); |
883 | 1 | } |
884 | | |
885 | | // we probably won't cover all static functions in this test, disable annoying warnings |
886 | | #pragma GCC diagnostic ignored "-Wunused-function" |
887 | | // so that we can test static functions, note that CASE_TESTS is defined in case.h, which will disable all extern functions |
888 | | #include "ccv_convnet.c" |
889 | | |
890 | | #ifdef HAVE_GSL |
891 | | TEST_CASE("full connect network backward propagate") |
892 | 1 | { |
893 | 1 | ccv_convnet_layer_param_t params = { |
894 | 1 | .type = CCV_CONVNET_FULL_CONNECT, |
895 | 1 | .bias = 0, |
896 | 1 | .glorot = sqrtf(2), |
897 | 1 | .input = { |
898 | 1 | .matrix = { |
899 | 1 | .rows = 3, |
900 | 1 | .cols = 3, |
901 | 1 | .channels = 64, |
902 | 1 | .partition = 1, |
903 | 1 | }, |
904 | 1 | .node = { |
905 | 1 | .count = 3 * 3 * 64, |
906 | 1 | }, |
907 | 1 | }, |
908 | 1 | .output = { |
909 | 1 | .full_connect = { |
910 | 1 | .relu = 0, |
911 | 1 | .count = 10, |
912 | 1 | }, |
913 | 1 | }, |
914 | 1 | }; |
915 | 1 | ccv_convnet_t *convnet = ccv_convnet_new(0, ccv_size(3, 3), ¶ms, 1); |
916 | 1 | int i, j; |
917 | 5.76k | for (i = 0; i < 3 * 3 * 64 * 10; i++5.76k ) |
918 | 5.76k | convnet->layers[0].w[i] = 2; |
919 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
920 | 1 | _ccv_convnet_update_zero(update_params); |
921 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(3, 3, CCV_32F | 64, 0, 0); |
922 | 577 | for (i = 0; i < 3 * 3 * 64; i++576 ) |
923 | 576 | x->data.f32[i] = 1; |
924 | 1 | ccv_dense_matrix_t* y = 0; |
925 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
926 | 1 | REQUIRE(y->rows == 10 && y->cols == 1 && CCV_GET_CHANNEL(y->type) == 1, "y should be a 10-dimensional vector"); |
927 | 1 | ccv_dense_matrix_t* loss = ccv_dense_matrix_new(10, 1, CCV_32F | CCV_C1, 0, 0); |
928 | 1 | loss->data.f32[0] = 18; |
929 | 10 | for (i = 1; i < 10; i++9 ) |
930 | 9 | loss->data.f32[i] = -1; |
931 | 1 | ccv_dense_matrix_t* b = 0; |
932 | 1 | _ccv_convnet_full_connect_backward_propagate(convnet->layers, loss, y, x, &b, update_params->layers); |
933 | 1 | ccv_matrix_free(y); |
934 | 1 | ccv_matrix_free(x); |
935 | 1 | ccv_matrix_free(loss); |
936 | 1 | ccv_dense_matrix_t* db = ccv_dense_matrix_new(3, 3, CCV_32F | 64, 0, 0); |
937 | 577 | for (i = 0; i < 3 * 3 * 64; i++576 ) |
938 | 576 | db->data.f32[i] = 18; |
939 | 1 | REQUIRE_MATRIX_EQ(b, db, "propagated error doesn't match the expected value"); |
940 | 1 | ccv_matrix_free(db); |
941 | 1 | ccv_matrix_free(b); |
942 | 1 | float* dw = (float*)ccmalloc(sizeof(float) * 10 * 3 * 3 * 64); |
943 | 577 | for (j = 0; j < 3 * 3 * 64; j++576 ) |
944 | 576 | dw[j] = 18; |
945 | 10 | for (i = 1; i < 10; i++9 ) |
946 | 5.19k | for (j = 0; 9 j < 3 * 3 * 64; j++5.18k ) |
947 | 5.18k | dw[i * 3 * 3 * 64 + j] = -1; |
948 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, dw, update_params->layers[0].w, 10 * 3 * 3 * 64, 1e-4, "weight gradient doesn't match the expected value"); |
949 | 1 | ccfree(dw); |
950 | 1 | float* dbias = (float*)ccmalloc(sizeof(float) * 10); |
951 | 1 | dbias[0] = 18; |
952 | 10 | for (i = 1; i < 10; i++9 ) |
953 | 9 | dbias[i] = -1; |
954 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, dbias, update_params->layers[0].bias, 10, 1e-4, "bias gradient doesn't match the expected value"); |
955 | 1 | ccfree(dbias); |
956 | 1 | ccv_convnet_free(update_params); |
957 | 1 | ccv_convnet_free(convnet); |
958 | 1 | } |
959 | | |
960 | | TEST_CASE("convolutional network backward propagate") |
961 | 1 | { |
962 | 1 | ccv_convnet_layer_param_t params = { |
963 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
964 | 1 | .bias = 0, |
965 | 1 | .glorot = sqrtf(2), |
966 | 1 | .input = { |
967 | 1 | .matrix = { |
968 | 1 | .rows = 31, |
969 | 1 | .cols = 31, |
970 | 1 | .channels = 3, |
971 | 1 | .partition = 1, |
972 | 1 | }, |
973 | 1 | }, |
974 | 1 | .output = { |
975 | 1 | .convolutional = { |
976 | 1 | .rows = 5, |
977 | 1 | .cols = 5, |
978 | 1 | .channels = 3, |
979 | 1 | .border = 2, |
980 | 1 | .strides = 1, |
981 | 1 | .count = 32, |
982 | 1 | .partition = 1, |
983 | 1 | }, |
984 | 1 | }, |
985 | 1 | }; |
986 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(31, 31), ¶ms, 1); |
987 | 1 | int i, j, k; |
988 | 2.40k | for (i = 0; i < 5 * 5 * 3 * 32; i++2.40k ) |
989 | 2.40k | convnet->layers[0].w[i] = 2; |
990 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
991 | 1 | _ccv_convnet_update_zero(update_params); |
992 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C3, 0, 0); |
993 | 2.88k | for (i = 0; i < 31 * 31 * 3; i++2.88k ) |
994 | 2.88k | x->data.f32[i] = 1; |
995 | 1 | ccv_dense_matrix_t* y = 0; |
996 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
997 | 1 | REQUIRE(y->rows == 31 && y->cols == 31 && CCV_GET_CHANNEL(y->type) == 32, "convnet should return a 31x31x32 matrix"); |
998 | 1 | ccv_dense_matrix_t* loss = ccv_dense_matrix_new(y->rows, y->cols, CCV_32F | CCV_GET_CHANNEL(y->type), 0, 0); |
999 | 30.7k | for (i = 0; i < 31 * 31 * 32; i++30.7k ) |
1000 | 30.7k | loss->data.f32[i] = 1; |
1001 | 1 | ccv_dense_matrix_t* d = 0; |
1002 | 1 | _ccv_convnet_convolutional_backward_propagate(convnet->layers, loss, y, x, &d, update_params->layers); |
