Coverage Report

Created: 2024-08-18 16:21

/home/liu/actions-runner/_work/ccv/ccv/test/unit/nnc/concat.tests.c
Line
Count
Source
1
#include "case.h"
2
#include "ccv_case.h"
3
#include "ccv_nnc_case.h"
4
#include <ccv.h>
5
#include <nnc/ccv_nnc.h>
6
#include <nnc/ccv_nnc_easy.h>
7
#include "3rdparty/dsfmt/dSFMT.h"
8
9
TEST_SETUP()
10
{
11
  ccv_nnc_init();
12
}
13
14
TEST_CASE("concatenate several tensors together")
15
1
{
16
1
  ccv_cnnp_model_t* const concat = ccv_cnnp_concat(0, "concat");
17
1
  ccv_cnnp_model_t* const dense = ccv_cnnp_dense(1, 1, 0, 1, "linear");
18
1
  ccv_cnnp_model_t* const full = ccv_cnnp_sequential_new(MODEL_LIST(concat, dense), 1, "full");
19
1
  ccv_nnc_tensor_param_t a_params = CPU_TENSOR_NCHW(32F, 1);
20
1
  ccv_nnc_tensor_param_t b_params = CPU_TENSOR_NCHW(32F, 2);
21
1
  ccv_cnnp_model_compile(full, TENSOR_PARAM_LIST(a_params, b_params), CMD_NOOP(), CMD_NOOP());
22
1
  CNNP_MODEL_GEN(full, CCV_NNC_LONG_DOT_GRAPH);
23
1
  ccv_nnc_tensor_t* const a = ccv_nnc_tensor_new(0, a_params, 0);
24
1
  a->data.f32[0] = -0.5;
25
1
  ccv_nnc_tensor_t* const b = ccv_nnc_tensor_new(0, b_params, 0);
26
1
  b->data.f32[0] = 0.3;
27
1
  b->data.f32[1] = 2;
28
1
  ccv_nnc_tensor_t* const c = ccv_nnc_tensor_new(0, CPU_TENSOR_NCHW(32F, 1), 0);
29
1
  ccv_cnnp_model_evaluate(full, (ccv_cnnp_evaluate_param_t){}, TENSOR_LIST(a, b), TENSOR_LIST(c), 0, 0);
30
1
  ccv_cnnp_model_parameters_map(full, ccv_cnnp_model_parameters(full, ALL_PARAMETERS, ALL_PARAMETERS), CMD_SET_FORWARD(1), ccv_nnc_no_hint, 0, 0, 0, 0, 0, 0);
31
1
  ccv_cnnp_model_evaluate(full, (ccv_cnnp_evaluate_param_t){}, TENSOR_LIST(a, b), TENSOR_LIST(c), 0, 0);
32
1
  REQUIRE_EQ_WITH_TOLERANCE(c->data.f32[0], -0.5 + 0.3 + 2, 1e-5, "should be equal");
33
1
  ccv_nnc_tensor_free(a);
34
1
  ccv_nnc_tensor_free(b);
35
1
  ccv_nnc_tensor_free(c);
36
1
  ccv_cnnp_model_free(full);
37
1
}
38
39
TEST_CASE("concatenate several tensors together and make sure they are simplified away")
40
1
{
41
1
  ccv_cnnp_model_t* const x_dense = ccv_cnnp_dense(1, 1, 0, 1, "linear");
42
1
  ccv_cnnp_model_t* const y_dense = ccv_cnnp_dense(2, 1, 0, 1, "linear");
43
1
  ccv_cnnp_model_t* const concat = ccv_cnnp_concat(0, "concat");
44
1
  ccv_cnnp_model_t* const dense = ccv_cnnp_dense(1, 1, 0, 1, "linear");
45
1
  ccv_cnnp_model_io_t const x = ccv_cnnp_input();
46
1
  ccv_cnnp_model_io_t const y = ccv_cnnp_input();
47
1
  ccv_cnnp_model_io_t xz = ccv_cnnp_model_apply(x_dense, MODEL_IO_LIST(x));
48
1
  ccv_cnnp_model_io_t yz = ccv_cnnp_model_apply(y_dense, MODEL_IO_LIST(y));
49
1
  ccv_cnnp_model_io_t z = ccv_cnnp_model_apply(concat, MODEL_IO_LIST(xz, yz));
50
1
  z = ccv_cnnp_model_apply(dense, MODEL_IO_LIST(z));
51
1
  ccv_cnnp_model_t* const full = ccv_cnnp_model_new(MODEL_IO_LIST(x, y), MODEL_IO_LIST(z), 1, "full");
52
1
  ccv_nnc_tensor_param_t a_params = CPU_TENSOR_NCHW(32F, 1);
53
1
  ccv_nnc_tensor_param_t b_params = CPU_TENSOR_NCHW(32F, 2);
54
1
  ccv_cnnp_model_compile(full, TENSOR_PARAM_LIST(a_params, b_params), CMD_NOOP(), CMD_NOOP());
55
1
  CNNP_MODEL_GEN(full, CCV_NNC_LONG_DOT_GRAPH);
56
1
  ccv_nnc_tensor_t* const a = ccv_nnc_tensor_new(0, a_params, 0);
57
1
  a->data.f32[0] = -0.5;
58
1
  ccv_nnc_tensor_t* const b = ccv_nnc_tensor_new(0, b_params, 0);
59
1
  b->data.f32[0] = 0.3;
60
1
  b->data.f32[1] = 2;
61
1
  ccv_nnc_tensor_t* const c = ccv_nnc_tensor_new(0, CPU_TENSOR_NCHW(32F, 1), 0);
62
1
  ccv_cnnp_model_evaluate(full, (ccv_cnnp_evaluate_param_t){}, TENSOR_LIST(a, b), TENSOR_LIST(c), 0, 0);
63
1
  ccv_cnnp_model_parameters_map(full, ccv_cnnp_model_parameters(x_dense, ALL_PARAMETERS, ALL_PARAMETERS), CMD_SET_FORWARD(0.5), ccv_nnc_no_hint, 0, 0, 0, 0, 0, 0);
64
1
  ccv_cnnp_model_parameters_map(full, ccv_cnnp_model_parameters(y_dense, ALL_PARAMETERS, ALL_PARAMETERS), CMD_SET_FORWARD(-0.5), ccv_nnc_no_hint, 0, 0, 0, 0, 0, 0);
65
1
  ccv_cnnp_model_parameters_map(full, ccv_cnnp_model_parameters(dense, ALL_PARAMETERS, ALL_PARAMETERS), CMD_SET_FORWARD(1), ccv_nnc_no_hint, 0, 0, 0, 0, 0, 0);
66
1
  ccv_cnnp_model_evaluate(full, (ccv_cnnp_evaluate_param_t){}, TENSOR_LIST(a, b), TENSOR_LIST(c), 0, 0);
67
1
  REQUIRE_EQ_WITH_TOLERANCE(c->data.f32[0], -0.5 * 0.5 + (0.3 + 2) * -0.5 * 2, 1e-5, "should be equal");
68
1
  ccv_nnc_tensor_free(a);
69
1
  ccv_nnc_tensor_free(b);
70
1
  ccv_nnc_tensor_free(c);
71
1
  ccv_cnnp_model_free(full);
72
1
}
73
74
#include "case_main.h"