Coverage Report

Created: 2024-08-18 16:21

/home/liu/actions-runner/_work/ccv/ccv/lib/nnc/cmd/loss/ccv_nnc_smooth_l1.c
Line
Count
Source (jump to first uncovered line)
1
#include "ccv.h"
2
#include "nnc/ccv_nnc.h"
3
#include "nnc/ccv_nnc_easy.h"
4
#include "nnc/ccv_nnc_internal.h"
5
6
static int _ccv_nnc_smooth_l1_forw_bitmask(const ccv_nnc_cmd_param_t cmd, const int input_size, const int output_size, const uint64_t* const input_bitmasks, const int input_bitmask_size, const uint64_t* const output_bitmasks, const int output_bitmask_size)
7
0
{
8
  // input: activation, label
9
  // output: loss
10
0
  if ((input_bitmasks[0] & 3u) == 3u && output_bitmasks[0] == 1u)
11
0
    return 1;
12
0
  return 0;
13
0
}
14
15
static int _ccv_nnc_smooth_l1_back_bitmask(const ccv_nnc_cmd_param_t cmd, const int input_size, const int output_size, const uint64_t* const input_bitmasks, const int input_bitmask_size, const uint64_t* const output_bitmasks, const int output_bitmask_size)
16
8
{
17
  // input: [gradient of loss], activation, label, loss
18
  // output: w.r.t activation, [label]
19
8
  if ((input_bitmasks[0] & 14u) == 14u && 
(output_bitmasks[0] & 1u) == 1u2
)
20
2
    return 1;
21
6
  return 0;
22
8
}
23
24
static void _ccv_nnc_smooth_l1_tensor_auto_forw(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size)
25
2
{
26
2
  assert(input_size == 2);
27
2
  assert(output_size >= 1);
28
2
  outputs[0] = inputs[0];
29
  // The output should have the same dimentionality of the label data.
30
2
  memcpy(outputs[0].dim, inputs[1].dim, sizeof(outputs[0].dim));
31
2
  const int nd = ccv_nnc_tensor_nd(outputs[0].dim);
32
  // Set channel to 1 if it is not..
33
2
  if (nd > 1 && ccv_nnc_tensor_get_c(outputs[0]) > 1)
34
2
    ccv_nnc_tensor_set_c(&outputs[0], nd, 1);
35
2
}
36
37
static void _ccv_nnc_smooth_l1_tensor_auto_back(const ccv_nnc_cmd_param_t cmd, const ccv_nnc_tensor_param_t* const inputs, const int input_size, const ccv_nnc_hint_t hint, ccv_nnc_tensor_param_t* const outputs, const int output_size)
38
1
{
39
1
  assert(input_size >= 3);
40
1
  assert(output_size >= 1);
41
1
  outputs[0] = inputs[1];
42
1
  if (output_size > 1)
43
1
    outputs[1] = inputs[2];
44
1
}
45
46
REGISTER_COMMAND(CCV_NNC_SMOOTH_L1_FORWARD)(ccv_nnc_cmd_registry_t* const registry)
47
  FIND_BACKEND(ccv_nnc_smooth_l1_cpu_ref.c, gpu/ccv_nnc_smooth_l1_gpu_ref.cu)
48
1
{
49
1
  registry->bitmask = _ccv_nnc_smooth_l1_forw_bitmask;
50
1
  registry->tensor_auto = _ccv_nnc_smooth_l1_tensor_auto_forw;
51
1
}
52
53
REGISTER_COMMAND(CCV_NNC_SMOOTH_L1_BACKWARD)(ccv_nnc_cmd_registry_t* const registry)
54
  FIND_BACKEND(ccv_nnc_smooth_l1_cpu_ref.c, gpu/ccv_nnc_smooth_l1_gpu_ref.cu)
55
1
{
56
1
  registry->flags = CCV_NNC_CMD_ATTR_NULL_IS_ONES;
57
1
  registry->bitmask = _ccv_nnc_smooth_l1_back_bitmask;
58
1
  registry->tensor_auto = _ccv_nnc_smooth_l1_tensor_auto_back;
59
1
}
60
61
//@REGISTER_EASY_COMMAND_MACRO(CCV_NNC_SMOOTH_L1_FORWARD)
62
#define CMD_SMOOTH_L1_FORWARD(_b) ccv_nnc_cmd(CCV_NNC_SMOOTH_L1_FORWARD, 0, ((ccv_nnc_cmd_param_t){.size={.dim={1,1,1}},.smooth_l1={.beta=_b}}), 0)
63
//@REGISTER_EASY_COMMAND_MACRO(CCV_NNC_SMOOTH_L1_BACKWARD)
64
#define CMD_SMOOTH_L1_BACKWARD(_b) ccv_nnc_cmd(CCV_NNC_SMOOTH_L1_BACKWARD, 0, ((ccv_nnc_cmd_param_t){.size={.dim={1,1,1}},.smooth_l1={.beta=_b}}), 0)