1003 | 1 | ccv_matrix_free(loss); |
1004 | 1 | ccv_matrix_free(y); |
1005 | 1 | ccv_matrix_free(x); |
1006 | 1 | ccv_dense_matrix_t* dd = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C3, 0, 0); |
1007 | 32 | for (i = 0; i < 31; i++31 ) |
1008 | 992 | for (j = 0; 31 j < 31; j++961 ) |
1009 | 961 | dd->data.f32[(i * 31 + j) * 3] = |
1010 | 961 | dd->data.f32[(i * 31 + j) * 3 + 1] = |
1011 | 961 | dd->data.f32[(i * 31 + j) * 3 + 2] = 32 * 2 * (5 + ccv_min(i - 2, 0) + ccv_min(28 - i, 0)) * (5 + ccv_min(j - 2, 0) + ccv_min(28 - j, 0)); |
1012 | 1 | REQUIRE_MATRIX_EQ(d, dd, "propagated error doesn't match the expected value"); |
1013 | 1 | ccv_matrix_free(d); |
1014 | 1 | ccv_matrix_free(dd); |
1015 | 1 | float* dw = (float*)ccmalloc(sizeof(float) * 5 * 5 * 3 * 32); |
1016 | 33 | for (k = 0; k < 32; k++32 ) |
1017 | 192 | for (i = 0; 32 i < 5; i++160 ) |
1018 | 960 | for (j = 0; 160 j < 5; j++800 ) |
1019 | 800 | dw[k * 5 * 5 * 3 + (i * 5 + j) * 3] = |
1020 | 800 | dw[k * 5 * 5 * 3 + (i * 5 + j) * 3 + 1] = |
1021 | 800 | dw[k * 5 * 5 * 3 + (i * 5 + j) * 3 + 2] = (31 - abs(i - 2)) * (31 - abs(j - 2)); |
1022 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, dw, update_params->layers[0].w, 5 * 5 * 3 * 32, 1e-4, "weight gradient doesn't match the expected value"); |
1023 | 1 | ccfree(dw); |
1024 | 1 | float* dbias = (float*)ccmalloc(sizeof(float) * 32); |
1025 | 33 | for (i = 0; i < 32; i++32 ) |
1026 | 32 | dbias[i] = 31 * 31; |
1027 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, dbias, update_params->layers[0].bias, 32, 1e-4, "bias gradient doesn't match the expected value"); |
1028 | 1 | ccfree(dbias); |
1029 | 1 | ccv_convnet_free(update_params); |
1030 | 1 | ccv_convnet_free(convnet); |
1031 | 1 | } |
1032 | | |
1033 | | TEST_CASE("convolutional network backward propagate with partitioned by 2") |
1034 | 1 | { |
1035 | 1 | ccv_convnet_layer_param_t params = { |
1036 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
1037 | 1 | .bias = 0, |
1038 | 1 | .glorot = sqrtf(2), |
1039 | 1 | .input = { |
1040 | 1 | .matrix = { |
1041 | 1 | .rows = 31, |
1042 | 1 | .cols = 31, |
1043 | 1 | .channels = 4, |
1044 | 1 | .partition = 2, |
1045 | 1 | }, |
1046 | 1 | }, |
1047 | 1 | .output = { |
1048 | 1 | .convolutional = { |
1049 | 1 | .rows = 5, |
1050 | 1 | .cols = 5, |
1051 | 1 | .channels = 4, |
1052 | 1 | .border = 2, |
1053 | 1 | .strides = 1, |
1054 | 1 | .count = 8, |
1055 | 1 | .partition = 2, |
1056 | 1 | }, |
1057 | 1 | }, |
1058 | 1 | }; |
1059 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(31, 31), ¶ms, 1); |
1060 | 1 | int i, k; |
1061 | 401 | for (i = 0; i < convnet->layers->wnum; i++400 ) |
1062 | 400 | convnet->layers->w[i] = i * 1e-2; |
1063 | 9 | for (i = 0; i < convnet->layers->net.convolutional.count; i++8 ) |
1064 | 8 | convnet->layers->bias[i] = i; |
1065 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(31, 31, CCV_32F | 4, 0, 0); |
1066 | 3.84k | for (i = 0; i < 31 * 31 * 4; i++3.84k ) |
1067 | 3.84k | a->data.f32[i] = 2000 - i; |
1068 | 1 | ccv_dense_matrix_t* b = 0; |
1069 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
1070 | 1 | ccv_dense_matrix_t* loss = ccv_dense_matrix_new(b->rows, b->cols, CCV_32F | CCV_GET_CHANNEL(b->type), 0, 0); |
1071 | 7.68k | for (i = 0; i < 31 * 31 * 8; i++7.68k ) |
1072 | 7.68k | loss->data.f32[i] = 1; |
1073 | 1 | ccv_dense_matrix_t* d = 0; |
1074 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
1075 | 1 | _ccv_convnet_update_zero(update_params); |
1076 | 1 | _ccv_convnet_convolutional_backward_propagate(convnet->layers, loss, b, a, &d, update_params->layers); |
1077 | 1 | ccv_matrix_free(loss); |
1078 | 1 | ccv_convnet_layer_param_t partitioned_params = { |
1079 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
1080 | 1 | .bias = 0, |
1081 | 1 | .glorot = sqrtf(2), |
1082 | 1 | .input = { |
1083 | 1 | .matrix = { |
1084 | 1 | .rows = 31, |
1085 | 1 | .cols = 31, |
1086 | 1 | .channels = 2, |
1087 | 1 | .partition = 1, |
1088 | 1 | }, |
1089 | 1 | }, |
1090 | 1 | .output = { |
1091 | 1 | .convolutional = { |
1092 | 1 | .rows = 5, |
1093 | 1 | .cols = 5, |
1094 | 1 | .channels = 2, |
1095 | 1 | .border = 2, |
1096 | 1 | .strides = 1, |
1097 | 1 | .count = 4, |
1098 | 1 | .partition = 1, |
1099 | 1 | }, |
1100 | 1 | }, |
1101 | 1 | }; |
1102 | 1 | ccv_convnet_t* partitioned_convnet = ccv_convnet_new(0, ccv_size(31, 31), &partitioned_params, 1); |
1103 | 1 | ccv_dense_matrix_t* aa = ccv_dense_matrix_new(31, 31, CCV_32F | 2, 0, 0); |
1104 | | // first partition |
1105 | 962 | for (i = 0; i < 31 * 31; i++961 ) |
1106 | 2.88k | for (k = 0; 961 k < 2; k++1.92k ) |
1107 | 1.92k | aa->data.f32[i * 2 + k] = a->data.f32[i * 4 + k]; |
1108 | 1 | memcpy(partitioned_convnet->layers->w, convnet->layers->w, sizeof(float) * (convnet->layers->wnum / 2)); |
1109 | 1 | memcpy(partitioned_convnet->layers->bias, convnet->layers->bias, sizeof(float) * (convnet->layers->net.convolutional.count / 2)); |
1110 | 1 | ccv_dense_matrix_t* bb = 0; |
1111 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &bb, 1); |
1112 | 1 | ccv_dense_matrix_t* bbb = ccv_dense_matrix_new(31, 31, CCV_32F | 8, 0, 0); |
1113 | 962 | for (i = 0; i < 31 * 31; i++961 ) |
