/home/liu/actions-runner/_work/ccv/ccv/test/int/nnc/graph.vgg.d.tests.c
Line | Count | Source (jump to first uncovered line) |
1 | | #include "case.h" |
2 | | #include "ccv_case.h" |
3 | | #include "ccv_nnc_case.h" |
4 | | #include <ccv.h> |
5 | | #include <nnc/ccv_nnc.h> |
6 | | #include <nnc/ccv_nnc_easy.h> |
7 | | #include <inc/ccv_convnet_internal.h> |
8 | | |
9 | | TEST_SETUP() |
10 | | { |
11 | | ccv_nnc_init(); |
12 | | } |
13 | | |
14 | | static ccv_nnc_graph_t* ccv_nnc_simple_graph(ccv_convnet_t* convnet, ccv_nnc_tensor_t* input, ccv_nnc_tensor_t* output, ccv_nnc_graph_exec_t* source, ccv_nnc_graph_exec_t* dest, ccv_array_t* tensors) |
15 | 1 | { |
16 | 1 | int i; |
17 | | // We only create the graph compute to the last fc layer. |
18 | 1 | ccv_nnc_graph_t* vgg = ccv_nnc_graph_new(); |
19 | 1 | ccv_nnc_graph_exec_t previous_exec; |
20 | 22 | for (i = 0; i < convnet->count; i++21 ) |
21 | 21 | { |
22 | 21 | ccv_convnet_layer_t* layer = convnet->layers + i; |
23 | 21 | int rows, cols, partition; |
24 | 21 | ccv_convnet_make_output(layer, layer->input.matrix.rows, layer->input.matrix.cols, &rows, &cols, &partition); |
25 | 21 | ccv_nnc_tensor_t* tensor = output; |
26 | 21 | if (i < convnet->count - 1) |
27 | 20 | { |
28 | 20 | if (layer->type == CCV_CONVNET_FULL_CONNECT) |
29 | 2 | tensor = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, rows * cols * partition), 0); |
30 | 18 | else |
31 | 18 | tensor = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, rows, cols, (layer->type == CCV_CONVNET_CONVOLUTIONAL ? layer->net.convolutional.count : layer->input.matrix.channels)), 0); |
32 | 20 | ccv_array_push(tensors, &tensor); |
33 | 20 | } |
34 | 21 | ccv_nnc_graph_exec_t exec = {0}; |
35 | 21 | if (layer->type == CCV_CONVNET_CONVOLUTIONAL) |
36 | 13 | { |
37 | 13 | ccv_nnc_tensor_t* w = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, layer->net.convolutional.count, layer->net.convolutional.rows, layer->net.convolutional.cols, layer->net.convolutional.channels), 0); |
38 | 13 | memcpy(w->data.f32, layer->w, layer->wnum * sizeof(float)); |
39 | 13 | ccv_nnc_tensor_t* bias = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, layer->net.convolutional.count), 0); |
40 | 13 | memcpy(bias->data.f32, layer->bias, layer->net.convolutional.count * sizeof(float)); |
41 | 13 | ccv_array_push(tensors, &w); |
42 | 13 | ccv_array_push(tensors, &bias); |
43 | 13 | ccv_nnc_cmd_t cmd = CMD_CONVOLUTION_FORWARD(1, layer->net.convolutional.count, layer->net.convolutional.rows, layer->net.convolutional.cols, layer->net.convolutional.channels); |
44 | 13 | ccv_nnc_hint_t hint = ccv_nnc_hint_auto(cmd.info, input->info, tensor->info); |
45 | 13 | cmd = ccv_nnc_cmd_autotune(cmd, 0, hint, 0, TENSOR_LIST(input, w, bias), TENSOR_LIST(tensor), 0); |
46 | 13 | exec = ccv_nnc_graph_exec_new(vgg, cmd, hint, TENSOR_LIST(input, w, bias), TENSOR_LIST(tensor)); |
47 | 13 | } else if (8 layer->type == CCV_CONVNET_MAX_POOL8 ) { |
48 | 5 | ccv_nnc_cmd_t cmd = CMD_MAX_POOL_FORWARD(layer->net.pool.size, layer->net.pool.size); |
49 | 5 | ccv_nnc_hint_t hint = ccv_nnc_hint_auto(cmd.info, input->info, tensor->info); |
50 | 5 | exec = ccv_nnc_graph_exec_new(vgg, cmd, hint, TENSOR_LIST(input), TENSOR_LIST(tensor)); |
51 | 5 | } else if (3 layer->type == CCV_CONVNET_FULL_CONNECT3 ) { |
52 | 3 | ccv_nnc_tensor_t* w = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, layer->net.full_connect.count, layer->input.node.count), 0); |
53 | 3 | memcpy(w->data.f32, layer->w, layer->wnum * sizeof(float)); |
54 | 3 | ccv_nnc_tensor_t* bias = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, layer->net.full_connect.count), 0); |
