/home/liu/actions-runner/_work/ccv/ccv/test/unit/nnc/rand.tests.c
Line | Count | Source |
1 | | #include "case.h" |
2 | | #include "ccv_case.h" |
3 | | #include "ccv_nnc_case.h" |
4 | | #include <ccv.h> |
5 | | #include <nnc/ccv_nnc.h> |
6 | | #include <nnc/ccv_nnc_easy.h> |
7 | | #include "3rdparty/dsfmt/dSFMT.h" |
8 | | |
9 | | TEST_SETUP() |
10 | | { |
11 | | ccv_nnc_init(); |
12 | | } |
13 | | |
14 | | TEST_CASE("random uniform distribution") |
15 | 1 | { |
16 | 1 | ccv_nnc_symbolic_graph_t* symbolic_graph = ccv_nnc_symbolic_graph_new(); |
17 | 1 | const ccv_nnc_tensor_symbol_t x = ccv_nnc_tensor_symbol_new(symbolic_graph, CPU_TENSOR_NHWC(32F, 100000), "x"); |
18 | 1 | ccv_nnc_graph_exec_symbol_new(symbolic_graph, CMD_RANDOM_UNIFORM_FORWARD(-8, 4), TENSOR_SYMBOL_LIST(), TENSOR_SYMBOL_LIST(x), "random uniform"); |
19 | 1 | ccv_nnc_graph_exec_symbol_autogen(symbolic_graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
20 | 1 | SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH); |
21 | 1 | ccv_nnc_graph_t* graph = 0; |
22 | 1 | ccv_nnc_tensor_arena_t* tensor_arena = 0; |
23 | 1 | ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0; |
24 | 1 | ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, SYMBOLIC_GRAPH_SOURCES(symbolic_graph), SYMBOLIC_GRAPH_DESTINATIONS(symbolic_graph), &graph, &tensor_arena, &graph_exec_arena); |
25 | 1 | GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH); |
26 | 1 | ccv_nnc_graph_run(graph, 0, TRAVERSE_FULL, 0, 0); |
27 | 1 | ccv_nnc_tensor_t* const x_tensor = ccv_nnc_tensor_from_symbol(tensor_arena, x); |
28 | 1 | int i; |
29 | 1 | int h[4 + 8] = {}; |
30 | 100k | for (i = 0; i < 100000; i++100k ) |
31 | 100k | { |
32 | 100k | REQUIRE(x_tensor->data.f32[i] > -8 - 1e-5, "it must be bigger than lower bound"); |
33 | 100k | REQUIRE(x_tensor->data.f32[i] < 4 + 1e-5, "and smaller than upper bound"); |
34 | 100k | int b = (int)roundf(x_tensor->data.f32[i] - 0.5) + 8; |
35 | 100k | b = ccv_max(ccv_min(b, 11), 0); |
36 | 100k | ++h[b]; |
37 | 100k | } |
38 | 1 | const int count = (int)roundf(100000. / (4 + 8)); |
39 | 13 | for (i = 0; i < 12; i++12 ) |
40 | 12 | { REQUIRE(h[i] >= count - 1000 && h[i] <= count + 1000, "uniform distribution"); } |
41 | 1 | ccv_nnc_graph_free(graph); |
42 | 1 | ccv_nnc_tensor_arena_free(tensor_arena); |
43 | 1 | ccv_nnc_graph_exec_arena_free(graph_exec_arena); |
44 | 1 | ccv_nnc_symbolic_graph_free(symbolic_graph); |
45 | 1 | } |
46 | | |
47 | | TEST_CASE("random normal distribution") |
48 | 1 | { |
49 | 1 | ccv_nnc_symbolic_graph_t* symbolic_graph = ccv_nnc_symbolic_graph_new(); |
50 | 1 | const ccv_nnc_tensor_symbol_t x = ccv_nnc_tensor_symbol_new(symbolic_graph, CPU_TENSOR_NHWC(32F, 100001), "x"); |
51 | 1 | ccv_nnc_graph_exec_symbol_new(symbolic_graph, CMD_RANDOM_NORMAL_FORWARD(2, 1), TENSOR_SYMBOL_LIST(), TENSOR_SYMBOL_LIST(x), "random uniform"); |
52 | 1 | ccv_nnc_graph_exec_symbol_autogen(symbolic_graph, 0, 0, CCV_NNC_AUTOGEN_ALL_EXECS | CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS); |
53 | 1 | SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH); |
54 | 1 | ccv_nnc_graph_t* graph = 0; |
55 | 1 | ccv_nnc_tensor_arena_t* tensor_arena = 0; |
56 | 1 | ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0; |
57 | 1 | ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, SYMBOLIC_GRAPH_SOURCES(symbolic_graph), SYMBOLIC_GRAPH_DESTINATIONS(symbolic_graph), &graph, &tensor_arena, &graph_exec_arena); |
58 | 1 | GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH); |
59 | 1 | ccv_nnc_graph_run(graph, 0, TRAVERSE_FULL, 0, 0); |
60 | 1 | ccv_nnc_tensor_t* const x_tensor = ccv_nnc_tensor_from_symbol(tensor_arena, x); |
61 | 1 | int i; |
62 | 1 | double mean = 0; |
63 | 100k | for (i = 0; i < 100001; i++100k ) |
64 | 100k | mean += x_tensor->data.f32[i]; |
65 | 1 | mean = mean / 100001.0; |
66 | 1 | double std = 0; |
67 | 100k | for (i = 0; i < 100001; i++100k ) |
68 | 100k | std += (x_tensor->data.f32[i] - mean) * (x_tensor->data.f32[i] - mean); |
69 | 1 | std = sqrt(std / 100001.0); |
70 | 1 | REQUIRE_EQ_WITH_TOLERANCE(std, 2, 2e-2, "std should be 2"); |
71 | 1 | REQUIRE_EQ_WITH_TOLERANCE(mean, 1, 2e-2, "mean should be 1"); |
72 | 1 | ccv_nnc_graph_free(graph); |
73 | 1 | ccv_nnc_tensor_arena_free(tensor_arena); |
74 | 1 | ccv_nnc_graph_exec_arena_free(graph_exec_arena); |
75 | 1 | ccv_nnc_symbolic_graph_free(symbolic_graph); |
76 | 1 | } |
77 | | |
78 | | #include "case_main.h" |