1114 | 4.80k | for (k = 0; 961 k < 4; k++3.84k ) |
1115 | 3.84k | bbb->data.f32[i * 8 + k] = bb->data.f32[i * 4 + k]; |
1116 | 1 | loss = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_GET_CHANNEL(bb->type), 0, 0); |
1117 | 3.84k | for (i = 0; i < 31 * 31 * 4; i++3.84k ) |
1118 | 3.84k | loss->data.f32[i] = 1; |
1119 | 1 | ccv_dense_matrix_t* dd = 0; |
1120 | 1 | ccv_convnet_t* partitioned_update_params = _ccv_convnet_update_new(convnet); |
1121 | 1 | _ccv_convnet_update_zero(partitioned_update_params); |
1122 | 1 | _ccv_convnet_convolutional_backward_propagate(partitioned_convnet->layers, loss, bb, aa, &dd, partitioned_update_params->layers); |
1123 | 1 | ccv_dense_matrix_t* ddd = ccv_dense_matrix_new(31, 31, CCV_32F | 4, 0, 0); |
1124 | 1 | float* ww = (float*)ccmalloc(sizeof(float) * (convnet->layers->wnum + convnet->layers->net.convolutional.count)); |
1125 | 1 | float* bbias = ww + convnet->layers->wnum; |
1126 | 1 | memcpy(ww, partitioned_update_params->layers->w, sizeof(float) * (convnet->layers->wnum / 2)); |
1127 | 1 | memcpy(bbias, partitioned_update_params->layers->bias, sizeof(float) * (convnet->layers->net.convolutional.count / 2)); |
1128 | 962 | for (i = 0; i < 31 * 31; i++961 ) |
1129 | 2.88k | for (k = 0; 961 k < 2; k++1.92k ) |
1130 | 1.92k | ddd->data.f32[i * 4 + k] = dd->data.f32[i * 2 + k]; |
1131 | | // second partition |
1132 | 962 | for (i = 0; i < 31 * 31; i++961 ) |
1133 | 2.88k | for (k = 0; 961 k < 2; k++1.92k ) |
1134 | 1.92k | aa->data.f32[i * 2 + k] = a->data.f32[i * 4 + 2 + k]; |
1135 | 1 | memcpy(partitioned_convnet->layers->w, convnet->layers->w + (convnet->layers->wnum / 2), sizeof(float) * (convnet->layers->wnum / 2)); |
1136 | 1 | memcpy(partitioned_convnet->layers->bias, convnet->layers->bias + (convnet->layers->net.convolutional.count / 2), sizeof(float) * (convnet->layers->net.convolutional.count / 2)); |
1137 | 1 | ccv_convnet_compact(partitioned_convnet); // because it is reused, we need to clear intermediate data |
1138 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &bb, 1); |
1139 | 962 | for (i = 0; i < 31 * 31; i++961 ) |
1140 | 4.80k | for (k = 0; 961 k < 4; k++3.84k ) |
1141 | 3.84k | bbb->data.f32[i * 8 + 4 + k] = bb->data.f32[i * 4 + k]; |
1142 | 1 | REQUIRE_MATRIX_EQ(b, bbb, "forward pass doesn't match the expected value"); |
1143 | 1 | _ccv_convnet_update_zero(partitioned_update_params); |
1144 | 1 | _ccv_convnet_convolutional_backward_propagate(partitioned_convnet->layers, loss, bb, aa, &dd, partitioned_update_params->layers); |
1145 | 1 | memcpy(ww + (convnet->layers->wnum / 2), partitioned_update_params->layers->w, sizeof(float) * (convnet->layers->wnum / 2)); |
1146 | 1 | memcpy(bbias + (convnet->layers->net.convolutional.count / 2), partitioned_update_params->layers->bias, sizeof(float) * (convnet->layers->net.convolutional.count / 2)); |
1147 | 962 | for (i = 0; i < 31 * 31; i++961 ) |
1148 | 2.88k | for (k = 0; 961 k < 2; k++1.92k ) |
1149 | 1.92k | ddd->data.f32[i * 4 + 2 + k] = dd->data.f32[i * 2 + k]; |
1150 | 1 | REQUIRE_MATRIX_EQ(d, ddd, "propagated error doesn't match the expected value"); |
1151 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, ww, update_params->layers[0].w, convnet->layers->wnum, 1e-4, "weight gradient doesn't match the expected value"); |
1152 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, bbias, update_params->layers[0].bias, convnet->layers->net.convolutional.count, 1e-4, "bias gradient doesn't match the expected value"); |
1153 | 1 | ccfree(ww); |
1154 | 1 | ccv_matrix_free(loss); |
1155 | 1 | ccv_matrix_free(ddd); |
1156 | 1 | ccv_matrix_free(dd); |
1157 | 1 | ccv_matrix_free(bbb); |
1158 | 1 | ccv_matrix_free(bb); |
1159 | 1 | ccv_matrix_free(aa); |
1160 | 1 | ccv_matrix_free(d); |
1161 | 1 | ccv_matrix_free(b); |
1162 | 1 | ccv_matrix_free(a); |
1163 | 1 | ccv_convnet_free(convnet); |
1164 | 1 | ccv_convnet_free(update_params); |
1165 | 1 | ccv_convnet_free(partitioned_convnet); |
1166 | 1 | ccv_convnet_free(partitioned_update_params); |
1167 | 1 | } |
1168 | | |
1169 | | TEST_CASE("local response normalization backward propagate with partitioned by 2") |
1170 | 1 | { |
1171 | 1 | ccv_convnet_layer_param_t params = { |
1172 | 1 | .type = CCV_CONVNET_LOCAL_RESPONSE_NORM, |
1173 | 1 | .input = { |
1174 | 1 | .matrix = { |
1175 | 1 | .rows = 27, |
1176 | 1 | .cols = 27, |
1177 | 1 | .channels = 6, |
1178 | 1 | .partition = 2, |
1179 | 1 | }, |
1180 | 1 | }, |
1181 | 1 | .output = { |
1182 | 1 | .rnorm = { |
1183 | 1 | .size = 3, |
1184 | 1 | .kappa = 2, |
1185 | 1 | .alpha = 1e-4, |
1186 | 1 | .beta = 0.75, |
1187 | 1 | }, |
1188 | 1 | }, |
1189 | 1 | }; |
1190 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(27, 27), ¶ms, 1); |
1191 | 1 | int i, k; |
1192 | 1 | ccv_dense_matrix_t* a = ccv_dense_matrix_new(27, 27, CCV_32F | 6, 0, 0); |
1193 | 4.37k | for (i = 0; i < 27 * 27 * 6; i++4.37k ) |
1194 | 4.37k | a->data.f32[i] = i; |
1195 | 1 | ccv_dense_matrix_t* b = 0; |
1196 | 1 | ccv_convnet_encode(convnet, &a, &b, 1); |
1197 | 1 | ccv_dense_matrix_t* d = 0; |
1198 | 1 | ccv_dense_matrix_t* loss = ccv_dense_matrix_new(27, 27, CCV_32F | 6, 0, 0); |
1199 | 4.37k | for (i = 0; i < 27 * 27 * 6; i++4.37k ) |