55 | 3 | memcpy(bias->data.f32, layer->bias, layer->net.full_connect.count * sizeof(float)); |
56 | 3 | ccv_array_push(tensors, &w); |
57 | 3 | ccv_array_push(tensors, &bias); |
58 | 3 | ccv_nnc_cmd_t cmd = CMD_GEMM_FORWARD(NO_TRANSPOSE, TRANSPOSE(0, 1)); |
59 | | // If the input is not what I expected (array), reshape it. |
60 | 3 | if (input->info.dim[0] != ccv_nnc_tensor_count(input->info)) |
61 | 1 | { |
62 | 1 | input = ccv_nnc_tensor_new(input->data.u8, CPU_TENSOR_NHWC(32F, ccv_nnc_tensor_count(input->info)), 0); |
63 | 1 | ccv_array_push(tensors, &input); |
64 | 1 | } |
65 | 3 | cmd = ccv_nnc_cmd_autotune(cmd, 0, ccv_nnc_no_hint, 0, TENSOR_LIST(input, w, bias), TENSOR_LIST(tensor), 0); |
66 | 3 | exec = ccv_nnc_graph_exec_new(vgg, cmd, ccv_nnc_no_hint, TENSOR_LIST(input, w, bias), TENSOR_LIST(tensor)); |
67 | 3 | } else { |
68 | 0 | assert("unreachable"); |
69 | 0 | } |
70 | 21 | if (i != 0) |
71 | 20 | ccv_nnc_graph_exec_concat(vgg, previous_exec, exec); |
72 | 21 | previous_exec = exec; |
73 | 21 | if (i == 0) |
74 | 1 | *source = exec; |
75 | 21 | if (i < convnet->count - 1 && |
76 | 21 | (20 layer->type == CCV_CONVNET_CONVOLUTIONAL20 || layer->type == CCV_CONVNET_FULL_CONNECT7 )) |
77 | 15 | { |
78 | | // Create the ReLU layer. |
79 | 15 | ccv_nnc_cmd_t cmd = CMD_RELU_FORWARD(); |
80 | 15 | exec = ccv_nnc_graph_exec_new(vgg, cmd, ccv_nnc_no_hint, TENSOR_LIST(tensor), TENSOR_LIST(tensor)); |
81 | 15 | ccv_nnc_graph_exec_concat(vgg, previous_exec, exec); |
82 | 15 | previous_exec = exec; |
83 | 15 | } |
84 | 21 | if (i == convnet->count - 1) |
85 | 1 | *dest = exec; |
86 | | // This is the input of next layer. |
87 | 21 | input = tensor; |
88 | 21 | } |
89 | 1 | return vgg; |
90 | 1 | } |
91 | | |
92 | | #ifdef HAVE_LIBPNG |
93 | | TEST_CASE("run vgg-d graph with nnc") |
94 | 1 | { |
95 | 1 | ccv_convnet_t* convnet = ccv_convnet_read(0, "../../../samples/image-net-2012-vgg-d.sqlite3"); |
96 | 1 | ccv_dense_matrix_t* image = 0; |
97 | 1 | ccv_read("../../../samples/dex.png", &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR); |
98 | 1 | ccv_dense_matrix_t* input = 0; |
99 | 1 | ccv_convnet_input_formation(convnet->input, image, &input); |
100 | 1 | ccv_matrix_free(image); |
101 | 1 | ccv_dense_matrix_t* sliced = 0; |
102 | 1 | ccv_slice(input, (ccv_matrix_t**)&sliced, 0, (input->rows - 225) / 2, (input->cols - 225) / 2, 225, 225); |
103 | 1 | ccv_matrix_free(input); |
104 | 1 | ccv_dense_matrix_t* b = 0; |
105 | 1 | ccv_convnet_encode(convnet, &sliced, &b, 1); |
106 | 1 | ccv_nnc_tensor_t* c = ccv_nnc_tensor_new(0, CPU_TENSOR_NHWC(32F, 1000), 0); |
107 | 1 | ccv_nnc_graph_exec_t source, dest; |
108 | 1 | ccv_array_t* tensors = ccv_array_new(sizeof(ccv_nnc_tensor_t*), 1, 0); |
109 | 1 | ccv_nnc_graph_t* graph = ccv_nnc_simple_graph(convnet, (ccv_nnc_tensor_t*)sliced, c, &source, &dest, tensors); |
110 | 1 | GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH); |
111 | 1 | ccv_nnc_graph_run(graph, 0, &source, 1, &dest, 1, 0, 0); |
112 | 1 | REQUIRE_ARRAY_EQ_WITH_TOLERANCE(float, b->data.f32, c->data.f32, 1000, 1e-4, "output should be the same from convnet and from the graph"); |
113 | 1 | ccv_nnc_tensor_free(c); |
114 | 1 | ccv_matrix_free(sliced); |
115 | 1 | ccv_matrix_free(b); |
116 | 1 | ccv_nnc_graph_free(graph); |
117 | 1 | int i; |
118 | 54 | for (i = 0; i < tensors->rnum; i++53 ) |
119 | 53 | ccv_nnc_tensor_free(*(ccv_nnc_tensor_t**)ccv_array_get(tensors, i)); |
120 | 1 | ccv_array_free(tensors); |
121 | 1 | ccv_convnet_free(convnet); |
122 | 1 | } |
123 | | #endif |
124 | | |
125 | | #include "case_main.h" |