1200 | 4.37k | loss->data.f32[i] = 1; |
1201 | 1 | _ccv_convnet_rnorm_backward_propagate(convnet->layers, loss, b, a, convnet->denoms[0], &d); |
1202 | 1 | ccv_convnet_layer_param_t partitioned_params = { |
1203 | 1 | .type = CCV_CONVNET_LOCAL_RESPONSE_NORM, |
1204 | 1 | .input = { |
1205 | 1 | .matrix = { |
1206 | 1 | .rows = 27, |
1207 | 1 | .cols = 27, |
1208 | 1 | .channels = 3, |
1209 | 1 | .partition = 1, |
1210 | 1 | }, |
1211 | 1 | }, |
1212 | 1 | .output = { |
1213 | 1 | .rnorm = { |
1214 | 1 | .size = 3, |
1215 | 1 | .kappa = 2, |
1216 | 1 | .alpha = 1e-4, |
1217 | 1 | .beta = 0.75, |
1218 | 1 | }, |
1219 | 1 | }, |
1220 | 1 | }; |
1221 | 1 | ccv_convnet_t* partitioned_convnet = ccv_convnet_new(0, ccv_size(27, 27), &partitioned_params, 1); |
1222 | 1 | ccv_dense_matrix_t* aa = ccv_dense_matrix_new(27, 27, CCV_32F | 3, 0, 0); |
1223 | | // first partition |
1224 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
1225 | 2.91k | for (k = 0; 729 k < 3; k++2.18k ) |
1226 | 2.18k | aa->data.f32[i * 3 + k] = a->data.f32[i * 6 + k]; |
1227 | 1 | ccv_dense_matrix_t* bb = 0; |
1228 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &bb, 1); |
1229 | 1 | ccv_matrix_free(loss); |
1230 | 1 | loss = ccv_dense_matrix_new(27, 27, CCV_32F | 3, 0, 0); |
1231 | 2.18k | for (i = 0; i < 27 * 27 * 3; i++2.18k ) |
1232 | 2.18k | loss->data.f32[i] = 1; |
1233 | 1 | ccv_dense_matrix_t* dd = 0; |
1234 | 1 | _ccv_convnet_rnorm_backward_propagate(partitioned_convnet->layers, loss, bb, aa, partitioned_convnet->denoms[0], &dd); |
1235 | 1 | ccv_dense_matrix_t* ddd = ccv_dense_matrix_new(27, 27, CCV_32F | 6, 0, 0); |
1236 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
1237 | 2.91k | for (k = 0; 729 k < 3; k++2.18k ) |
1238 | 2.18k | ddd->data.f32[i * 6 + k] = dd->data.f32[i * 3 + k]; |
1239 | | // second partition |
1240 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
1241 | 2.91k | for (k = 0; 729 k < 3; k++2.18k ) |
1242 | 2.18k | aa->data.f32[i * 3 + k] = a->data.f32[i * 6 + 3 + k]; |
1243 | 1 | ccv_convnet_encode(partitioned_convnet, &aa, &bb, 1); |
1244 | 1 | _ccv_convnet_rnorm_backward_propagate(partitioned_convnet->layers, loss, bb, aa, partitioned_convnet->denoms[0], &dd); |
1245 | 730 | for (i = 0; i < 27 * 27; i++729 ) |
1246 | 2.91k | for (k = 0; 729 k < 3; k++2.18k ) |
1247 | 2.18k | ddd->data.f32[i * 6 + 3 + k] = dd->data.f32[i * 3 + k]; |
1248 | 1 | REQUIRE_MATRIX_EQ(d, ddd, "27x27x6 error local response normalization backward propagated from convnet with partition and partitioned convnet should be exactly the same"); |
1249 | 1 | ccv_matrix_free(a); |
1250 | 1 | ccv_matrix_free(b); |
1251 | 1 | ccv_matrix_free(d); |
1252 | 1 | ccv_matrix_free(aa); |
1253 | 1 | ccv_matrix_free(bb); |
1254 | 1 | ccv_matrix_free(dd); |
1255 | 1 | ccv_matrix_free(ddd); |
1256 | 1 | ccv_matrix_free(loss); |
1257 | 1 | ccv_convnet_free(convnet); |
1258 | 1 | ccv_convnet_free(partitioned_convnet); |
1259 | 1 | } |
1260 | | |
1261 | | // five-stencil constants |
1262 | | static float fs[4] = { 1, -8, 8, -1 }; |
1263 | | static float fsh[4] = { -2, -1, 1, 2 }; |
1264 | | |
1265 | | static float dsfmt_genrand_gaussian(dsfmt_t* dsfmt, float sigma) |
1266 | 2.29k | { |
1267 | 2.29k | double rand1 = dsfmt_genrand_open_close(dsfmt); |
1268 | 2.29k | rand1 = -2 * log(rand1); |
1269 | 2.29k | double rand2 = dsfmt_genrand_open_close(dsfmt) * CCV_PI * 2; |
1270 | 2.29k | return (float)(sqrt(sigma * rand1) * cos(rand2)); |
1271 | 2.29k | } |
1272 | | |
1273 | | TEST_CASE("numerical gradient versus analytical gradient for full connect network") |
1274 | 1 | { |
1275 | 1 | ccv_convnet_layer_param_t params = { |
1276 | 1 | .type = CCV_CONVNET_FULL_CONNECT, |
1277 | 1 | .bias = 0, |
1278 | 1 | .glorot = sqrtf(2), |
1279 | 1 | .input = { |
1280 | 1 | .matrix = { |
1281 | 1 | .rows = 3, |
1282 | 1 | .cols = 3, |
1283 | 1 | .channels = 8, |
1284 | 1 | .partition = 1, |
1285 | 1 | }, |
1286 | 1 | .node = { |
1287 | 1 | .count = 3 * 3 * 8, |
1288 | 1 | }, |
1289 | 1 | }, |
1290 | 1 | .output = { |
1291 | 1 | .full_connect = { |
1292 | 1 | .relu = 0, |
1293 | 1 | .count = 10, |
1294 | 1 | }, |
1295 | 1 | }, |
1296 | 1 | }; |
1297 | 1 | ccv_convnet_t *convnet = ccv_convnet_new(0, ccv_size(3, 3), ¶ms, 1); |
1298 | 1 | dsfmt_t dsfmt; |
1299 | 1 | dsfmt_init_gen_rand(&dsfmt, 0); |
1300 | 1 | int i, j, k; |
1301 | 721 | for (i = 0; i < convnet->layers->wnum; i++720 ) |
1302 | 720 | convnet->layers->w[i] = dsfmt_genrand_gaussian(&dsfmt, 0.01); |
1303 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
1304 | 1 | _ccv_convnet_update_zero(update_params); |
1305 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(3, 3, CCV_32F | 8, 0, 0); |
1306 | 73 | for (i = 0; i < 3 * 3 * 8; i++72 ) |
1307 | 72 | x->data.f32[i] = i; |
1308 | 1 | ccv_dense_matrix_t* y = 0; |
1309 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
1310 | 1 | REQUIRE(y->rows == 10 && y->cols == 1 && CCV_GET_CHANNEL(y->type) == 1, "y should be a 10-dimensional vector"); |
1311 | 1 | _ccv_convnet_compute_softmax(y, &y, 0); |
1312 | 1 | ccv_dense_matrix_t* dloss = ccv_dense_matrix_new(10, 1, CCV_32F | CCV_C1, 0, 0);; |
1313 | 11 | for (i = 0; i < 10; i++10 ) |
1314 | 10 | dloss->data.f32[i] = y->data.f32[i] - (i == 2); |
1315 | 1 | float* dw = (float*)ccmalloc(sizeof(float) * 3 * 3 * 8 * 10); |
1316 | 1 | static const float eps = 0.0001; |
1317 | 11 | for (i = 0; i < 10; i++10 ) |
1318 | 730 | for (j = 0; 10 j < 3 * 3 * 8; j++720 ) |
1319 | 720 | { |
1320 | 720 | dw[j + i * 3 * 3 * 8] = 0; |
1321 | 3.60k | for (k = 0; k < 4; k++2.88k ) |
1322 | 2.88k | { |
1323 | 2.88k | float w = convnet->layers->w[j + i * 3 * 3 * 8]; |
1324 | 2.88k | convnet->layers->w[j + i * 3 * 3 * 8] += fsh[k] * eps; |
1325 | 2.88k | ccv_dense_matrix_t* z = 0; |
1326 | 2.88k | ccv_convnet_encode(convnet, &x, &z, 1); |
1327 | 2.88k | _ccv_convnet_compute_softmax(z, &z, 0); |
1328 | 2.88k | dw[j + i * 3 * 3 * 8] += -logf(z->data.f32[2]) * fs[k]; |
1329 | 2.88k | ccv_matrix_free(z); |
1330 | 2.88k | convnet->layers->w[j + i * 3 * 3 * 8] = w; |
1331 | 2.88k | } |
1332 | 720 | dw[j + i * 3 * 3 * 8] *= 1.0 / (12 * eps); |
1333 | 720 | } |
1334 | 1 | float* dbias = (float*)ccmalloc(sizeof(float) * 10); |
1335 | 11 | for (i = 0; i < 10; i++10 ) |
1336 | 10 | { |
1337 | 10 | dbias[i] = 0; |
1338 | 50 | for (k = 0; k < 4; k++40 ) |
1339 | 40 | { |
1340 | 40 | float bias = convnet->layers->bias[i]; |
1341 | 40 | convnet->layers->bias[i] += fsh[k] * eps; |
1342 | 40 | ccv_dense_matrix_t* z = 0; |
1343 | 40 | ccv_convnet_encode(convnet, &x, &z, 1); |
1344 | 40 | _ccv_convnet_compute_softmax(z, &z, 0); |
1345 | 40 | dbias[i] += -logf(z->data.f32[2]) * fs[k]; |
1346 | 40 | ccv_matrix_free(z); |
1347 | 40 | convnet->layers->bias[i] = bias; |
1348 | 40 | } |
1349 | 10 | dbias[i] *= 1.0 / (12 * eps); |
1350 | 10 | } |
1351 | 1 | ccv_dense_matrix_t* b = 0; |
1352 | 1 | _ccv_convnet_full_connect_backward_propagate(convnet->layers, dloss, y, x, &b, update_params->layers); |
1353 | 1 | ccv_matrix_free(y); |
1354 | 1 | ccv_matrix_free(x); |
1355 | 1 | ccv_matrix_free(dloss); |
1356 | 1 | ccv_matrix_free(b); |
1357 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dw, update_params->layers[0].w, 3 * 3 * 8 * 10, 30, 2e-1, "weight gradient from analytical method doesn't match the one from numerical method"); |
1358 | 1 | ccfree(dw); |
1359 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dbias, update_params->layers[0].bias, 10, 30, 2e-1, "bias gradient from analytical method doesn't match the one from numerical method"); |
1360 | 1 | ccfree(dbias); |
1361 | 1 | ccv_convnet_free(update_params); |
1362 | 1 | ccv_convnet_free(convnet); |
1363 | 1 | } |
1364 | | |
1365 | | TEST_CASE("numerical gradient versus analytical gradient for convolutional network") |
1366 | 1 | { |
1367 | 1 | ccv_convnet_layer_param_t params = { |
1368 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
1369 | 1 | .bias = 0, |
1370 | 1 | .glorot = sqrtf(2), |
1371 | 1 | .input = { |
1372 | 1 | .matrix = { |
1373 | 1 | .rows = 31, |
1374 | 1 | .cols = 31, |
1375 | 1 | .channels = 3, |
1376 | 1 | .partition = 1, |
1377 | 1 | }, |
1378 | 1 | }, |
1379 | 1 | .output = { |
1380 | 1 | .convolutional = { |
1381 | 1 | .rows = 5, |
1382 | 1 | .cols = 5, |
1383 | 1 | .channels = 3, |
1384 | 1 | .border = 2, |
1385 | 1 | .strides = 1, |
1386 | 1 | .count = 4, |
1387 | 1 | .partition = 1, |
1388 | 1 | }, |
1389 | 1 | }, |
1390 | 1 | }; |
1391 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(31, 31), ¶ms, 1); |
1392 | 1 | dsfmt_t dsfmt; |
1393 | 1 | dsfmt_init_gen_rand(&dsfmt, 1); |
1394 | 1 | int i, k; |
1395 | 301 | for (i = 0; i < convnet->layers->wnum; i++300 ) |
1396 | 300 | convnet->layers->w[i] = dsfmt_genrand_gaussian(&dsfmt, 0.0001); |
1397 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
1398 | 1 | _ccv_convnet_update_zero(update_params); |
1399 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C3, 0, 0); |
1400 | 2.88k | for (i = 0; i < 31 * 31 * 3; i++2.88k ) |
1401 | 2.88k | x->data.f32[i] = i; |
1402 | 1 | ccv_dense_matrix_t* y = 0; |
1403 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
1404 | 1 | REQUIRE(y->rows == 31 && y->cols == 31 && CCV_GET_CHANNEL(y->type) == 4, "convnet should return a 31x31x4 matrix"); |
1405 | 1 | ccv_dense_matrix_t* softmax = 0; |
1406 | 1 | _ccv_convnet_compute_softmax(y, &softmax, 0); |
1407 | 1 | ccv_dense_matrix_t* dloss = ccv_dense_matrix_new(y->rows, y->cols, CCV_32F | CCV_GET_CHANNEL(y->type), 0, 0); |
1408 | 3.84k | for (i = 0; i < 31 * 31 * 4; i++3.84k ) |
1409 | 3.84k | dloss->data.f32[i] = softmax->data.f32[i] - (i == 24); |
1410 | 1 | static const float eps = 0.000005; |
1411 | 1 | float* dw = (float*)ccmalloc(sizeof(float) * 5 * 5 * 3 * 4); |
1412 | 301 | for (i = 0; i < 5 * 5 * 3 * 4; i++300 ) |
1413 | 300 | { |
1414 | 300 | dw[i] = 0; |
1415 | 1.50k | for (k = 0; k < 4; k++1.20k ) |
1416 | 1.20k | { |
1417 | 1.20k | float w = convnet->layers->w[i]; |
1418 | 1.20k | convnet->layers->w[i] += fsh[k] * eps; |
1419 | 1.20k | ccv_dense_matrix_t* z = 0; |
1420 | 1.20k | ccv_convnet_compact(convnet); |
1421 | 1.20k | ccv_convnet_encode(convnet, &x, &z, 1); |
1422 | 1.20k | _ccv_convnet_compute_softmax(z, &z, 0); |
1423 | 1.20k | dw[i] += -logf(z->data.f32[24]) * fs[k]; |
1424 | 1.20k | ccv_matrix_free(z); |
1425 | 1.20k | convnet->layers->w[i] = w; |
1426 | 1.20k | } |
1427 | 300 | dw[i] *= 1.0 / (12 * eps); |
1428 | 300 | } |
1429 | 1 | float* dbias = (float*)ccmalloc(sizeof(float) * 4); |
1430 | 5 | for (i = 0; i < 4; i++4 ) |
1431 | 4 | { |
1432 | 4 | dbias[i] = 0; |
1433 | 20 | for (k = 0; k < 4; k++16 ) |
1434 | 16 | { |
1435 | 16 | float bias = convnet->layers->bias[i]; |
1436 | 16 | convnet->layers->bias[i] += fsh[k] * eps; |
1437 | 16 | ccv_dense_matrix_t* z = 0; |
1438 | 16 | ccv_convnet_compact(convnet); |
1439 | 16 | ccv_convnet_encode(convnet, &x, &z, 1); |
1440 | 16 | _ccv_convnet_compute_softmax(z, &z, 0); |
1441 | 16 | dbias[i] += -logf(z->data.f32[24]) * fs[k]; |
1442 | 16 | ccv_matrix_free(z); |
1443 | 16 | convnet->layers->bias[i] = bias; |
1444 | 16 | } |
1445 | 4 | dbias[i] *= 1.0 / (12 * eps); |
1446 | 4 | } |
1447 | 1 | ccv_dense_matrix_t* d = 0; |
1448 | 1 | _ccv_convnet_convolutional_backward_propagate(convnet->layers, dloss, y, x, &d, update_params->layers); |
1449 | 1 | ccv_matrix_free(softmax); |
1450 | 1 | ccv_matrix_free(dloss); |
1451 | 1 | ccv_matrix_free(y); |
1452 | 1 | ccv_matrix_free(x); |
1453 | 1 | ccv_matrix_free(d); |
1454 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dw, update_params->layers[0].w, 5 * 5 * 3 * 4, 30, 2e-1, "weight gradient from analytical method doesn't match the one from numerical method"); |
1455 | 1 | ccfree(dw); |
1456 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dbias, update_params->layers[0].bias, 4, 30, 2e-1, "bias gradient from analytical method doesn't match the one from numerical method"); |
1457 | 1 | ccfree(dbias); |
1458 | 1 | ccv_convnet_free(update_params); |
1459 | 1 | ccv_convnet_free(convnet); |
1460 | 1 | } |
1461 | | |
1462 | | TEST_CASE("numerical gradient versus analytical gradient for full connect network over convolutional network") |
1463 | 1 | { |
1464 | 1 | ccv_convnet_layer_param_t params[] = { |
1465 | 1 | { |
1466 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
1467 | 1 | .bias = 0, |
1468 | 1 | .glorot = sqrtf(2), |
1469 | 1 | .input = { |
1470 | 1 | .matrix = { |
1471 | 1 | .rows = 5, |
1472 | 1 | .cols = 5, |
1473 | 1 | .channels = 2, |
1474 | 1 | .partition = 1, |
1475 | 1 | }, |
1476 | 1 | }, |
1477 | 1 | .output = { |
1478 | 1 | .convolutional = { |
1479 | 1 | .rows = 3, |
1480 | 1 | .cols = 3, |
1481 | 1 | .channels = 2, |
1482 | 1 | .border = 1, |
1483 | 1 | .strides = 1, |
1484 | 1 | .count = 4, |
1485 | 1 | .partition = 1, |
1486 | 1 | }, |
1487 | 1 | }, |
1488 | 1 | }, |
1489 | 1 | { |
1490 | 1 | .type = CCV_CONVNET_FULL_CONNECT, |
1491 | 1 | .bias = 0, |
1492 | 1 | .glorot = sqrtf(2), |
1493 | 1 | .input = { |
1494 | 1 | .matrix = { |
1495 | 1 | .rows = 5, |
1496 | 1 | .cols = 5, |
1497 | 1 | .channels = 4, |
1498 | 1 | .partition = 1, |
1499 | 1 | }, |
1500 | 1 | .node = { |
1501 | 1 | .count = 5 * 5 * 4, |
1502 | 1 | }, |
1503 | 1 | }, |
1504 | 1 | .output = { |
1505 | 1 | .full_connect = { |
1506 | 1 | .relu = 0, |
1507 | 1 | .count = 10, |
1508 | 1 | }, |
1509 | 1 | }, |
1510 | 1 | }, |
1511 | 1 | }; |
1512 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(5, 5), params, 2); |
1513 | 1 | dsfmt_t dsfmt; |
1514 | 1 | dsfmt_init_gen_rand(&dsfmt, 2); |
1515 | 1 | int i, k; |
1516 | 73 | for (i = 0; i < convnet->layers[0].wnum; i++72 ) |
1517 | 72 | convnet->layers[0].w[i] = dsfmt_genrand_gaussian(&dsfmt, 0.001); |
1518 | 1.00k | for (i = 0; i < convnet->layers[1].wnum; i++1.00k ) |
1519 | 1.00k | convnet->layers[1].w[i] = dsfmt_genrand_gaussian(&dsfmt, 0.01); |
1520 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
1521 | 1 | _ccv_convnet_update_zero(update_params); |
1522 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(5, 5, CCV_32F | CCV_C2, 0, 0); |
1523 | 51 | for (i = 0; i < 5 * 5 * 2; i++50 ) |
1524 | 50 | x->data.f32[i] = 0.2; |
1525 | 1 | ccv_dense_matrix_t* y = 0; |
1526 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
1527 | 1 | REQUIRE(y->rows == 10 && y->cols == 1 && CCV_GET_CHANNEL(y->type) == 1, "y should be a 10-dimensional vector"); |
1528 | 1 | _ccv_convnet_compute_softmax(y, &y, 0); |
1529 | 1 | ccv_dense_matrix_t* dloss = ccv_dense_matrix_new(10, 1, CCV_32F | CCV_C1, 0, 0);; |
1530 | 11 | for (i = 0; i < 10; i++10 ) |
1531 | 10 | dloss->data.f32[i] = y->data.f32[i] - (i == 2); |
1532 | 1 | _ccv_convnet_propagate_loss(convnet, x, dloss, update_params); |
1533 | 1 | ccv_matrix_free(dloss); |
1534 | 1 | static const float eps = 0.0001; |
1535 | 1 | float* dw = (float*)ccmalloc(sizeof(float) * 3 * 3 * 2 * 4); |
1536 | 73 | for (i = 0; i < 3 * 3 * 2 * 4; i++72 ) |
1537 | 72 | { |
1538 | 72 | dw[i] = 0; |
1539 | 360 | for (k = 0; k < 4; k++288 ) |
1540 | 288 | { |
1541 | 288 | float w = convnet->layers->w[i]; |
1542 | 288 | convnet->layers->w[i] += fsh[k] * eps; |
1543 | 288 | ccv_dense_matrix_t* z = 0; |
1544 | 288 | ccv_convnet_compact(convnet); |
1545 | 288 | ccv_convnet_encode(convnet, &x, &z, 1); |
1546 | 288 | _ccv_convnet_compute_softmax(z, &z, 0); |
1547 | 288 | dw[i] += -logf(z->data.f32[2]) * fs[k]; |
1548 | 288 | ccv_matrix_free(z); |
1549 | 288 | convnet->layers->w[i] = w; |
1550 | 288 | } |
1551 | 72 | dw[i] *= 1.0 / (12 * eps); |
1552 | 72 | } |
1553 | 1 | float* dbias = (float*)ccmalloc(sizeof(float) * 4); |
1554 | 5 | for (i = 0; i < 4; i++4 ) |
1555 | 4 | { |
1556 | 4 | dbias[i] = 0; |
1557 | 20 | for (k = 0; k < 4; k++16 ) |
1558 | 16 | { |
1559 | 16 | float bias = convnet->layers->bias[i]; |
1560 | 16 | convnet->layers->bias[i] += fsh[k] * eps; |
1561 | 16 | ccv_dense_matrix_t* z = 0; |
1562 | 16 | ccv_convnet_compact(convnet); |
1563 | 16 | ccv_convnet_encode(convnet, &x, &z, 1); |
1564 | 16 | _ccv_convnet_compute_softmax(z, &z, 0); |
1565 | 16 | dbias[i] += -logf(z->data.f32[2]) * fs[k]; |
1566 | 16 | ccv_matrix_free(z); |
1567 | 16 | convnet->layers->bias[i] = bias; |
1568 | 16 | } |
1569 | 4 | dbias[i] *= 1.0 / (12 * eps); |
1570 | 4 | } |
1571 | 1 | ccv_matrix_free(y); |
1572 | 1 | ccv_matrix_free(x); |
1573 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dw, update_params->layers[0].w, 3 * 3 * 2 * 4, 30, 2e-1, "weight gradient from analytical method doesn't match the one from numerical method"); |
1574 | 1 | ccfree(dw); |
1575 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dbias, update_params->layers[0].bias, 4, 30, 2e-1, "bias gradient from analytical method doesn't match the one from numerical method"); |
1576 | 1 | ccfree(dbias); |
1577 | 1 | ccv_convnet_free(update_params); |
1578 | 1 | ccv_convnet_free(convnet); |
1579 | 1 | } |
1580 | | |
1581 | | TEST_CASE("numerical gradient versus analytical gradient for local response normalization over convolutional network") |
1582 | 1 | { |
1583 | 1 | ccv_convnet_layer_param_t params[] = { |
1584 | 1 | { |
1585 | 1 | .type = CCV_CONVNET_CONVOLUTIONAL, |
1586 | 1 | .bias = 0, |
1587 | 1 | .glorot = sqrtf(2), |
1588 | 1 | .input = { |
1589 | 1 | .matrix = { |
1590 | 1 | .rows = 31, |
1591 | 1 | .cols = 31, |
1592 | 1 | .channels = 2, |
1593 | 1 | .partition = 1, |
1594 | 1 | }, |
1595 | 1 | }, |
1596 | 1 | .output = { |
1597 | 1 | .convolutional = { |
1598 | 1 | .rows = 5, |
1599 | 1 | .cols = 5, |
1600 | 1 | .channels = 2, |
1601 | 1 | .border = 2, |
1602 | 1 | .strides = 1, |
1603 | 1 | .count = 4, |
1604 | 1 | .partition = 1, |
1605 | 1 | }, |
1606 | 1 | }, |
1607 | 1 | }, |
1608 | 1 | { |
1609 | 1 | .type = CCV_CONVNET_LOCAL_RESPONSE_NORM, |
1610 | 1 | .input = { |
1611 | 1 | .matrix = { |
1612 | 1 | .rows = 31, |
1613 | 1 | .cols = 31, |
1614 | 1 | .channels = 4, |
1615 | 1 | .partition = 1, |
1616 | 1 | }, |
1617 | 1 | }, |
1618 | 1 | .output = { |
1619 | 1 | .rnorm = { |
1620 | 1 | .size = 3, |
1621 | 1 | .kappa = 2, |
1622 | 1 | .alpha = 0.00005, |
1623 | 1 | .beta = 0.75, |
1624 | 1 | }, |
1625 | 1 | }, |
1626 | 1 | }, |
1627 | 1 | }; |
1628 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(31, 31), params, 2); |
1629 | 1 | dsfmt_t dsfmt; |
1630 | 1 | dsfmt_init_gen_rand(&dsfmt, 3); |
1631 | 1 | int i, k; |
1632 | 201 | for (i = 0; i < convnet->layers->wnum; i++200 ) |
1633 | 200 | convnet->layers->w[i] = dsfmt_genrand_gaussian(&dsfmt, 0.001); |
1634 | 1 | ccv_convnet_t* update_params = _ccv_convnet_update_new(convnet); |
1635 | 1 | _ccv_convnet_update_zero(update_params); |
1636 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C2, 0, 0); |
1637 | 1.92k | for (i = 0; i < 31 * 31 * 2; i++1.92k ) |
1638 | 1.92k | x->data.f32[i] = i; |
1639 | 1 | ccv_dense_matrix_t* y = 0; |
1640 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
1641 | 1 | REQUIRE(y->rows == 31 && y->cols == 31 && CCV_GET_CHANNEL(y->type) == 4, "convnet should return a 31x31x4 matrix"); |
1642 | 1 | ccv_dense_matrix_t* softmax = 0; |
1643 | 1 | _ccv_convnet_compute_softmax(y, &softmax, 0); |
1644 | 1 | ccv_dense_matrix_t* dloss = ccv_dense_matrix_new(y->rows, y->cols, CCV_32F | CCV_GET_CHANNEL(y->type), 0, 0); |
1645 | 3.84k | for (i = 0; i < 31 * 31 * 4; i++3.84k ) |
1646 | 3.84k | dloss->data.f32[i] = softmax->data.f32[i] - (i == 24); |
1647 | 1 | ccv_dense_matrix_t* d = 0; |
1648 | 1 | _ccv_convnet_rnorm_backward_propagate(convnet->layers + 1, dloss, y, convnet->acts[0], convnet->denoms[1], update_params->acts); |
1649 | 1 | _ccv_convnet_convolutional_backward_propagate(convnet->layers, update_params->acts[0], convnet->acts[0], x, &d, update_params->layers); |
1650 | 1 | static const float eps = 0.000001; |
1651 | 1 | float* dw = (float*)ccmalloc(sizeof(float) * 5 * 5 * 2 * 4); |
1652 | 201 | for (i = 0; i < 5 * 5 * 2 * 4; i++200 ) |
1653 | 200 | { |
1654 | 200 | dw[i] = 0; |
1655 | 1.00k | for (k = 0; k < 4; k++800 ) |
1656 | 800 | { |
1657 | 800 | float w = convnet->layers->w[i]; |
1658 | 800 | convnet->layers->w[i] += fsh[k] * eps; |
1659 | 800 | ccv_dense_matrix_t* z = 0; |
1660 | 800 | ccv_convnet_compact(convnet); |
1661 | 800 | ccv_convnet_encode(convnet, &x, &z, 1); |
1662 | 800 | _ccv_convnet_compute_softmax(z, &z, 0); |
1663 | 800 | dw[i] += -logf(z->data.f32[24]) * fs[k]; |
1664 | 800 | ccv_matrix_free(z); |
1665 | 800 | convnet->layers->w[i] = w; |
1666 | 800 | } |
1667 | 200 | dw[i] *= 1.0 / (12 * eps); |
1668 | 200 | } |
1669 | 1 | float* dbias = (float*)ccmalloc(sizeof(float) * 4); |
1670 | 1 | static const float beps = 0.0001; |
1671 | 5 | for (i = 0; i < 4; i++4 ) |
1672 | 4 | { |
1673 | 4 | dbias[i] = 0; |
1674 | 20 | for (k = 0; k < 4; k++16 ) |
1675 | 16 | { |
1676 | 16 | float bias = convnet->layers->bias[i]; |
1677 | 16 | convnet->layers->bias[i] += fsh[k] * beps; |
1678 | 16 | ccv_dense_matrix_t* z = 0; |
1679 | 16 | ccv_convnet_compact(convnet); |
1680 | 16 | ccv_convnet_encode(convnet, &x, &z, 1); |
1681 | 16 | _ccv_convnet_compute_softmax(z, &z, 0); |
1682 | 16 | dbias[i] += -logf(z->data.f32[24]) * fs[k]; |
1683 | 16 | ccv_matrix_free(z); |
1684 | 16 | convnet->layers->bias[i] = bias; |
1685 | 16 | } |
1686 | 4 | dbias[i] *= 1.0 / (12 * beps); |
1687 | 4 | } |
1688 | 1 | ccv_matrix_free(softmax); |
1689 | 1 | ccv_matrix_free(dloss); |
1690 | 1 | ccv_matrix_free(y); |
1691 | 1 | ccv_matrix_free(x); |
1692 | 1 | ccv_matrix_free(d); |
1693 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dw, update_params->layers[0].w, 5 * 5 * 2 * 4, 30, 2e-1, "weight gradient from analytical method doesn't match the one from numerical method"); |
1694 | 1 | ccfree(dw); |
1695 | 1 | REQUIRE_ARRAY_EQ_WITHIN_ANGLE_AND_MAGNITUDE(float, dbias, update_params->layers[0].bias, 4, 30, 2e-1, "bias gradient from analytical method doesn't match the one from numerical method"); |
1696 | 1 | ccfree(dbias); |
1697 | 1 | ccv_convnet_free(update_params); |
1698 | 1 | ccv_convnet_free(convnet); |
1699 | 1 | } |
1700 | | |
1701 | | TEST_CASE("max pool network backward propagate") |
1702 | 1 | { |
1703 | 1 | ccv_convnet_layer_param_t params = { |
1704 | 1 | .type = CCV_CONVNET_MAX_POOL, |
1705 | 1 | .input = { |
1706 | 1 | .matrix = { |
1707 | 1 | .rows = 31, |
1708 | 1 | .cols = 31, |
1709 | 1 | .channels = 2, |
1710 | 1 | .partition = 1, |
1711 | 1 | }, |
1712 | 1 | }, |
1713 | 1 | .output = { |
1714 | 1 | .pool = { |
1715 | 1 | .size = 3, |
1716 | 1 | .strides = 2, |
1717 | 1 | .border = 0, |
1718 | 1 | }, |
1719 | 1 | }, |
1720 | 1 | }; |
1721 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(31, 31), ¶ms, 1); |
1722 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C2, 0, 0); |
1723 | 1 | int i, j, k; |
1724 | 1.92k | for (i = 0; i < 31 * 31 * 2; i++1.92k ) |
1725 | 1.92k | x->data.f32[i] = i; |
1726 | 1 | ccv_dense_matrix_t* y = 0; |
1727 | 1 | ccv_convnet_encode(convnet, &x, &y, 1); |
1728 | 1 | ccv_dense_matrix_t* loss = ccv_dense_matrix_new(15, 15, CCV_32F | CCV_C2, 0, 0); |
1729 | 451 | for (i = 0; i < 15 * 15 * 2; i++450 ) |
1730 | 450 | loss->data.f32[i] = i + 1; |
1731 | 1 | ccv_dense_matrix_t* b = 0; |
1732 | 1 | _ccv_convnet_max_pool_backward_propagate(convnet->layers, loss, y, x, &b); |
1733 | 1 | ccv_matrix_free(loss); |
1734 | 1 | ccv_matrix_free(x); |
1735 | 1 | ccv_matrix_free(y); |
1736 | 1 | ccv_dense_matrix_t* db = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C2, 0, 0); |
1737 | 1 | ccv_zero(db); |
1738 | 16 | for (i = 0; i < 15; i++15 ) |
1739 | 240 | for (j = 0; 15 j < 15; j++225 ) |
1740 | 675 | for (k = 0; 225 k < 2; k++450 ) |
1741 | 450 | db->data.f32[(j * 2 + 2 + (i * 2 + 2) * 31) * 2 + k] = (i * 15 + j) * 2 + 1 + k; |
1742 | 1 | REQUIRE_MATRIX_EQ(b, db, "propagated error doesn't match the expected value"); |
1743 | 1 | ccv_matrix_free(db); |
1744 | 1 | ccv_matrix_free(b); |
1745 | 1 | ccv_convnet_free(convnet); |
1746 | 1 | } |
1747 | | |
1748 | | TEST_CASE("average pool network backward propagate") |
1749 | 1 | { |
1750 | 1 | ccv_convnet_layer_param_t params = { |
1751 | 1 | .type = CCV_CONVNET_AVERAGE_POOL, |
1752 | 1 | .input = { |
1753 | 1 | .matrix = { |
1754 | 1 | .rows = 31, |
1755 | 1 | .cols = 31, |
1756 | 1 | .channels = 2, |
1757 | 1 | .partition = 1, |
1758 | 1 | }, |
1759 | 1 | }, |
1760 | 1 | .output = { |
1761 | 1 | .pool = { |
1762 | 1 | .size = 3, |
1763 | 1 | .strides = 2, |
1764 | 1 | .border = 0, |
1765 | 1 | }, |
1766 | 1 | }, |
1767 | 1 | }; |
1768 | 1 | ccv_convnet_t* convnet = ccv_convnet_new(0, ccv_size(31, 31), ¶ms, 1); |
1769 | 1 | ccv_dense_matrix_t* x = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C2, 0, 0); |
1770 | 1 | int i, j, k; |
1771 | 1.92k | for (i = 0; i < 31 * 31 * 2; i++1.92k ) |
1772 | 1.92k | x->data.f32[i] = i; |
1773 | 1 | ccv_dense_matrix_t* loss = ccv_dense_matrix_new(15, 15, CCV_32F | CCV_C2, 0, 0); |
1774 | 451 | for (i = 0; i < 15 * 15 * 2; i++450 ) |
1775 | 450 | loss->data.f32[i] = i + 1; |
1776 | 1 | ccv_dense_matrix_t* b = 0; |
1777 | 1 | _ccv_convnet_average_pool_backward_propagate(convnet->layers, loss, x, &b); |
1778 | 1 | ccv_matrix_free(x); |
1779 | 1 | ccv_matrix_free(loss); |
1780 | 1 | ccv_dense_matrix_t* db = ccv_dense_matrix_new(31, 31, CCV_32F | CCV_C2, 0, 0); |
1781 | 1 | float inv_size = 1.0 / (3 * 3); |
1782 | 32 | for (i = 0; i < 31; i++31 ) |
1783 | 992 | for (j = 0; 31 j < 31; j++961 ) |
1784 | 2.88k | for (k = 0; 961 k < 2; k++1.92k ) |
1785 | 1.92k | { |
1786 | 1.92k | int x, y; |
1787 | 1.92k | db->data.f32[(i * 31 + j) * 2 + k] = 0; |
1788 | 4.77k | for (y = (i - 1) / 2; y <= i / 2; y++2.85k ) |
1789 | 7.08k | for (x = (j - 1) / 2; 2.85k x <= j / 2; x++4.23k ) |
1790 | 4.23k | if (x >= 0 && x < 15 && y >= 04.14k && y < 154.14k ) |
1791 | 4.05k | db->data.f32[(i * 31 + j) * 2 + k] += ((y * 15 + x) * 2 + k + 1) * inv_size; |
1792 | 1.92k | } |
1793 | 1 | REQUIRE_MATRIX_EQ(b, db, "propagated error doesn't match the expected value"); |
1794 | 1 | ccv_matrix_free(db); |
1795 | 1 | ccv_matrix_free(b); |
1796 | 1 | ccv_convnet_free(convnet); |
1797 | 1 | } |
1798 | | #endif |
1799 | | |
1800 | | #include "case_main.h" |